
VDDP: Verifiable Distributed Differential Privacy
under the Client-Server-Verifier Setup

Haochen Sun
University of Waterloo

Xi He
University of Waterloo

Abstract
Despite differential privacy (DP) often being considered

the de facto standard for data privacy, its realization is vul-
nerable to unfaithful execution of its mechanisms by servers,
especially in distributed settings. Specifically, servers may
sample noise from incorrect distributions or generate corre-
lated noise while appearing to follow established protocols.
This work analyzes these malicious behaviors in a general dif-
ferential privacy framework within a distributed client-server-
verifier setup. To address these adversarial problems, we pro-
pose a novel definition called Verifiable Distributed Differen-
tial Privacy (VDDP) by incorporating additional verification
mechanisms. We also explore the relationship between zero-
knowledge proofs (ZKP) and DP, demonstrating that while
ZKPs are sufficient for achieving DP under verifiability re-
quirements, they are not necessary. Furthermore, we develop
two novel and efficient mechanisms that satisfy VDDP: (1) the
Verifiable Distributed Discrete Laplacian Mechanism (VD-
DLM), which offers up to a 4×105x improvement in proof
generation efficiency with only 0.1-0.2x error compared to
the previous state-of-the-art verifiable differentially private
mechanism; (2) an improved solution to Verifiable Random-
ized Response (VRR) under local DP, a special case of VDDP,
achieving up a reduction of up to 5000x in communication
costs and the verifier’s overhead.

1 Introduction

In today’s data-driven world, vast amounts of information
are collected and analyzed to drive decision-making across
various sectors, including healthcare, finance, and marketing.
However, privacy and efficiency concerns often make it in-
feasible to collect and analyze such vast amounts of data in a
centralized manner. Therefore, the concept of distributed data
analysis [19, 30, 39] has emerged as a viable solution. In this
approach, data is shared secretly and processed across multi-
ple nodes, which can enhance privacy by reducing sensitive
information exposure and improve efficiency by leveraging
the computational resources of several nodes.

With differential privacy (DP) [37, 38] established as the
de facto standard for data privacy, the distributed data anal-
ysis mechanisms have also benefited from an additional
layer of privacy guarantee provided by DP, thus giving
rise to distributed differential privacy [28, 35, 69, 92]. This
approach includes various implementations such as multi-
party computations (MPCs) of differential privacy schemes
[17,18,34,44,51,53] and differentially private federated learn-
ing (FL) schemes [43, 66, 78, 93]. These methods ensure that
individual data points remain private while still allowing for
accurate and efficient data analysis across distributed systems.

While enjoying the privacy guarantee provided by DP, most
distributed DP mechanisms assume that the servers perform-
ing the randomized computations involved in the protocols
are semi-honest. That is, all servers strictly adhere to the pre-
scribed protocol and only passively attempt to learn additional
information about the database. However, malicious servers
can deviate from the DP mechanism during execution, poten-
tially in a collusive manner, which can further compromise the
privacy guarantees. This type of deviation is elusive, since at-
tackers can attribute any anomalous results to this randomness.
Under the assumption that a certain portion of servers are hon-
est, malicious-secure MPC protocols have been designed to
resist such attacks [4, 24, 36, 91]. However, to convince an
external party (e.g., a data analyst) receiving the result of its
authenticity, the assumption has to be lifted, and the honesty
of the servers still needs to be verified. This type of verifica-
tion is particularly difficult because the privacy requirements
forbid a thorough examination of the execution.

Several previous studies have explored the verifiable ex-
ecution of DP mechanisms, including the randomized re-
sponse [61] and continuous (floating point) Gaussian mecha-
nism [84]. Moreover, the verifiable distributed binomial mech-
anism (VDBM) [14] among multiple clients and servers has
also been developed. These studies utilize zero-knowledge
proofs (ZKP) [11, 42, 49, 50, 85], from which the verifiability
and privacy protections are inherited. However, there remains
a need for verifiable DP mechanisms with lower overhead,
thereby enhancing scalability and practicality, while achiev-

1

ar
X

iv
:2

50
4.

21
75

2v
1

 [
cs

.C
R

]
 3

0
A

pr
 2

02
5

ing better utility and privacy trade-offs. For example, the total
execution time of the binomial mechanism exceeds 30 min-
utes to achieve

(
10−3,10−10

)
-DP on a single-dimensional

input, while it is unclear whether the application of discrete
cryptographic primitives may exacerbate the numerical issues
of the continuous Gaussian mechanisms [54, 71].

Furthermore, there lacks a formal framework for verifiable
differential privacy, especially under the distributed setting
with multiple clients and servers. Directly transplanting the
notions of ZKPs, which typically operate over deterministic
arithmetic circuits, fails to capture the correctness over the DP
mechanisms with inherent randomness. The ZKP protocols,
typically between a single prover and a single verifier, do not
capture the interactions among multiple clients holding the
data and servers executing the computations. For example,
multiple servers may correlate their randomness to bias the
output distribution, while their marginal distributions remain
correct. Though pioneering infrastructural cryptographic de-
velopments have extended ZKPs to the distributed setup (e.g.,
MPCs) [7,59,76], the notion of distributed DP with respect to
each client’s local database with the additional requirement
of verifiability remains unclear.

To address these challenges, we present Verifiable Dis-
tributed Differential Privacy (VDDP). Our contributions
can be summarized as follows:
• We rigorously define verifiable differential privacy under

the distributed client-server-verifier setup, capturing the po-
tential for collusive deviations from the protocol by clients
and servers, as well as all privacy leakages from one client
to colluding clients, servers, and the verifier. (Section 3)

• We explore the relationship between ZKP and DP. While
ZKPs are provably sufficient for achieving DP, we construct
a concrete counterexample showing that they are not neces-
sary for achieving verifiable DP. (Section 3.4.2)

• We develop the Verifiable Distributed Discrete Laplacian
Mechanism (VDDLM). Compared with VDBM, VDDLM is
up to 4×105x faster in proof generation with only 0.1-0.2x
error under the same privacy costs. (Section 4)

• We propose an improved solution to Verifiable Randomized
Response (VRR) under local DP, with asymptotically and
empirically improved overhead, achieving up to a 5000x
improvement in communication cost and verifier’s overhead
as a special case of VDDP. (Section 5)

2 Preliminaries

In this study, we assume that all parties involved, including
clients, servers, verifiers, as well as generic adversaries, are
probabilistic polynomial time (PPT). We also assume that
the number of clients and servers and the size of each lo-
cal database are polynomial in the security parameter λ. We
use negl(λ) to denote the set of functions {µ(λ)} such that
limλ→+∞ p(λ)µ(λ) = 0 for any polynomial p. We use F to
represent a prime order finite field and G to represent a mul-

tiplicative group isomorphic to the addition in F, where the
Diffie-Hellman assumption holds and g,h are two generators
of G. A list of integer values from 0 to n−1 is denoted by [n].
We denote vectors with an arrow on top, such as

−→
Ser for the set

of all servers and
−→
Cli for the set of clients. We summarize the

rest of the notations used in this study in Table 6 of Appendix
A and present the necessary notions and primitives next.

2.1 Differential Privacy (DP)
We first present the standard definition that focuses on the
scenario of central DP, where a server collects the database
from multiple clients and executes the DP mechanism, and
transmits its output to a data analyst.

Definition 2.1 (Differential Privacy [38]). A mechanism M :
D → Y , where D is the space of possible input databases
and Y is the space of possible outputs, is (ε,δ)-differentially
private if for any pair of neighbouring (different in one record)
databases D and D′ and any measurable subset S⊆ Y ,

Pr [M (D) ∈ S]≤ eε Pr
[
M
(
D′
)
∈ S
]
+δ. (1)

M achieves ε-pure differential privacy when δ = 0.

In local DP [37, 41] (see Appendix A.1 for the definition),
each client runs a DP perturbation on their own record before
directly submitting it to the data analyst.

Due to the application of cryptographic primitives in this
study, we consider computational differential privacy (CDP).

Definition 2.2 (Computational Differential Privacy [8, 72]).
A mechanism M : D→ Y , where D is the space of possible
input databases and Y is the space of possible outputs, is
(ε,δ)-differentially private if for each PPT adversary A , there
exists a function µ(λ) ∈ negl(λ) such that for any pair of
neighbouring databases D and D′,

Pr [1← A (M (D))]≤ eε Pr
[
1← A

(
M
(
D′
))]

+δ+µ(λ).

Note that the original definition of CDP [72] considers the
case where ε = ε(λ) is a function of the security parameter λ,
and δ = 0, which aligns with pure DP. However, later works
have extended the definition to δ being a non-negligible func-
tion δ(λ) /∈ negl(λ) [9, 14, 40, 70]. In this study, it suffices to
consider the special case with constant (ε,δ).
Discrete Laplacian Mechanism. Due to the numerical issues
of continuous DP mechanisms (e.g., Laplacian mechanism
and Gaussian mechanism) [54, 71], their discrete versions
have been developed to prevent unintentional privacy leak-
age from floating-point arithmetic. Hence, we focus on the
discrete DP mechanisms in our study due to the application
of cryptographic primitives. The discrete Laplacian mecha-
nism [6, 48] involves perturbing the result with additive dis-
crete Laplacian noise LapZ(t), where for any r ∈ Z,

Pr [r← LapZ(t)] =
e

1
t −1

e
1
t +1

· exp
(
−|r|

t

)
. (2)

2

For any query q : D → Z with sensitivity ∆ (i.e.,
|q(D)−q(D′)| ≤ ∆ for any pair of neighbouring databases
D and D′), perturbing the output q(D) by the additive noise of
LapZ

(
∆

ε

)
achieves (ε,0)-DP. For a multi-dimensional query,

adding i.i.d. discrete Laplacian samples to each dimension of
the output achieves the same DP guarantee when L1 distance
in the output spaces are used to define the sensitivity [38].
Randomized Response (RR). K-ary randomized response
mechanism [56, 58, 86–89] is an important local DP mecha-
nism, where each client randomizes its input x∈ [K] to k ∈ [K]
with the following probability

Pr [M (x) = k] = p(k−x) mod K , (3)

where ∑k∈[K] pk = 1. This mechanism achieves ε-pure DP
where ε = log p0

minK−1
k=1 pk

. It is common to set p0 > p1 = p2 =

· · ·= pK−1 for achieving DP and optimal utility.

