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Abstract—While static analysis is useful in detecting early-
stage hardware security bugs, its efficacy is limited because
it requires information to form checks and is often unable to
explain the security impact of a detected vulnerability. Large
Language Models can be useful in filling these gaps by identifying
relevant assets, removing false violations flagged by static analysis
tools, and explaining the reported violations. LASHED combines
the two approaches (LLMs and Static Analysis) to overcome
each other’s limitations for hardware security bug detection.
We investigate our approach on four open-source SoCs for five
Common Weakness Enumerations (CWEs) and present strategies
for improvement with better prompt engineering. We find that
87.5% of instances flagged by our recommended scheme are
plausible CWEs. In-context learning and asking the model to
‘think again’ improves LASHED’s precision.

Index Terms—LLMs, Static Analysis, Security, Bug Detection,
CWE

I. INTRODUCTION

Security vulnerabilities in hardware are difficult to de-
tect [1]. It is critical to identify them early on in the system-
on-chip (SoC) design life-cycle because of the higher costs of
fixing issues downstream (pre-silicon) or even recalls (post-
silicon) [2]. An exhaustive search for these defects is not
possible because of the high complexity of modern processors
and SoCs. Therefore, there is a need for innovative solutions
that provide early-stage information on potential security
issues at the Register-Transfer Level (RTL).

Existing strategies for security verification include simula-
tion with test benches, formal assertions [3], [4], hardware
fuzzing [5], [6] and information flow tracking [7], [8]. Security
checks “as-you-go,” while implementation is ongoing, are
more challenging. Recent works have proposed static anal-
ysis [9], [10] and large language models (LLMs) [11]–[13]
for this purpose. Static analysis checks source code without
“executing” it, e.g., without simulating the design to perform
directed tests. The code is instead checked against a set of
coding patterns that can indicate undesirable behavior. Linters
[14], [15] and formal verification tools [16], [17] are the two
most commonly used static analysis [9], [18] methods for RTL.
Linting is the automated checking of source code for stylistic,
structural, design and programmatic checks [19], and can
include data-flow analysis and control-flow analysis, as well
as more abstract techniques such as pattern matching for bug-

specific heuristic patterns. Formal methods use mathematical
models to analyze and verify a design [20].

Development and use of LLMs [21] has provided a possible
means to detect bugs in code without the explicit need for
a fully mature testing framework. LLMs have been used for
RTL generation [22] and repair [23] with reasonable degrees
of success, but their ability to detect security bugs has yet to
be proven. In part, this is because LLMs do not verify their
outputs. Static analysis can address this shortcoming. Prior
work in the software space has explored the combination of
LLMs and static analysis; for example, IRIS [24] uses CodeQL
as the static analysis tool coupled with LLMs to detect the
code injection vulnerabilities in Java code. Chapman et al.
present an approach to interleave LLMs with the EESI static
analysis tool to detect the issue of error-specific inference [25].
LLIFT [26] uses the LLM and static analysis combination to
detect use before initialization bugs within the Linux kernel.

Taking inspiration from such works, we propose a strat-
egy which uses LLMs and Static Analysis together, i.e.,
LASHED. We use hardware Common Weakness Enumera-
tions (CWEs) [27], which provide examples of vulnerability
categories to aid the generalizability of our approach. We
use the LLM for three tasks: i) identifying security relevant
assets, ii) removing false positives from static analysis, and iii)
explaining the security issue posed by a reported violation.
To identify security assets, the LLM uses the RTL source
code and Hardware CWEs. The hardware static analysis tools
formulate checks that could indicate the presence of certain
CWEs. We use either linting or formal property verification
for static analysis, depending on the nature of the CWE.
The linting violations and failing assertions are returned to
the LLM to prune out those that do not pose any security
threat and provide explanations for the ones that do. Our
contributions are:

• We present the first framework that combines Static
Analysis and LLMs to detect security issues in RTL code.
The details of this tool are described in Section II.

• We validate LASHED on four open source SoCs, de-
scribed in Section III. Results are presented in Section IV.

