
Security-by-Design at the Telco Edge with OSS:
Challenges and Lessons Learned

Carmine Cesarano1, Alessio Foggia1, Gianluca Roscigno2, Luca Andreani3, Roberto Natella1

1Università degli Studi di Napoli Federico II, Naples, Italy
2System Management S.p.A, Naples, Italy

3DigitalPlatforms S.p.A, Rome, Italy

Abstract—This paper presents our experience, in the context
of an industrial R&D project, on securing GENIO, a plat-
form for edge computing on Passive Optical Network (PON)
infrastructures, and based on Open-Source Software (OSS).
We identify threats and related mitigations through hardening,
vulnerability management, digital signatures, and static and
dynamic analysis. In particular, we report lessons learned in
applying these mitigations using OSS, and share our findings
about the maturity and limitations of these security solutions in
an industrial context.

Index Terms—Edge Computing, Security-by-Design, OSS

I. INTRODUCTION

Edge computing has emerged as a transformative paradigm
in the telecommunications and industrial sectors, enabling low-
latency data processing closer to the end-users [1]. Tradition-
ally, edge computing and broadband access networks have
operated independently, with edge workloads running on ded-
icated servers, and Passive Optical Networks (PON) providing
high-speed broadband connectivity. However, leveraging PON
hardware infrastructure for edge computing presents a promis-
ing opportunity to create a high-performance and cost-effective
platform for running edge services [2], [3].

Unlike centralized cloud environments, deploying work-
loads on PON infrastructures introduces security risks. A
primary concern is the physical exposure of hardware in
uncontrolled environments, increasing the risk of tampering
and unauthorized access [4], [5]. Security risks are amplified
by the complexity of software architectures, which rely on
Commercial Off-the-Shelf (COTS) and Open-Source Software
(OSS) components for virtualization, software-defined net-
working, and orchestration. Software reuse provides flexibility
and cost-efficiency, but can also introduce software vulner-
abilities and expose to compromised software dependencies
[6]. Multi-tenancy introduces more security risks, as different
edge applications share the same infrastructure. Maintaining
isolation between tenants is critical to prevent escalation of
security attacks [7].

The GENIO project [8] is a joint R&D initiative between
academic and industry partners, aiming to achieve a secure-
by-design edge computing platform integrated with PON net-
works. Unlike conventional edge models that rely on dedicated
servers, GENIO leverages existing PON hardware to host
multi-tenant edge services, directly within the telecom infras-

tructure. This approach can optimize resource utilization and
create new revenue opportunities for telecom operators, with-
out the need for additional investments in dedicated servers.
One of the main objectives of the GENIO project is to align the
platform with security regulations, such as the European Cyber
Resilience Act [9] and CE marking certification [10]. This
objective shaped the platform by guiding threat mitigations.

Despite the growing emphasis on security-by-design, exist-
ing frameworks are not directly applicable for the design of
the GENIO platform. Technical standards, e.g., from CISA
[11] and NIST [12], provide high-level security guidelines,
but these lack practical, actionable implementation details.
In real-world deployments, security must be tailored to the
specific hardware and software technology and to the oper-
ational constraints of heterogeneous industrial environments,
thus requiring customized solutions. Academic research has
proposed security-by-design methodologies for specific types
of systems, such as cloud applications [13], smart grids [14],
big data frameworks [15], and 5G networks [16]. However, no
blueprint is readily available for security-by-design in PON-
based edge computing.

This paper presents our findings from the design of the
GENIO platform, covering security risks across hardware,
OS, middleware, and applications. We evaluated the maturity
and limitations of security mitigations, based on OSS solu-
tions, and documented several challenges due to architectural
constraints and software heterogeneity. By aligning security
research with deployment realities, this work provides key
lessons learned, bridging the gap between theoretical security
models and practical implementation in an industrial context.

II. THE GENIO PROJECT

The GENIO project aims to develop a platform that inte-
grates edge computing capabilities into telecom central offices,
leveraging PON equipment. The architecture spans three lay-
ers: the cloud layer, the edge layer, and the far-edge layer,
enabling flexible application deployments based on latency and
computation requirements.
Deployment. As shown in Figure 1, the far-edge layer in-
cludes Optical Network Units (ONUs), which are deployed
in residential and business premises, and which connect users
to the fiber network. In GENIO, ONUs are equipped with
additional low-end computing resources, enabling them to

ar
X

iv
:2

50
5.

00
11

1v
1 

 [
cs

.C
R

] 
 3

0 
A

pr
 2

02
5



run applications with ultra-low latency requirements. The
edge layer includes Optical Line Terminals (OLTs), which
are devices located in telecom central offices, and which
are repurposed in GENIO to serve as edge computing hubs.
Originally designed for PON connectivity management, OLTs
are enhanced with additional hardware and software to provide
computational and storage resources. This layer is optimized
for applications with strict latency and bandwidth require-
ments, balancing performance and resource availability. For
applications with less stringent latency requirements, the cloud
layer offers high computational and storage resources. The
cloud layer also behaves as the orchestration center, managing
resources across the edge and far-edge layers, and handling
complex tasks that exceed the capabilities of local devices.

Use cases. GENIO is designed to serve both business users
and end-users. Business users, such as service operators and
enterprises, are providers of edge applications to be shared as
container images on a public registry of the GENIO project.
Examples include ML workloads, real-time analytics, IoT data
processing (e.g., from smart meters, cameras, and sensors),
and telecom network functions. Business users can leverage
the GENIO platform through an Infrastructure-as-a-Service
(IaaS) model, by leasing computing, storage, and networking
resources on the edge to run their applications. End-users,
which include individual customers and businesses, interact
with the platform via a Software-as-a-Service (SaaS) model,
by consuming edge applications provided by business users.