2.2 Cryptographic Primitives
To facilitate the applications of the cryptographic primitives,
all variables and their arithmetic relations are mapped to a fi-
nite field F. Specifically, a d-dimensional v∈Fd is encoded as
a degree-(d−1) polynomial F through the number-theoretic
transform (NTT), where for a multiplicative subgroup Ω of
F with |Ω| = d and generator ω, F(ωi) = vi for i ∈ [d]. We
utilize the following cryptographic primitives over F:
Pseudo-random Number Generator (PRNG). To verify
large amounts of random values under high dimensionality,
we use pseudo-random number generators (PRNGs) to facili-
tate the process and reduce communication overhead between
the prover and verifier. For efficiency, we use the Legendre
Pseudo-random Function (LPRF) [12,13,32,68] with parallel
PRNG construction [81] to generate fair coins, as applied in
previous MPC and ZKP schemes for machine learning and
data management [25, 52]. Given random seed s←$ F and
dimensionality d,

LPRF(s;d) := (Ls (0) ,Ls (1) , . . . ,Ls (d−1)) (4)

where Ls(k) is 1 if there exists x such that x2 = k+ s, and 0
otherwise. The correctness of Ls(k) can be verified by pre-
computing a non-perfect-square t of F, and then computing

x :=
{ √

t(k+ s) if b = 0√
k+ s if b = 1

so it suffices to verify the cor-

rectness of the square relation and that b is either 0 or 1, i.e.,

x2 = ((1−b)t +b)(k+ s)∧b(1−b) = 0. (5)

Zero-knowledge Proofs (ZKP). A zero-knowledge proof
(ZKP) [11, 42, 49, 50, 85] is a potentially interactive protocol

Π := (P(w,x,y)↔ V (x,y)) (6)

where a possibly malicious prover P demonstrates to a semi-
honest verifier V (both parties are PPT) that a statement in the

form of y =C(w||x) is true, where C is a deterministic arith-
metic circuit, the output y and part of the input x are known
to both parties, while the other part of the input w is known
only to the prover. Note that Equation (6) represents the exact
protocol that an honest prover adheres to. Meanwhile, for a
generic and possibly malicious prover P, we represent the
execution of Π as P↔ V(x,y), V(P,x,y), or Π(P,x,y). For a
valid ZKP scheme with security parameter λ ∈ N, it satisfies
the following properties for any x,y:
• (Completeness) For any w such that y =C(w||x), V outputs

1 (i.e., acceptance) at the end of the execution of Π.
• (Soundness) If there does not exist w such that y =C(w||x),

for any PPT prover P, Pr [V (P,x,y) = 1]≤ negl(λ).
• (Zero-knowledge) There exists a PPT simulator Sim such

that for any w such that y =C(w||x), Sim(x,y) is computa-
tionally indistinguishable from the view of V in Π.
However, in our context, merely preventing the non-

existence of w is insufficient, as it does not stop the prover
from biasing the output distribution. Therefore, we require
knowledge soundness:
• (Knowledge Soundness) There exists a PPT extractor Ext

with rewinding access to the provers that can extract a valid
w from accepted provers with negligible soundness error,
specifically,

Pr
[

y =C(w||x) :
w← Ext(P,x,y)

]
≥ Pr [V(P,x,y) = 1]−negl(λ).

In this study, we utilize Pedersen commitment [77]
for scalars and KZG commitment scheme [60] for multi-
dimensional entities encoded as polynomials. These com-
mitment schemes operate over F and G, and achieves com-
putational binding and hiding. Coupled with the interactive
oracle proofs (IOPs) [5, 16, 26, 45, 65] that maintain com-
pleteness, soundness, and zero-knowledge, we construct the
proofs for the arithmetic circuits C. The circuit C captures the
correct execution of LPRF as in Equation (5), as well as the
transformation from the uniformly random bits to the final
output with desired distributions.
Secret Sharing. A secret sharing scheme [15,83] is a method
by which a secret x is divided into n shares

(JxKi)i∈[n]←$ SecretShare(x) (7)

such that the secret can be reconstructed only when a suffi-
cient number of shares are combined. Specifically, a threshold
t is set, and any t or more shares can be used to recover the
secret via RecSec(·), while fewer than t shares reveal no in-
formation about the secret. In this study, we utilize additive
secret sharing (where t = n) to instantiate the new protocols.

3 Privacy Definition

In this section, we describe the problem setup as a distributed
mechanism among the clients, servers, and a data analyst (ver-
ifier), and identify the challenges for making the mechanism

3

verifiable to the data analyst. Then, we describe our solution
framework to tackle the challenges with formal security and
privacy guarantees.

3.1 Problem Setup

Client-server-verifier Setup. The setup considered in this
study involves nCli≥ 1 potentially malicious clients, nSer ≥ 1
potentially malicious servers, and a semi-honest data an-
alyst (who also acts as a verifier). We represent them as−→
Cli = (Cli j) j∈[nCli],

−→
Ser = (Seri)i∈[nSer], and V respectively.

Each Cli j possesses a local database D j with the same schema,
and makes secret-shares of D j to a subset of the servers in-
dexed by I j. Correspondingly, each server Seri aggregates the
secret shares from the clients indexed by Ji :=

{
j : i ∈ I j

}
, the

set of clients who secret-share their data to Seri, executes the
mechanism, and submits the result to V. V verifies the validity
of the results received, which reduces to 1) the validity of
the D js possessed by the clients and 2) the correctness of the
computations performed by the servers.

Note that central DP and local DP can also be treated as
special cases of the client-server-verifier setup: for central DP,
nSer = 1 and I j = {0} for each j; for local DP, nSer = nCli and
I j = { j} for each j. The secret sharing schemes are trivial
in both cases. Meanwhile, for generic secret-sharing based
distributed DP mechanisms where each client secret-shares
to all servers [17, 18, 51, 53], i.e., I j = [nSer] for each j and
Ji = [nCli] for each i. Therefore, to unify these three common
cases, we assume that for any pair of clients Cli j and Cli j′ ,
either I j = I j′ or I j ∩ I j′ = /0. By elementary combinatorics,
it also holds that for any pair of servers Seri and Seri′ , either
Ji = Ji′ or Ji∩Ji′ = /0. Therefore, for any set of servers I, where
all have received secret shares from the same set of clients,
we use JI to denote their shared set of clients.

We first temporarily assume that all clients and servers are
semi-honest except that they may withdraw from the protocol
prematurely. Under this temporary assumption, the verifiabil-
ity requirement is not necessary. We then formalize the other
components of such a distributed protocol:
•
(
JD jKi

)
i∈I j
←$ SecretShare(D j): Each Cli j makes secret

shares and sends them to the servers;
• JDKi←AggrShare

(
JD jKi : j ∈ J∗∩ Ji

)
: Only a subset J∗⊆

[nCli] of clients remain in the protocol, and each server ag-
gregates the secret shares from them.

• JyKi←$ F (JDKi): Each Seri performs a prescribed secret-
shared and randomized computation (the server function)
F and computes the output JyKi.

• (I,J) ← IdUsable(I∗,J∗) ,y ← Aggr (JyKi : i ∈ I): Due to
the withdrawal of the clients and servers, the final output can
only be computed with respect to the input databases from
a subset of clients J ⊆ J∗, using the secret-shared outputs
from only a subset of clients I ⊆ I∗. V identifies I and
J with IdUsable and aggregates the secret-shared outputs

ℭ

Cli0 Cli1 Cli2

Ser0 Ser1

𝐼0 = 0,1,2
𝐻0 = {0,1}

Ser2 Ser3

𝐷0, 𝑟0

com0

Π data V

st

Figure 1: Problem setup of DDP and VDDP (nCli = 3,nSer =
4) when targeting Cli0’s data. All parties except Cli0 and H0
form a collusion C and collectively keep an internal state st.
All transmissions leaving the green region (solid lines) are
honestly computed but may cause information leakage and
enable C to update its internal state. The additional leakages
under VDDP (commitments and proofs) are highlighted in
blue. The transmissions from C to the honest parties (dashed
lines) may be forged. The transmissions within C (dotted
lines) may or may not occur due to the internal arrangements
of C and are invisible to the honest parties.

using Aggr. We require that, for (I,J)← IdUsable(I∗,J∗),
the equivalent input database to the protocol can be fully
recovered directly as DCli←AggrDB(D j : j ∈ J). AggrDB
can be instantiated as concatenation for generic databases,
or summation when D j are the local histograms for counting
queries. Meanwhile, we also require that the same database
can be recovered from the servers’ aggregated secret-shares
as DSer← RecDB(JDKi : i ∈ I), such that DCli = DSer.

Defining Distributed DP. Due to the distributed nature, the
notion of DP in such a protocol can only be defined on a
per-client basis, by considering a pair of neighboring local
databases D j and D′j for each client Cli j. Moreover, if all
servers that process D j were colluding, achieving any degree
of DP would be impossible, as D j can be fully recovered
due to the secret-sharing scheme. Therefore, DP can only be
achieved for the clients when the number of servers that are
not fully honest is bounded. Denoting all fully honest servers
in I j as H j, we treat all other clients than Cli j, all servers other
than H j, as well as V collectively as a collusion C.

Example 3.1. Figure 1 illustrates the setup with 3 clients
and 4 servers. Cli0 sends its secret shares to three servers,
Ser0, Ser1, and Ser2. The largest colluding gang C interested
in learning Cli0’s data includes Cli1, Cli2, Ser2, Ser3, as well
as V. Adding Ser0 or Ser1 to C will enable them to recover
the true data of Cli0 as C would receive all secret shares from

4

Cli0. In this case, C receives JD0K2 from Cli0, and JyK0 and
JyK1 from Ser0 and Ser1, respectively.

The outputs of the server function do not solely depend on
D j itself, but also the secret shares Sout that Cli j transmits to
C, the secret shares Sin transmitted back to H j, and the subset
of clients J∗. Therefore, instead of treating the outputs of F
as a single DP mechanism, we define it as a DP mechanism
that is post-processed by Sout, Sin, and J∗.

Definition 3.2. A server function F satisfies (τ,ε,δ)-
distributed differential privacy (DDP) if there exists an (ε,δ)-
computational DP mechanism M and a PPT function S such
that for any Cli j and any subset of honest servers H j ⊂ I j such
that

∣∣H j
∣∣≥ ∣∣I j

∣∣− τ,

ViewC
F (D j,Sout,Sin,J∗)≡S(M (D j),Sout,Sin,J∗) , (8)

where Sout =
(
JD jKi

)
i∈I j\H j

are the secret shares from Cli j

to the servers not in H j, Sin =
(q

D j′
y

i

)
i∈H j , j′∈IHj \{ j} are the

secret shares from the other clients to H j, and J∗ ⊆ JH j (where
j ∈ J∗) is the subset of the clients that remain in the proto-
col. ViewC

F is the view of the adversaries C (consisting of all
clients except Cli j, all servers except H j, and V) on the out-
put of F . With PartialShare(D j,Sout) being the conditional
distribution of

(
JD jKi

)
i∈H j

given Sout, the view is:

ViewC
F (D j,Sout,Sin,J∗)

1 :
(q

D j
y

i

)
i∈H j
←$ PartialShare

(
D j,Sout

)
2 : foreach i ∈ H j do
3 : JyKi←$ F

(
AggrShare

(q
D j′

y
i : j′ ∈ J∗∩ JH j

))
4 : endfor
5 : return Y := (JyKi)i∈H j

Note that the additional privacy parameter τ is highly re-
lated to the secret sharing scheme’s threshold t for recover-
ing the secret. Specifically, τ ≤ t− 1, since more than t− 1
colluding servers can perfectly recover the secret-shared D j.
Therefore, in the concrete designs of the protocols, we aim to
achieve τ = t−1 to maximize the tolerance against colluding
servers. Also, we employ the notion of computational DP to
accommodate the application of PRNGs.

3.2 Towards Verifiability: Challenges

We further remove the semi-honest assumption on the
clients and servers, and therefore consider the additional re-
quirement for V to verify the output correctness. We identify
several challenges in fulfilling this requirement:
Challenge 1: The server function F is vulnerable to attacks
by malicious servers. Specifically, any malicious server Seri

may deviate from the correct distribution of F (·) when com-
puting the output, and multiple malicious servers may corre-
late their sampling processes to further bias the distribution of
the final output. However, randomized computations are not
directly supported by existing proof systems [85] that operate
over deterministic arithmetic circuits.
Challenge 2: As argued by Biswas and Cormode in 2023
[14], the verifier needs to distinguish between honest and dis-
honest clients and servers in the client-server-verifier model.
On the one hand, the databases and computation results from
dishonest clients and servers need to be removed so as not
to affect the quality of the result received by the verifier. On
the other hand, to achieve better utility of the protocol, upon
discovering any dishonest parties, the protocol may continue
such that the verifier can still receive meaningful and cor-
rect results from the honest parties. Therefore, unlike MPC
protocols for DP mechanisms [17, 18, 24, 36, 91], the ideal
functionality is not well-defined due to the varying input to
the protocol as a result of the execution. Instead, the protocol
design must properly capture the interference among 1) the
honesty of each client and server, 2) whether each of them is
accepted, and 3) the output of the protocol.
Challenge 3: Unlike conventional secure computations of
DP mechanisms [17, 18, 24, 36, 91], despite the inherited pri-
vacy guarantees on the protocol output, the proof of the correct
execution may cause additional information leakage to the
verifier, which breaks the original DP guarantee. Previous
studies utilize ZK proofs [14, 61, 84] to prevent further leak-
ages at this stage. However, as ZK is a stronger notion than
DP, it is worth exploring if the ZK property of the proof is
necessary for achieving end-to-end DP. More importantly, due
to the distributed nature of the setting, the guarantee must be
established with respect to each client’s local database.