• We investigate the impact of in-context learning and
prompting to insist that the LLM reason through its
assessments. The outcomes are analyzed in Section IV-A.
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II. LASHED

LASHED takes RTL source and CWE information as inputs
and outputs potential issues pertaining to the CWE. The CWEs
covered are detailed in Section III-B. The output contains the
bug code, its explanation, and its location. The framework for
our approach is shown in Fig. 1. It can be broken down into
three main steps, i.e., Assets Identification, Static Analysis,
and Contextualization. We illustrate these steps through two
motivating examples taken from the Hack@DAC 2021 buggy
OpenPiton SoC shown in Fig. 2 and Fig. 3.

The vulnerability in Fig. 2(a) shows an instance of CWE
1191 where only the least significant 32 bits of the secret
message are used to authenticate the JTAG access control mod-
ule. This makes the access control susceptible to brute-force
attacks. The vulnerability in Fig. 3(a) shows an instance of
CWE 1233 where security-sensitive registers are missing lock
bit protection in the Direct Memory Access (DMA) wrapper
module. An adversary can modify them from software.

A. Assets Identification (AssetID)

We use an LLM to identify assets relevant to the CWE that
LASHED is scanning for. We prompt the LLM with a system
prompt that primes it as a hardware security expert searching
for the CWE. This is followed by the description of the
CWE from the MITRE website. There are numerous ways to
structure the prompt and alter the included information which
we investigate (see Section III-C). For instance, for prompt
strategy v1 the system prompt is followed by an example
of the CWE in Verilog code derived from MITRE website,
including identifying relevant assets and explaining why this
example poses the CWE. After priming the LLM with the
system prompt, the LLM is given a user prompt that contains
the RTL source and instructions on what kinds of signals are to
be identified. The identified assets are sent for static analysis.
The components of the prompt are illustrated below:

sys tem_prompt = "You a r e a ha rdware s e c u r i t y e x p e r t . Your
t a s k i s t o a n a l y z e V e r i l o g code f o r p o t e n t i a l CWE−<x>
bugs . CWE−<x> i s < d e s c r i p t i o n o f CWE> . "

u s e r _ p r o m p t = " What a r e t h e < r e l e v a n t s i g n a l s >? < T y p i c a l
n a t u r e o f such s i g n a l s >" + <RTL s o u r c e code > .

i f v a r i a t i o n == ' v1 ' :
u s e r _ p r o m p t = "<example o f CWE i n RTL> + < e x p l a n a t i o n

o f s e c u r i t y i s s u e > + < a s s e t s i d e n t i f i e d i n t h i s
case >" + u s e r _ p r o m p t

Asset identification of the motivating examples is shown
in Fig. 2(b) and Fig. 3(b). The relevant access control
signals for CWE-1191 example {pass_data,data_d} are
correctly identified along with unrelated signals. For CWE-
1233, the relevant security sensitive signals {start_reg
... core_lock_reg} and their “expected” lock signals
{reglk_ctrl[*]} are identified. The reset conditions are also
identified for assertion formation in the next step.

B. Static Analysis

Depending on the CWE, we decide whether a linting-based
or assertion-based strategy is more appropriate. If the CWE

is typically present alongside some “structural” or “coding
style” imperfections, we use lint checks. This is the case
for CWEs 1191 and 1300. Conversely, if the CWE requires
verifying whether a signal behaves appropriately depending on
the value(s) of other signal(s) or if one signal flows to another,
we use assertions. This applies to CWEs 1231, 1233 and 1244.

1) Linter-based: We select relevant checks from the ∼1000
VC SpyGlass Lint [14] tags in the functional lint tag database
based on our understanding of the CWE. For some CWEs,
we develop custom lint checks using Verific [28], where, after
obtaining the Abstract Syntax Tree (AST) of any module, we
traverse it to check for some structural or stylistic element. If
the checks’ results include the assets identified previously, the
results are considered violations. These are sent to the next
step, i.e., contextualization.

For CWE-1191, improper access control for debug occurs
when a signal containing the user input (password) is not prop-
erly assigned a value. We check the code for the following:
[Width mismatch, Reverse Connected busses, Improper range
index, Concatenation in array assign, Concatenation using
unsized numbers, RHS has concatenation] – if the assignment
contains the previously identified access control signals, the
signal and assignment are reported as a violation. Fig. 2(c)
shows reported violations for the CWE-1191 example.

