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Abstract
High-profile speech videos are prime targets for falsification, owing

to their accessibility and influence. This work proposes Spotlight, a

low-overhead and unobtrusive system for protecting live speech

videos from visual falsification of speaker identity and lip and fa-

cial motion. Unlike predominant falsification detection methods

operating in the digital domain, Spotlight creates dynamic phys-

ical signatures at the event site and embeds them into all video

recordings via imperceptible modulated light. These physical signa-

tures encode semantically-meaningful features unique to the speech

event, including the speaker’s identity and facial motion, and are

cryptographically-secured to prevent spoofing. The signatures can

be extracted from any video downstream and validated against the

portrayed speech content to check its integrity. Key elements of

Spotlight include (1) a framework for generating extremely com-

pact (i.e., 150-bit), pose-invariant speech video features, based on

locality-sensitive hashing; and (2) an optical modulation scheme

that embeds >200 bps into video while remaining imperceptible

both in video and live. Prototype experiments on extensive video

datasets show Spotlight achieves AUCs ≥ 0.99 and an overall true

positive rate of 100% in detecting falsified videos. Further, Spotlight

is highly robust across recording conditions, video post-processing

techniques, and white-box adversarial attacks on its video feature

extraction methodologies.

1 Introduction
In the early days of video technology, high-profile speeches were

some of the first events to be shared over the new communication

medium [1]. Influential figures capitalized on its unique persuasive

power [2, 3], and ever since, video has been a staple of information

exchange. Today, this exchange faces a flood of falsified videos of

high-profile speeches spreading disinformation and discord.

This paper focuses on addressing falsification of two salient

aspects of a speech event: the speaker’s identity and her lip and

face movements, which are directly tied to speech content and

speed. These elements are particularly persuasive and semantically-

rich [4] and have been targeted in numerous incidents [5–12]. To-

day, realizing these falsifications is easier than ever. An attacker

may use any open-source model or online deepfake tool to gen-

erate videos of her victim making fabricated statements [6–9, 11].

Even simple edits achievable on most smartphones, such as chang-

ing playback speed or splicing clips, can greatly alter a portrayal

(e.g., widely-circulated videos claiming to show Nancy Pelosi and

Kamala Harris delivering speeches intoxicated [5, 10, 12]). Once

disseminated online, these videos blur the lines between fake and
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Figure 1: We combat falsification of live speech videos by initiating
protection at the earliest possible stage of a video’s lifetime: the
physical scene of the speech.

real, posing grave political, financial, and social risks. Current tech-

nologies for detecting falsification of speech videos have failed to

combat these threats.

Existing technologies and their limitations can be characterized

based on the stage of a video’s lifetime they initiate protection

(Figure 1). A majority of these methods are passive, aiming to detect

falsifications after the video is published by identifying artifacts in-

troduced by editing or deepfakemodels [13–15]. These visual imper-

fections, however, are diminishing with advances in generative AI,

and passive detection methods are increasingly bypassed [16, 17].

In response, efforts have increasingly shifted to protecting videos

at their digital creation. Such methods either incorporate water-

marks into generated content [18] or tag videoswith digitally signed

credentials upon capture [19–22], generation, or editing [23]. While

promising, these approaches face several practical barriers stem-

ming from their reliance on cooperation from all recording parties

and video creators. (1) Methods adding verification information

to fake content are unlikely to be adopted by malicious parties.

With deepfake and editing technologies increasingly democratized,

attackers can easily create videos lacking watermarks or credentials

and then claim they are real. (2) Capture-time tools require use of

specialized apps [19] or hardware [20–22], which cannot be guaran-

teed in the large, unregulated audiences of public speech events. (3)
Because digital signatures are bound to a video’s low-level repre-

sentation (i.e., its pixel values), they must be regenerated when any

post-processing techniques are applied. These techniques, such as

compression and transcoding, are exceedingly common in today’s

video sharing workflows. Digital signature methods thus assume

user cooperation at each stage of a video’s lifetime. As we see today,

without such uniform compliance, an indistinguishable mix of real

and fake unsigned content is produced, sowing public confusion

about the underlying events.

This work studies a complementary physical approach to the

protection of speech videos, seeking to shift protection agency from

recording parties to speakers themselves. We envision speakers

deploying a device that creates signatures physically at the speech

site, such that they are naturally embedded into all real recordings.
Such physical signatures encode semantically-meaningful features
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Figure 2: Spotlight protecting a live speech. The low-cost core unit
creates signatures encoding the event and embeds them into all
videos by projecting imperceptible light with a spatial light modula-
tor (SLM).

that are unique to the event and consistent across recording device

and position (e.g., representations of speaker lip motion). Legitimate

videos inherently pass validation against the signature, while falsi-

fied videos possess diverging features and are thus detected. Further,

physical signatures are cryptographically-secured, preventing their

forgery. While digital signature methods require all parties to inde-

pendently sign their videos, here, cryptographic data is generated

only once, on the deployed physical signature creation device.

Physical signatures provide several benefits in the context of live

speeches, owing to their uniquely early initiation of protection. (1)
They inherently protect all videos at the event without demanding

recording device cooperation, thus creating a canonical version of

the speech reinforced by each filming attendee. (2) Since physical
signatures capture higher-level features rather than low-level pixel

values, they remain valid after benign edits that preserve the video’s

semantic content (e.g., compression).

This paper demonstrates Spotlight, a physical signature platform

that disseminates signatures via modulated light at the speech

site (Figure 2). A speaker places a low-cost Spotlight core unit,

serving as trustworthy third-party witness, at the site. The core

unit continually extracts semantically-meaningful and robust visual

features specific to the speaker’s identity and face and lip motion

(referred to as a digest) and generates a message authentication

code (MAC) for the digest using its private key. The digest and its

MAC make up the signature. Spotlight then encodes the signature

data as optical modulations that remain imperceptible both live and

in videos, supporting the platform’s broader adoption. These optical

modulations nonetheless manifest in all recordings as decodable

pixel-level changes. A published video can be verified at any point

in its lifetime by extracting the optical signatures and comparing

recovered digests to those computed on the portrayed speech event.

Two main technical challenges arise in realizing Spotlight. (1)
The limited frame rates of typical cameras result in a low embedding

data capacity (hundreds of bits per second). Thus, digests must be

highly compact yet highly descriptive and consistent across camera

positions. (2) Optical signature embedding must balance competing

objectives of imperceptibility, robustness, and data capacity.

We address these challenges with the following contributions. (1)
We propose a framework based on locality-sensitive hashing (LSH)

to compress pose-invariant, semantically-meaningful speech video

feature vectors to just 150 bits while preserving their performance.

This framework supports diverse feature vectors, of arbitrarily high-

dimensionality, and is independent of the signature dissemination

modality. (2)We design a spatio-temporal light modulation scheme

that boosts bandwidth across all RGB cameras while remaining

imperceptible and resilient against common video post-processing

techniques. To the best of our knowledge, this is the first scheme

for embedding invisible information into videos from within the

environment, taking an important step towards practical physical

signatures. (3) We fabricate a Spotlight prototype and examine

its performance on 257 minutes of live speeches captured with

our core unit deployed and over 1,300 pairs of real and deepfaked

videos, spanning varied falsification granularities. Additionally, we

assess its imperceptibility and robustness in diverse recording sce-

narios. (4) We evaluate Spotlight’s robustness against extensive

countermeasures, including two sophisticated white-box adversar-

ial attacks aiming to create falsified content that evades detection.

We summarize our key findings below:

• Spotlight’s LSH framework supports over 100-fold reduction in

the representation size of generic speech video features while

maintaining their verification performance.

• Spotlight attains Area Under Curves (AUCs) ≥ 0.99 and a true

positive rate of 100% in detecting falsifications of speaker identity

and face and lip motion. In challenging scenarios where as little

as 1.35 s of a video is modified, Spotlight achieves an AUC of≥
0.90, a 40% gain over the best passive detector baseline evaluated.

• Spotlight’s semantically-meaningful digests are robust to varied

countermeasures and white-box adversarial attacks.

• Spotlight supports video recording with any RGB camera, at

viewing angles up to 60° and distances up to 3 m, even when

videos are captured with no optical zoom.

• Spotlight achieves error-free signature data extraction and ver-

ification of videos recorded in extensive indoor and outdoor

environments, as well as after common video post-processing

methods such as compression, transcoding, and filter application.

• User studies and LPIPS scores confirm our optical signatures are

imperceptible live and in-video in varied deployment scenarios.

2 Background and Related Work
2.1 Video Falsification
This paper focuses on combating visual falsifications of speaker

identity and face and lip motion, which determine delivered content.

Such falsifications can be made using traditional techniques such

as framerate modification, trimming, and cropping. Increasingly,

they are achieved via the following deepfake techniques. (1) Face
reenactment uses a source video to drive the facial movements of a

target image. For example, an attacker may use frames from a legit-

imate speech video as their targets to create reenactment deepfakes

modifying the speaker’s lip movements to match audio of falsified

statements [9]. (2) Identity/face swaps replace a victim’s face with

that of another identity while maintaining the victim’s facial mo-

tion and expression; (3) Complete face synthesis generates fictitious
faces (i.e., non-existent identities). For speech video falsification,

this form of deepfake has the same end effect as an identity swap

deepfake, as the perceived identity of the speaker is changed.
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Figure 3: Overview of Spotlight’s modules and workflow, including: (1) the speech video signature creation; (2) optical signature embedding
during the live speech; (3) integrity verification of a later published video of the speech by the video verification module.

2.2 Preventing and Detecting Fake Videos
We organize existing techniques for preventing and detecting fal-

sified and fake videos into four categories as below. We discuss

mechanisms exclusively targeting AI-generated videos (i.e., deep-

fakes), as well as broader media authenticity initiatives.

Passive detectors These techniques analyze videos for evidence

of tampering and typically are designed to detect deepfakes. They

hone in on high-level physical inconsistencies [14, 24–36] (e.g., un-

natural lip movements), biometric incongruities [37–41] (e.g., lack

of identity-specific head movements), or pixel-level artifacts [42–

55] (e.g., anomalous spatial frequencies). Several works train generic

classification models on deepfakes [13, 56–71] to learn anomalies.

Unfortunately, passive detectors are increasingly evaded and

even hijacked to improve the quality of fake videos. For instance, [16]

bypasses remote photoplethysmography (rPPG)-based detection

methods [15] by generating faces with realistic rPPG signals. Ad-

versarial attacks have conquered several passive detectors [17].

Digital signing and watermarking These active techniques

add information to digital content at its creation to enable imme-

diate or downstream verification. Emerging frameworks append

cryptographically-signed provenance metadata to files at recording

time [19, 20, 22] or upon editing [21, 23]. Digital watermarks di-

rectly embed verification signals into real [72–77] or synthetic [18]

media. Overall, these digital methods require the cooperation of all

video sources throughout the information ecosystem, since they

add information on a per-video level. Unfortunately, adversaries are

deincentivized from participating in these frameworks and can find

alternatives to create synthetic media lacking such information.