Software Architecture. The GENIO platform a distributed
and multi-layered architecture to manage network operations,
resource allocation, and application deployment. In particular,
OLTs are based on x86 COTS hardware, and they integrate
several OSS technologies for software-defined networking
(SDN), including ONOS [17], VOLTHA [18] and Open Net-
working Linux (ONL) [19], to dynamically and efficiently
manage PON network resources. OLTs are extended to support
secure multi-tenancy for running edge applications, based on
OSS virtualization technologies. The physical resources of the
OLT are managed using a cluster of virtual machines, managed
using the Linux/KVM hypervisor. Edge applications can run
in either hard isolation (in dedicated virtual machines) or
soft isolation (in containers and network namespaces within
the virtual machines), to accomodate different security and
performance requirements. Additionally, GENIO uses Kuber-
netes and Proxmox [20] for orchestrating the virtual machines
and containerized applications, allowing scalable, resilient, and
efficient workload management based on current network and
computational conditions.

III. THREAT MODELING FOR GENIO

Securing the GENIO platform required developing a com-
prehensive threat model to identify risks across the cloud,
edge, and far-edge layers. Using the STRIDE methodology
[21], we systematically identified threats, from physical tam-
pering of ONUs and OLTs, to software vulnerabilities and mis-
configurations of orchestration services. This process led to the

Fig. 1. GENIO deployment across cloud, edge and far-edge layers.

categorization of risks into Infrastructure-level, Middleware-
level, and Application-level threats. Figures 2 and 3 provide
an overview of the GENIO architecture and a summary of
threats and mitigations, respectively.

A. Infrastructure-level Threats

The infrastructure level encompasses hardware components
and low-level software, which are the foundation of the
GENIO architecture.

T1 Network Attacks The distributed nature of the GENIO ar-
chitecture creates multiple points of vulnerability for secure
data transmission, spanning OLTs, ONUs, inter-OLT links, and
cloud interactions. Adversaries can eavesdrop, modify traffic,
or impersonate network components at various stages, with
interception and replay attacks posing a direct threat to data
integrity and authenticity. Physical exploits like downstream
hijacking and ONU impersonation target the PON architec-
ture at the hardware and firmware level. Infrastructure-level
tampering often involves physically tapping fiber connections
[22] or modifying device firmware to siphon traffic [23].

T2 Code Tampering Attackers can target low-level system com-
ponents to introduce persistent threats, embedding malware
or backdoors into the platform. Reverse engineering, binary
untrusted patching/updating, and firmware manipulation are
common attack techniques that allow adversaries to manip-
ulate hypervisors, kernels, and system binaries. A successful
compromise at this level can provide long-term control over
the entire host machine.

T3 Privilege Abuse Misconfigurations in low-level software,
such as unrestricted OS accounts, services, and files, can
expose the system to privilege escalation. Intruders can exploit
these flaws to expand their control over the platform, by
hijacking administrative functions and achieving persistency.
This can facilitate service disruptions and data thefts, posing
a severe risk to the security of GENIO operations.

T4 Software Vulnerabilities Unpatched or unknown vulnerabili-
ties in low-level software can be exploited by attackers to
gain full access to the host machine, and to break isolation
mechanisms. Unfortunately, handling these vulnerabilities can



Fig. 2. GENIO architecture.

be quite difficult, since OLTs and ONUs are managed and
updated remotely. Moreover, the GENIO platform relies on a
custom Linux kernel configuration to support SDN software,
requiring continuous vulnerability assessment to secure its
custom stack. Any failure to address these vulnerabilities
can expose the infrastructure to kernel exploits and container
escaping.

B. Middleware-level Threats

The middleware level in GENIO includes software-defined
networking (VOLTHA, ONOS), virtualization and container
management (Proxmox, Kubernetes). These components pro-
vide powerful interfaces to programmatically manage re-
sources, but also introduce more security challenges.

T5 Privilege Abuse Misconfigurations can also apply to mid-
dleware, such as overprivileged roles and unrestricted API
access. Weak Role-Based Access Control (RBAC) policies can
grant excessive permissions, enabling privilege escalation and
lateral movement. This risk is often exacerbated by insecure
defaults in open-source software [24] [25], which prioritizes
usability over security by not enabling strict execution policies
and strong authentication mechanisms. Without proper hard-
ening, attackers can exploit misconfigurations to manipulate
workloads, gain unauthorized access, and disrupt network
operations.

T6 Software Vulnerabilities Software vulnerabilities can also
arise from flaws in orchestration and network management
software, which represent a significant share of the codebase.
These weaknesses, such as bugs in workflows and API imple-
mentations [26], [27] and vulnerable third-party dependencies
[28], can be exploited to compromise middleware security.
These these flaws expose middleware resources to unintended
access, allowing adversaries to intercept sensitive data.

C. Application-level Threats

The GENIO platform supports the deployment and execu-
tion of applications across its far-edge, edge, and cloud layers.
Applications can expose other ones, and the GENIO platform
itself, to security attacks.