For CWE-1300, we check for design structural elements that
may cause vulnerability to side-channel attacks: [If without
else, Inferred Latches]. If the code has these, we check
whether the conditional statement contains any previously
identified assets. The presence of these in a conditional state-
ment without an else can result in information leaking.

2) Assertion-based: We develop a custom template for
System Verilog Assertions (SVAs) for selected CWEs and
populate the template with information from AssetID. The
formal tool verifies these SVAs for the RTL code, and falsified
assertions are sent to the next step, i.e., contextualization. We
use VC Formal Property Verification (FPV) [29] for this.

For CWE 1231, we check for a signal containing lock bits
that are modifiable when they should not be. From AssetID,
we obtain the lock signal and the conditions under which it
should be modified (the negation captures conditions when
it should not be modifiable). For each lock signal and the
corresponding conditions, we form the following template and
populate it with the appropriate information:
@( [ CLK_SENSE] [CLK ] )
[CONDITIONS_FOR_STABLE_LOCK ] | => $ s t a b l e ( [ LOCK_SIGNAL ] ) ;

For CWE 1233, we check for a security-sensitive signal that
is missing lock bit protection. From AssetID, we obtain the
security-sensitive register that should be protected, the lock
signal that should be protecting it, and the reset conditions
under which this protection mechanism is not applicable. For
each lock signal, we form and populate the following template:
@( [ CLK_SENSE] [CLK ] )
d i s a b l e i f f ( [ RESET_CONDITIONS ] ) [LOCK_SIGNAL] == ' 1 |= >

$ s t a b l e ( [ SECURITY_SENSITIVE_REGISTER ] ) ;

Fig. 3(c) captures an example of this assertion formation.
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Fig. 1. LASHED framework. 1) Assets Identification (AssetID): LLM identifies assets relevant to a CWE in the RTL. 2) Static Analysis: Depending on
CWE, a linting or assertion-based strategy is used. A linter or formal property verification tool checks for the lint tags identified or assertions formed. 3)
Contextualization: LLM reasons and prunes linting violations or falsified properties. LLM gives an explanation if there is a security issue.

1 i f ( pass_mode ) b e g i n
2 p a s s _ d a t a = { {60{8 ' h00 }} , d a t a _ d } ;
3 s t a t e _ d = PassChk ;
4 pass_mode = 1 ' b0 ;

(a) CWE 1191 in JTAG access control mechanism. Only the least
significant 32 bits of the secret message are used for authentication.

" a c c e s s _ c o n t r o l _ r e l a t e d _ s i g n a l s " : [ " p a s s _ d a t a " ,
" p a s s _ h a s h " , " exp_hash " , " hmac_ready " , " d a t a _ d "
. . . ] ,

(b) Assets identification using gpt-4o-mini, prompt variation v0.

" r e l e v a n t _ v i o l a t i o n s " : [ {
" l i n e _ n o " : 158 ,
" s t a t e m e n t " : " p a s s _ d a t a = {{60{8 ' b0 }} , d a t a _ d } ; " ,
" l h s e x p r " : " p a s s _ d a t a " ,
" s e c u r i t y _ s e n s i t i v e _ s i g n a l " : " p a s s _ d a t a " } ]

(c) Lint violation using VC SpyGlass Lint and Verific.

" i n s e c u r e " : t r u e ,
" e x p l a n a t i o n " : The a s s i g n m e n t t o ' p a s s _ d a t a ' d e f i n e s a 2

56− b i t wide d a t a s i g n a l ( w i th 60 z e r o s p repended t o
' da ta_d ' ) , . . . I f u n a u t h o r i z e d a c c e s s i s n o t
c o n t r o l l e d b e f o r e ' p a s s _ d a t a ' i s e v a l u a t e d o r used ,
an a t t a c k e r c o u l d send m a l i c i o u s d a t a t o t h e d e v i c e
and compromise i n t e n d e d s e c u r i t y o p e r a t i o n s , making
i t a p o t e n t i a l v i o l a t i o n o f p r o p e r a c c e s s c o n t r o l
i n l i n e wi th CWE 1191 .

(d) Contextualization using gpt-4o-mini variation v0.