Live QR codes Two prior works display dynamic QR codes by a

speaker to disseminate verification information, both addressing

only falsification of speech audio. Critch [78] displays QR codes

that encode a speech’s transcript but does not prototype or eval-

uate the idea. In [79], time-frequency features of audio signals

are encoded. Because of these features’ lower-level nature, they

lack robustness across key recording conditions (e.g., their accu-

racy is below 90% at distances beyond 2 ft and in the presence of

ambient noise) and are not shown to be pose-invariant or adversar-

ially robust. Our work instead focuses on visual falsifications and

proposes a generic methodology for compressing pose-invariant,

semantically-meaningful features. Our features are robust against

diverse ambient conditions and evaluated adversrial attacks.

Independent of the verification features they carry, QR codes im-

pose a strict tradeoff between level of obtrusiveness and supported

camera distance and angle. Prior works show a QR code must be

over 20 x 20 cm in size to ensure it is decodable by all devices

within 3m and 45° [80]. While users can use optical zoom to boost

recording range, this simply fills a larger portion of the view with

the QR code. Consequently, QR code-based systems force users to

accept either reduced protection robustness or large flickering QR

codes in their videos – a critical barrier to practical adoption.

Liveness detection with light A related line of work employs ac-

tive illumination from screens to verify that video chat participants

are real [81–84]. These works follow a challenge-response model,

where facial appearance is analyzed with respect to dynamic screen

illumination. They are thus constrained to video chat scenarios.

3 Preliminaries
Spotlight is a physical and proactive approach to protecting live

speech videos from visual falsification of speaker identity as well as

lip and face movements, which reflect delivered content and speech

speed. To match the visual nature of these falsifications, we embed

physical signatures with light – the sensing modality of vision. In

this section, we describe Spotlight’s design and threat model, and

then discuss the technical challenges it overcomes.

3.1 System Overview
Figure 3 overviews the Spotlight design, comprising three modules.

The Spotlight core unit, deployed at the site of a live speech, consists

of a camera observing the event and light modulator positioned to

project light onto any approximately planar surface in the immedi-

ate vicinity of the speaker (e.g., a small portion of a podium, wall,

backdrop, or curtain). Notably, each of the speech environments

portrayed in recent high-profile falsification incidents [5–12] pos-

sess such a surface. We believe that, in practice, it is rare to find a

high-profile speech event where this is not the case.

For each window of camera video frames, the signature creation

module running on the core unit extracts a digest from frames.

The digest contains semantically-meaningful features capturing

speaker identity and lip and face motion and additional provenance

metadata such as a window timestamp. The core unit then gener-

ates a message authentication code (MAC) for the digest with its

secret key. A digest and its MAC comprise a signature. The optical

signature embedding module encodes the signature data as optical

modulations projected into the scene in the subsequent window of

time. Thus, signatures are naturally embedded into real recordings.

To verify a published video of a speech, the verification module

extracts optical signatures from video frames and validates the

MACs to confirm digests’ integrity. It then examines whether the

semantically-meaningful features recovered from the digests match

those of the portrayed speech. To ensure that the secret key used
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to validate MACs is secured, we envision the verification module

as a secure cloud service queried by users and media platforms. As

such, secret keys will never be exposed to third-party devices. We

elaborate on Spotlight’s use of secret keys and MACs in §4.3.

3.2 Threat Model
Our threat model focuses on three entities: video producers, video

verifiers, and attackers. Our focus is preventing attacks wherein

falsified videos purport to be real. We do not address the inverse,

wherein an attacker claims real content is fake.

Video producers create and disseminate legitimate videos of
the speech. This group includes viewers recording at the event and

non-malicious parties re-distributing videos. Audience members

can record using any RGB camera with a frame rate ≥ 24 FPS and

resolution ≥ 1080p. We assume that the speaker’s face is visible in

recordings at a maximum viewing angle and distance of 60° and

3 m. Videos can be saved using common codecs (e.g., H.265, MPEG-

4) and post-processed with compression, transcoding, and filter

application. We assume cameras remain still throughout the speech

but discuss reasonable solutions to avoid this requirement in §12.

Video verifiers are individuals or media platforms (e.g., Face-

book, YouTube, X) who seek to confirm the integrity of a video by

providing it to the verification module.

Attackers disseminate falsified videos claiming to portray the

speech event. We assume they possess white-box knowledge of

Spotlight as well as significant computational power, and carry

out attacks after a speech has taken place in an attempt to spread

false media or undermine Spotlight verification. We do not consider

environment-level attacks at the speech (including injection of

interfering light, as discussed in §12) or tampering of Spotlight’s

hardware. Attackers can perform any combination of the following:

(1) Falsify the speaker’s lip and face motion and/or identity via

visual edits (optionally via joint audio manipulation), using

traditional techniques or deepfake models.

(2) Access all Spotlight algorithms andmodels, includingweights.

(3) Create arbitrary completely synthetic speech videos.

(4) Incorporate valid signatures from other Spotlight-protected

videos into generated fake videos, i.e., replay attack.

(5) Modify video speed or re-order legitimate video frames.

(6) Remove or manipulate a video’s embedded signatures.

(7) Digitally add to any video pixel-level signals that mimic the

optical embedding scheme.

We assume that our private key is securely held out of reach of the

adversary. Attacks on cryptographic primitives are out of scope.

Real-world limitations Spotlight is but one technical approach

to achieving physical signatures and is not without limitations. (1)
It requires deployment of the Spotlight core unit at speeches. (2)
Because physical signatures are based upon a set of extracted event

features, they do not address falsification of features outside this set.

In this work, we develop a prototype leveraging visual features of

speaker identity and lip and face motion. The prototype thus does

not protect against falsifications of facial attributes (e.g., makeup)

or non-facial elements (e.g, clothing, surrounding environment).

Spotlight’s LSH framework is highly flexibile, supporting rich fea-

ture sets. Nonetheless, an operator must choose such features based

on anticipated attacks. (3) Videos must contain the complete optical

signature projection region to enable verification; as with digital

signatures, videos lacking intact optical signatures are viewed as un-

trustworthy. Signature inclusion can be made highly likely by using

a projection region close to the speaker’s face or even configuring

a small but visible projection border as a cue for filmers.

While we believe that several of the aforementioned limitations

can be addressed via further research (§12), we ultimately view

Spotlight not as a panacea to fake speech videos, but rather a

complement to passive detectors and digital signature methods.

In particular, digital approaches achieve provable security by re-

quiring consistent user and/or recording-device cooperation to bind

pixel values to signatures. Spotlight and physical signatures more

broadly trade provable security for flexibility, scalability, and a shift

of protection agency (and efforts) from audience to speaker.

3.3 Design Challenges
Compact and pose-invariant video digest The video digest

must be extracted in real-time and capture the speaker’s identity

and facial motion to protect against their falsification. Furthermore,

it must be pose-invariant, so that any recording can be verified.

Unfortunately, the optical channel offers limited bandwidth, con-

straining the digest size. This is because a receiver’s sampling rate

must be at least double the modulation frequency (i.e., the Nyquist

rate) for data to be decodable. The standard frame rate for recording

of live events is only 30 frames per second (FPS) [85]. Thus, achiev-

ing embedding bandwidths of even hundreds of bits per second

(bps) is challenging. Existing speaker analysis methods output large

representations (e.g., hundred-dimension embeddings for single

images [86] or seconds of audio [87]), well-exceeding this limit.

Signature embedding and extraction Optical signature embed-

ding and extraction contend with a tradeoff between robustness

and imperceptibility. While large optical modulations bolster ro-

bustness by increasing the signal to noise ratio (SNR) of embedded

signals, such fluctuations are highly perceptible at the scene and

in recordings. Our modulation and extraction techniques must be

both minimally obtrusive and robust to noise that may be intro-

duced during capture and post-processing. Unlike in the digital

realm where pixels can be directly modified to covertly and reliably

embed information, we must anticipate how light injected into the

scene will induce varying degrees of perceptibility and robustness.

We next present the design of Spotlight’s three modules, which

jointly address the above challenges.

4 Speech Video Signature Creation
We propose a feature-agnostic framework for creating compact,

pose-invariant speech video signatures in real-time (Figure 4a). We

build off existing computer vision tools to extract semantically-

meaningful visual features crafted to address the attacks outlined in

§2.1. Then, we use a technique known as locality-sensitive hashing

(LSH) to compress these high-dimensional features to hundreds of

bits (within the embedding data capacity) while preserving their ver-

ification functionality. Unlike cryptographic hash functions, which

output highly different hashes for inputs with minor differences,

LSH maps similar inputs to similar hashes. This enables Spotlight

to validate legitimate videos despite minor feature differences in-

evitably arising from recording condition and feature extraction
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(a) Generating a signature for a window of video frames.
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(b) Features from real vs. falsified videos.
Figure 4: Assembly of Spotlight signatures. (a) Feature vectors hashed via LSH underpin the compact, cryptographically-secured signature.
(b) A FaceMesh signal from three speech videos: real videos from two cameras at different yaws, and a reenactment deepfake changing four
speaker words. The Pearson correlation (PC) between videos’ signals reflects the similarity of their speech content.

variance. While LSH is used in many domains, to our knowledge

we are the first to use LSH-based features for verification.

4.1 LSH-Based Digest Framework
LSH is a technique for reducing data dimensionality while preserv-

ing approximate distances between data points. An LSH scheme

consists of a function 𝐻 : R𝑛 ↦→ {0, 1}𝑘 such that 𝐷 (𝐻 (®𝑢), 𝐻 (®𝑣))
estimates 𝑠𝑖𝑚(®𝑢, ®𝑣). 𝑠𝑖𝑚 is a similarity metric defined for ®𝑢, ®𝑣 , 𝐷 is

the Hamming distance, and 𝑘 is a configurable hash size. An LSH

scheme does not preserve the exact similarity of inputs but rather

provides a probabilistic guarantee that similar inputs are mapped to

similar hashes; using a larger hash size 𝑘 increases this probability.

We use the cosine similarity LSH scheme [88], denoted 𝐻𝑐𝑜𝑠 .

𝐻𝑐𝑜𝑠 outputs 𝑘-bit hashes such that 𝐷 (𝐻𝑐𝑜𝑠 (®𝑢), 𝐻𝑐𝑜𝑠 (®𝑣)) estimates

Θ(®𝑢, ®𝑣). Here, Θ(®𝑢, ®𝑣) is the angle between ®𝑢 and ®𝑣 .
The cosine similarity LSH scheme is appealing for our use case

for two reasons. (1) While larger hash sizes always improve the

hash’s accuracy in estimating cosine similarity, this relationship

is independent of the dimensionality of input vectors. This differs

from Principle Component Analysis, where information loss is

proportional to dimensionality reduction. We derive an equation for

the effect of hash size on hashed features’ performance (Theorem 2)

to confirm this. In the context of our application, this means that our

initial feature vectors can be arbitrarily high-dimensional, so long

as they capture the similarity of speech videos via cosine similarity.

(2)𝐻𝑐𝑜𝑠 is suitable for estimating the Pearson correlation, a popular

measure of similarity in time series data. This is because the Pearson

correlation of two time series is equivalent to their cosine similarity

after zero-meaning. This property is key to computing our dynamic

features, which must capture temporal speech characteristics.

Equipped with 𝐻𝑐𝑜𝑠 , we can separately address the challenges of

digest robustness and constraint size. Next, we describe our high-

dimensional visual feature vectors, which are hashed to serve as

verification data. We formally analyze this hashing method in A.5

4.2 Semantically-Meaningful Video Digests
To address falsifications of speaker identity, lip and face motion, we

extract two visual feature vectors: a biometric-based identity feature
vector and a temporal dynamic feature vector. The LSH framework,

however, supports varied features, as discussed in §12.