T7 Vulnerable Applications Since applications are delivered by
third-party business users, they can bring additional applica-
tion vulnerabilities. Attackers can exploit such vulnerabilities
to gain foothold on a tenant, and pursue malicious actions
against users, other tenants, and the underlying platform. Ap-
plication vulnerabilities arise from the lack of secure software
development practices, such as static/dynamic analysis and
reuse of insecure components. These issues can expose users
to data breaches (e.g., through SQL injection) and injection
attacks (e.g., Cross-Site Scripting). Moreover, attackers can
gain access through command injection, deserialization, and
memory corruption vulnerabilities, which can lead to remote
code execution.

T8 Malicious Applications Malicious behaviors can arise both
from exploited vulnerabilities (as previously discussed), and
from deliberately malicious applications. For example, busi-
ness users can reuse malicious container images from external
repositories, which can contain hidden malware or backdoors.
These untrusted applications can bypass scrutiny through
obfuscation. These applications can execute malicious code
to invoke privileged system calls and misusing capabilities
(e.g., CAP_SYS_ADMIN in Linux containers), in order to
escape container restrictions and disrupt the host and neigh-
boring services. Moreover, malicious applications can attack
the platform through resource abuse, by monopolizing CPU,
memory, network, and storage resources, thereby degrading
performance and causing service outages for other tenants.

IV. INFRASTRUCTURE-LEVEL MITIGATIONS

A. Mitigating Privilege Abuse

M1 OS environment configurations GENIO ensures a secure ONL
Linux configuration, by stripping non-essential components
(e.g., unused packages, services, kernel modules) to minimize
the attack surface. Security policies are automated using Open-
SCAP [29], which enforces SCAP benchmarks to secure SSH
configurations, enable NTP synchronization, disable untrusted
APT repositories, and protect kernel files. GENIO also aligns
to Security Technical Implementation Guides (STIGs) [30], a
set of best practices originally developed for Ubuntu and other
mainstream Linux distributions, to enforce encryption policies,
restrict system access, and secure boot configurations.

M2 OS kernel hardening At the kernel level, memory protections
(e.g., CONFIG_STACKPROTECTOR) block buffer overflow
attacks, while Linux Security Modules (AppArmor/SELinux)
[31] restrict privileged system calls. High-risk functionalities
like KEXEC (runtime kernel replacement) and KPROBES (de-
bugging hooks) are disabled. The kernel-hardening-checker
tool [32] validates configurations (kconfig, cmdline, sysctl)



Fig. 3. OSS security solutions and standards in GENIO.

against hardened baselines, and speculative execution mit-
igations (Intel/AMD microcode [33]) address side-channel
vulnerabilities like Spectre [34].

Lesson 1. The platform’s reliance on Open Network-
ing Linux (ONL) introduced complexities, as ONL lacks
formal security guidelines compared to mainstream distri-
butions. The application of STIGs and SCAP benchmarks
was required to align with ONL’s architecture, demanding
iterative adjustments and reviews to balance security, per-
formance, and compatibility.

B. Securing Communication

M3 End-to-End Encryption GENIO safeguards traffic across both
Ethernet and PON segments through end-to-end encryption to
prevent interception or tampering. At layer 2, the MACsec
protocol standardized by IEEE 802.1AE [35] encrypts raw
Ethernet frames using AES-GCM, providing authentication,
confidentiality, and integrity for data on point-to-point Eth-
ernet. In parallel, GENIO follows optical-specific guidelines

such as ITU-T G.987.3 [36] for GPON, which recommend
AES-based payload encryption to defend against fiber taps
and low-level tampering in PONs.

M4 Authentication of Nodes GENIO enforces mutual authentica-
tion between ONUs and OLTs to verify hardware legitimacy
before service provisioning. Certificate-based methods (via
PKI) validate device identities, preventing rogue devices from
impersonating legitimate infrastructure. Secure key exchange
protocols (e.g., TLS 1.3) and secure DNS [37] prevent man-
in-the-middle attacks during onboarding and registration, en-
suring only trusted devices access network resources.

Lesson 2. Encryption imposes additional engineering
efforts and computational resources to enhance the security
of the PON network. Implementing secure authentica-
tion among heterogeneous hardware (ONUs, OLTs, and
cloud systems) demands careful management of certifi-
cates. GENIO’s alignment with evolving ETSI standards
[38] reflects an ongoing effort to maintain interoperability
and compliance with industry guidelines.

C. Ensuring Code Integrity
M5 Secure Boot GENIO uses Secure Boot and a Trusted
Platform Module (TPM) to cryptographically verify OS and
firmware components before execution. At the earliest stage,
the Shim [39] bootloader, signed by a recognized certificate
authority (e.g., Microsoft), initializes a secure environment
before loading the GRUB bootloader. By relying on Shim, the
GENIO platform can add custom keys to validate later boot
layers, including distribution-specific kernels. Additionally,
Measured Boot records hashes of critical binaries in TPM
Platform Configuration Registers (PCRs) at boot, enabling
integrity checks against expected values. Together, these mea-
sures help ensure the platform boots from a known-good state
and reveal any subsequent compromise.

M6 Secure Storage Beyond TPM-based firmware and OS ver-
ification, GENIO protects data at rest using Linux Unified
Key Setup (LUKS) [40] to encrypt entire partitions with a
passphrase. After encryption, the decryption key can be bound
to specific PCR values in the TPM. If the measured envi-
ronment (e.g., the kernel) matches the expected hash chain,
the TPM releases the decryption secret; otherwise, access is
denied. To automate this, GENIO plans to integrate Clevis
[41], which seamlessly unwraps the LUKS key at boot when
TPM-managed PCRs confirm system integrity. This enables
booting without manual passphrase entry, reducing operational
overhead in PON settings.