Fig. 2. Motivating example for CWE 1191 to illustrate LASHED flow for
linter-based strategy.

For CWE 1244, we check for a privilege level signal that
is escalated under conditions it should not have been. From
AssetID, we obtain the privilege level signal, the correct
conditions under which it should be escalated, the reset
conditions of the module, the higher privilege level, and the
signal containing the previous privilege level. A negation of

1 i n p u t l o g i c [7 : 0 ] r e g l k _ c t r l _ i ; / / r e g i s t e r l o c k v a l u e s
2 . . .
3 e l s e i f ( en && we )
4 c a s e ( a d d r e s s [ 7 : 3 ] )
5 0 : s t a r t _ r e g <= wdata ;
6 . . .
7 8 : end_reg <= wdata ;

(a) CWE 1233 in Direct Memory Access wrapper. Security sensitive
registers are missing lock bit protection.

" r e l e v a n t − s i g n a l s " : {
" s e c u r i t y _ s e n s i t i v e _ s i g n a l s _ i n f o " : [

{ " l o c k _ s i g n a l " : " r e g l k _ c t r l _ i [ 0 ] " ,
" s e c u r i t y _ s e n s i t i v e _ s i g n a l " : " s t a r t _ r e g " } ,

. . .
{ " l o c k _ s i g n a l " : " r e g l k _ c t r l _ i [ 7 ] " ,

" s e c u r i t y _ s e n s i t i v e _ s i g n a l " : " c o r e _ l o c k _ r e g " } ,
" r e s e t _ c o n d i t i o n s " : " ~( r s t _ n i && ~ r s t _ 8 ) " , . . . }

(b) Assets identification using gpt-4o-mini, prompt variation v0.

@( posedge c l k _ i )
d i s a b l e i f f ( ~ ( r s t _ n i && ~ r s t _ 8 ) ) r e g l k _ c t r l _ i [ 7 ] == ' 1

|= > $ s t a b l e ( c o r e _ l o c k _ r e g ) ;

(c) Assertion formation for core_lock_reg signal in DMA wrapper using
VC Formal Property Verification. This assertion was falsified.

" i n s e c u r e " : t r u e ,
" e x p l a n a t i o n " : The s i g n a l ' c o r e _ l o c k _ r e g ' i s managed

b u t can be s e t t o z e r o i n a d v e r t e n t l y , t h e r e b y
a l l o w i n g m o d i f i c a t i o n o f t h e system ' s i m p o r t a n t
r e g i s t e r s . I t l a c k s t h e n e c e s s a r y s t a b i l i t y t o
p r e v e n t u n a u t h o r i z e d a c c e s s .

(d) Contextualization using gpt-4o-mini variation v0.

Fig. 3. Motivating example for CWE 1233 to illustrate LASHED flow for
assertion based strategy.

escalation conditions provides the conditions under which the
privilege signal should not be escalated. For this privilege
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signal, we form and populate the following assertion template:
@( [ CLK_SENSE] [CLK ] )
d i s a b l e i f f ( [ RESET_CONDITIONS ] )
~[CONDITIONS_FOR_PRIVILEGE_ESCALATION ] |= >

( [ PRIVILEGE_SIGNAL ] != [ HIGH_PRIVILEGE ] | |
[ PRIVILEGE_SIGNAL ] == [ PREVIOUS_PRIVILEGE ] ) ;

C. Contextualization

First, the LLM reasons whether the reported linting vio-
lations or falsified properties pose a security issue pertinent
to the CWE under consideration. If it reasons that there is
a security issue, the LLM is prompted to explain why. The
explanation and static analysis violation are the final outputs
of LASHED provided to the RTL designer. The components
of the prompt to the LLM are illustrated below:
sys tem_prompt = <same as A s s e t s I d e n t i f i c a i t o n >
u s e r _ p r o m p t = " C o n s i d e r t h e f o l l o w i n g V e r i l o g code : <RTL

s o u r c e code > For each of t h e < s t a t i c a n a l y s i s o u t p u t s > ,
d e t e r m i n e whe the r t h e < o u t p u t > p o s e s a s e c u r i t y i s s u e

p e r t a i n i n g t o CWE−<x> and p r o v i d e an e x p l a n a t i o n i f
t h a t i s t h e c a s e . I f t h e v i o l a t i o n does n o t pose a
s e c u r i t y i s s u e , no e x p l a n a t i o n i s needed . Here i s t h e
o u t p u t < o u t p u t from S t a t i c A n a l y s i s > . "

For experiments where we adopt prompt strategy v2 (details
in Section III-C), we use the response of the LLM from the
first contextualization request and re-prompt the LLM to rea-
son through each of its suggested security issues, categorizing
the violations as insecure only if very confident. Fig. 2(d)
and Fig. 3(d) show examples of contextualization.