Identity feature vector The identity feature vector is used to

verify the speaker identity in a published video to protect against

identity swap falsifications. Neural network face embedding mod-

els are the gold-standard for extracting visual identity information.

They map face images to vectors in a high-dimensional embedding

space, where distance corresponds to face similarity. Conveniently,

state-of-the-art face embedding models utilize cosine similarity

as their distance metric. We employ a pre-trained ArcFace [89]

model [90], which outputs a 512-dimensional vector. We pass Arc-

Face crops of the face obtained from a pre-trained face detector [91].

Dynamic feature vector The dynamic feature vector protects

against falsifications of delivered content by ensuring that a speaker’s

face and lip motion have not been modified. We use MediaPipe

FaceMesh [92], a model for real-time face image analysis, to distill

a window of video frames into a signal capturing both coarse and

fine-grained spatio-temporal visual characteristics of the speaker.

As shown in Figure 4b, the similarity of two speech videos can be

quantified as the Pearson correlation of their corresponding signals.

We find that these simple signals strongly protect against varied

falsifications (§9.1). They also are more compact yet comparable in

robustness to other speech features, as discussed in §12.

Thus, given a window of 𝑛 video frames, we run FaceMesh on

each frame to obtain its 52 blendshape scores – pose-invariant coef-

ficients representing facial expressions – and 478 facial landmarks

which we align to a canonical view for pose-invariance. We find

that FaceMesh produces accurate output for frames captured up to

60° off-axis from the speaker (§9.1). We concatenate the values of

11 blendshapes and 5 distances between landmarks around the lips

into separate 𝑛-sample signals, which together capture global facial

motion and nuanced lip motion. We identify this set of features as

optimal via forward sequential feature selection [93] on all blend-

shape and distance signals, using a comprehensive multi-camera

dataset (§9.1). Finally, we smooth and standard normalize all signals

and concatenate them into our 16𝑛-dimensional feature vector.

4.3 MAC Generation and Key Management
Our digest consists of both feature hashes, a window number, a

core unit identifier, and a creation date (Figure 4a). The Spotlight

core unit generates a HMAC-SHA1 MAC for each digest using its

secret key, ensuring the integrity and authenticity of embedded

data. We refer to a digest and its MAC as a speech video signature.
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We secure our data via MACs as opposed to public key encryp-

tion because public key schemes produce ciphtertexts exceeding

our embedding bandwidth.
1
We discuss approaches to increasing

bandwidth to facilitate public key encryption in §12.

To create and validate MACs, Spotlight must establish a secret

key shared by core units and the verification service. This can be

done using Diffie-Hellman key exchange [94], a scheme enabling

two parties to generate a shared secret key over an insecure channel

using their public keys. Spotlight may employ Diffie-Hellman in

one of two ways. In the first, it may require each core unit owner

to use his own public key to participate in key exchange with

the cloud-based verification service (§3.1). During this process,

Spotlight can authenticate the owner’s public key via a digital

certificate [95]. This creates a unique secret key for each core unit,

securely associated with a unit’s identifier and owner. In the second

approach, Spotlight may maintain the same key across all core

units, refreshing as needed. Our prototype assumes a secret key has

already been initialized in one of these manners, since the involved

key exchange and certificate technologies are well-established.

5 Optical Signature Embedding
After obtaining the signature for a window, the optical signature

embedding module projects light encoding the signature data into

the scene. Prior works most relevant to this task explore light-

based [96, 97] or screen-camera [98–115] communication. They

achieve imperceptibility at the scene while maximizing the visibility

of modulated light in captured frames for real-time decoding. Such
methods are inapplicable in our case, wherein we seek impercepti-

bility both live and in-video and decoding is performed downstream

on videos rather than at capture. Further, several of these works

require cameras to operate in rolling-shutter mode [96, 98].

To address these issues, we propose three design elements, il-

lustrated in Figure 5. (1) We modulate light spatially and tempo-

rally to boost embedding bandwidth. The temporal modulation

operates at low frequencies (e.g., 3-6 Hz) to accommodate com-

modity camera’s framerates and all shutter modes. We leverage an

amplitude-modulating spatial light modulator (SLM) – an optical

device that controls the intensity of emitted light in both space and

time – to introduce small amounts of carefully-crafted light onto a

planar surface in the immediate vicinity of the speaker. Our design

maintains imperceptibility both live and in videos by exploiting

the human visual system’s low sensitivity to small fluctuations

in light intensity occurring in small regions [116] and for short

durations [117]. (2)We apply concatenated error correction coding

to the signature data to ensure its reliable recovery from videos

and enhance its resilience against video post-processing techniques.

(3)We design an adaptive embedding mechanism which continu-

ally tunes the emitted light to adapt to environmental changes and

balance embedding imperceptibility and robustness.

5.1 Concatenated Error Correcting Code
Our concatenated error-correcting code [104] consists of two sim-

pler codes: an outer Reed-Solomon (RS) code and an inner convo-

lutional code. Raw signature data first goes through the RS coder,

1
For equivalent authenticity and integrity guarantees, RSA-based digital signatures

are over 10 times larger than HMAC-SHA1 MACs.

which adds 𝑛 − 𝑘 parity bytes to the 𝑘-byte signature to form an

𝑛-byte codeword. RS can correct errors in up to ⌊(𝑛 − 𝑘)/2⌋ bytes in
a codeword. The codeword is then passed through a convolutional

coder, yielding our final coded data. To later recover the RS code-

word, we perform soft decision Viterbi decoding. The soft decoder

takes each bit’s distance to 1 or 0 to compute the corrected sequence.

This aids in decoding signals that are consistently noisy. Unlike

RS codes, convolutional code correction strength is dependent on

error positions and can thus be unstable. Thus the two codes com-

plement each other to greatly improve embedding robustness. The

soft decoding corrects a majority of errors. The RS code guarantees

to correct all remaining errors up to its correction strength.

5.2 Spatio-Temporal Light Modulation
Coded data is translated into a series of bitmaps, which are projected

in sequence by an SLM equipped with red, green, and blue LEDs.

The SLM accepts RGB bitmaps, where pixel values in a color channel

are proportional to LED intensities. Thus, bitmap values determine

the composition of light hitting surface regions, which in turn

determines the regions’ pixel values in videos and appearance live.

We propose a spatially multiplexed modulation scheme. We di-

vide each bitmap into a set of cells (blocks of pixels), as shown
in Figure 5. Each cell is independently modulated in time to pro-

duce optical signals. In a given bitmap, a cell 𝑗 can be either "on"

or "off." When off, its color is set to black (RGB(0, 0, 0)), corre-
sponding to zero emitted light. When on, its color is set to 𝑐

𝑗

𝑆𝐿𝑀
=

RGB(𝑅 𝑗

𝑆𝐿𝑀
,𝐺

𝑗

𝑆𝐿𝑀
, 𝐵

𝑗

𝑆𝐿𝑀
), as determined in §5.3. We employ three

types of cells, each with specific modulation behaviors.

(1) Data cells Most cells are data cells, modulated using Binary

Phase Shift Keying (BPSK) to carry the raw bits of the signature.

Each bit is communicated via the display of a cell in two consecu-

tive bitmaps. A 0 is conveyed by a cell value of 𝑐
𝑗

𝑆𝐿𝑀
followed by

RGB(0,0,0) (i.e., 𝜙 = 0
◦
), and vice versa for a 1. We employ BPSK

for its balance of data rate and robustness to noise. Data cells are

modulated at 𝑓𝑑 Hz by displaying bitmaps at a refresh rate of 2𝑓𝑑 Hz.

Thus, each carries𝑚 ∗ 𝑓𝑑 bits for a𝑚 s modulation time. To embed

𝑏 bits, we assign contiguous chunks of𝑚 ∗ 𝑓𝑑 bits to each data cell.

(2) Synchronization cells Synchronization cells make up the

border of the bitmap and facilitate demodulation of data cells. They

are consistently modulated at the data frequency 𝑓𝑑 with a phase

𝜙 = 0. This provides the necessary reference signal for BPSK-

demodulation of the data cells. Synchronization cells are also used

to determine the start and end of each window, as further described

in §6. For an embedding window of 𝑛 seconds, we modulate all

types of cells for𝑚(< 𝑛) seconds and leave the remaining 𝑛 −𝑚 as

a downtime to facilitate determining the start of each window.

(3) Localization cells The corner cells of a bitmap are localization

cells. They are consistently modulated at a 𝑓𝑙 Hz as a beacon of the

optical signature’s presence and location in recordings, critical for

verification. Their larger size and distinctive frequency distinguish

them from other cells, supporting downstream localization (§6).

5.3 Adaptive Embedding
The key idea of adaptive embedding is to set each bitmap cell 𝑗 ’s

color to optimize the illumination of its corresponding patch 𝑗 on

the projection surface. While a cell’s SNR is strictly determined by
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Figure 5: (Top) Overview of optical signature embedding, alongside
a bitmap used by our modulation scheme. (Bottom) Resulting signal
in a video, belonging to the last data cell. The reference clock, equiv-
alent to our synchronization signal, is used to illustrate our BPSK
scheme.

Figure 6: Embedded signatures are localized in any recording – in-
cluding those where signatures are replicated at the scene (top right)
– by condensing the video into a heatmap highlighting localization
cells (bottom). Projection regions are outlined in red for visualiza-
tion.

emitted light intensity (i.e., the sum of RGB channel emissions), its

perceptibility is also influenced by its color (i.e., the light’s relative

channel values). For a given intensity, light is most imperceptible

when its color matches that of a patch in the absence of SLM light.

Thus, we propose an intensity-guided adaptive embeddingmethod,

which continually adapts the cell intensities 𝐼 𝑗 required for suffi-

cient SNR and then optimizes cell colors 𝑐
𝑗

𝑆𝐿𝑀
under this constraint.

Prior to Spotlight’s deployment, we perform a short, one-time cali-

bration enabling the core unit to map SLM bitmap pixels to patches

viewed in its camera. Upon completion of a window, Spotlight runs

the adaptation algorithm (detailed in A.1) in parallel with ongoing

modulations. The algorithm assesses robustness and perceptibil-

ity based on the completed windows’ core unit video frames, and

accordingly increments or decrements 𝐼 𝑗 . To quantify robustness,

the core unit runs data extraction on its past window’s video (§6)

and computes the data error rate. The perceptibility of each cell 𝑗 is

measured as the perceived difference between patch 𝑗 ’s color with

and without SLM light, using the popular color difference formula

CIEDE2000 [118]. Then, 𝑐
𝑗

𝑆𝐿𝑀
is chosen to minimize perceptibility

while satisfying the intensity requirement 𝐼 𝑗 , via Equation 1.

6 Video Integrity Verification
The last Spotlight module verifies video integrity. It localizes op-

tical signals in videos without prior knowledge of the projection

surface, robustly recovers low-SNR data, and accurately assesses

video integrity regardless of recording parameters.

Optical signature localization To locate imperceptible optical

signatures in a video, we leverage known properties of localization

cells to create a heatmap in which they light up in any scene (Figure

6). Since localization cells are modulated at 𝑓𝑙 (§5.2), the pixel values

at these cells also exhibit oscillations at 𝑓𝑙 . Thus, we apply a Fourier

transform to each pixel-level signal in the video. We use a subset

(e.g., 800) of the frames for this step for efficiency. We record each

pixel’s power at 𝑓𝑙 and normalize it by the noise at other frequencies.