3.3 Randomness Disentanglement

In response to Challenge 1, it is necessary to convert the
randomized F into a deterministic function, with auxiliary
inputs that represent the randomnesses in F . We first describe
two simple attempts to achieve this conversion:
• If the servers solely determine the randomness, it is still

impossible to affirm the underlying distribution of the ran-
domness through one sample.

• If the verifier solely determines the randomness, the knowl-
edge of the randomness term may break the DP guarantee.
The additive noises (e.g., discrete Laplacian) are especially
vulnerable to this simple attack, as the unperturbed output
is fully recovered by removing the noise value.
The aforementioned security and privacy issues necessi-

tate the distribution of the tasks of randomness generation
between the verifier and the servers. Therefore, we employ
a public-coin-private-coin model to disentangle the random-
nesses between the two parties as in Definition 3.3.

5

Definition 3.3 (Randomness disentanglement (RD)). Given
the randomized function F : X → Y , we call a triplet
(f ,Pσ,Ppc) a randomness disentanglement (RD) for F ,
where Pσ,Ppc are two probability distributions and f : X ×
Supp(Pσ)× Supp(Ppc)→ Y is a deterministic function, if
and only if for any x ∈ X :
• For any fixed σ ∈ Supp(Pσ), the distribution of f (x,σ,pc) :
pc←$ Ppc is equivalent to F (x).

• For any fixed pc ∈ Supp(Ppc), the distribution of
f (x,σ,pc) : σ←$ Pσ is equivalent to F (x).

In Definition 3.3, the server controls the obfuscation term
(private coin) σ, while the verifier controls the generation of
the public coin pc. Hence, regardless of the choice of the σ by
the server, it is unable to deviate from the desired distribution
of the output. Meanwhile, regardless of the choice of pc by
the verifier, the distribution of the output remain the same,
therefore offering the same privacy protection such that the
adversaries cannot obtain additional information through the
additional view of pc.

Example 3.4 (RD with LPRF). With LPRF introduced in
Section 2.2, the server function can be instantiated as

F (JDKi) :=C (JDKi ,LPRF(si)) : si←$ F, (9)

where C is a deterministic arithmetic circuit that transforms
the input and the sampled fair coins (output of LPRF) to the
server’s output. Therefore, the RD of Equation (9) can be
constructed as

f (JDKi ,σi,pci) :=C (JDKi ,LPRF(σi +pci)) . (10)

with σi and pci both sampled from the uniform distribution
over F. Here, fixing one of σi and pci and having the other
uniformly randomly sampled results in the distribution of
σi + pci being the uniform distribution over F, thus giving
the same output distribution as in Equation (9), which sat-
isfies Definition 3.3. The server therefore needs to prove to
the verifier the correctness of computation over LPRF as in
Equation (5), as well as that over C.

Resistance against server collusion. In addition to the mali-
cious deviations performed by single servers, multiple servers
may collude to further bias the output distribution by correlat-
ing their sampling processes. For example, in the distributed
discrete Gaussian mechanism [57], multiple servers may add
the same copy of noise that is drawn from the prescribed Gaus-
sian distribution, instead of sampling them independently.
Thus, even though the distribution of each server’s output is
correct, that of the aggregated final output is not. However,
we observe that RD preempts this type of collusion.

Lemma 3.5. For any joint distribution over(
σ0,σ1, . . . ,σnSer−1

)
, if each pci where i ∈ [nSer] is

i.i.d. sampled from Ppc, then the joint distribution of
(f (xi,σi,pci))i∈[nSer] is identical to the Cartesian product of
the distribution over all F (xi)s, i.e.,

⊗
i∈[nSer] F (xi).

By Lemma 3.5, even if malicious servers attempt to corre-
late the choice of the obfuscation factors, the outputs of the
server functions are always mutually independent as desired.

3.4 I2DP: Interactive Distributed Proof of Dif-
ferential Privacy

Given the RD described in Section 3.3 which resolves Chal-
lenge 1, in this section, we define an Interactive Distributed
Proof of Differential Privacy (I2DP), through which poten-
tially malicious clients and servers prove to the semi-honest
verifier the validity of their local databases and the correct
computations over the RDs. Before the execution of I2DP, the
following pre-requisites prepare its inputs:
• pp←$ Setup

(
1λ
)

generates public parameter pp required
for the applications of the cryptographic primitives.

•
(
JD jKi

)
i∈In
←$ SecretShare(D j), as defined in Section 3.1.

• Jcom jKi ← CommitShare
(
JD jKi ,Jr jKi ;pp

)
computes a

binding and hiding commitment of Cli j’s share to Seri,
i.e., JD jKi, with randomness r j, where i ∈ I j. We also
assume that the commitment of original databases D js
(known by the clients) and the aggregated shares JDKis
can be computed directly without seeing the committed
values, using two deterministic functions RecDataCom
and AggrShareCom, respectively. Note that this assump-
tion holds true for common secret-sharing schemes in-
cluding additive secret sharing scheme and Shamir’s se-
cret sharing scheme [15, 83]. Furthermore, we assume that
the clients and servers agree on the commitments of the
shares (and therefore the underlying committed values),
which can be achieved by digital signatures on the commit-
ments [21, 47, 55, 62, 80].

• ψi← CommitOb(σi,ρi;pp) where Seri chooses the obfus-
cation term σi and computes a binding and hiding commit-
ment of it with randomness ρi.

• pci←$ Ppc where the verifier samples the public coins inde-
pendently for each server. Note that step is completed after
CommitOb to prevent adversarial choices of σis.
An I2DP Π is described in Figure 2. Specifically, it consists

of the following components:
• bCli

j ←$ Πdata (Cli j,com j;pp) is an interactive proof of the
validity of data bound by com j, i.e., D j ∈ D. The output
bCli

j = 1 if the proof is accepted, and 0 otherwise (collec-
tively denoted as bCli for all js). If bCli

j is 0, Cli j and its data
are excluded from all subsequent computations.

• bSer
i ←$ Πcomp (Seri,JyKi ,JcomKi ,ψi,pci;pp) is an interac-

tive proof of the correctness of Seri’s computation, i.e., Seri
has honestly computed JyKi = f (JDKi ,σi,pci). The output
bSer

i = 1 if the proof is accepted, and 0 otherwise (collec-
tively denoted as bSer for all is).

• (I,J) ← IdUsable(I∗,J∗) ,y ← Aggr (JyKi : i ∈ I), as de-
fined in Section 3.1.

6

Π

(−→
Cli,
−→
Ser,

(
Jcom jKi

)
i, j ,(ψi)i ,(pci)i ;pp

)
1 : for j ∈ [nCli] do

2 : com j← RecDataCom
((q

com j
y

i

)
i∈I j

;pp
)

3 : bClij ←$ Πdata

(
Cli j,com j;pp

)
4 : endfor // J∗ :=

{
j : bClij = 1

}
, i.e., accepted clients remain.

5 : for i ∈ [nSer] do

6 : JcomKi← AggrShareCom
((q

com j
y

i

)
j∈Ji∩J∗ ;pp

)
7 : JyKi←$ Seri((b j) j∈Ji ,pci;pp)

8 : bSeri ←$ Πcomp (Seri,JyKi ,JcomKi ,ψi,pci;pp)

9 : endfor // I∗ :=
{

i : bSeri = 1
}

, i.e., accepted servers remain.

10 : (I,J)← IdUsable(I∗,J∗)

11 : return y← Aggr (JyKi : i ∈ I)

Figure 2: Interactive distributed proof of differential privacy
with potentially malicious clients and servers.

3.4.1 Security Guarantees

In response to Challenge 2, we quantify the interference
among the honesty of the clients and servers, the values of
bCli and bSer, and the value of the protocol output. Ideally,
a client’s database should be included in the computation if
and only if the client and the servers handling it are honest,
and the output is correct with respect to the union of the
databases from all such clients. These properties are captured
by completeness and (knowledge) soundness under the single-
prover setting, as introduced in Section 2.2, and have been
adopted in previous studies on verifiable differential privacy
[14, 61, 84]. However, further adaptations of these notions are
required to extend them into the client-server-verifier setting,
which we present in this section. As Aggr(·) is executed by
the semi-honest verifier, we focus on the subset of servers I
and clients J identified by the server using IdUsable(I∗,J∗),
and the correctness of (JyKi)i∈I with respect to (D j) j∈J .

Under the distributed setting, an honest client cannot guar-
antee that its local database will be included in the aggregated
result if too many servers it submits data to are dishonest.
This interference makes it impossible to directly borrow the
notion of completeness under the single-prover setting. In-
stead, we capture this type of interference in Definition 3.6,
which additionally requires a lower bound on the number of
honest servers for the client’s local database to be processed.

Definition 3.6 (θ-completeness of I2DP). An I2DP Π is θ-
complete iff for any honest client Cli j with at least |I j| − θ

honest servers indexed by I j, j ∈ J with probability 1.

Proposition 3.7. An I2DP Π is θ-complete if Πdata and
Πcomp are complete, and for each client Cli j, IdUsable(I∗,J∗)
outputs j ∈ J when j ∈ J∗ and

∣∣I j ∩ I∗
∣∣≥ ∣∣I j

∣∣−θ.

We argue that soundness is insufficient to achieve the goal

of VDDP. In particular, soundness merely requires the exis-
tence of the inputs and obfuscations that match the commit-
ments and secret-shared outputs. Hence, it does not prevent
the scenario where a malicious prover forges a result, as long
as the output is reachable due to randomness. Therefore, we
enforce the requirement of knowledge soundness, which en-
forces the knowledge of the local databases by the clients,
and that of the obfuscation factors by the servers, all of which
match the final aggregated results.

Definition 3.8 (Knowledge soundness of I2DP). An I2DP
Π is knowledge sound iff there exists a knowledge extractor
that, except for negligible probability, can extract from the ac-
cepted set of servers and clients I∗ and J∗ the local databases
(D j) j∈J∗ , the aggregated secret shares (JDKi)i∈I∗ , and the ob-
fuscation factors (σi)i∈I∗ , such that JyKi = f (JDKi ,σi,pci)
for each i ∈ I∗, all extracted values match their commit-
ments, and AggrDB(D j : j ∈ J) = RecDB(JDKi : i ∈ I) for
(I,J)← IdUsable(I∗,J∗).

Theorem 3.9. An I2DP Π is knowledge sound if the sub-
protocols Πdata and Πcomp are knowledge sound.

3.4.2 Privacy Guarantees

In response to Challenge 3, we develop the end-to-end DP
guarantee that incorporates the privacy leakages from both
within the execution of I2DP and its prerequisites.

Definition 3.10 ((τ,ε,δ)-verifiable distributed differential pri-
vacy). An I2DP Π is (τ,ε,δ)-verifiably distributed differ-
entially private (VDDP) if for any public parameter pp ∈
Supp

(
Setup(1λ)

)
, any honest client Cli j, any set of honest

servers H j ⊂ I j such that
∣∣H j
∣∣ ≥ ∣∣I j

∣∣− τ, and any C (con-
sisting of V and all clients and servers except Cli j and H j)
that follows a certain potentially malicious strategy as a PPT
algorithm, ViewC

Π (·;pp) is (ε,δ)-computational DP, where
ViewC

Π (D j;pp) is the resulting view of C in the execution of
Π (including its prerequisites).

Note that in Definitions 3.6, 3.8, and 3.10, we have de-
scribed the security and privacy guarantees as the properties
of the I2DP. However, for an end-to-end mechanism/protocol
that encloses I2DP and its prerequisites, we also describe it
to satisfy these properties if the underlying I2DP satisfies the
same properties. Such a mechanism/protocol satisfying all
three properties is also generically referred to as a VDDP
mechanism/protocol in the absence of ambiguity.