III. EXPERIMENTAL DETAILS

A. Dataset

Our dataset consists of 4 open-source RISC-V based SoCs:
Hack@DAC 2021’s OpenPiton buggy SoC (H@DAC-21) [30],
OpenTitan [31], Hummingbirdv2 E203 (E203) [32] and Veer-
Wolf [33]. Their details are mentioned in Table I.

TABLE I
DATASET OF OPEN-SOURCE SOCS SCANNED FOR RELEVANT CWES.

SoC Description #Mods #LoCs

H@DAC-21 [30] OpenPiton SoC (CVA6 core) for
Hack@DAC 2021 competition 63 15k

OpenTitan [31] Silicon Root of Trust project (Ibex core) 359 171k

E203 [32] Hummingbirdv2 E203 core and SoC 76 27k

VeerWolf [33] FuseSoC-based platform for VeeR cores 34 11k

B. Hardware Common Weakness Enumerations (CWEs)

Security-related issues that arise because of hardware
bugs are taxonomized as Common Weakness Enumerations
(CWEs). MITRE [27] works with academia and industry to
develop a list of CWEs that represent categories of vulnerabil-
ities. A weakness is an element in a digital product’s software,
firmware, hardware, or service that can be exploited for ma-
licious purposes. We develop LASHED for 5 CWEs selected
from the list of Most Important Hardware CWEs published
by MITRE. We selected the ones that had coded examples on

TABLE II
CWES COVERED BY LASHED. SELECTED FROM MITRE’S LIST OF

MOST IMPORTANT HARDWARE CWES.

CWE Description

1191 On-Chip Debug and Test Interface With Improper Access Control

1231 Improper Prevention of Lock Bit Modification

1233 Security-Sensitive Hardware Controls with Missing Lock Protection

1244 Internal Asset Exposed to Unsafe Debug Access Level or State

1300 Improper Protection of Physical Side Channels

MITRE’s website and were present in the H@DAC-21 SoC to
have some ground-truth for validation of initial prototyping.
The 5 CWEs covered are described in Table II.

C. Prompt Variations

The performance of LLMs is dependent on the quality of
prompts and examples of the correct solutions to the task at
hand. To study the extent to which in-context learning [34] and
insistence on reasoning helps in LASHED’s performance, we
guide the LLM through 4 prompt variations. The 4 variations
are formed using combinations of 2 improvements. The first
improvement helps in the Assets Identification and Contex-
tualization phases by providing a comprehensive example of
a hardware security bug that captures the CWE. The second
improvement helps in the Contextualization phase by asking
the LLM to think again about its initial assessments of whether
the reported violation poses a security risk.

1) Variation v0 (baseline): is the zero-shot implementation
for LASHED. It contains no in-context learning or request
to re-evaluate outputs and forms the baseline to compare
improvements in performance with variations v1, v2 and v3.

2) Variation v1: uses the first improvement only. The exam-
ples and descriptions of bugs for each CWE are taken from the
MITRE’s website. Each example appears in the prompt after
the LLM is given its role and information about the CWE it
is going to look for. It consists of the bug in RTL form, the
explanation of the security issues because of the bug and the
relevant security assets. Here is an example for the prompt
variation v1 appended to the baseline v0 for CWE 1231 (full
example in Appendix Section B):

Here is an example of CWE-1231 with code from the register
locks module:
always @(posedge clk_i) begin

if( (rst_ni && jtag_unlock && rst_9)) begin
for (j=0; j < 6; j=j+1) begin

reglk_mem[j] <= ’h0;
<Explanation of the security issue>

In this example the lock signal is reglk_mem and the cor-
rect conditions for changing lock signals are (rst_ni &&
jtag_unlock).