M7 File Integrity Monitoring Even with secure boot, adversaries
may attempt to alter system files post-boot. GENIO deploys
Tripwire [42] for runtime file integrity monitoring (FIM),
creating cryptographic baselines of critical system files and
alerting administrators to unauthorized changes. Tripwire’s
configurations and databases are encrypted and signed, with
keys protected by the TPM to prevent tampering with the
monitoring process.



Lesson 3. Deploying integrity protections in industrial
environments faces obstacles. GENIO relies on older OS
distributions (ONL Linux, based on Debian 10) to run SDN
software and drivers, which lack native support for recent
software packages. As a result, manually installing newer
dependencies is required, introducing potential conflicts.
Libraries required by Clevis for TPM access and automated
disk decryption are unavailable, forcing manual passphrase
entry at boot, which is impractical for in-field deployments
of OLT nodes. Moreover, file monitoring should distinguish
between critical resources that should not be mutable (e.g.,
system binaries and configurations) from mutable ones, to
avoid misleading alerts.

D. Mitigating Software Vulnerabilities

M8 Automated Scanning GENIO conducts periodic vulnerability
scanning with tools such as OpenSCAP [29], Lynis [43] and
Vuls [44] to detect known CVEs across the low-level software,
including the Linux kernel, system binaries, and user-space
packages. These reports are prioritized based on severity and
exploitability, ensuring that critical patches are applied as soon
as feasible.

M9 Signed Updates Ensuring the authenticity and integrity of
software updates is critical to thwarting supply-chain at-
tacks within GENIO. The platform thus employs different
methods tailored to each update scenario. In Debian-based
environments, user-space packages are distributed via APT,
which signs metadata and packages with GPG keys for each
repository, and rejects any unverified artifacts. In addition,
GENIO employs ONIE [45] for securely delivering ONL
kernel updates. Following NIST SP 800-193 [46] guidelines,
ONIE images are signed with X.509 certificates, accompanied
by a detached signature file that is validated against a locally
trusted public key, backed by a TPM. ONIE reboots the system
into a minimal environment to apply the update, and fully
run this environment by using Secure Boot, reducing potential
inference from a compromised OS. Beyond kernel and user-
space package updates, GENIO must also distribute additional
binaries, such as specialized daemons and custom tools. These
are also signed with GENIO’s own certificates, which are
likewise validated on each target node before installation.

Lesson 4. The maturity of automated scanning solutions
facilitated smooth integration into GENIO’s custom stack,
even if occasional manual tuning is required to handle
non-standard paths and configurations in ONL. APT GPG
signatures for Debian-based images represent a reliable and
straightforward solution to adopt.

V. MIDDLEWARE-LEVEL MITIGATIONS

A. Mitigating Privilege Abuse

M10 Access Control GENIO applies the principle of least priv-
ilege across its middleware stack, ensuring each role and
service holds only the permissions necessary for legitimate op-
erations. For virtualization and container management, native

access control frameworks [47], [48] can mitigate abuses of
resources exposed through their APIs. In network management
software, including ONOS and VOLTHA, built-in authen-
tication and authorization mechanisms [49] are configured
to prevent API misuse. Exposed APIs for OLT and ONT
management are strictly restricted to administrative service
accounts secured by TLS certificates. On the network-side,
GENIO enforces a clearly defined set of capabilities required
in production, such as device registration, logical network con-
figuration, and diagnostic logging—while blocking operations
that introduce unnecessary privilege risks, such as direct shell
access, low-level debugging endpoints, or raw log retrieval.

M11 Security Guideline Compliance GENIO adheres to industry-
recognized security standards and continuously audits con-
figurations to maintain compliance. It implements the NSA
Kubernetes Hardening Guidance [50], CIS Benchmarks [51],
and a suite of community tools, including docker-bench
[52], kube-bench [53], kubesec [54], kube-hunter [55], and
kubescape [56] to detect misconfigurations in Kubernetes
clusters. Additionally, it follows vendor-specific guidelines for
SDN-controllers provided by ONOS [57] to address insecure
defaults, enforce strong authentication, and detect configura-
tion drift.

Lesson 5. Hardening network management software is
straightforward, as required capabilities are well-defined,
and unnecessary functions can be blocked without dis-
ruption. In contrast, the configuration of RBAC policies
for the orchestration platforms is challenging, since they
are feature-rich and resource access should be carefully
adapted for the workflows of the GENIO platform. More-
over, designers must integrate multiple security guidelines
and checker tools, since individual solutions only address
a subset of the risks.

B. Mitigating Software Vulnerabilities

M12 Automated Scanning and Patching GENIO integrates multi-
ple sources to track vulnerabilities in middleware components.
For Kubernetes, it leverages its official CVE database [58],
which provides real-time updates on disclosed vulnerabilities,
affected versions, exploitability, impact, and patches. The
Kubernetes database offers a structured, programmatically
accessible CVE feed for automated monitoring. Other mid-
dleware components vary in vulnerability tracking maturity.
The Docker runtime publishes security updates [59] as blog-
format announcements, making structured extraction difficult.
ONOS maintains a structured web interface but is no longer
actively updated. Proxmox notifies users only via its web
UI. For middleware lacking structured, up-to-date, or pro-
grammatically accessible feeds, GENIO relies on the National
Vulnerability Database (NVD) APIs to track vulnerabilities.
To enhance precision in Kubernetes vulnerability tracking,
GENIO integrates the Kubernetes Bill of Materials (KBOM)
[60], which catalogs control plane services, node components,
and add-ons with their exact versions and images, mapping
known vulnerabilities in installed components.