This yields our heatmap, where a pixel’s brightness is proportional

to its normalized power at 𝑓𝑙 . We then detect the localization cells in

the heatmap via contour detection [119]. If fewer than four contours

are detected, Spotlight reports a verification failure.

Next Spotlight determines the mapping between pixels in SLM

bitmaps and the published video, allowing it to examine embedded

cell signals. Any camera’s view of the projected bitmaps is related

to the bitmap itself via a homography [120]. We compute the ho-

mography using the localization cells as correspondences and apply

it to all frames to map video pixels directly to SLM pixels.

Signature data extraction Having obtained the homography

mapping cells to video pixels, Spotlight extracts a signal for each

cell by taking its average pixel intensity across frames. Building

off the scheme described in §5.2, data is recovered from these sig-

nals as follows. First, Spotlight determines the start and end of all

embedding windows by finding periods of downtime in the syn-

chronization cell signals. Second, it smooths and detrends data cell

signals to remove noise and impacts of gradual intensity shifts often

induced by camera auto-white-balance and auto-exposure. It then

demodulates these signals per-window and passes its predictions

to the concatenated error corrector to recover the signature data.

MAC validation Spotlight extracts the digests from all signatures

and validates them against theirMACs. AMACmismatch suggests a

window’s embedded data has been corrupted by attacker tampering

or decoding errors. Spotlight reports windows with corrupt digests

as untrustworthy, as their speech content cannot be verified.

Digest comparison A video’s integrity is determined by compar-

ing recovered digests to those computed on portrayed content. For

each window 𝑖 , Spotlight downsamples the video to the core unit

framerate and extracts its identity and dynamic feature hashes ( §4).

Recovered window numbers are ensured to be consecutive, and

hashes are compared to their counterparts in the digest recovered

from window 𝑖 + 1.2 Both the identity feature and dynamic feature

hashes are compared via Hamming distance. The identity feature

hash is computed for all frames to ensure its consistency throughout
the video. An integrity decision is made using the maximum iden-

tity and dynamic hash distances across windows. If either exceeds

a configured decision threshold, the video is deemed falsified.

7 Prototype Implementation
We fabricate a Spotlight prototype using readily-available, afford-

able components. The core unit (Figure 2) consists of an SLM [121]

($299), a conventional RGB camera [122] running at 24 FPS, and

2
For the final 𝑛 seconds of a speech video to be verifiable, it must be followed by

a window of embedding only. Our implementation configures 𝑛 to be 4.5 seconds;

increasing the embedding bandwidth can allow shorter windows (§12).

7



Figure 7: Data embedded per window in our implementation. The
signature includes the digest and its MAC.

a Raspberry Pi 4B [123] for controlling the SLM. Code for real-

time video signature creation and adaptive embedding runs on a

MacBook Pro 14, using CPU only. Our window duration is set to

4.5 s, based on the 232 bps embedding bandwidth achieved under

our modulation parameters (A.2). Our code takes 0.5 s to create

a signature and send it to the SLM for modulation in a window’s

remaining 4 s. Deployment and verification are automated in single

scripts, minimizing required operational expertise. Verification is

run on the MacBook (offline) for our proof-of-concept. We leave its

integration into a cloud service to future work. The average time

to verify a 30 s video is 86 s, which can be significantly reduced by

using GPU and parallelizing per-frame analysis. We empirically set

our digest comparison decision thresholds based on data from §8.

Finally, Figure 7 shows our signature aparameters. We choose

hash sizes of 150 bits based on Theorem 2 and confirmed empirically

(§9.1). We distribute each identity feature hash over two windows’

digests, such that the recovered identity feature hash is updated

every other window during verification. This leaves space for more

RS parity while preserving Spotlight functionality, as the speaker’s

identity will not change within two windows. We use a 128-bit

secret key to compute HMAC-SHA1 MACs, which we truncate to

80 bits to minimize MAC size while maintaining security [124].

8 Protection Performance Evaluation
We evaluate Spotlight’s performance in detecting falsifications of

speaker identity, lip or face motion, via deepfakes or basic editing.

All studies were approved by our Institutional Review Board.

8.1 Falsification with Deepfake Models
To demonstrate Spotlight’s protection performance across speakers

and deepfake models, we first collect a large-scale video dataset of

speeches delivered with our core unit present. We then generate

extensive identity swap and reenactment deepfakes, and examine

our verification module’s ability to differentiate real and fake videos.

Data collection We collect our own dataset because although

there are many general-purpose public deepfake datasets, videos

in these datasets were necessarily not collected with Spotlight

deployed. Additionally, existing deepfake datasets do not provide

pairs of real and falsified videos, which would be needed to emulate

Spotlight’s comparisons of recovered digests and portrayed content.

To collect authentic videos, we invited 20 participants (11 male

and 9 female, ages 18 to 54) to read aloud six paragraphs (roughly

33 s each) while our core unit was deployed. Paragraphs were

sourced from the Presidential Deepfakes Dataset (PDD) [126] and

displayed on a monitor. Participants were recruited through flyers

and emails within our institution and each compensated $10. The

core unit was positioned 1.5m away from the participant and 2m

away from awhite wall. We utilized a 100 x 70 cm portion of the wall

for projection, thoroughly investigating other projection surfaces

and recording conditions in §9. We simultaneously recorded on

four cameras: a Google Pixel 6A, an iPhone 14 in ProRes mode,

a webcam [127], and a DSLR camera [128] positioned around the

core unit. We synthesized 257 min of content across 474 videos.

Deepfake generation For each original video, we use FSGAN [129]

to generate an identity swap deepfake where the speaker face is

supplanted with that of a randomly selected alternative identity. We

generate reenactment deepfakes using four state-of-the-art mod-

els: DaGAN [130], First Order Motion Model (FOMM) [131], Talk-

Lip [132] and SadTalker [133]. The reenactment deepfakes modify

the speaker’s facial movements to reflect their delivery of a different

speech from PDD. While TalkLip exclusively modifies the lip region

based on driving audio, FOMM, DaGAN, and SadTalker include face

images as driving input to also modify expression. These varied

reenactment scopes test the coverage of our dynamic features.

For all deepfakes, we only modify the facial region, and leave

the rest of the scene (including the projection surface) as-is. This

emulates a realistic attack scenario in which an attacker creates a

convincing falsified video by maintaining the video’s context while

changing speech content. We generate 1,883 reenactment deepfakes

(753 min) and 473 identity swap deepfakes (261 min) total.

Metrics We input all videos to the verification module and record

the Hamming distances between computed and recovered dynamic

and identity hashes, as well as the module’s final decision on video

integrity. We quantify performance using recall (i.e., true positive

rate) and Area Under Curve (AUC), standard metrics for evaluating

binary classifiers. An AUC of 1 indicates perfect separation of posi-

tive and negative class scores. We use feature hash distances as our

scores. Since reenactment deepfakes maintain identity but change

content, we compute the AUC for reenactment detection using only

dynamic feature hash distances. Similarly, we use identity feature

hash distances for identity swaps. The recall is based on Spotlight’s

final binary decisions and thus considers both distances.

Passive detector comparison We compare Spotlight perfor-

mance to that of 11 state-of-the-art passive detection models (Table

1), spanning a range of whole-video and frame-level methods. The

goal of these comparisons is to ensure our created dataset is suffi-

ciently challenging to fairly evaluate Spotlight. We choose these

models as they are top performers in the comprehensive Deep-

fakeBench benchmark [134]. Specifically, each ranks within the

top-3 methods for at least three datasets assessed, indicating effec-

tive cross-domain performance. We use implementations provided

via DeepfakeBench for all models. Each was trained on the Face-

Forensics++ dataset [60], which contains both identity swap and

reenactment deepfakes. We do not fine-tune the models on our data,

since Spotlight requires no deepfake-specific fine-tuning. Further,

in practice, passive detectors do not have a priori knowledge of the
origins of their input.

Overall results As shown in Table 1, Spotlight achieves AUCs

above 0.99 for all deepfake models and outperforms passive detec-

tors by 37% on average. Spotlight has a recall of 100%, indicating

it detects every one of the over 2,000 fake videos in our dataset. It

additionally exhibits generalizability and explainability.

Among all reenactment deepfakes, only one possessed an iden-

tity hash distance above the decision threshold. Among all identity

swap deepfakes, only 23 possessed an anomalous dynamic hash
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Passive Detector
Deepfake
Model

Meso4

[57]

Xception

[60]

Capsule

[49]

Efficient

[125]

SRM

[50]

SPSL

[51]

Recce

[52]

UCF

[53]

TALL

[54]

AltFreeze.

[55]

Ours

DaGAN (R) 0.52 0.73 0.59 0.67 0.70 0.68 0.68 0.72 0.61 0.50 0.99
SadTalker (R) 0.62 0.72 0.71 0.68 0.70 0.70 0.66 0.71 0.62 0.45 0.99
FOMM (R) 0.64 0.83 0.73 0.80 0.79 0.74 0.77 0.80 0.69 0.43 0.99
TalkLip (R) 0.83 0.95 0.86 0.95 0.96 0.93 0.94 0.92 0.80 0.34 0.99
FSGAN (F) 0.66 0.88 0.69 0.79 0.84 0.88 0.83 0.83 0.79 0.57 1.00
Table 1: AUC scores achieved by Spotlight and eleven state-of-the-art passive detectors on our end-to-end video dataset. Our dataset includes
both reenactment (R) and faceswap (F) deepfakes. Best performing method is bolded.

distance. Thus, our identity and dynamic features effectively iso-

late identity and motion-specific video elements, respectively. As a

result, Spotlight can report the type of video falsification detected.

We also see that Spotlight’s performance generalizes across deep-

fake models. We attribute this to our digest’s focus on higher-level,

semantically-meaningful visual features (e.g., temporal lip move-

ment patterns, facial characteristics). These features are guaranteed

to differ across content (deepfake-generated or not), unlike the low-

level deepfake model-specific artifacts sought by passive detectors.

While the passive detector failures cannot be diagnosed, as they

stem from black-box neural networks, Spotlight’s results are quite

explainable. Its inaccuracies are overwhelmingly false positives

(real videos labeled fake) triggered by high dynamic hash distances.

These cases are caused by sporadic FaceMesh inaccuracies, which

degrade the Pearson correlation between dynamic feature vectors.

We consider alternative features not relying on FaceMesh in §12.

Signature extraction failures Out of 2,400 inputted videos, Spot-

light could not localize the signature in 36 (6 original, and their

30 deepfake counterparts), all corresponding to one participant’s

session. While a fraction of videos that passed localization had cor-

rupted extracted signatures, each had sufficient intact signatures to

enable a final verification decision. All such failures can be resolved

by configuring the tradeoff between SNR and imperceptiblity (§5.3).

8.2 Other Falsification Attacks
Beyond the above deepfake falsifications, Spotlight inherently ad-

dresses other common falsification techniques and attacks.