Comparing with the adversary’s view in DDP, Π only gives
the adversary the additional view of the commitments and
proofs due to the additional requirement of verifiability (see
Appendix B.1 for details). Therefore, if all commitments are
hiding and all proofs are zero-knowledge, no additional infor-
mation leakage about the local database D j results, such that
the same degree of privacy protection can be achieved. We
formalize this as Theorem 3.11.

7

Theorem 3.11. An I2DP Π is (τ,ε,δ)-VDDP if the underly-
ing server function is (τ,ε,δ)-DDP, the commitment schemes
are hiding, and the underlying sub-protocols Πdata and Πcomp

are both zero-knowledge.

Theorem 3.11 states that ZK is sufficient for achieving
VDDP. However, we further argue that the converse statement
is not necessarily true. In particular, ZK can be viewed as a
stronger case of DP with zero privacy loss. Therefore, since
our goal is achieving end-to-end DP, the ZK requirement on
the proof can be relaxed to DP, such that the leakages from the
server function and proofs can still be composed and upper
bounded as DP. To formalize and prove both statements, we
state an extended version of Theorem 3.11. Theorem 3.11 is
a special case of Theorem 3.12 where ε′ = δ′ = 0.

Theorem 3.12. An I2DP Π is (τ,ε + ε′,δ + δ′)-VDDP
if the underlying server function is (τ,ε,δ)-DDP, the
commitment schemes are hiding, the underlying sub-
protocol Πcomp is zero-knowledge, and there exists a
simulator Simdata such that for any D j, com j, and pp,
Simdata (D j,com j;pp) indistinguishably simulates the veri-
fier’s view in Πdata (Cli j(D j,r j),com j;pp), and there exists a
(ε′,δ′)-differentially private mechanism G and PPT function
h that Simdata (D j,com j;pp)≡ h(G(D j),com j;pp) .

Given Theorem 3.12, we analyze and modify the verifi-
able distributed binomial mechanism (VDBM) introduced by
Biswas and Cormode [14] in CCS ’23 under our framework,
as a concrete example that ZK is not necessary for DP.

Example 3.13 (VDBM [14]). In VDBM [14], each client
possesses a local count x j ∈ {0,1}, and shares it with all
servers using the additive secret share mechanism as Jx jKi.
Each server then aggregates the secret shares as JyKi ←
∑ j∈J∗ Jx jKi +Binom

(
nb,

1
2

)
. The RD f is constructed by hav-

ing the server and verifier each sample nb fair coins, de-
noted σi = (σi,k)k∈[nb]

and pci =
(
pci,k

)
k∈[nb]

, correspond-

ingly, where f (JxKi) = ∑ j∈J∗ Jx jKi + ∑k∈[nb]

(
σi,k⊕pci,k

)
.

Compatible with the additive secret-sharing scheme,

IdUsable(I∗,J∗) =
{

(I∗,J∗) if I∗ = [nSer]
(/0, /0) otherwise , and Aggr can

be instantiated as the simple summation.
The server function can achieve (nSer−1,ε,δ)-DDP for

the same (ε,δ), i.e., the same DP guarantee as the central
DP setting can be achieved when at least one server is fully
honest. Πcomp can be constructed via the homomorphism of
the commitments. Meanwhile, Πdata, where the clients act
as the provers, is instantiated with ΠBin which proves the
knowledge of the committed value is either 0 or 1 [31, 33, 85].
Therefore, by Proposition 3.7 and Theorems 3.9 and 3.11,
VDBM satisfies 0-completeness, knowledge soundness, and
(nSer−1,ε,δ)-VDDP.

In Example 3.13, it is possible to modify ΠBin such that
the modified version is no longer zero-knowledge but still

satisfies the condition in Theorem 3.12. The modification
involves biasing the distribution of the transcript according to
input x j ∈ {0,1}, as detailed in Appendix B.2. By Theorem
3.14, the modified version of VDBM still satisfies VDDP.

Theorem 3.14. For any ε′ > 0, there exists a modified and
non-ZK version of ΠBin such that VDBM introduced in Exam-
ple 3.13 satisfies 0-completeness, knowledge soundness, and
(nSer−1,ε+ ε′,δ)-VDDP with the modified ΠBin.

4 VDDLM: Verifiable Distributed Discrete
Laplacian Mechanism

In this section, we develop the verifiable distributed discrete
Laplacian mechanism (VDDLM) for counting queries, which
achieves a better privacy-utility trade-off and lower overhead
compared with VDBM. Similar to VDBM, the clients’ local
counts are secret-shared to all servers using additive secret-
sharing. Each server aggregates all secret shares from the
clients and adds a copy of the discrete Laplacian noise ele-
mentwise and independently to each dimension as the output.
The output from all servers is further aggregated by the data
analyst (verifier) as the final output. We first present the sam-
pling circuit and the interactive proof for the VDDLM and
then rigorously analyze its privacy, utility, and overhead.

4.1 Construction of RD for VDDLM
We utilize the RD described in Example 3.4 for VDDLM.
In particular, since the noise is additive, given aggregated
d-dimensional secret-shared input counts JxKi ∈ Fd for each
Seri, the RD can be constructed as f (JxKi ,σi,pci) := JxKi +
CLap (LPRF(σi +pci)). We focus on the construction of CLap

for the rest of this section.
We utilize a decomposition of LapZ(t) [36, 91] from ele-

mentary probability theory. As introduced in Section 2.1, for

r←$ LapZ(t), the probability that r = 0 is p∗z =
e

1
t −1

e
1
t +1

. Mean-

while, conditioning on r ̸= 0, the distribution of |r|−1 is the
geometric distribution with success probability p∗g = 1−e−

1
t ,

i.e., Geom
(

p∗g
)
. Furthermore, a geometric distribution rg←$

Geom
(

p∗g
)

can be represented as the sum of binary variables,
i.e., rg = ∑i≥0 2iri. Each ri is independently sampled from the
Bernoulli distribution Ber (p∗i) where p∗i =

1
1+p∗g

−2i .

Proposition 4.1. With mutually independently sampled bz←$

Ber
(

p∗z
)
, s←${−1,1}, and ri←$Ber (p∗i) for i≥ 0, (1−bz) ·

s ·
(
∑i≥0 2iri +1

)
follows the distribution of LapZ(t).

We construct CLap as Algorithm 1, directly based on Propo-
sition 4.1. Since for large is, the corresponding p∗i s are negli-
gible, we only keep the least significant γ (range parameter)
bits. Also, we utilize a subroutine CBer(·; p∗,ν) described in
Appendix C.1 to sample from Ber (p∗) for any p∗ ∈ (0,1)

8

Seri

((q
x j

y
i

)
j ,
(q

r j
y

i

)
j ,σi,

ρi,
(q

com j
y

i

)
j ,ψi,pci;pp

) V
((q

com j
y

i

)
i, j ,

(ψi)i ,(pci)i ;pp)

1 : σ
′
i← σi +pci J∗←Πdata

2 : ψ
′
i← ψi ·gpci ψ

′
i← ψi ·gpci

3 : zi← LPRF(σi)

4 : ti←$ Fd

5 : ζi← Commit(zi, ti;pp) ζi ζi

6 :
PLPRF

(
σ′i,ρi,zi,

ψ′i,ζi;pp
) πLPRF VLPRF

(
ψ
′
i,ζi;pp

)
7 : JxKi← ∑

j∈J∗

q
x j

y
i

8 : JrKi← ∑
j∈J∗

q
r j

y
i

9 : JcomKi← ∑
j∈J∗

q
com j

y
i JcomKi← ∑

j∈J∗

q
com j

y
i

10 : JyKi← JxKi +CLap(zi)
JyKi JyKi

11 :
PLap (JxKi ,zi,JyKi ,

JcomKi ,ζi;pp)
πLap VLap (JcomKi ,ζi;pp)

Figure 3: The instantiation of I2DP in VDDLM.

and precision parameter ν, such that given b ←$ {0,1}ν,
CBer(b; p∗,ν)∼Ber

(
⌊2ν p∗⌉

2ν

)
, where the parameter is the clos-

est multiple of 1
2ν to p∗. For p∗z and each p∗i , we denote pz

and pi as the such realized parameters using CBer.

Algorithm 1 Sampling from LapZ(t)
Require: range parameter γ; precision parameters νz and

(νi)i∈[γ]; precomputed p∗z and (p∗i)i∈[γ]; random bits bz ∈
{0,1}νz , bs ∈ {0,1}, and bi ∈ {0,1}νi for each i ∈ [γ].

1: function CLap(bz,bs,(bi)i∈[γ])

2: bz←CBer

(
bz; p∗z ,νz

)
▷ p∗z := e

1
t −1

e
1
t +1

3: s← 2 ·bs−1
4: a← ∑i∈[γ] 2i ·CBer (bi; p∗i ,νi)+1
5: return r← (1−bz) · s ·a
6: end function

When there is no ambiguity on the hyperparameters re-
quired in Algorithm 1, we denote CLap as the output distribu-
tion of CLap with the input of uniformly random bits. Also,
note that Algorithm 1 is unidimensional but can be trivially
extended to the multidimensional case by having multiple
instances of CLap assembled in parallel.

4.2 Design of the VDDLM Protocol

We utilize the cryptographic primitives introduced in Section
2.2 to instantiate the prerequisites, and describe the I2DP of
VDDLM in Figure 3. The protocol terminates with no output
if any server fails the proofs for either LPRF or CLap, which
collectively act as Πdata. The protocol proceeds as follows:
• In Line 1, the verifier executes Πdata with each client and

identifies the subset of clients J∗ remaining in the protocol.
Meanwhile, each server fuses the random seed σ′i of LPRF
using σi and the public coin pci decided by the verifier.

• In Line 2, both parties compute ψ′i, a valid commitment of
the aggregated random seed σ′i.

• In Line 3, the random bits zi are generated from σ′i, which
are committed in Lines 4 and 5, and proved in Line 6.

• In Lines 7 and 8, each server aggregates the secret shares
Jx jKi and the commitment randomnesses Jr jKi from the
clients that have passed Πdata (i.e., j ∈ J∗), as JxKi and JrKi,
respectively. Also, both parties aggregate the commitments
of these values in Line 9.

• In Line 10, the secret share of each client is perturbed using
the Laplacian mechanism realized by CLap(·). Each server
must add its own copy of the noise due to the potential risk
of collusion between the verifier and some other clients.

• In Line 11, the correctness JyKi is established using the sub-
protocol of the proof over the arithmetic circuit of CLap(·),
before V runs IdUsable and Aggr.

4.3 Analysis of VDDLM

Security and Privacy. The truncations and approximations in
Algorithm 1 may cause additional privacy leakages, and need
to be considered in the privacy analysis. However, unlike the
previous analysis on a similar circuit for MPC [91], our anal-
ysis does not take the detour via the statistical distance from
the original discrete Laplacian distribution, which enabled us
to provide a tight bound on the privacy cost.

Theorem 4.2. Given query q : D→ Z with sensitivity 1, the
modified discrete Laplacian mechanism as in Algorithm 1,
M (D) := q(D)+CLap satisfies (ε,δ)-DP such that

ε = log
(
max

{
az,a0, . . . ,aγ−1

})
,δ =

2pz

(1− pz)∏
γ−1
i=0 (1− pi)

,

(11)
where az =

2pz

(1−pz)∏
γ−1
i=0 (1−pi)

and ai =
1−pz

2 ∏
γ−1
i=0 pi for each

i ∈ [γ]. Moreover, the values of (ε,δ) are tight.

Proof Sketch. The privacy parameter ε corresponds to the
ratio between the two probabilities that Algorithm 1 outputs
two consecutive integers. As the support of this algorithm
is no longer the entire Z, δ accounts for the marginal case
where the output of M (D) is out of the support of M (D′) for
neighboring databases D and D′.