Lesson 6. Middleware vulnerability management remains
reactive and resource-intensive, since tracking vulnerabil-
ities involves fragmented sources. The NVD API, despite
its completeness, still requires manual reviews. The owner
of the platform must cross-reference security advisories
with deployed versions, assess exposure, and schedule
patches—delays that extend the attack window in produc-
tion environments.

VI. APPLICATION-LEVEL MITIGATIONS

A. Mitigating Software Vulnerabilities
M13 Container Security and SCA A key aspect of securing ap-
plications in GENIO is hardening containerized workloads.
The platform uses Docker Bench for Security [52] to detect
and fix misconfigurations that may introduce vulnerabilities.
By enforcing best practices, such as least-privilege execution,
restricted volume mounting, and secure networking, GENIO
reduces the application attack surface. To address risks from
third-party dependencies, GENIO integrates Software Compo-
sition Analysis (SCA) with tools like Trivy [61] and OWASP
Dependency Check [62], scanning container images, identify-
ing imported packages, and matching versions against CVE
databases. These tools provide visibility into vulnerabilities
introduced by pre-built components in the application stack.

M13 Static Application Security Testing GENIO applies SAST to
detect vulnerabilities in the source code of the application
itself. The container filesystem is extracted using Crane [63],
allowing further scans to detect quality issues. Java source
files are analyzed with SpotBugs [64], identifying issues such
as null pointer dereferences, improper resource management,
and inefficient exception handling. Pylint [65] serves as the
Python counterpart. In addition, GENIO integrates Semgrep
[66] and Bandit [67] to detect security vulnerabilities, such
as hardcoded credentials, improper input validation, and weak
cryptographic functions.

M15 Dynamic Application Security Testing GENIO integrates
DAST to uncover runtime vulnerabilities. Specifically,
GENIO employs CATS [68], a REST API fuzzer tool, to
evaluate OpenAPI-defined endpoints. CATS conducts fuzz
testing by injecting malformed, unexpected, and malicious
inputs to identify vulnerabilities such as insecure input
handling, improper authentication enforcement, and API
misconfigurations. Beyond application-level testing, GENIO
enforces network security checks when the application is
deployed. Nmap [69] verifies TLS enforcement to ensure
secure communication and analyzes port configurations,
identifying unnecessary open ports that could expose to
external threats.

Lesson 7. While SCA and SAST tools are mature
and widely available, integrating them into GENIO poses
challenges. SCA often flags unused or misidentified de-
pendencies, generating noise and false positives. It also
analyzes entire dependencies without linking vulnerabilities
to specific functions used by the application, resulting to

bloated reports and complicating path prioritization. Lastly,
fuzzing containerized applications is feasible only for those
exposing standard interfaces, such as REST APIs.

B. Identifying Malicious Applications

M16 Malware Signature GENIO defends against malicious ap-
plications using malware signature detection to proactively
identify known malicious components before they are de-
ployed or executed. To this end, GENIO utilizes Deepfence
YaraHunter [70] to scan container images at rest for indicators
of compromise. This tool leverages YARA rules to detect
embedded malicious binaries, scripts, or configuration files.

M17 Isolation & Sandboxing To limit the impact of malicious ap-
plications, GENIO enforces strict runtime boundaries through
isolation and sandboxing. It integrates KubeArmor [71] to
restrict container, pod, and VM behavior at the system level
using Linux Security Modules (LSMs), blocking unauthorized
processes, file access, and suspicious network activity. To
strengthen multi-tenancy isolation, GENIO follows the best
practices from the PEACH framework [72], which models
isolation risks based on interface complexity, tenant separation,
and enforcement strength across key dimensions such as
privilege, encryption, and authentication.

M18 Runtime Monitoring To enhance visibility into the behavior
of running applications, GENIO integrates Falco [73]. Falco
monitors system calls in real-time using eBPF and evaluates
them against a rich, customizable rule set to detect suspicious
behaviors such as unexpected shell execution, unauthorized
file access, or unusual network connections. Unlike signature-
based scanners or sandboxers, Falco provides deep runtime
observability without blocking execution, enabling early de-
tection of post-exploitation activities.

Lesson 8. Our experience with these tools confirms
that these techniques are relatively mature and effective
in detecting and isolating malicious applications. However,
challenges remain in tuning policies and rules to minimize
false positives without weakening security. Maintaining
performance overheads within acceptable bounds is also
a key consideration.

VII. CONCLUSION

Securing an edge computing platform demands to carefully
address threats across all layers of the system. The GENIO
project identifies and addresses key risks spanning infrastruc-
ture, middleware, and applications. Mitigation strategies were
deployed using open-source tools and best practices, revealing
both the strengths and limits of current security solutions.

ACKNOWLEDGMENTS

This project has been partially supported by the GENIO
project (CUP B69J23005770005) funded by MIMIT, ”Accordi
per l’Innovazione” program.



REFERENCES

[1] E. Ahmed, A. Ahmed, I. Yaqoob, J. Shuja, A. Gani, M. Imran, and
M. Shoaib, “Bringing computation closer toward the user network: Is
edge computing the solution?” IEEE Communications Magazine, 2017.

[2] TIM, “Edge Cloud Computing,” https://www.gruppotim.it/it/newsroom/
notiziario-tecnico-tim/2022/n1-2022/cap03-edge-cloud-computing.
html, 2022.