3) Variation v2: uses the second improvement only. The
model is “given time to think” so that it can double check
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its initial assessment. It is asked to use inner monologue to
go over its reasoning process. It looks the same for all CWEs
and appears in the user prompt for Contextualization. First,
the LLM is asked to go over the violations and assess which
of them are actually insecure and which are not. This output
is then sent back to the LLM to simulate a chat. An example
of the instruction to ‘reason’ for CWE-1231 is shown below:

Go over the previously provided response and reason about
the provided explanation for each falsified property. Only cat-
egorize the falsified property as insecure if you are confident
in your assessment. Here is the ‘falsified_properties’ object:

<string of falsified assertions information>

4) Variation v3: uses both, first and second improvements.

D. Large Language Models (LLMs)
We use 2 OpenAI LLMs, gpt-4o-mini-2024-07-18 and gpt-

4o-2024-08-06 [35], to conduct out experiments and evaluate
if using a more powerful LLM makes a difference for our
setup. gpt-4o-mini is OpenAI’s most advanced model in the
small models category. gpt-4o is OpenAI’s most advanced
GPT model and is slower and more advanced than gpt-4o.
Both these models have the ability to give structured outputs
consistent with the object structure provided.

IV. RESULTS

We evaluated LASHED on the 4 SoCs for 5 CWEs, 4
prompt variations and 2 LLMs. The results are summarized
in Table III. In total, 545 instances are flagged across the
160 experiments out of which 51% are potential CWEs.
2026 assertions were formed and 12,554 assets were checked
in the process. Since we do not know the real number of
bugs (we can only confirm or deny a specific bug’s presence
after flagging), it is not possible to calculate a proper Recall
or Accuracy score. Therefore, we rely on Precision i.e. (#
true positives / # predicted positive (flagged)) as the metric
to evaluate performance. For our recommended combination
of using gpt-4o with v3, 35 of the 40 flagged instances
are plausible CWEs, providing a precision of 87.5%. On
average, for a given SoC being searched for a particular
CWE, choosing the appropriate prompt variation, there are 3.4
violations reported. We evaluated the violations manually, with
our author-confirmed violations providing the True Positives
count in Table III.

There is significant variation in LASHED’s success based
on the CWE. It performs the best on CWEs 1191, 1244 and
1300 with precisions of 1, 0.8 and 0.91 and worse on CWEs
1231 and 1233 with precisions of 0.28 and 0.45. CWE 1231
was harder to identify because of poor asset identification. It
was difficult for the LLM to identify the lock bit signal that
should remain stable and instead kept identifying control and
status registers. CWE 1233 was harder to accurately identify
because of the range of possibilities of how a security sensitive
signal may be protected in RTL. It may be protected by an if
condition or by being ‘anded’ (&) with another signal or by
being assigned a signal which may have some protection.

TABLE III
RESULTS SUMMARY. PRECISION = TRUE POSITIVES (TPS) / FLAGGED,

FALSE DISCOVERY RATE (FDR) = FALSE POSITIVES / FLAGGED, ASSETS
= NUMBER OF ASSETS IDENTIFIED , ASSERTIONS = NUMBER OF

ASSERTIONS FORMED FROM CUSTOM TEMPLATES FOR EACH CWE. THE
BEST RESULTS ARE EMBOLDENED.

CWE Variation Flagged TPs Precision FDR Assets Assertions

1191

v0 12 12 1.00 0.00 511 -
v1 11 11 1.00 0.00 580 -
v2 13 13 1.00 0.00 511 -
v3 9 9 1.00 0.00 580 -

45 45 1.00 0.00 2182 -

1231

v0 15 3 0.20 0.80 33 33
v1 8 6 0.75 0.25 11 11
v2 24 2 0.08 0.92 33 33
v3 6 4 0.67 0.33 11 11

53 15 0.28 0.72 88 88

1233

v0 143 55 0.38 0.62 669 587
v1 114 48 0.42 0.58 406 355
v2 68 35 0.51 0.49 669 587
v3 89 50 0.56 0.44 406 355