9

Table 1: Utility (expected L1 error) and overhead (each
server’s total running time, total communication, and veri-
fier’s total running time) comparison between VDBM [14]
and VDDLM during the execution of Πcomp.

L1 Server Comm. & Verifier

VDBM Θ

(√
nSerd

ε

√
log 1

δ

)
Θ

(
d
ε2 log 1

δ

)
Θ

(
nSerd

ε2 log 1
δ

)
VDDLM Θ

(√
nSerd

ε

)
Θ(dnLap) Θ(nSernLap)

The full proof and the generalized version of Theorem 4.2
for queries with generic sensitivities are in Appendix C.3 and
C.4, respectively. The DP guarantee extends to the distributed
settings when at least one server is fully honest:

Lemma 4.3. The server function of VDDLM is (nSer−1,ε,δ)-
DDP for ε and δ defined in Theorem 4.2.

By utilizing the same IdUsable and Aggr as VDBM in-
troduced in Example 3.13 and complete, knowledge sound,
and ZK Πdata and Πcomp, the desired security and privacy
guarantees can be achieved as stated in Proposition 4.4.

Proposition 4.4. VDDLM is 0-complete, knowledge sound,
and (nSer−1,ε,δ)-VDDP for ε and δ defined in Theorem 4.2.

Utility and Overhead. The utilities of the modified dis-
crete Laplacian mechanism can be measured by the L1 er-
ror, as stated in Theorem 4.5. Given that the modified dis-
crete Laplacian mechanism is designed to closely approxi-
mate its original version, the L1 error remains Θ

(1
ε

)
[6, 48],

and for nSer servers and d dimensions, the total expected L1
error is Θ

(√
nSerd

ε

)
. On the other hand, each server’s over-

head is proportional to the product of the total number of
fair coins generated nLap and the dimensionality d. However,
nLap = νz +1+∑

γ−1
i=0 νi results from the range and precision

parameters in Algorithm 1, and does not have direct depen-
dence on the privacy parameters (ε,δ).

Theorem 4.5. In the modified discrete Laplacian mecha-
nism as in Algorithm 1, the expected L1 error is given by
E
∣∣M (D)−q(D)

∣∣= (1− pz)
(

1+∑
γ−1
i=0 2i pi

)
.

Comaprison with VDBM. Given (ε,δ)-DP achieved in
the central DP setting, both VDBM and VDDLM achieve
0-completeness, knowledge soundness, and (nSer − 1,ε,δ)-
VDDP. Note that for a smaller number of colluding servers
n′ ≤ nSer−1, smaller ε and δ can also be achieved. However,
as semi-honest servers cannot be detected, for the most robust
privacy guarantee, we focus on the case when at most nSer−1
servers may collude. Therefore, their utility and overhead
can be compared fairly under the same privacy parameters,

10 3 10 2 10 1 100

100

101

102

103

L1
 e

rro
r

VDBM
VDDLM

10 3 10 2 10 1 100

103

105

107

Nu
m

be
r o

f c
oi

ns

VDBM
VDDLM

Figure 4: Utility and overhead comparison between VDBM
(a fixed δ = 10−10) and VDDLM (δ < 10−10).

as illustrated in Table 11. Moreover, we plot the L1 error
and number of coins under different εs under the central-DP
and uni-dimensional case. It can be observed that VDDLM
achieves a 5-10x reduction of error compared with the bi-
nomial mechanism. Moreover, the server’s overhead grows
significantly slower under VDDLM, making the scenarios
with smaller εs (e.g., ε = 10−3) much more feasible.

5 VRR: Verifiable Randomized Response

In this section, we construct the verifiable randomized re-
sponse (VRR) scheme. As a special case of distributed DP,
in this local DP mechanism with a pure DP guarantee, a
client also takes the role of the only server that executes the
randomized computation on its output. Therefore, we aim
at achieving 0-completeness as well as (0,ε,0)-VDDP (the
client is accepted and its privacy is preserved as long as it and
its own server perform the computation correctly), in addition
to knowledge soundness. Due to the low interference among
different clients, we omit their indices in this section.

5.1 Construction of RD for VRR

We begin by constructing an RD that is compatible with
the cryptographic primitives applied while adhering to the
original protocol of RR as introduced in Section 2.1. First, we
map the input space [K] to a multiplicative cyclic subgroup
X of a prime order finite field F, where X has order K and
has a generator χ, such that i 7→ χi forms an isomorphism
between [K] and X . Therefore, by Equation (3), given any
input x ∈ X held by a client, it is supposed to submit y = x ·χk

with probability pk for any k ∈ [K].
Moreover, to represent the probability distribution defined

by pks, we utilize another cyclic multiplicative subgroup Ω

with generator ω, and construct a cyclic subgroup such that
pk =

Ak
|Ω| for each 0 ≤ k ≤ K−1, where all Aks are integers.

Therefore, there exists a degree-(|Ω|−1) polynomial F such
that the multiset

{
F(ωi) : i ∈ [|Ω|]

}
has Ak copies of χk for

1Utility and overhead of VDBM is analyzed in details in Appendix C.2.
The instantiation of Πdata depends on the exact scenario and is interchange-
able between the two mechanisms.

10

Cli(x, iσ,rx,rσ,
com,ψ, ipc;pp)

V (com,ψ, ipc;pp)

1 : y← xF
(

ω
iσ+ipc

)
y yK ?

= 1

2 : it ← iσ + ipc

3 : rt ← rσω
ipc

4 : comt ← ψ
ωipc

comt ← ψ
ωipc

5 : z = yx−1,rz←$ F

6 : comz← gzhrz comz comz

7 : α α α←$ F

8 : Fα← F +αFΩ gα← gF(τ) ·
(

gFΩ(τ)
)α

9 :
PEvSc

(
z,rz,ω

it ,rt ,Fα,
comz,comt ;pp)

πEvSc
VEvSc (comz,comt ,

gα;pp)

10 :
PProd (y,z,x,0,rz,rx,

gy,comz,com;pp)
πProd VProd (g

y,comz,com;pp)

Figure 5: The instantiation of I2DP in VRR.

each k ∈ [K]. That is, the probability space is quantized with
a precision of 1

|Ω| . Moreover, with i←$ [|Ω|], the probability

that F
(
ωi
)
= χk is pk for each k ∈ [K]. Therefore, xF

(
ωi
)

has exactly the same distribution as the client’s output y.
We further note that the sampling of xF(ωi) where i←$

[|Ω|] can be decomposed between the client and verifier, such
that by having Pσ (under the control of the client) and Ppc

(under the control of the verifier) as the uniform distribution
over Ω, a valid RD can be constructed as

f (x,σ,pc) := xF (σ ·pc) . (12)

For simplicity, we also use the indices iσ and ipc to identify
σ and pc, such that σ = ωiσ and pc= ωipc , where iσ and ipc
can be uniformly sampled from [|Ω|].

Therefore, in Section 5.2, we focus on establishing the
proof protocol of the validity of data (i.e., x ∈ X) and the
correctness of the computation over f , as the components of
Πdata and Πcomp described in Figure 2 of Section 3.4.

5.2 Design of the VRR Protocol
To instantiate Πdata and Πcomp as in Figure 2, both executed
between the client (which acts as the server that handles its
own data) and the verifier, we first identify the arithmetic
relations to be proved.

Note that for Πcomp, in addition to the correctness over
Equation (12), it is also necessary to verify that σ ∈Ω, which
is equivalent to σ ·pc ∈ Ω since pc ∈ Ω. On the other hand,
for Πdata, the client needs to prove x∈X . Since F(σ ·pc)∈X
for any σ ·pc ∈Ω, x ∈ X iff y = xF(σ ·pc) ∈ X . Therefore, it

Table 2: Overhead (each client’s total running time, total com-
munication, and verifier’s total running time) comparison be-
tween KCY21 [61] and our solution.

Client Comm.& Verifier
KCY21 Θ(|Ω|K) Θ(nCli|Ω|K)
Ours Θ(|Ω|) Θ(nCli)

suffices for the verifier to directly check that y ∈ X . By ele-
mentary algebra, the membership in the cyclic multiplicative
subgroups X and Ω are equivalent to having the vanishing
polynomials, FX (X) = XK − 1 and FΩ(X) = X |Ω|− 1, eval-
uating to 0. Therefore, the I2DP between a client Cli and a
verifier V, as described in Figure 5, proves that

FX (y) = 0∧ y = f (x,σ,pc)∧FΩ(σ ·pc) = 0. (13)

The interactive protocol begins after the client commits to
its data x and obfuscation iσ, as com= gxhrx and ψ = gωiσ hrσ

with randomness rx,rσ←$ F, and the verifier decides on the
public coin ipc. The protocol proceeds as follows:
• In Line 1, the client computes the output y as in Equa-

tion (12), and sends y to the verifier. The verifier immedi-
ately checks if yK = 1, i.e., FX (y) = 0.

• In Lines 2 to 4, the client fuses the obfuscation it and public
coin ipc as it← iσ+ ipc, or equivalently, t←ωiσωipc =σ ·pc.
Both parties compute comt , a valid commitment of t using
the homomorphic property of the commitment scheme.

• In Lines 5 and 6, the client computes and commits to the
intermediate value z= yx−1 = F(σ ·pc), and sends the com-
mitment comz to the verifier.

• In Lines 7 to 9, the verifier chooses α ←$ F and trans-
mits it to the client, and asks the client to prove that
F(t)+αFΩ(t)= z. By the Schwartz-Zippel Lemma [82,94],
this is equivalent to F(t) = z∧FΩ(t) = 0 with overwhelm-
ing probability over the randomness of α. Here, PEvSc↔
VEvSc is a complete, knowledge-sound, and zero-knowledge
interactive proof of the evaluation of a public polynomial
with secret input and output (see Appendix D.1).

• In Line 10, the client proves to the verifier that y = zx (i.e.,
z= yx−1) as elements of F bound by their commitments, via
a folklore complete, knowledge-sound, and zero-knowledge
interactive proof PProd↔ VProd [62, 67].

5.3 Analysis of VRR

Security and Privacy. The security and privacy guarantees of
VRR are formalized in Theorem 5.1. The completeness and
knowledge soundness are inherited from the subroutines in
Figure 5. Meanwhile, without the verifications, the only infor-
mation that a prover gets from a client (and its own server) is
the output y, which is (ε,0)-DP and therefore, (0,ε,0)-DDP.
Therefore, the ZK subroutines make VRR (0,ε,0)-VDDP.