Speech speedmodification Attacksmodifying only the playback

speed of a video [5, 10] are achieved by either changing a video’s

framerate or duplicating/dropping frames to change the effective

content speed. Both approaches alter the structure and frequency

of embedded signals (e.g., halving their frequency to achieve a 0.5x

slow-down), triggering localization and demodulation failures. A

knowledgeable attacker may preserve the playback speed of only

the optical signature region; however, this will desyncrhonize sig-

natures and speech content, causing a conflict of dynamic features.

Video clipping and splicing Removing portions of video or splic-

ing together clips (e.g., to re-order the speaker’s words) changes the

progression of the speakers’ face movements, captured by dynamic

features. Spotlight thus prevents such edits. Non-consecutive win-

dow numbers would expose clever re-ordering of intact windows.

Signature injection or manipulation An attacker may try to

embed a signature that complements her modified or synthetic con-

tent by digitally injecting or manipulating pixel signals. However,

without Spotlight’s secret key, she fundamentally cannot. Copying

other videos’ signatures fails as they are highly event-specific.

9 Protection Robustness Evaluation
The previous section evaluated Spotlight’s protection performance

under a single recording and attack configuration. We now delve

into its performance across a broad range of practical attack and

recording conditions. We separately evaluate each condition’s im-

pact on digest and optical signature embedding performance.

Summary of results Spotlight’s digest extraction and optical

embedding modules both support recording at up to 60° off axis and

3 m away from the speaker and projection surface, with supported

range further extended when optical zoom is employed. Digests

enable detection of content falsifications as fine-grained as ≤ 1.35 s

of a window and generalize across hundreds of evaluated identities.

Finally, digests and optical signatures are resilient to varied post-

processing techniques, including compression and filter application.

9.1 Digest Robustness
We evaluate our digest identity and dynamic features in terms of

their pose-invariance and generalization across speakers. We ex-

plore our dynamic features’ sensitivity to fine-grained reenactment

deepfakes, wherein an attacker modifies only a portion of a window.

Multi-pose and fine-grained deepfake datasets To evaluate

our identity features across poses and subjects at a large scale, we

turn to the Labeled Faces in the Wild dataset (LFW) [135]. LFW im-

ages are captured at extensive angles and distances in unconstrained

environments. Our experiments span all 1,680 LFW individuals.

To evaluate our dynamic features’ pose invariance and sensitivity

to fine-grained modifications, we build a dataset of speech videos

simultaneously captured from extensive angles and distances. We

then generate pinpointed reenactment deepfakes of these videos.

Specifically, we construct a multi-camera rig of six synchronized

1080p webcams positioned across two distances (1.5 m and 3 m) and

three angles (0°, 45°, and 60° from the speaker
3
). We record nine par-

ticipants as they read aloud four paragraphs (roughly 15-30 s each)

sourced from the popular acoustic-phonetic corpus TIMIT [136].

For each of these 864 real videos, we create a suite of deepfakes by

falsifying individual words in the paragraphs. We replace each tar-

geted word’s exact portion of video with a reenactment deepfake of

the same duration portraying the speaker uttering a different word

from TIMIT. A SadTalker, FOMM, DaGAN, and TalkLip version is

3
We assume performance is symmetrical about the speaker face and thus do not mirror

the configuration at angles < 0°.
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Figure 8:Window-level AUC scores achieved by Spotlight’s dynamic
features across modification granularities and hash sizes.

created for each case. We arrive at 11,250 videos (10,368 deepfakes)

of diverse camera positions and falsification granularities.

Metrics We report AUC scores for verification of all LFW subjects

using identity features. For dynamic features, we report per-window

AUC scores under various percentages of modified content, by dura-

tion. In computing these AUCs, negative class scores are distances

between dynamic features extracted from windows of the same

scene, shot from different camera positions. Positive scores are

distances between real video windows and their fake counterparts.

Sensitivity to fine-grained modifications Figure 8 shows our

dynamic feature AUCs across modification granularities, while

Table 2 summarizes the AUCs of passive detectors. Spotlight’s 150-

bit dynamic hashes score an AUC of .98 for fully-falsified windows

and AUCs ≥ 0.90 for modification percentages ≥ 30. This is a 40%

gain over the best performing passive detector on the 30-40% bin.

We observe that AUC drops with decreasing modification per-

centage. Windows with minor modifications may exhibit dynamic

feature signals dominated by the similarities between remaining

clean content, causing false negatives. For the 10-20% bin, Spotlight

AUC drops to 0.72. Notably, this modification rate corresponds to a

highly specific attack, in which as little as 0.45 s of words within

one 4.5 s window are precisely supplanted. If any introduced reen-

actments are even a few frames longer or shorter than content they

are replacing, all subsequent frames in the video are shifted; this

has the effect of modifying 100% of content in subsequent windows.

Ultimately, detection capability is inevitably dependent on the

degree of modification. Indeed, existing passive detectors struggle

to temporally localize finer-grained falsifications [137]. Spotlight

maintains reasonable performance and inherently localizes falsifi-

cations on the resolution of windows. We explore the potential of

other dynamic features to counter subtle falsifications in §12.

Generalization across identities Our identity hashes score an

AUC of 0.99 in differentiating all 1,680 LFW subjects. Dynamic

feature hashes are similarly robust across speakers, with errors in

detecting reenactment deepfakes distributed evenly across subjects.

Hash size The AUC drop-off between 150- and 50-bit dynamic

feature hash sizes (Figure 8) validates our choice of 150-bit hashes.

Hashing ArcFace vectors to 150 bits lowers their AUC by just 0.0016.

Recording distance and angle Digest performance is consistent

across recording positions up to 3 m and 60° off-axis from the

speaker. Amongst videos captured at the harsh 3 m, 60° position,

dynamic feature hashes have an AUC of 0.96 in detecting fully

Figure 9: Environments and respective surfaces (S1-7) tested
in §9.2. Insets show close-ups of the projection surfaces, varying
in their textures and coloration. Surfaces 5, 6, and 7 are outdoors.

falsified windows. Note that we record all dataset video with no

zoom for consistency; using zoom naturally boosts supported range.

Video post-processing We do not observe significant changes

in digest performance upon compression, transcoding, or filtering,

likely due to the diversity of ArcFace and FaceMesh training data.

9.2 Signature Embedding Robustness
We evaluate our optical signature embedding scheme’s robustness

with respect to Spotlight’s ability to ultimately extract embedded

data from videos. We consider extensive practical factors, from

ambient lighting and projection surfaces to video post-processing.

Experimental setup To assess the effects of projection surface

and ambient lighting, we project onto seven surfaces (Figure 9), in-

cluding three outdoors under dynamic cloud coverage. We evaluate

two lighting conditions for S1-3, for a total of 10 environments. To

assess the remaining factors, we project onto S1. For each scenario,

we embed a random bitstream for 100 s and extract the data from the

recording. By default, we record with the core unit setup detailed

in §8 and a Google Pixel at 2 m from the projection surface. We

quantify robustness in terms of the bit error rate (BER) at each stage

of decoding: raw, post-Viterbi, and final, upon full error correction.

Recording distance and angle Spotlight’s embedding supports

recording up to 3.5 m and 60° from the projection surface (Table

3a). We find embedding robustness is primarily constrained not by

camera distance, but rather the resolution of cells in recordings, as

this determines their SNR. The BER increase at 5 m is fundamentally

due to inadequate cell resolution. Table 3f shows final BER is zero

so long as cells occupy ≥ 35 x 35 pixels. The full projection region

corresponding to this cell resolution is just 16% of a 1080p frame.

Recording environment and projection surface Spotlight

achieves error-free embedding in all evaluated scenes (Table 3b),

including dynamic outdoor environments and surfaces ranging

from red brick (S6) to irregularly patterned, glossy paper (S3). We

attribute this to Spotlight’s adaptive embedding procedure, which

continually ensures sufficient SNR. We find Spotlight achieves zero

final BER in any environment where ambient light intensity does

not dominate SLM-projected light. We measure this threshold value

to be 4 klx (roughly 20x brighter than a typical indoor setting [138]).

Recording device Because Spotlight encodes data as simple light

intensity changes, it is naturally compatible with any modern RGB

camera. Signatures are reliably extracted from videos captured on

all five tested ≥ 1080p devices, from webcams to DSLRs (Table 3c).

Video post-processing Signatures remain decodable after varied

forms of video post-processing, including compression (done by

reducing bitrate from the original 19k kbps), transcoding from the
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Figure 10: Example DaGAN outputs after training with various
weights 𝛼 on the adversarial Spotlight-spoofing objective. Higher
weights increase generated videos’ verification success rates, but
cause the model to reproduce the semantic content of the real video.

original H.265 codec (Table 3d), contrast and exposure changes, and

use of monochrome and auto-enhancing [139] filters (Table 3e).

10 Countermeasures
We explore countermeasures an attacker may employ in an attempt

to create falsified content that nonetheless passes verification, i.e.,

spoofs, or otherwise disrupt Spotlight operation. We assume the at-

tacker has white-box access to all Spotlight algorithms and models.

10.1 Spoofing via Adversarial Examples
Extensive prior works show that deep neural networks (DNNs)

are vulnerable to adversarial examples – carefully crafted inputs

that look normal to the naked eye but cause models to make in-

correct predictions [140]. An attacker may try to craft adversarial

examples against the FaceMesh and ArcFace DNNs that Spotlight

uses to extract feature vectors (§4.2). Concretely, her goal is to

take a Spotlight-protected video and create a falsified version that,

although to the naked eye portrays a different identity or facial mo-

tion, elicits identity and dynamic features highly similar to those of

the real video. If she achieves this, her fake video’s feature vectors

will possess locality-sensitive hashes similar to those in the original

video signature. She can thus simply retain this signature in her

fake video, and it will pass verification, spoofing Spotlight.

We demonstrate two approaches to creating such adversarial

examples – one in which the attacker specially trains her deepfake

model and the other in which she perturbs her videos post-factum

– and find neither succeeds. While we are under no illusion this

means creating adversarial examples against Spotlight is fundamen-

tally impossible, we show it is in practice highly challenging. This

significantly raises the bar for attack execution.

Below, we use the VoxCeleb video dataset [141] for training and

tests. Note that the LFW dataset, while favorable for our evaluations

in §9.1 due to its greater identity and pose diversity, cannot be used

in the following video-focused studies because it is image-based.

Adversarial deepfake generation In the first method, with

white-box access to the FaceMesh and ArcFace models, the attacker

directly incorporates the above signature spoofing objective into the

loss function of her deepfake model. Specifically, during training,

she can extract the Spotlight feature vectors from generated videos

and apply a penalty if those feature vectors are dissimilar from

the original video feature vectors. If our digests are vulnerable to

adversarial examples, the deepfake model should learn to satisfy

the attack objective while still achieving the intended falsification.

Note that adversarial examples must meet both of these criteria. If

those generated videos that pass verification simply resemble the

real videos, Spotlight is providing the expected protections.

We test this method using the FSGAN identity swap model and

DaGAN reenactment model. We choose DaGAN as our representa-

tive reenactment model because its outputs were the hardest for

passive detectors to detect (Table 1). We modify the DaGAN and

FSGAN loss functions to include a Spotlight-spoofing term, which

applies the aforementioned penalty based on generated videos’ dy-

namic (DaGAN) or identity (FSGAN) feature vectors. We train both

models with three different weights on this term (empirically set to

optimize attack success), and then use each version to generate 50

fake videos. We report the rate at which each model’s generated

videos pass Spotlight verification. Details can be found in A.3.