[3] Telefonica, “Telefónica Open Access and Edge Computing,”
https://www.telefonica.com/es/wp-content/uploads/sites/4/2021/02/
whitepaper-telefonica-opa-mec-feb-2019.pdf, 2019.

[4] Y. Xiao, Y. Jia, C. Liu, X. Cheng, J. Yu, and W. Lv, “Edge computing
security: State of the art and challenges,” Proceedings of the IEEE, 2019.

[5] K. Gai, Y. Ding, A. Wang, L. Zhu, K.-K. R. Choo, Q. Zhang, and
Z. Wang, “Attacking the edge-of-things: A physical attack perspective,”
IEEE Internet of Things Journal, 2021.

[6] P. Ladisa, H. Plate, M. Martinez, and O. Barais, “SoK: Taxonomy
of attacks on open-source software supply chains,” in 2023 IEEE
Symposium on Security and Privacy (SP). IEEE, 2023.

[7] V. Varadharajan and U. Tupakula, “Securing services in networked cloud
infrastructures,” IEEE Transactions on Cloud computing, 2016.

[8] System Management SpA, “GENIO Project,” https://sysmanagement.it/
genio/, 2023.

[9] European Commission, “Cyber Resilience Act,” https://digital-strategy.
ec.europa.eu/en/policies/cyber-resilience-act, 2024.

[10] ——, “CE marking,” https://single-market-economy.ec.europa.eu/
single-market/ce-marking en, 2024.

[11] CISA, “CISA Home,” https://www.cisa.gov/, 2025.
[12] NIST, “NIST,” https://www.nist.gov/, 2025.
[13] V. Casola, A. De Benedictis, M. Rak, and U. Villano, “A novel Security-

by-Design methodology: Modeling and assessing security by SLAs with
a quantitative approach,” Journal of Systems and Software, 2020.

[14] H. Aranha, M. Masi, T. Pavleska, and G. P. Sellitto, “Enabling security-
by-design in smart grids: An architecture-based approach,” in 2019 15th
European Dependable Computing Conference (EDCC). IEEE, 2019.

[15] F. M. Awaysheh, M. N. Aladwan, M. Alazab, S. Alawadi, J. C.
Cabaleiro, and T. F. Pena, “Security by design for big data frameworks
over cloud computing,” IEEE Transactions on Engineering Management,
2021.

[16] A. Dutta and E. Hammad, “5G security challenges and opportunities: A
system approach,” in 2020 IEEE 3rd 5G world forum (5GWF). IEEE.

[17] Open Networking Foundation, “Open Network Operating System
(ONOS),” https://opennetworking.org/onos/.

[18] ——, “Virtual OLT Hardware Abstraction (VOLTHA),” https://www.
voltha.org/.

[19] Open Compute Project, “Open Networking Linux (ONL),” http://
opennetlinux.org/.

[20] Proxmox Server Solutions GmbH, “Proxmox,” https://www.proxmox.
com/, 2025.

[21] OWASP, “Threat-Modeling-Process,” https://owasp.org/
www-community/Threat Modeling Process#stride, 2025.

[22] M. Z. Iqbal, H. Fathallah, and N. Belhadj, “Optical fiber tapping:
Methods and precautions,” in 8th international conference on high-
capacity optical networks and emerging technologies. IEEE, 2011.

[23] Kelly Jackson Higgins, “How Attackers Siphon Data In Targeted, APT
Attacks,” https://www.darkreading.com/cyberattacks-data-breaches/
how-attackers-siphon-data-in-targeted-apt-attacks, 2011.

[24] Kiuwan, “The Top 15 Open-Source Software Security Risks,” https:
//www.kiuwan.com/blog/open-source-software-security-risks/, 2024.

[25] CWE, “CWE-1188: Initialization of a Resource with an Insecure De-
fault,” https://cwe.mitre.org/data/definitions/1188.html, 2025.

[26] X. Ju, L. Soares, K. G. Shin, K. D. Ryu, and D. Da Silva, “On fault
resilience of OpenStack,” in Proceedings of the 4th Annual Symposium
on Cloud Computing (SOCC’13), 2013.

[27] D. Cotroneo, L. De Simone, P. Liguori, R. Natella, and N. Bidokhti,
“How bad can a bug get? an empirical analysis of software failures in
the OpenStack cloud computing platform,” in Proceedings of the 27th
ACM European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, 2019.

[28] CWE, “CWE-1395: Dependency on Vulnerable Third-Party Compo-
nent,” https://cwe.mitre.org/data/definitions/1395.html, 2025.

[29] OpeSCAP, “OpenSCAP portal,” https://www.open-scap.org/, 2025.
[30] STIGs, “Security Technical Implementation Guides,” https://public.

cyber.mil/stigs/, 2025.

[31] Linux Security Modules, “Linux Secuirty Modules,” https://www.kernel.
org/doc/html/v4.16/admin-guide/LSM/index.html, 2025.

[32] Kernel Hardening Checker, “Kernel Hardening Checker,” https://
archlinux.org/packages/extra/any/kernel-hardening-checker/, 2025.

[33] SCWorld, “Intel and AMD chips still vulnera-
ble to Spectre flaw,” https://www.scworld.com/news/
intel-and-amd-chips-still-vulnerable-to-spectre-flaw, 2024.

[34] P. Kocher, J. Horn, A. Fogh, , D. Genkin, D. Gruss, W. Haas,
M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and
Y. Yarom, “Spectre attacks: Exploiting speculative execution,” in 40th
IEEE Symposium on Security and Privacy (S&P’19), 2019.