11

Table 3: Comparison between VDDLM and VDBM. The hyperparameters (e.g., nb) of VDBM are computed from the desired(
ε∗,δ∗ = 10−10

)
. The exact (ε,δ) are computed directly from the configuration of each experiment using Theorem 4.2. d:

dimension of input; TSer: average computing and proving time of servers; C: communication cost between each server and client;
TV: the verifier’s running time to validate each server’s output; L1: the L1 error of the final output. The figures marked by ∼ are
estimated, and therefore only kept to 1 significant figure.

d ε∗
VDBM [14] VDDLM (Ours)

TSer (s) C (MB) TV (s) L1 ε δ TSer (s) C (MB) TV (s) L1

16

10−3 ∼ 7×106 1.6×106 ∼ 5×106 1.7×105 9.64×10−4 8.26×10−11 17 2.2 8.0 2.8×104

10−2 6.9×104 1.6×104 5.0×104 1.4×104 9.71×10−3 1.68×10−11 13 1.7 6.1 2.1×103

10−1 7.1×102 1.6×102 5.3×102 1.4×103 9.89×10−2 1.30×10−12 10 1.3 4.8 2.7×102

100 8.8 1.6 6.6 1.3×102 9.68×10−1 2.72×10−14 6.9 0.95 3.5 24

64

10−3 ∼ 3×107 6.5×106 ∼ 2×107 5.2×105 9.64×10−4 8.26×10−11 63 2.2 7.9 1.0×105

10−2 ∼ 3×105 6.5×104 ∼ 2×105 5.9×104 9.71×10−3 1.68×10−11 48 1.7 6.0 1.1×104

10−1 2.8×103 6.5×102 2.1×103 5.1×103 9.89×10−2 1.30×10−12 37 1.3 4.7 1.0×103

100 33 6.5 26 5.4×102 9.68×10−1 2.72×10−14 26 0.95 3.4 97

256

10−3 ∼ 1×108 2.6×107 ∼ 8×107 2.2×106 9.64×10−4 8.26×10−11 2.5×102 2.2 8.1 3.2×105

10−2 ∼ 1×106 2.6×105 ∼ 8×105 2.1×105 9.71×10−3 1.68×10−11 1.9×102 1.7 6.2 3.4×104

10−1 1.1×104 2.6×103 8.0×103 2.1×104 9.89×10−2 1.30×10−12 1.5×102 1.3 4.8 3.6×103

100 1.2×102 26 84 2.3×103 9.68×10−1 2.72×10−14 1.2×102 0.97 3.4 3.0×102

1024

10−3 ∼ 4×108 1.0×108 ∼ 3×108 8.7×106 9.64×10−4 8.26×10−11 1.0×103 2.2 8.9 1.4×106

10−2 ∼ 4×106 1.0×106 ∼ 3×106 8.9×105 9.71×10−3 1.68×10−11 7.7×102 1.7 6.8 1.4×105

10−1 4.2×104 1.0×104 3.2×104 9.2×104 9.89×10−2 1.30×10−12 7.0×102 0.4 5.3 1.4×104

100 4.3×102 1.0×102 3.2×102 8.7×103 9.68×10−1 2.72×10−14 4.3×102 0.98 3.6 1.3×103

Theorem 5.1. The VRR protocol is 0-complete, knowledge-
sound, and (0,ε,0)-VDDP.

Utility and Overhead. As explained in Section 5.1, the out-
put distribution of the server function of VRR is exactly the
same as the original version of RR without the additional ver-
ifications, given the same set of parameters Aks and therefore
pks. Therefore, VRR can achieve the same utility. Moreover,
due to the crafted quantization of the probability space of
RR, and the compatible protocol design using highly efficient
cryptographic primitives, our solution to VRR enjoys a sig-
nificant reduction of overhead compared with the previous
solution (KCY21, [61]), as shown in Table 2. In particular, the
total running time of each client is linear in |Ω|, and does not
depend on the number of classes K or the privacy parameter ε.
Moreover, the communication and verifier’s overhead is only
constant per client, significantly improving the scalability.

6 Experiments

We implement VDDLM and VRR in C++ using the MCL
cryptography library [73] and report their overheads and utili-
ties in this section. We use the BLS12-381 curve, one of the
most prevalent elliptic curves in modern ZKP systems, which
provides 128-bit security [21]. The experiments were run with
32 cores allocated from an Intel Xeon Platinum 8358 CPU @
2.60GHz and 231 GB of memory.
Experiments on VDDLM. In complement to the advantages
analyzed from a theoretical and numerical perspective in Sec-
tion 4.3, we present the experimental comparison between

VDDLM and VDBM. The comparisons focus on Πcomp, the
major difference between VDDLM and VDBM, as the instan-
tiation of Πdata in VDDLM (Line 1 of Figure 3) is specific to
the exact scenario and a valid Πdata for VDDLM would also
be valid for VDBM under the same scenario. As the original
implementation of VDBM focuses on a one-dimensional set-
ting, we execute it element-wise to produce the experimental
figures under the multi-dimensional setting.

As shown in Table 32, VDDLM achieves a remarkable
reduction of overhead from almost all perspectives. The im-
provement is particularly significant when the dimension of
the problem is larger (e.g., 1024), and only a small (e.g.,
ε = 10−3) privacy budget is available: the server’s and veri-
fier’s running times are boosted by 4×105 and 3×107 times,
respectively, and the communication cost is compressed by
a factor of 4× 107. Moreover, aligned with Figure 4, VD-
DLM only suffers 0.1x to 0.2x numerical error compared
with VDBM. Therefore, VDDLM greatly improves the prac-
ticality and scalability of the VDDP mechanisms.

Experiments on VRR. We compare our new VRR mecha-
nism in Section 5 with the previous solution [61]. The deci-
sive factor of the overhead is the quantization precision of the
probability space, i.e., |Ω|. When using the same quantization
of the probability space, the same privacy cost and utility.
However, as introduced in Section 5.3, our solution shows
an asymptotic improvement in both the client and verifier’s

2TSer, C, TV has been amortized and theoretically irrelevant to nSer, and
hence does not significantly vary with nSer. Therefore, we fix nSer = 2 fol-
lowing VDBM [14].

12

Table 4: Per-client overhead of verifiable K-class randomized
response using the previous (KCY21, [61]) and our solutions.
|Ω|: probability space quantizaiton accuracy; TCli: running
time of each client; C: communication between each client
and verifier; TV: the verifier’s running time for each client.
|Ω| K Solution TCli (s) C (kB) TV (s)

64
8 KCY21 0.29 41 0.17

Ours 0.049 2.0 8.1×10−3

32 KCY21 1.0 1.6×102 0.62
Ours 0.051 2.0 8.0×10−3

256

8 KCY21 1.0 1.6×102 0.63
Ours 0.18 2.0 8.1×10−3

32 KCY21 4.1 6.6×102 2.6
Ours 0.18 2.0 8.1×10−3

128 KCY21 17 2.6×103 11
Ours 0.18 2.0 8.2×10−3

1024

8 KCY21 4.3 6.6×102 2.5
Ours 0.72 2.0 8.1×10−3

32 KCY21 17 2.6×103 11
Ours 0.77 2.0 8.1×10−3

128 KCY21 72 1.0×104 45
Ours 0.74 2.0 8.1×10−3

overhead and the communication cost.
Table 4 demonstrates the improvement achieved by our

novel solution to VRR under different configurations of quan-
tizing the probability space. It can be observed that using our
solution, the communication and running time are constant
and fixed at approximately 2.0kB and 8ms per client, which
significantly reduces the overhead for the verifier, enabling it
to organize data collection from a significantly larger popu-
lation of clients. Furthermore, thanks to the improvement of
each client’s overhead from O(|Ω|K) to O(|Ω|), the clients
also enjoy a 5x to 100x speedup under different configurations.
We also conducted a runtime evaluation for each component
of VRR (shown in Appendix E, Figure 9), which shows that
the generation of the proofs executed by the clients is the
most time-consuming component.

7 Related Work

Pioneering steps in verifiable executions of differentially pri-
vate mechanisms involve cryptographic proofs on the cor-
rectness of deterministic fundamental computation steps in
differentially private database systems like VFuzz [74] and
DPrio [63]. More recent advancements have shifted their
focus to the correct sampling from noise distributions, in-
cluding randomized response (KCY21, [61]), floating-point
Gaussian mechanisms (STC+24, [84]), and binomial mech-
anisms (VDBM, [14]). More broadly, other studies on se-
cure computation for randomness generation [3, 20] and
differential privacy [10, 29], with multi-party computation

Table 5: Comparison of security and privacy models with
previous work on MPCs of DP mechanisms (MPC-DP,
[17, 18, 24, 36, 91]) and verifiable executions of DP mech-
anisms [14, 61, 63, 74, 84]. VD, VC, VR: authenticity of data,
correct deterministic computation, or correct sampling from
the prescribed random distributions is verifiable (to an exter-
nal data analyst); N: resilience against numerical issues of DP
due to compatibility with discrete cryptographic primitives;
CSV: client-server-verifier model; E2EDP: end-to-end DP
guarantee, incorporating additional leakages from the proof.

VD VC VR N CSV E2EDP

MPC-DP ✘ ✘ ✘ ✔ ✘ N/A
VFuzz [74] ✔ ✔ ✘ ✘ ✘ ✘
DPrio [63] ✔ ✘ ✘ ✔ ✔ ✘
KCY21 [61] ✔ ✔ ✔ ✔ ✘ ✘
STC+24 [84] ✔ ✔ ✔ ✘ ✘ ✘
VDBM [14] ✔ ✔ ✔ ✔ ✔ ✘
Ours ✔ ✔ ✔ ✔ ✔ ✔

(MPC) [17, 18, 24, 34, 36, 44, 91], have laid the foundation for
the secure computation of DP mechanisms, especially in dis-
tributed settings. However, despite the similarities in multiple
aspects, they do not cover the scenario when an external data
analyst needs to verify the authenticity of the data and cor-
rectness of computation, especially the randomness involved.
We compare this study’s security and privacy models with
the aforementioned studies in Table 5. We discuss additional
related work in Appendix F.

8 Conclusion

In this study, we have rigorously defined verifiable distributed
differential privacy and systematically explored its relation-
ship with zero-knowledge. We further proved the feasibility
of VDDP by providing two concrete instantiations, VDDLM
and VRR, which have significantly outperformed the previ-
ous state-of-the-art solutions in both utility and efficiency.
Besides these two protocols, we also discuss the feasibility
and challenges of extending VDDLM to the discrete Gaus-
sian mechanism [23] in Appendix C.5. Based on this study,
we raise three open questions: 1) constructions of VDDP
with non-zero-knowledge proofs while satisfying Theorem
3.12, such that the overhead can be reduced asymptotically
on either the client, server, or verifier’s running time, or the
communication cost; 2) alternative sampling methods for the
discrete Gaussian mechanism that are compatible with exist-
ing or novel proof protocols, enabling efficient constructions
of verifiable distributed discrete Gaussian mechanisms; 3)
extensions of VDDP to more complex settings, e.g., where
extensive communications among the servers are involved
and need to be audited by the verifier.

13

Open Science

Upon publication, the implementations of VDDLM and VRR
will be available at https://github.com/jvhs0706/vddp,
where the scripts for reproducing the experimental results in
Section 6 will also be included.

Ethics Considerations

This study inherently enhances data privacy. We identify the
clients, servers, and verifier (data analyst) as the stakeholders
involved in this study. By the nature of this study, the unethical
behaviors of malicious clients and servers submitting invalid
data and deviating from the prescribed mechanisms are ex-
posed to the verifier, due to the requirement of soundness
(Definition 3.8). Moreover, this study also ensures that the
honest clients and servers can pass the verification conducted
by the verifier. We are aware that the interference among the
clients and servers may cause honest clients’ data not to be
included in the computation. However, this study has striven
to limit the occurrence of this undesired exclusion via the
requirement of θ-completeness (Definition 3.6).

This study has allowed for verifiable DP with additional
privacy leakages and raised the open question of trading pri-
vacy protection for better overhead. We acknowledge that this
suggested future direction may result in further privacy leak-
age than the executed DP mechanisms. However, in response
to this, we have preemptively bounded the end-to-end privacy
leakage of the entire protocol with Theorem 3.12.

14

https://github.com/jvhs0706/vddp

References

[1] Naman Agarwal, Peter Kairouz, and Ziyu Liu. The
skellam mechanism for differentially private federated
learning. In Marc’Aurelio Ranzato, Alina Beygelzimer,
Yann N. Dauphin, Percy Liang, and Jennifer Wortman
Vaughan, editors, Advances in Neural Information Pro-
cessing Systems 34: Annual Conference on Neural In-
formation Processing Systems 2021, NeurIPS 2021, De-
cember 6-14, 2021, virtual, pages 5052–5064, 2021.

[2] Naman Agarwal, Ananda Theertha Suresh, Felix X.
Yu, Sanjiv Kumar, and Brendan McMahan. cpsgd:
Communication-efficient and differentially-private dis-
tributed SGD. In Samy Bengio, Hanna M. Wal-
lach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-
Bianchi, and Roman Garnett, editors, Advances in Neu-
ral Information Processing Systems 31: Annual Confer-
ence on Neural Information Processing Systems 2018,
NeurIPS 2018, December 3-8, 2018, Montréal, Canada,
pages 7575–7586, 2018.