We find that none of our attack models can produce adversar-

ial examples. When trained with sufficiently high weight on the

Spotlight-spoofing term, DaGAN learns to output content that

passes Spotlight verification by simply retaining the face and lip

motion of the real video. Figure 10 illustrates this effect. We can see

that while the original DaGANmodel (spoofing weight 𝛼 = 0) modi-

fies the victim’s facial movement according to the attacker-provided

target, the outputs of the adversarial model with the highest success

rate (𝛼 = 40) largely portray the same expressions as the real video

frames, with some perceptual degradations. The FSGAN spoofing

rate remained at 0% across all tested weights on our term.

These behaviors arise from a clear contradiction between the

Spotlight-spoofing and original deepfake loss function components:

while the former enforces similarity between the real and fake

videos’ semantic visual aspects, the latter explicitly rewards real

videos’ modification. During training, we observe one component

strictly dominates the other, depending on their relative weights.

Even after extensive testing, we cannot find a weight at which both

components simultaneously converge. Thus Spotlight’s digests are

adversarially robust; even when deeepfake models can directly

back-propagate through the feature extractors in training, they

cannot find loopholes enabling generation of adversarial examples.

Adversarial perturbation of frames The attacker may also add

adversarial perturbations to video frames as a post-processing step,

inspired by other perturbation-based attacks on vision DNNs [140].

We first apply this method to our identity features by adapting

Fawkes [142], a white-box attack on face recognition models. Given

a structural dis-similarity (DSSIM) [143] budget configuring permit-

ted perturbation visibility, Fawkes perturbs a source face image to

shift its feature space representation towards that of a desired target
identity. We replace the Fawkes feature extractor with our identity

feature extractor, consisting of the face detector and ArcFace model.

We then randomly choose 22 source-target pairs of identities

from VoxCeleb and use Fawkes to perturb all source video frames

toward their targets. Because frames must be perturbed indepen-

dently, this attack is highly computationally expensive (over 1 min

per frame even on GPU). We report the rate at which perturbed

source videos are successfully verified as the target identity. We

perform this experiment under four DSSIM budgets: 0.003, 0.005,

0.007, and 0.009. A larger budget enables larger feature space shifts

– increasingly the chances of verification success – but introduces

11



visible artifacts exposing the attack. Prior studies perturbing face

images use DSSIM budgets from 0.003 to 0.007 [142, 144] to main-

tain imperceptibility. Note, however, recent work [145] suggests

perturbations at these budgets may become visible in videos due to
temporal incoherence across independently-perturbed frames.

We observe a verification success rate of zero for all budgets

≤ 0.007. Though Fawkes successfully perturbs a larger portion of

frames per videowith larger budgets, it fails to succeed on all frames.

This is necessary for the video to pass verification, as Spotlight

validates all frames’ identity features (§6). At the highest budget

of 0.009, the success rate rises to 4.5%; however, the frames exhibit

noticeable artifacts, causing a distinct flickering effect when played.

Thus, even when allowed a budget exceeding prior perceptibility

thresholds, the perturbation-based attack on identity features fails.

These results can be attributed to Spotlight’s particularly strin-

gent identity feature verification threshold (configured in §7), which

forces perturbations to shift features by larger amounts to produce

a spoof. Spotlight’s identity feature verification threshold is partic-

ularly strict because videos recorded at a speech site necessarily

vary only in their viewpoint of the speaker, with other appearance

variations that ArcFace is trained to accommodate (e.g., makeup,

lighting) naturally constant. As a result, legitimate video identity

features are generally highly similar to those disseminated by the

core unit. This phenomenon is also reflected in Spotlight’s perfect

AUC in detecting identity swap deepfakes in §8 (Table 1).

Beyond this empirical validation, several works show that with

sufficient perturbed and unperturbed images of a subject, a defender

can train a highly accurate adversarial perturbation detector (AUC

> .997) that generalizes across perturbation methods [146, 147]. For

high-profile speakers, images for such training are abundant. Thus,

Spotlight can incorporate a detector to preemptively detect and

reject perturbed videos. Given these findings, we leave exploration

of perturbation-based attacks on dynamic features to future work.

10.2 Other Countermeasures
Screen recording An adversary may launch the following attack

based on screen recording: she places the core unit in front of

a screen displaying a fake video, records the outputted optical

modulations, and then digitally overlays them on the fake video.

This attack can be simply addressed by equipping the core unit with

an existing depth-sensing tool [148] to differentiate a 2D screen

from a speaker’s physical presence, which we leave to future work.

Environment-level interference An attacker present at a speech

could interfere with Spotlight by injecting light onto its projection

surface. For this to be effective, interfering light must dominate

SLM illumination (i.e., measure roughly 4 klx, based on §9.2). Light

of this intensity is quite visible; thus the attack can be detected and

stopped at the scene. As further defenses, Spotlight can project onto

multiple surfaces and periodically randomize projection surfaces.

11 Perceptibility Evaluation
We evaluate the perceptibility of Spotlight’s introduced optical

modulations both live and in video via a user study and perceptual

metrics. We summarize findings below, with further details in A.4.

For our user study, we invited participants to each scene in Fig-

ure 9. At each, they were asked to assess the projection surface

during trials in which the core unit either performed embedding

or was powered off as a control case. For each trial, they reported

whether they believed optical modulations were present, and rated

the obtrusiveness of any perceived modulations. We repeated the

study with videos of the surfaces. As shown in the bottom panels of

Figure 11, participants overwhelmingly performed no better than

random at detecting Spotlight operation, indicating the effective im-

perceptibility of its projected light. In the few cases users accurately

detected operation, they uniformly reported low obtrusiveness.

We also analyze videos using the learned perceptual loss (LPIPS) [149]

metric. All videos possess LPIPS scores over ten times lower than

the established LPIPS perceptibility threshold (Figure 11).

12 Discussion and Future Work
Alternative embedding mechanisms Spotlight is compatible

with varied embedding methods. Its modulation scheme supports

any cell shapes and layouts and can be realized via existing projec-

tors or screens at events. Future work will explore acoustic methods

as well as optical embedding on non-planar and non-stationary

surfaces, with the ultimate goal of projecting onto the speaker face.

Alternative dynamic features Spotlight is compatible with

diverse dynamic features. One alternative is the cryptographic

hash of a window’s script, extracted via real-time speech-to-text.

This would provide key semantic information and aid detection of

fine-grained content falsifications (e.g., changing "do" to "do not"),

though failing to capture speech speed or visual cues. Future work

will pursue LSH-compatible features capturing additional audio

characteristics (e.g., tone) and visual attributes. Ultimately, dynamic

features should be chosen based on anticipated attacks, and LSH

aids in including multiple, complementary features in a signature.

Verifying the last speech window To ensure all speech content

is protected, a video must have a window of downtime at its end

for embedding of the final signature. Minimizing window durations

can mitigate this overhead. This can be achieved by increasing

embedding bandwidth, in turn reducing the time needed to embed

each signature. The current scheme’s bandwidth can be boosted by

increasing projection region size or adjusting the imperceptibility-

SNR trade-off. Developing acoustic embedding methods for joint

use with optical modulation is a further promising direction.

Camera movement The current Spotlight implementation as-

sumes recordings are taken on a still camera, a constraint imposed

by the verification module’s assumption that embedded signals are

carried by the same pixels throughout a video. Future efforts will

integrate established video stabilization [150, 151] and inter-frame

alignment [152] methods into verification to allow camera motion.
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Appendix
A.1 Adaptive Optical Embedding
We formalize our adaptive optical embedding method (§5.3) in the

following algorithm.

Input:𝑉 : Window’s core unit video frames
𝐼 : required intensity for each SLM bitmap cell 𝑗

Output: 𝑐𝑆𝐿𝑀 : RGB value for each SLM bitmap cell 𝑗
𝐼 : updated required intensity for SLM cells.

1 Function Adapt(𝑉 , 𝐼 ):
2 Let Φ𝑚𝑎𝑥 be the perceptibility threshold
3 Let 𝛽𝑚𝑎𝑥 be the BER threshold
4 Let 𝛿 be intensity increment/decrement value
5 𝑑 ← Extract data embedded in𝑉
6 𝛽 ← BER(𝑑)
7 if 𝛽 ≥ 𝛽𝑚𝑎𝑥

8 𝐼 ← Increment all 𝐼 𝑗 by 𝛿

9 foreach cell 𝑗 do
10 𝑐

𝑗
𝑝𝑜𝑛

, 𝑐
𝑗
𝑝𝑜𝑓 𝑓

← Patch 𝑗 color w/ and w/o SLM light

11 if 𝛽 < 𝛽𝑚𝑎𝑥 and CIEDE2K(𝑐 𝑗𝑝𝑜𝑛 , 𝑐
𝑗
𝑝𝑜𝑓 𝑓

) ≥ Φ𝑚𝑎𝑥

12 𝐼 𝑗 ← 𝐼 𝑗 − 𝛿
13 𝑐

𝑗

𝑆𝐿𝑀
← Equation1(𝑐 𝑗𝑝𝑜𝑓 𝑓 , 𝐼

𝑗 )

14 return 𝑐𝑆𝐿𝑀 , 𝐼

Algorithm 1: Adaptation performed after completion of a window

to set upcoming SLM bitmap cell colors and intensities.

The below equation, employed on Line 13 configures bitmap

colors to match the patch of projection surface they are incident

upon.

𝑐
𝑗

𝑆𝐿𝑀
= (𝛼 ∗ 𝑅 𝑗

𝑝𝑜𝑓 𝑓
, 𝛼 ∗𝐺 𝑗

𝑝𝑜𝑓 𝑓
, 𝛼 ∗ 𝐵 𝑗

𝑝𝑜𝑓 𝑓
),

subj. to 𝛼 ∗ 𝑅 𝑗
𝑝𝑜𝑓 𝑓
+ 𝛼 ∗𝐺 𝑗

𝑝𝑜𝑓 𝑓
+ 𝛼 ∗ 𝐵 𝑗

𝑝𝑜𝑓 𝑓
= 𝐼 𝑗 ,

(1)

where 𝑅
𝑗
𝑝𝑜𝑓 𝑓

,𝐺
𝑗
𝑝𝑜𝑓 𝑓

, 𝐵
𝑗
𝑝𝑜𝑓 𝑓

are the RGB values of 𝑐
𝑗
𝑝𝑜𝑓 𝑓

.

The user-specified values of 𝜙𝑚𝑎𝑥 and 𝛽𝑚𝑎𝑥 configure the trade-

off between data error rate, in the form of BER and perceptibility. 𝛿

tunes the system’s adaptation speed, with a higher value enabling

faster adaptation but risking "overshooting" in terms of percepti-

bility. Furthermore, we note that if BER is above 𝛽𝑚𝑎𝑥 , all 𝐼
𝑗
are

incremented by 𝛿 . The rationale for the global increase in Line

8 is that, while cells’ perceptibilities are independent, robustness

depends on all cells since data is distributed across them. We also

note 𝐼 𝑗 may be incremented even when CIEDE2000(𝑐 𝑗𝑝𝑜𝑛 , 𝑐
𝑗
𝑝𝑜𝑓 𝑓
) ex-

ceeds Φ𝑚𝑎𝑥 , consciously prioritizing robustness. This is a conscious

design decision to prioritize robustness, as we believe the impact

of an unrecoverable signature to be worse than that of embedding

visibility.