[35] IEEE, “802.1AE: MAC Security (MACsec),” https://1.ieee802.org/
security/802-1ae/, 2025.

[36] ITU, “ITU-T - G.987.3,” https://standards.globalspec.com/std/14459900/
g-987-3-amd-2, 2025.

[37] The Internet Society, “RFC 4033 - DNS Security,” https://datatracker.
ietf.org/doc/html/rfc4033, 2025.

[38] ETSI, “ETSI TS 103 962,” https://www.etsi.org/deliver/etsi ts/103900
103999/103962/01.01.01 60/ts 103962v010101p.pdf, 2023.

[39] SHIM, “UEFI BOOTLOADER,” https://github.com/rhboot/shim.
[40] LUKS, “Linux Unified Key Setup,” https://www.redhat.com/en/blog/

disk-encryption-luks, 2025.
[41] Clevis, “Clevis,” https://wiki.archlinux.org/title/Clevis, 2025.
[42] Tripwire, “Tripwire Open Source,” https://github.com/Tripwire/

tripwire-open-source, 2025.
[43] Lynis, “Lynis,” https://cisofy.com/lynis/, 2025.
[44] Future Corp, “Vuls: Vulnerability Scanner,” https://github.com/

future-architect/vuls.
[45] ONIE, “Open Network Install Environment,” https://

opencomputeproject.github.io/onie/, 2025.
[46] NIST, “Platform Firmware Resiliency Guidelines,” https://csrc.nist.gov/

pubs/sp/800/193/final, 2025.
[47] Kubernetes, “RBAC Kubernetes,” https://kubernetes.io/docs/reference/

access-authn-authz/rbac/, 2025.
[48] Proxmox Server Solutions GmbH, “Proxmox Access Control Frame-

work,” https://github.com/proxmox/pve-access-control, 2025.
[49] ONOS, “ONOS Security,” https://wiki.onosproject.org/display/ONOS10/

ONOS+Security%3A+Security-mode+ONOS, 2025.
[50] CISA, “NSA Kubernetes Hardening Guidance,” https://www.cisa.gov/

news-events/alerts/2022/03/15/updated-kubernetes-hardening-guide,
2025.

[51] CIS, “CIS Benchmarks List,” https://www.cisecurity.org/
cis-benchmarks, 2025.

[52] Docker Bench Security, “Docker Bench Security,” https://hub.docker.
com/r/docker/docker-bench-security, 2025.

[53] Kube-bench, “Kube-bench,” https://github.com/aquasecurity/
kube-bench, 2025.

[54] Kubesec, “Kubesec,” https://kubesec.io/, 2025.
[55] Kube Hunter, “Introducing kube-hunter: an Open Source Tool for

Discovering Security Issues in Kubernetes Clusters,” https://github.com/
aquasecurity/kube-hunter, 2025.

[56] Kubescape, “Kubescape,” https://kubescape.io/.
[57] Open Network Operating System, “Onos security & performance anal-

ysis (report no. 1),” https://hal.science/hal-03188701v1.
[58] Kubernetes, “Official CVE Feed,” https://kubernetes.io/docs/reference/

issues-security/official-cve-feed/, 2025.
[59] Docker, “Docker Forum,” https://forums.docker.com/t/

docker-images-and-security-updates/134504, 2025.
[60] KBOM, “KBOM,” https://github.com/rad-security/kbom.
[61] Trivy, “Trivy,” https://trivy.dev/latest/, 2025.
[62] OWASP, “OWASP Dependency-Check,” https://owasp.org/

www-project-dependency-check/, 2025.
[63] Crane, “Crane,” https://github.com/google/go-containerregistry/tree/

main/cmd/crane, 2025.
[64] Spotbugs, “Spotbugs,” https://spotbugs.github.io/, 2025.
[65] Pylint, “Pylint,” https://www.pylint.org/, 2025.
[66] Semgrep, “Semgrep,” https://github.com/semgrep/semgrep, 2025.
[67] Bandit, “Bandit,” https://bandit.readthedocs.io/en/latest/, 2025.
[68] CATS, “CATS,” https://github.com/Endava/cats, 2025.
[69] nmap, “nmap,” https://nmap.org/, 2025.
[70] YaraHunter, “YaraHunter,” https://community.deepfence.io/docs/

yarahunter/, 2025.
[71] KubeArmor, “KubeArmor,” https://kubearmor.io/, 2025.
[72] Peach, “Peach,” https://www.peach.wiz.io/, 2025.
[73] Falco, “Falco,” https://falco.org/, 2025.