[3] Andris Ambainis, Markus Jakobsson, and Helger Lip-
maa. Cryptographic randomized response techniques.
In Feng Bao, Robert H. Deng, and Jianying Zhou, edi-
tors, Public Key Cryptography - PKC 2004, 7th Inter-
national Workshop on Theory and Practice in Public
Key Cryptography, Singapore, March 1-4, 2004, volume
2947 of Lecture Notes in Computer Science, pages 425–
438. Springer, 2004.

[4] Balamurugan Anandan and Chris Clifton. Laplace
noise generation for two-party computational differen-
tial privacy. In Ali A. Ghorbani, Vicenç Torra, Hüseyin
Hisil, Ali Miri, Ahmet Koltuksuz, Jie Zhang, Murat Sen-
soy, Joaquín García-Alfaro, and Ibrahim Zincir, editors,
13th Annual Conference on Privacy, Security and Trust,
PST 2015, Izmir, Turkey, July 21-23, 2015, pages 54–61.
IEEE Computer Society, 2015.

[5] Sanjeev Arora and Boaz Barak. Computational Com-
plexity - A Modern Approach. Cambridge University
Press, 2009.

[6] Victor Balcer and Salil P. Vadhan. Differential privacy
on finite computers. In Anna R. Karlin, editor, 9th
Innovations in Theoretical Computer Science Confer-
ence, ITCS 2018, January 11-14, 2018, Cambridge, MA,
USA, volume 94 of LIPIcs, pages 43:1–43:21. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

[7] Carsten Baum, Ivan Damgård, and Claudio Orlandi.
Publicly auditable secure multi-party computation. In
Michel Abdalla and Roberto De Prisco, editors, Security
and Cryptography for Networks - 9th International Con-
ference, SCN 2014, Amalfi, Italy, September 3-5, 2014.

Proceedings, volume 8642 of Lecture Notes in Com-
puter Science, pages 175–196. Springer, 2014.

[8] Amos Beimel, Kobbi Nissim, and Eran Omri. Dis-
tributed private data analysis: Simultaneously solving
how and what. In David A. Wagner, editor, Advances in
Cryptology - CRYPTO 2008, 28th Annual International
Cryptology Conference, Santa Barbara, CA, USA, Au-
gust 17-21, 2008. Proceedings, volume 5157 of Lecture
Notes in Computer Science, pages 451–468. Springer,
2008.

[9] James Bell, Adrià Gascón, Badih Ghazi, Ravi Ku-
mar, Pasin Manurangsi, Mariana Raykova, and Phillipp
Schoppmann. Distributed, private, sparse histograms in
the two-server model. In Heng Yin, Angelos Stavrou,
Cas Cremers, and Elaine Shi, editors, Proceedings of the
2022 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS 2022, Los Angeles, CA, USA,
November 7-11, 2022, pages 307–321. ACM, 2022.

[10] James Henry Bell, Kallista A. Bonawitz, Adrià Gascón,
Tancrède Lepoint, and Mariana Raykova. Secure single-
server aggregation with (poly)logarithmic overhead. In
Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni
Vigna, editors, CCS ’20: 2020 ACM SIGSAC Confer-
ence on Computer and Communications Security, Vir-
tual Event, USA, November 9-13, 2020, pages 1253–
1269. ACM, 2020.

[11] Mihir Bellare and Oded Goldreich. On defining proofs
of knowledge. In Ernest F. Brickell, editor, Advances in
Cryptology - CRYPTO ’92, 12th Annual International
Cryptology Conference, Santa Barbara, California, USA,
August 16-20, 1992, Proceedings, volume 740 of Lecture
Notes in Computer Science, pages 390–420. Springer,
1992.

[12] Ward Beullens, Tim Beyne, Aleksei Udovenko, and
Giuseppe Vitto. Cryptanalysis of the legendre PRF
and generalizations. IACR Trans. Symmetric Cryptol.,
2020(1):313–330, 2020.

[13] Ward Beullens and Cyprien Delpech de Saint Guilhem.
Legroast: Efficient post-quantum signatures from the
legendre PRF. In Jintai Ding and Jean-Pierre Tillich, ed-
itors, Post-Quantum Cryptography - 11th International
Conference, PQCrypto 2020, Paris, France, April 15-17,
2020, Proceedings, volume 12100 of Lecture Notes in
Computer Science, pages 130–150. Springer, 2020.

[14] Ari Biswas and Graham Cormode. Interactive proofs
for differentially private counting. In Weizhi Meng,
Christian Damsgaard Jensen, Cas Cremers, and Engin
Kirda, editors, Proceedings of the 2023 ACM SIGSAC
Conference on Computer and Communications Security,

15

CCS 2023, Copenhagen, Denmark, November 26-30,
2023, pages 1919–1933. ACM, 2023.

[15] G. R. Blakley. Safeguarding cryptographic keys. In
1979 International Workshop on Managing Require-
ments Knowledge, MARK 1979, New York, NY, USA,
June 4-7, 1979, pages 313–318. IEEE, 1979.

[16] Andrew J. Blumberg, Justin Thaler, Victor Vu, and
Michael Walfish. Verifiable computation using mul-
tiple provers. IACR Cryptol. ePrint Arch., page 846,
2014.

[17] Jonas Böhler and Florian Kerschbaum. Secure multi-
party computation of differentially private median. In
Srdjan Capkun and Franziska Roesner, editors, 29th
USENIX Security Symposium, USENIX Security 2020,
August 12-14, 2020, pages 2147–2164. USENIX Asso-
ciation, 2020.

[18] Jonas Böhler and Florian Kerschbaum. Secure multi-
party computation of differentially private heavy hit-
ters. In Yongdae Kim, Jong Kim, Giovanni Vigna, and
Elaine Shi, editors, CCS ’21: 2021 ACM SIGSAC Con-
ference on Computer and Communications Security, Vir-
tual Event, Republic of Korea, November 15 - 19, 2021,
pages 2361–2377. ACM, 2021.

[19] Kallista A. Bonawitz, Vladimir Ivanov, Ben Kreuter, An-
tonio Marcedone, H. Brendan McMahan, Sarvar Patel,
Daniel Ramage, Aaron Segal, and Karn Seth. Practical
secure aggregation for federated learning on user-held
data. CoRR, abs/1611.04482, 2016.

[20] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv
Gilboa, and Yuval Ishai. Lightweight techniques for
private heavy hitters. In 42nd IEEE Symposium on
Security and Privacy, SP 2021, San Francisco, CA, USA,
24-27 May 2021, pages 762–776. IEEE, 2021.

[21] Dan Boneh, Ben Lynn, and Hovav Shacham. Short sig-
natures from the weil pairing. In Colin Boyd, editor,
Advances in Cryptology - ASIACRYPT 2001, 7th Inter-
national Conference on the Theory and Application of
Cryptology and Information Security, Gold Coast, Aus-
tralia, December 9-13, 2001, Proceedings, volume 2248
of Lecture Notes in Computer Science, pages 514–532.
Springer, 2001.

[22] Mark Bun and Thomas Steinke. Concentrated differ-
ential privacy: Simplifications, extensions, and lower
bounds. In Martin Hirt and Adam D. Smith, editors,
Theory of Cryptography - 14th International Conference,
TCC 2016-B, Beijing, China, October 31 - November
3, 2016, Proceedings, Part I, volume 9985 of Lecture
Notes in Computer Science, pages 635–658, 2016.

[23] Clément L. Canonne, Gautam Kamath, and Thomas
Steinke. The discrete gaussian for differential privacy.
In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Had-
sell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors,
Advances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Processing
Systems 2020, NeurIPS 2020, December 6-12, 2020, vir-
tual, 2020.

[24] Jeffrey Champion, Abhi Shelat, and Jonathan R. Ull-
man. Securely sampling biased coins with applications
to differential privacy. In Lorenzo Cavallaro, Johannes
Kinder, XiaoFeng Wang, and Jonathan Katz, editors,
Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2019,
London, UK, November 11-15, 2019, pages 603–614.
ACM, 2019.

[25] Ian Chang, Katerina Sotiraki, Weikeng Chen, Murat
Kantarcioglu, and Raluca A. Popa. HOLMES: effi-
cient distribution testing for secure collaborative learn-
ing. In Joseph A. Calandrino and Carmela Troncoso,
editors, 32nd USENIX Security Symposium, USENIX
Security 2023, Anaheim, CA, USA, August 9-11, 2023,
pages 4823–4840. USENIX Association, 2023.

[26] Binyi Chen, Benedikt Bünz, Dan Boneh, and Zhenfei
Zhang. Hyperplonk: Plonk with linear-time prover and
high-degree custom gates. In Carmit Hazay and Martijn
Stam, editors, Advances in Cryptology - EUROCRYPT
2023 - 42nd Annual International Conference on the
Theory and Applications of Cryptographic Techniques,
Lyon, France, April 23-27, 2023, Proceedings, Part II,
volume 14005 of Lecture Notes in Computer Science,
pages 499–530. Springer, 2023.

[27] Wei-Ning Chen, Ayfer Özgür, and Peter Kairouz. The
poisson binomial mechanism for unbiased federated
learning with secure aggregation. In Kamalika Chaud-
huri, Stefanie Jegelka, Le Song, Csaba Szepesvári, Gang
Niu, and Sivan Sabato, editors, International Conference
on Machine Learning, ICML 2022, 17-23 July 2022, Bal-
timore, Maryland, USA, volume 162 of Proceedings of
Machine Learning Research, pages 3490–3506. PMLR,
2022.

[28] Albert Cheu, Adam D. Smith, Jonathan R. Ullman,
David Zeber, and Maxim Zhilyaev. Distributed differen-
tial privacy via shuffling. In Yuval Ishai and Vincent Ri-
jmen, editors, Advances in Cryptology - EUROCRYPT
2019 - 38th Annual International Conference on the
Theory and Applications of Cryptographic Techniques,
Darmstadt, Germany, May 19-23, 2019, Proceedings,
Part I, volume 11476 of Lecture Notes in Computer
Science, pages 375–403. Springer, 2019.

16

[29] Amrita Roy Chowdhury, Chenghong Wang, Xi He, Ash-
win Machanavajjhala, and Somesh Jha. Cryptε: Crypto-
assisted differential privacy on untrusted servers. In
David Maier, Rachel Pottinger, AnHai Doan, Wang-
Chiew Tan, Abdussalam Alawini, and Hung Q. Ngo,
editors, Proceedings of the 2020 International Confer-
ence on Management of Data, SIGMOD Conference
2020, online conference [Portland, OR, USA], June 14-
19, 2020, pages 603–619. ACM, 2020.

[30] Henry Corrigan-Gibbs and Dan Boneh. Prio: Private,
robust, and scalable computation of aggregate statistics.
In Aditya Akella and Jon Howell, editors, 14th USENIX
Symposium on Networked Systems Design and Imple-
mentation, NSDI 2017, Boston, MA, USA, March 27-29,
2017, pages 259–282. USENIX Association, 2017.

[31] Ronald Cramer, Ivan Damgård, and Berry Schoenmak-
ers. Proofs of partial knowledge and simplified design
of witness hiding protocols. In Yvo Desmedt, editor,
Advances in Cryptology - CRYPTO ’94, 14th Annual
International Cryptology Conference, Santa Barbara,
California, USA, August 21-25, 1994, Proceedings, vol-
ume 839 of Lecture Notes in Computer Science, pages
174–187. Springer, 1994.

[32] Ivan Damgård. On the randomness of legendre and
jacobi sequences. In Shafi Goldwasser, editor, Advances
in Cryptology - CRYPTO ’88, 8th Annual International
Cryptology Conference, Santa Barbara, California, USA,
August 21-25, 1988, Proceedings, volume 403 of Lecture
Notes in Computer Science, pages 163–172. Springer,
1988.