A.2 Optical Modulation Configuration
For all prototype experiments, we utilize 640 x 360 pixel SLM

bitmaps, configured to fit 16 x 9 cells. This corresponds to 87 data

cells and 32 synchronization cells, in addition to our four larger

localization cells. We set 𝑓𝑑 to be 3Hz, as we found that BER in-

creased significantly at larger frequencies. Finally we set 𝑓𝑙 to be

6 Hz, and our window duration to be 4.5 s, consisting of .5 s of

downtime followed by 4 s of modulation. Thus we can embed 12

bits per data cell, i.e., 12*87=1044 bits per window. We configure

the adaptive embedding algorithm (Algorithm 1) with 𝛽𝑚𝑎𝑥 = 0,

𝜙𝑚𝑎𝑥 = 5, and 𝛿 = 5.

A.3 Adversarial Deepfake Model Training
Here we provide details on the training, implementation, and eval-

uation of our DaGAN and FSGAN models.

DaGAN The DaGAN reenactment model forward pass takes as

input two face images: a source image of the victim and an attacker-

provided "driving" image. It synthesizes a fake image, where the

victim possesses a new facial expression or pose, to match that

in the driving image. The model can be called for each pair of

frames in an original video and driving video, with model outputs

concatenated to form a video.

During training of our modified DaGAN model, we extract the

16 FaceMesh features considered by Spotlight’s dynamic feature

vectors (§4.2) from both source image and the generated fake image.

Our loss function 𝐿𝑎𝑑𝑣 is then defined as follows:

𝐿𝑎𝑑𝑣 = 𝐿 + 𝛼Θ(𝐷𝑦𝑛𝑠𝑟𝑐 , 𝐷𝑦𝑛𝑓 𝑎𝑘𝑒 )

where 𝐿 is the original DaGAN loss function,𝐷𝑦𝑛 ∈ R16 are vectors
containing the FaceMesh results, and Θ is the cosine similarity

function. The coefficient 𝛼 weights the important of preserving

dynamic features in generated content.

To implement this modified version of DaGAN, we first develop

a fully differentiable PyTorch implementation of FaceMesh. This

is needed because Google only provides FaceMech as a LiteRT

module, which is designed for inference only and does not have

the necessary mechanisms for calculating gradients during back-

propagation. We use ONNX-converted [153] ports of each of the

three neural networks underlying FaceMesh and integrate them to

the best of our abilities by referencing MediaPipe’s public model

cards. Our implementation outputs facial landmarks with an aver-

age difference of 2 pixels and blendshape scores with an average

difference of 0.11 (arbitrary units, ranging from 0 to 1) from their of-

ficial implementation counterparts when run on DaGAN’s training

dataset.

We fine-tune the model from the checkpoint released by the

authors, applying early stopping based on validation loss. We use

the same learning rate and parameters employed in their original

implementation, as well as their same training data, sourced from

VoxCeleb. We create evaluation videos by randomly choosing 55

pairs of videos from the VoxCeleb test split and using one to drive

the other.

FSGAN The FSGAN faceswapping model similarly takes as input

a source image of the victim and an attacker-provided target face

image. The model synthesizes a fake image in which the victim’s

face is supplanted with the target’s face, effectively modifying the

portrayed identity.

During training of our modified FSGAN models, we extract the

ArcFace embedding from both the source and fake images. Similar

to above, our loss function 𝐿𝑎𝑑𝑣 is then defined as follows:

𝐿𝑎𝑑𝑣 = 𝐿 + 𝛼Θ(𝐴𝑟𝑐𝑠𝑟𝑐 , 𝐴𝑟𝑐 𝑓 𝑎𝑘𝑒 )
16



Passive Detector
% Window
Modified

Meso4

[57]

Xception

[60]

Capsule

[49]

Efficient

[125]

SRM

[50]

SPSL

[51]

Recce

[52]

UCF

[53]

TALL

[54]

AltFreeze.

[55]

Ours

10-20 0.53 0.59 0.57 0.57 0.55 0.55 0.55 0.60 0.55 0.47 0.72
20-30 0.58 0.62 0.55 0.58 0.55 0.58 0.55 0.62 0.57 0.47 0.84
30-40 0.60 0.64 0.58 0.60 0.58 0.60 0.56 0.63 0.58 0.47 0.90
40-50 0.59 0.67 0.59 0.63 0.58 0.61 0.59 0.66 0.61 0.48 0.92
100 0.75 0.90 0.80 0.81 0.76 0.76 0.83 0.84 0.84 0.26 0.98
Table 2: Comparison of AUC scores achieved by passive detectors and Spotlight’s 150-bit dynamic feature hashes on our multi-posed, fine-
grained reenactment dataset (§9.1), in which modifications of various granularities (by percentage duration modified) are applied to each 4.5 s
window. Best performing method is bolded.

(a) Distance and viewing angle.
2m 3.5m 5m

0° 45° 60° 0° 45° 60° 0° 45° 60°
R 0.01 0.02 0.02 0.05 0.04 0.05 0.13 0.13 0.12

V 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.04 0.03

F 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.03 0.01

(b) Ambient light intensity (lx) and projection surface.
320 750 530 3k 3.5k 2.6k

S1 S2 S3 S1 S2 S3 S4 S5 S6 S7
R 0.01 0.07 0.01 0.01 0.08 0.01 0.70 0.01 0.03 0.01

V 0.00 0.04 0.00 0.00 0.02 0.00 0.05 0.00 0.00 0.00

F 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(c) Device type.
Google
Pixel

iPhone
(HD)

iPhone
(ProRes)

Webcam DSLR

R 0.01 0.01 0.01 0.01 0.00

V 0.00 0.00 0.00 0.00 0.00

F 0.00 0.00 0.00 0.00 0.00

(d) Video transcoding and compression.
Transcoding Bitrate Decrease

None H.264 MPEG4 10% 30% 50% 70% 90%
R 0.01 0.02 0.04 0.03 0.02 0.03 0.03 0.02

V 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

F 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(e) Exposure (E), Contrast (C), and Auto/Mono adjustment.
C-50 C+50 E-50 E+50 Auto Mono

R 0.04 0.01 0.01 0.02 0.01 0.01

V 0.00 0.00 0.00 0.00 0.00 0.00

F 0.00 0.00 0.00 0.00 0.00 0.00

(f) In-video cell resolution.
30 x 30 px 35 x 35 px 40 x 40 px 50 x 50 px

R 0.12 0.05 0.04 0.02

V 0.03 0.00 0.00 0.00

F 0.01 0.00 0.00 0.00

Table 3: Signature embedding robustness in terms of bit error rate (BER) across recording factors. We report the BER at each stage of error
correction (§5.1): raw (R), before error correction; after the concatenated error corrector Viterbi decoding (V); and final (F), after RS error
correction.

where 𝐿 is the original FSGAN loss function, 𝐴𝑟𝑐 ∈ R512 are the
extracted ArcFace embeddings, and Θ is the cosine similarity func-

tion. The coefficient 𝛼 weights the important of preserving identity

features in generated content.

We train the FSGAN model from scratch using data from the

VoxCeleb dataset, because the authors do not release all weights

necessary for fine-tuning. We use the same learning parameters

employed in the original version and applying early stopping based

on validation loss. We create evaluation videos by randomly choos-

ing 55 pairs of videos from the VoxCeleb dataset (ensuring they

portray different identities) and generating a faceswap deepfake

for each.

A.4 Perceptibility Evaluation Details
Here, we detail the setup of our perceptibility user study and LPIPS

evaluation and further discuss the studies’ results.

User study We invite groups of 9 participants (recruited via email,

with ages ranging from 18 to 34) to each of the test environments

(Figure 9). At each environment participants were asked to assess

the projection surface during four 45 s trials in which the core

unit either performed embedding of a random bitstream or was

powered off as a control scenario (done for two randomly selected

trials). Participants were informed that light may be projected and

shown the projection region boundaries. During each trial they

were allowed to walk freely up to 1.5 m of the surface, and asked

to answer two questions once ready:

Q1 Do you believe the light pattern is present in the video?(Y/N)
Q2 How obtrusive do you find the pattern? (Low/Medium/High

Obtrusiveness).

Finally, we invite 20 participants (recruited via email, ages 18-65) to

assess videos of the projection surface. For each video, the bound-

aries of the projection region were marked to enable participants to

accurately examine it. Participants were permitted to freely zoom

into any portion of frames, pause, and rewind.

As shown in the bottom two figures of Figure 11, for each envi-

ronment we plot (1) Δ = 𝑇𝑃𝑅−𝐹𝑃𝑅, where TPR is the rate at which

participants responded "Yes" to Q1 when embedding was occurring,

and FPR is the rate at which they incorrectly responded "Yes"; and

(2) the average response to Q2, excluding those given with a Q1

false positive. A Δ value ≤ 0 indicates that embedding is effectively

imperceptible, as participants perform no better than random at

17



0.00
0.02
0.04
0.06
0.08

Full proj. region
Cell

L
P

IP
S

Low

Med

High In−Person Video

O
b

tr
u

si
v

en
es

s

−0.2
0.0
0.2
0.4
0.6

S1
320

S1
750

S2
320

S2
750

S3
320

S3
750

S4
530

S5
3k

S6
3.5k

S7
2.6k

In−Person Video

∆

Projection Surface/Ambient Light Intensity (lx)

Figure 11: Embedding perceptibility results. Top axis: Average
LPIPS across pairs of video frames captured w/ and w/o Spotlight op-
eration. All scores are significantly below the established LPIPS per-
ceptibility threshold of 0.5 [155]. Middle: average obtrusiveness re-
ported by users study respondents. Bottom: user studyΔ = 𝑇𝑃𝑅−𝐹𝑃𝑅,
normalizing true positive identifications of embedding occurrence
to false positive identifications during control trials. A nonpositive
value indicates imperceptibility.

detecting it. We observe this in all but two video cases. In per-

son, Δ ≤ 0.2 in all but two environments. Respondents uniformly

report low obtrusiveness in-video and live. The primary factors

influencing perceptibility are the surface’s texture and color. Darker,

homogeneous surfaces (i.e., S2, S4, S5) fundamentally contrast with

impinging light, whereas brighter-colored, more complex ones (e.g,

S1, S3, S5) provide a camouflage. Increasing ambient light intensity

can counteract this (as with S4 and S2 at 750 lx) by increasing the

baseline brightness of a surface’s appearance.

Perceptual metrics We additionally evaluate optical signature

perceptibility in video using the learned perceptual loss (LPIPS) [149,

154] metric. This metric has been shown to have superior corre-

lation with human perception, especially in the context of fine-

grained changes such as those introduced by Spotlight’s optical

modulations. LPIPS takes as input two images and outputs a score

ranging from 0 to 1, where a lower value indicates the inputs are

more perceptually similar. In particular, prior works show humans

cannot sense differences when LPIPS is below 0.5 [155]. To apply

these image-level metrics to our videos, we compute the average

score between crops of the full projection region and individual

cells in 5,000 pairs of frames captured with and without Spotlight

operating. We compute at both the full projection region and cell

level to understand perceptibility at both scales differences occur.

The top panel of Figure 11 shows that full region and cell-level

scores are highly correlated. Further, all LPIPS scores are over ten

times lower than then established LPIPS perceptibility threshold.