414 188 0.45 0.55 2150 1884

1244

v0 5 3 0.60 0.40 24 12
v1 3 3 1.00 0.00 22 15
v2 1 1 1.00 0.00 24 12
v3 1 1 1.00 0.00 22 15

10 8 0.80 0.20 92 54

1300

v0 8 7 0.88 0.13 2053 -
v1 9 8 0.89 0.11 1968 -
v2 3 3 1.00 0.00 2053 -
v3 3 3 1.00 0.00 1968 -

23 21 0.91 0.09 8042 -

545 277 0.508 0.49 12554 2026

A. Analysis

1) Impact of Prompt Variations: Prompt variations were
successful in improving performance. As shown in Fig. 4-
(Variation), variation v1 which introduces an example of CWE
to guide the LLM, results in finding less false positives. The
number of true positives decreases slightly from 80 to 76
while the precision improves from 0.44 to 0.52 in comparison
to the baseline v0. Introducing v2, which asks the LLM to
reason about its initial assessment during contextualization,
shows improvement as well but to a lesser extent. The number
of true positives decreases from 80 to 54 but the precision
increases from 0.44 to 0.50 in comparison to the baseline v0.
v2 significantly reduced false positives from 103 to 55. The
best performing variation is v3 with highest precision of 0.62,
a 42% improvement over the baseline. As v3 is a combination
of v1 and v2, it seems that v1 can improve the ‘search’ of
LASHED by identifying assets that are more relevant to the
CWE and then v2 prunes out the remaining false positives.
This can be seen in Fig. 5-(Variation) with an increase in
removal of violations in contextualization for v3.

2) Which SoCs were better analyzed?: LASHED’s perfor-
mance significantly varies with the SoC as illustrated in Fig. 4-
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(SoC). It performed the best on e203 with a precision of 0.61
and the worst on Veerwolf with a precision of 0.10. The main
culprit for poor performance on Veerwolf is the large number
of false positives for CWE-1231. LASHED kept misidentify-
ing a lot of the control and status registers as lock registers.
Hack@DAC-21 performs the second best with a precision of
0.55, which is expected because the guiding examples we use
in v1 are inspired from the Hack@DAC-21 SoC. OpenTitan
has a precision close to that of Hack@DAC-21, 0.50, which
validates our approach – OpenTitan is significantly larger than
Hack@DAC-21 in size and complexity.

Another area LASHED had performance issues in with
Veerwolf and OpenTitan came with the forming of meaningful
assertions. The ratio of assertion formation to number of assets
identified for Hack@DAC-21 is significantly larger, as shown
in Fig. 5-(SoC). This is perhaps due to the guiding examples
being based on Hack@DAC-21.

3) Which LLM performed better?: LASHED performed
better with gpt-4o (precision 0.58) compared to gpt-40-mini
(precision 0.47). gpt-4o flags less violations 204 vs. 341, less
true positives 118 vs. 159, but also, less false positives 86
vs. 182, than gpt-4o-mini. This difference is highlighted when
considering v3 only: gpt-4o detects more true positives 35 vs.
32 and has a higher precision 0.88 vs. 0.47.

V. DISCUSSION

Our work shows that a combination of LLMs and static
analysis can provide the ‘best of both worlds’, with each tool
helping to overcome the limitations of the other. Detecting
vulnerabilities with only LLMs leads to a large number of false
positives and limited confidence on the outputs because there

is no verification. Conversely, detecting vulnerabilities with
formal tools requires a lot of expertise and precise information
which can be hard to obtain. We demonstrate that the limited
confidence on the outputs of LLMs can be improved by
verification through static analysis tools and the requirement
of specific information can be provided by the LLM to some
extent. The precision of 0.51 for LASHED (for all experiments
combined) can be interpreted as a 51% confidence in the
identification of a security issue.