https://www.gruppotim.it/it/newsroom/notiziario-tecnico-tim/2022/n1-2022/cap03-edge-cloud-computing.html
https://www.gruppotim.it/it/newsroom/notiziario-tecnico-tim/2022/n1-2022/cap03-edge-cloud-computing.html
https://www.gruppotim.it/it/newsroom/notiziario-tecnico-tim/2022/n1-2022/cap03-edge-cloud-computing.html
https://www.telefonica.com/es/wp-content/uploads/sites/4/2021/02/whitepaper-telefonica-opa-mec-feb-2019.pdf
https://www.telefonica.com/es/wp-content/uploads/sites/4/2021/02/whitepaper-telefonica-opa-mec-feb-2019.pdf
https://sysmanagement.it/genio/
https://sysmanagement.it/genio/
https://digital-strategy.ec.europa.eu/en/policies/cyber-resilience-act
https://digital-strategy.ec.europa.eu/en/policies/cyber-resilience-act
https://single-market-economy.ec.europa.eu/single-market/ce-marking_en
https://single-market-economy.ec.europa.eu/single-market/ce-marking_en
https://www.nist.gov/
https://opennetworking.org/onos/
https://www.voltha.org/
https://www.voltha.org/
http://opennetlinux.org/
http://opennetlinux.org/
https://www.proxmox.com/
https://www.proxmox.com/
https://owasp.org/www-community/Threat_Modeling_Process#stride
https://owasp.org/www-community/Threat_Modeling_Process#stride
https://www.darkreading.com/cyberattacks-data-breaches/how-attackers-siphon-data-in-targeted-apt-attacks
https://www.darkreading.com/cyberattacks-data-breaches/how-attackers-siphon-data-in-targeted-apt-attacks
https://www.kiuwan.com/blog/open-source-software-security-risks/
https://www.kiuwan.com/blog/open-source-software-security-risks/
https://cwe.mitre.org/data/definitions/1188.html
https://cwe.mitre.org/data/definitions/1395.html
https://www.open-scap.org/
https://public.cyber.mil/stigs/
https://public.cyber.mil/stigs/
https://www.kernel.org/doc/html/v4.16/admin-guide/LSM/index.html
https://www.kernel.org/doc/html/v4.16/admin-guide/LSM/index.html
https://archlinux.org/packages/extra/any/kernel-hardening-checker/
https://archlinux.org/packages/extra/any/kernel-hardening-checker/
https://www.scworld.com/news/intel-and-amd-chips-still-vulnerable-to-spectre-flaw
https://www.scworld.com/news/intel-and-amd-chips-still-vulnerable-to-spectre-flaw
https://1.ieee802.org/security/802-1ae/
https://1.ieee802.org/security/802-1ae/
https://standards.globalspec.com/std/14459900/g-987-3-amd-2
https://standards.globalspec.com/std/14459900/g-987-3-amd-2
https://datatracker.ietf.org/doc/html/rfc4033
https://datatracker.ietf.org/doc/html/rfc4033
https://www.etsi.org/deliver/etsi_ts/103900_103999/103962/01.01.01_60/ts_103962v010101p.pdf
https://www.etsi.org/deliver/etsi_ts/103900_103999/103962/01.01.01_60/ts_103962v010101p.pdf
https://github.com/rhboot/shim
https://www.redhat.com/en/blog/disk-encryption-luks
https://www.redhat.com/en/blog/disk-encryption-luks
https://wiki.archlinux.org/title/Clevis
https://github.com/Tripwire/tripwire-open-source
https://github.com/Tripwire/tripwire-open-source
https://cisofy.com/lynis/
https://github.com/future-architect/vuls
https://github.com/future-architect/vuls
https://opencomputeproject.github.io/onie/
https://opencomputeproject.github.io/onie/
https://csrc.nist.gov/pubs/sp/800/193/final
https://csrc.nist.gov/pubs/sp/800/193/final
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://github.com/proxmox/pve-access-control
https://wiki.onosproject.org/display/ONOS10/ONOS+Security%3A+Security-mode+ONOS
https://wiki.onosproject.org/display/ONOS10/ONOS+Security%3A+Security-mode+ONOS
https://www.cisa.gov/news-events/alerts/2022/03/15/updated-kubernetes-hardening-guide
https://www.cisa.gov/news-events/alerts/2022/03/15/updated-kubernetes-hardening-guide
https://www.cisecurity.org/cis-benchmarks
https://www.cisecurity.org/cis-benchmarks
https://hub.docker.com/r/docker/docker-bench-security
https://hub.docker.com/r/docker/docker-bench-security
https://github.com/aquasecurity/kube-bench
https://github.com/aquasecurity/kube-bench
https://kubesec.io/
https://github.com/aquasecurity/kube-hunter
https://github.com/aquasecurity/kube-hunter
https://kubescape.io/
https://hal.science/hal-03188701v1
https://kubernetes.io/docs/reference/issues-security/official-cve-feed/
https://kubernetes.io/docs/reference/issues-security/official-cve-feed/
https://forums.docker.com/t/docker-images-and-security-updates/134504
https://forums.docker.com/t/docker-images-and-security-updates/134504
https://github.com/rad-security/kbom
https://trivy.dev/latest/
https://owasp.org/www-project-dependency-check/
https://owasp.org/www-project-dependency-check/
https://github.com/google/go-containerregistry/tree/main/cmd/crane
https://github.com/google/go-containerregistry/tree/main/cmd/crane
https://spotbugs.github.io/
https://www.pylint.org/
https://github.com/semgrep/semgrep
https://bandit.readthedocs.io/en/latest/
https://github.com/Endava/cats
https://nmap.org/
https://community.deepfence.io/docs/yarahunter/
https://community.deepfence.io/docs/yarahunter/
https://kubearmor.io/
https://www.peach.wiz.io/
https://falco.org/

	Introduction
	The GENIO Project
	Threat Modeling for GENIO
	Infrastructure-level Threats
	Middleware-level Threats
	Application-level Threats

	Infrastructure-level Mitigations
	Mitigating Privilege Abuse
	Securing Communication
	Ensuring Code Integrity
	Mitigating Software Vulnerabilities

	Middleware-level Mitigations
	Mitigating Privilege Abuse
	Mitigating Software Vulnerabilities

	Application-level Mitigations
	Mitigating Software Vulnerabilities
	Identifying Malicious Applications

	Conclusion
	References