A.5 Proofs and Definitions: Locality-Sensitive
Hashing

Herewe detail ourmethodology for utilizing cosine similarity-based

LSH for verification. We include both a definition and discussion

of the methodology at a high level (Definition 2) and derive an

equation for the relationship between hash size and verification

performance (Theorem 2), which illustrates that verification per-

formance has no dependence on input vector dimensionality.

Definition 1 (Cosine Similarity LSH Scheme).

We utilize the locality sensitive hashing scheme for the cosine

similarity as proposed in [88]. Let ®𝑟 be a vector in R𝑛 chosen ran-

domly from the n-dimensional Gaussian distribution (i.e., each

coordinate is drawn from a Gaussian distribution). Let the hash

function ℎ®𝑟 : ®𝑢 ∈ R𝑛 ↦→ {0, 1} be defined as follows:

ℎ®𝑟 (®𝑢) =
{
1 if ®𝑟 · ®𝑢 ≥ 0

0 if ®𝑟 · ®𝑢 < 0

The locality sensitive hashing scheme 𝐻 is defined as 𝐻 (®𝑢) =
{ℎ1 (®𝑢), ℎ2 (®𝑢), ..., ℎ𝑘 (®𝑢)}, where ℎ𝑖 are independently and randomly

chosen hash functions from F. Thus, given an input ®𝑢 ∈ R𝑛 , 𝐻 out-

puts a 𝑘-bit vector, formed by concatenating the single bit outputs

of each of its hash functions ℎ𝑖 .

The key idea of this scheme is that the sign of a vector ®𝑥 ’s
projection onto ®𝑟𝑖 is fundamentally related to the angle between

𝑣𝑒𝑐𝑥 and ®𝑟𝑖 . Thus if ®𝑢 and ®𝑣 have a high cosine similarity, their

projections onto ®𝑟𝑖 are more likely to have the same sign. Each bit

in the hash serves as an additional “sample” to aid in approximating

Θ; including more bits increases the probability that 𝐷 correctly

reflects Θ. This captures the cosine similarity with extreme space

efficiency.

Definition 2 (Verification using LSH).

We depart from the formal definition of a traditional verifica-

tion problem: given two feature vectors, we would like to confirm

that they represent the same source (e.g., face embeddings corre-

sponding to the same identity). Two feature vectors 𝑢, 𝑣 are said to

correspond to the source if Θ(®𝑢, ®𝑣) < 𝜃𝑡ℎ , where 𝜃𝑡ℎ is a decision

threshold. Otherwise, the vectors are said to correspond to different

sources.

We can similarly formalize the verification problem on hashed

feature vectors: the hashes of two feature vectors, 𝐻𝑐𝑜𝑠 (𝑢), 𝐻𝑐𝑜𝑠 (𝑣)
are said to correspond to the same source if 𝐷 (𝐻 (®𝑣), 𝐻 (®𝑢)) > 𝑑𝑡ℎ ,

where 𝑑𝑡ℎ is a decision boundary for verification on hashed vectors.

If 𝜃𝑡ℎ is the optimal decision boundary for verification on the raw

feature vectors, intuitively, the optimal value of 𝑑𝑡ℎ should be the

expected value of 𝐷 (𝐻 (®𝑣), 𝐻 (®𝑢)) for two vectors 𝑢, 𝑣 s.t. Θ(®𝑢, ®𝑣) =
𝜃𝑡ℎ . From Equation 1, this is

𝑘𝜃𝑡ℎ
𝜋 .

Theorem 1 (Expected Value of Hamming Distance). Let 𝐻
be a locality sensitive hashing scheme defined according to Definition
1 and 𝐷 be the Hamming distance function. The expected value of
𝐷 (𝐻 (®𝑣), 𝐻 (®𝑢)) is 𝑘Θ( ®𝑢,®𝑣)

𝜋 .

Proof. Recall that 𝐷 , the Hamming distance function, gives the

number of positions at which the values of two bitstrings differ.

Since the value of each bit of 𝐻 ’s output is determined by a hash

function ℎ𝑖 , the expected value of 𝐷 (𝐻 (®𝑣), 𝐻 (®𝑢)) is the expected
number of 𝐻 ’s 𝑘 hash functions ℎ𝑖 for which ℎ𝑖 (®𝑢) ≠ ℎ𝑖 (®𝑣). From
[88],

Pr[ℎ(®𝑢) ≠ ℎ(®𝑣)] = Θ(®𝑢, ®𝑣)
𝜋

.
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Therefore, the probability that 𝐷 (𝐻 (®𝑣), 𝐻 (®𝑢)) = 𝑛, (i.e., the outputs

of exactly 𝑛 of the hash functions ℎ𝑖 differ) is(
𝑘

𝑛

)
Pr[ℎ(®𝑢) ≠ ℎ(®𝑣)]𝑛Pr[ℎ(®𝑢) = ℎ(®𝑣)]𝑛−𝑘

=

(
𝑘

𝑛

) (
Θ(®𝑢, ®𝑣)

𝜋

)𝑛
(1 − Θ(®𝑢, ®𝑣)

𝜋
)𝑘−𝑛

(2)

The expected value of 𝐷 (𝐻 (®𝑣), 𝐻 (®𝑢)) is thus
𝑘∑︁

𝑛=0

𝑛

(
𝑘

𝑛

) (
Θ(®𝑢, ®𝑣)

𝜋

)𝑛 (
1 − Θ(®𝑢, ®𝑣)

𝜋

)𝑘−𝑛
=
𝑘Θ(®𝑢, ®𝑣)

𝜋
(3)

□

Theorem 2 (Impact of 𝑘 on Verification Performance). To
assess the impact of the hash size 𝑘 on verification performance, we
seek the probability 𝑃𝜃𝑡ℎ (𝑘) that all decisions obtained from veri-
fication on 𝑘-bit hashed feature vectors are the same as those ob-
tained from performing verification on the raw vectors with a decision
boundary of 𝜃𝑡ℎ . This event indicates that the hashed feature vec-
tors perfectly preserve verification performance. Thus we can view
the probability of its occurrence as a measure of the hashed vectors’
performance relative to that of the raw vectors. 𝑃𝜃𝑡ℎ (𝑘) is given by
the following equation

𝑃𝜃𝑡ℎ (𝑘) = exp

©­­«
∫ 𝜃𝑡ℎ

0

ln

©­­«
𝑘𝜃𝑡ℎ
𝜋∑︁

𝑛=0

(
𝑘

𝑛

) (
𝜃

𝜋

)𝑛 (
1 − 𝜃

𝜋

)𝑘−𝑛ª®®¬𝑑𝜃
ª®®¬ ∗

exp

©­­«
∫ 𝜋

𝜃𝑡ℎ

ln

©­­«
𝑘∑︁

𝑛=
𝑘𝜃𝑡ℎ
𝜋

(
𝑘

𝑛

) (
𝜃

𝜋

)𝑛 (
1 − 𝜃

𝜋

)𝑘−𝑛ª®®¬𝑑𝜃
ª®®¬

Proof. Based on Definition 2, verification decisions are obtained

from raw or hashed feature vectors using the criteria Θ(®𝑢, ®𝑣) < 𝜃𝑡ℎ

or 𝐷 (𝐻 (®𝑣), 𝐻 (®𝑢)) < 𝑘𝜃𝑡ℎ
𝜋 , respectively. Thus we have

𝑃𝜃𝑡ℎ (𝑘) = Pr[

∀(®𝑢, ®𝑣) ∈ {(®𝑢, ®𝑣) : Θ(®𝑢, ®𝑣) ≤ 𝜃𝑡ℎ}, 𝐷 (𝐻 (®𝑣), 𝐻 (®𝑢)) ≤ 𝑘𝜃𝑡ℎ

𝜋

∩

∀(®𝑢, ®𝑣) ∈ {(®𝑢, ®𝑣) : Θ(®𝑢, ®𝑣) > 𝜃𝑡ℎ} 𝐷 (𝐻 (®𝑣), 𝐻 (®𝑢)) > 𝑘𝜃𝑡ℎ

𝜋

]

Intuitively,

Pr[∀(®𝑢, ®𝑣) ∈ {(®𝑢, ®𝑣) : Θ(®𝑢, ®𝑣) ≤ 𝜃𝑡ℎ}, 𝐷 (𝐻 (®𝑣), 𝐻 (®𝑢)) ≤ 𝑘𝜃𝑡ℎ

𝜋
]

is the probability that for all ®𝑢, ®𝑣 satisfying Θ(®𝑢, ®𝑣) ≤ 𝜃𝑡ℎ , at most
𝑘𝜃𝑡ℎ
𝜋 bits of 𝐻 (®𝑢) and 𝐻 (®𝑣) differ.
Using Equation 2 and the independence of each comparison of

(®𝑢, ®𝑣) ∈ {(®𝑢, ®𝑣) : Θ(®𝑢, ®𝑣) ≤ 𝜃𝑡ℎ},

Pr[∀(®𝑢, ®𝑣) ∈ {(®𝑢, ®𝑣) : Θ(®𝑢, ®𝑣) ≤ 𝜃𝑡ℎ}, 𝐷 (𝐻 (®𝑣), 𝐻 (®𝑢)) ≤ 𝑘𝜃𝑡ℎ

𝜋
]

= exp

©­­«
∫ 𝜃𝑡ℎ

0

ln

©­­«
𝑘𝜃𝑡ℎ
𝜋∑︁
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) (
𝜃

𝜋

)𝑛 (
1 − 𝜃

𝜋

)𝑘−𝑛ª®®¬𝑑𝜃
ª®®¬

By the same logic,

Pr[∀(®𝑢, ®𝑣) ∈ {(®𝑢, ®𝑣) : Θ(®𝑢, ®𝑣) > 𝜃𝑡ℎ}, 𝐷 (𝐻 (®𝑣), 𝐻 (®𝑢)) > 𝑘𝜃𝑡ℎ

𝜋
]

= exp

©­­«
∫ 𝜋
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𝜋
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We thus have:

𝑃𝜃𝑡ℎ (𝑘) = exp
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□

19


	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Video Falsification
	2.2 Preventing and Detecting Fake Videos

	3 Preliminaries
	3.1 System Overview
	3.2 Threat Model
	3.3 Design Challenges

	4 Speech Video Signature Creation
	4.1 LSH-Based Digest Framework
	4.2 Semantically-Meaningful Video Digests
	4.3 MAC Generation and Key Management

	5 Optical Signature Embedding
	5.1 Concatenated Error Correcting Code
	5.2 Spatio-Temporal Light Modulation
	5.3 Adaptive Embedding

	6 Video Integrity Verification
	7 Prototype Implementation
	8 Protection Performance Evaluation
	8.1 Falsification with Deepfake Models
	8.2 Other Falsification Attacks

	9 Protection Robustness Evaluation
	9.1 Digest Robustness
	9.2 Signature Embedding Robustness

	10 Countermeasures
	10.1 Spoofing via Adversarial Examples
	10.2 Other Countermeasures

	11 Perceptibility Evaluation
	12 Discussion and Future Work
	References
	A.1 Adaptive Optical Embedding
	A.2 Optical Modulation Configuration
	A.3 Adversarial Deepfake Model Training
	A.4 Perceptibility Evaluation Details
	A.5 Proofs and Definitions: Locality-Sensitive Hashing