Linting checks and assertions are very different in their
nature. Lint rules are harder to map to security issues and
assertions are harder to form correctly. Which of these work
better in our flow is still an open question. The lint checks
that appeared often in flagged instances were related to
improper range indexes, concatenations and ‘if’ statements
missing ‘else’ statements. While the confidence of reported
violations is high, there are more false positives than would
be ideal. The main culprit is liberal asset identification by
the LLM. Providing the CWE information is not enough to
constrain the number of assets the LLM identifies. Providing
information regarding the operation of the specific modules
and the security objectives could improve results. Another
reason for false positives is the difficulty in forming correct
assertions. Incorrect conditions identified by the LLM lead to
failing assertions which flag violations erroneously. Another
limitation lies in the manual evaluation of flagged violations.
We assessed all violations through visual inspection which has
a possibility of being incorrect. Each violation, however, is
accompanied by a failing assertion or violation which gives
credence to the classification.
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VI. RELATED PRIOR WORKS

Few works have explored using both LLMs and Static
Analysis components to identify RTL security bugs. So-
CureLLM [12] is an LLM-driven approach for large-scale
System-on-Chip security verification and policy generation.
While they use LLMs for security policy generation and secu-
rity policy violation, they do not use static tools for security
violation in their solution. Flag-RTL [11] uses LLMs for bug
detection in RTL but uses static analysis differently. A front
end parser localizes the LLM’s search to particular parts of the
code, but no static analysis tool is used for verification. Self-
HWDebug [13] automates LLM self-instructing for hardware
security verification. This work uses known bugs and their
CWEs to generate instructions for debugging and repair and
there is no use of static analysis. While these works are related
to LASHED, there are significant differences which do not
allow for a direct comparison. None of the works use LLMs
and Static Analysis together in equal levels of significance and
none explore their tools on unknown bugs.

VII. CONCLUSION

This work combines LLMs and Static Analysis for hardware
security bug detection. LASHED, by using LLMs equipped
with in-context learning and requests for ‘thinking again’,
has reasonable success in finding unknown bugs with an
empirical precision of 0.88. On average, LASHED reported
3.4 violations per CWE for a given SoC, out of which 1.7 were
evaluated to be plausible security issues. This is demonstrated
over 5 of the most important Hardware CWEs, with the best
performance on CWE 1191 (100% precision) and worst on
CWE 1231 (28% precision). We catered the static analysis
approach to the nature of the CWEs to show 2 techniques
that do similarly well i.e., linting and assertions. Future work
could investigate the application of reasoning models such as
OpenAI o1 not available during our experimentation, as well
as examine support for more CWEs.
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APPENDIX

A. Scalability and Cost

On average, each experiment took 163 seconds to run. This
time includes the complete flow of running the LLM and
static analysis tools from the identification of relevant RTL
to the outputs of location and explanation of bugs. In total,
160 experiments were run in 7.26 hours. There is a relation
between the lines of code and the time taken. The dependency
is linear in the log-log scale and produces follows the relation
time ∝ loc0.53 approximately. This shows that the time taken
grows proportional to the square root of the amount of code
being analyzed, indicating a scalable approach. On average,
each experiment cost $0.055 while using gpt-4o-mini and
$0.379 while using gpt-4o. In total all experiments cost $35
to run, catering to 40.2M input tokens.

B. Propmpt variation v1

The examples and descriptions of bugs for each CWE are
taken from the MITRE’s website. Each example appears in

the prompt after the LLM is given its role and information
about the CWE it is going to look for. It consists of the bug
in RTL form, the explanation of the security issues because of
the bug and the relevant security assets. Here is an example
for the prompt variation v1 appended to the baseline v0 for
CWE 1231.

Here is an example of CWE-1231 with code from the register
locks module:
"""
always @(posedge clk_i) begin

if( (rst_ni && jtag_unlock && rst_9)) begin
for (j=0; j < 6; j=j+1) begin

reglk_mem[j] <= ’h0;
"""
Register locks help prevent SoC peripherals’ registers from
malicious use of resources. The registers that can potentially
leak secret data are locked by register locks. In the vulnerable
code, the reglk_mem is used for locking information. If
one of its bits toggle to 1, the corresponding peripheral’s
registers will be locked. A critical issue arises within the
reset controller module. Specifically, the reset controller can
inadvertently transmit a peripheral reset signal to the register
lock within the user privilege domain.This unintentional
action can result in the reset of the register locks, potentially
exposing private data from all other peripherals, rendering
them accessible and readable. In this example the lock signal
is reglk_mem and the correct conditions for changing lock
signals are (rst_ni && jtag_unlock).
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