[33] Ivan Damgård. Efficient concurrent zero-knowledge
in the auxiliary string model. In Bart Preneel, editor,
Advances in Cryptology - EUROCRYPT 2000, Inter-
national Conference on the Theory and Application of
Cryptographic Techniques, Bruges, Belgium, May 14-
18, 2000, Proceeding, volume 1807 of Lecture Notes in
Computer Science, pages 418–430. Springer, 2000.

[34] Alex Davidson, Peter Snyder, E. B. Quirk, Joseph
Genereux, and Benjamin Livshits. STAR: distributed se-
cret sharing for private threshold aggregation reporting.
CoRR, abs/2109.10074, 2021.

[35] Cynthia Dwork. Differential privacy in distributed envi-
ronments: An overview and open questions. In Avery
Miller, Keren Censor-Hillel, and Janne H. Korhonen,
editors, PODC ’21: ACM Symposium on Principles of
Distributed Computing, Virtual Event, Italy, July 26-30,
2021, page 5. ACM, 2021.

[36] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSh-
erry, Ilya Mironov, and Moni Naor. Our data, ourselves:

Privacy via distributed noise generation. In Serge Vau-
denay, editor, Advances in Cryptology - EUROCRYPT
2006, 25th Annual International Conference on the The-
ory and Applications of Cryptographic Techniques, St.
Petersburg, Russia, May 28 - June 1, 2006, Proceedings,
volume 4004 of Lecture Notes in Computer Science,
pages 486–503. Springer, 2006.

[37] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and
Adam D. Smith. Calibrating noise to sensitivity in pri-
vate data analysis. In Shai Halevi and Tal Rabin, editors,
Theory of Cryptography, Third Theory of Cryptography
Conference, TCC 2006, New York, NY, USA, March 4-7,
2006, Proceedings, volume 3876 of Lecture Notes in
Computer Science, pages 265–284. Springer, 2006.

[38] Cynthia Dwork and Aaron Roth. The algorithmic foun-
dations of differential privacy. Found. Trends Theor.
Comput. Sci., 9(3-4):211–407, 2014.

[39] Tariq Elahi, George Danezis, and Ian Goldberg. Privex:
Private collection of traffic statistics for anonymous
communication networks. In Gail-Joon Ahn, Moti
Yung, and Ninghui Li, editors, Proceedings of the 2014
ACM SIGSAC Conference on Computer and Commu-
nications Security, Scottsdale, AZ, USA, November 3-7,
2014, pages 1068–1079. ACM, 2014.

[40] Reo Eriguchi, Atsunori Ichikawa, Noboru Kunihiro, and
Koji Nuida. Efficient noise generation to achieve dif-
ferential privacy with applications to secure multiparty
computation. In Nikita Borisov and Claudia Díaz,
editors, Financial Cryptography and Data Security -
25th International Conference, FC 2021, Virtual Event,
March 1-5, 2021, Revised Selected Papers, Part I, vol-
ume 12674 of Lecture Notes in Computer Science, pages
271–290. Springer, 2021.

[41] Alexandre V. Evfimievski, Johannes Gehrke, and Ra-
makrishnan Srikant. Limiting privacy breaches in pri-
vacy preserving data mining. In Frank Neven, Catriel
Beeri, and Tova Milo, editors, Proceedings of the Twenty-
Second ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, June 9-12, 2003,
San Diego, CA, USA, pages 211–222. ACM, 2003.

[42] Amos Fiat and Adi Shamir. How to prove yourself: Prac-
tical solutions to identification and signature problems.
In Andrew M. Odlyzko, editor, Advances in Cryptology
- CRYPTO ’86, Santa Barbara, California, USA, 1986,
Proceedings, volume 263 of Lecture Notes in Computer
Science, pages 186–194. Springer, 1986.

[43] Jie Fu, Yuan Hong, Xinpeng Ling, Leixia Wang, Xun
Ran, Zhiyu Sun, Wendy Hui Wang, Zhili Chen, and
Yang Cao. Differentially private federated learning: A
systematic review. CoRR, abs/2405.08299, 2024.

17

[44] Yucheng Fu and Tianhao Wang. Benchmarking secure
sampling protocols for differential privacy. In Bo Luo,
Xiaojing Liao, Jun Xu, Engin Kirda, and David Lie, edi-
tors, Proceedings of the 2024 on ACM SIGSAC Confer-
ence on Computer and Communications Security, CCS
2024, Salt Lake City, UT, USA, October 14-18, 2024,
pages 318–332. ACM, 2024.

[45] Ariel Gabizon, Zachary J. Williamson, and Oana Ciob-
otaru. PLONK: permutations over lagrange-bases for
oecumenical noninteractive arguments of knowledge.
IACR Cryptol. ePrint Arch., page 953, 2019.

[46] Steven D. Galbraith, Kenneth G. Paterson, and Nigel P.
Smart. Pairings for cryptographers. Discret. Appl. Math.,
156(16):3113–3121, 2008.

[47] Taher El Gamal. A public key cryptosystem and a sig-
nature scheme based on discrete logarithms. In G. R.
Blakley and David Chaum, editors, Advances in Cryp-
tology, Proceedings of CRYPTO ’84, Santa Barbara,
California, USA, August 19-22, 1984, Proceedings, vol-
ume 196 of Lecture Notes in Computer Science, pages
10–18. Springer, 1984.

[48] Arpita Ghosh, Tim Roughgarden, and Mukund Sun-
dararajan. Universally utility-maximizing privacy mech-
anisms. SIAM J. Comput., 41(6):1673–1693, 2012.

[49] Oded Goldreich, Silvio Micali, and Avi Wigderson. How
to prove all np-statements in zero-knowledge, and a
methodology of cryptographic protocol design. In An-
drew M. Odlyzko, editor, Advances in Cryptology -
CRYPTO ’86, Santa Barbara, California, USA, 1986,
Proceedings, volume 263 of Lecture Notes in Computer
Science, pages 171–185. Springer, 1986.

[50] Shafi Goldwasser, Silvio Micali, and Charles Rackoff.
The knowledge complexity of interactive proof-systems
(extended abstract). In Robert Sedgewick, editor, Pro-
ceedings of the 17th Annual ACM Symposium on Theory
of Computing, May 6-8, 1985, Providence, Rhode Island,
USA, pages 291–304. ACM, 1985.

[51] Slawomir Goryczka and Li Xiong. A comprehensive
comparison of multiparty secure additions with differ-
ential privacy. IEEE Trans. Dependable Secur. Comput.,
14(5):463–477, 2017.

[52] Lorenzo Grassi, Christian Rechberger, Dragos Rotaru,
Peter Scholl, and Nigel P. Smart. Mpc-friendly sym-
metric key primitives. In Edgar R. Weippl, Stefan
Katzenbeisser, Christopher Kruegel, Andrew C. Myers,
and Shai Halevi, editors, Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications
Security, Vienna, Austria, October 24-28, 2016, pages
430–443. ACM, 2016.

[53] Mikko A. Heikkilä, Eemil Lagerspetz, Samuel Kaski,
Kana Shimizu, Sasu Tarkoma, and Antti Honkela. Dif-
ferentially private bayesian learning on distributed data.
In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio,
Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan,
and Roman Garnett, editors, Advances in Neural Infor-
mation Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, Decem-
ber 4-9, 2017, Long Beach, CA, USA, pages 3226–3235,
2017.

[54] Jiankai Jin, Eleanor McMurtry, Benjamin I. P. Rubin-
stein, and Olga Ohrimenko. Are we there yet? timing
and floating-point attacks on differential privacy sys-
tems. In 43rd IEEE Symposium on Security and Privacy,
SP 2022, San Francisco, CA, USA, May 22-26, 2022,
pages 473–488. IEEE, 2022.

[55] Simon Josefsson and Ilari Liusvaara. Edwards-curve
digital signature algorithm (eddsa). RFC, 8032:1–60,
2017.

[56] Peter Kairouz, Kallista A. Bonawitz, and Daniel Ra-
mage. Discrete distribution estimation under local pri-
vacy. In Maria-Florina Balcan and Kilian Q. Weinberger,
editors, Proceedings of the 33nd International Confer-
ence on Machine Learning, ICML 2016, New York City,
NY, USA, June 19-24, 2016, volume 48 of JMLR Work-
shop and Conference Proceedings, pages 2436–2444.
JMLR.org, 2016.

[57] Peter Kairouz, Ziyu Liu, and Thomas Steinke. The
distributed discrete gaussian mechanism for federated
learning with secure aggregation. In Marina Meila and
Tong Zhang, editors, Proceedings of the 38th Interna-
tional Conference on Machine Learning, ICML 2021,
18-24 July 2021, Virtual Event, volume 139 of Proceed-
ings of Machine Learning Research, pages 5201–5212.
PMLR, 2021.

[58] Peter Kairouz, Sewoong Oh, and Pramod Viswanath.
Extremal mechanisms for local differential privacy. In
Zoubin Ghahramani, Max Welling, Corinna Cortes,
Neil D. Lawrence, and Kilian Q. Weinberger, editors,
Advances in Neural Information Processing Systems 27:
Annual Conference on Neural Information Processing
Systems 2014, December 8-13 2014, Montreal, Quebec,
Canada, pages 2879–2887, 2014.

[59] Sanket Kanjalkar, Ye Zhang, Shreyas Gandlur, and An-
drew Miller. Publicly auditable mpc-as-a-service with
succinct verification and universal setup. In IEEE Eu-
ropean Symposium on Security and Privacy Workshops,
EuroS&P 2021, Vienna, Austria, September 6-10, 2021,
pages 386–411. IEEE, 2021.

18

[60] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg.
Constant-size commitments to polynomials and their
applications. In Masayuki Abe, editor, Advances in
Cryptology - ASIACRYPT 2010 - 16th International
Conference on the Theory and Application of Cryptol-
ogy and Information Security, Singapore, December 5-9,
2010. Proceedings, volume 6477 of Lecture Notes in
Computer Science, pages 177–194. Springer, 2010.

[61] Fumiyuki Kato, Yang Cao, and Masatoshi Yoshikawa.
Preventing manipulation attack in local differential pri-
vacy using verifiable randomization mechanism. In Ken
Barker and Kambiz Ghazinour, editors, Data and Appli-
cations Security and Privacy XXXV - 35th Annual IFIP
WG 11.3 Conference, DBSec 2021, Calgary, Canada,
July 19-20, 2021, Proceedings, volume 12840 of Lec-
ture Notes in Computer Science, pages 43–60. Springer,
2021.

[62] Jonathan Katz and Yehuda Lindell. Introduction to
Modern Cryptography, Second Edition. CRC Press,
2014.

[63] Dana Keeler, Chelsea Komlo, Emily Lepert, Shannon
Veitch, and Xi He. Dprio: Efficient differential privacy
with high utility for prio. Proc. Priv. Enhancing Tech-
nol., 2023(3):375–390, 2023.

[64] Neal Koblitz and Alfred Menezes. Pairing-based cryp-
tography at high security levels. In Nigel P. Smart,
editor, Cryptography and Coding, 10th IMA Interna-
tional Conference, Cirencester, UK, December 19-21,
2005, Proceedings, volume 3796 of Lecture Notes in
Computer Science, pages 13–36. Springer, 2005.

[65] Jonathan Lee. Dory: Efficient, transparent arguments
for generalised inner products and polynomial commit-
ments. In Kobbi Nissim and Brent Waters, editors, The-
ory of Cryptography - 19th International Conference,
TCC 2021, Raleigh, NC, USA, November 8-11, 2021,
Proceedings, Part II, volume 13043 of Lecture Notes in
Computer Science, pages 1–34. Springer, 2021.

[66] Junxu Liu, Jian Lou, Li Xiong, Jinfei Liu, and Xiaofeng
Meng. Cross-silo federated learning with record-level
personalized differential privacy. In Bo Luo, Xiaojing
Liao, Jun Xu, Engin Kirda, and David Lie, editors, Pro-
ceedings of the 2024 on ACM SIGSAC Conference on
Computer and Communications Security, CCS 2024,
Salt Lake City, UT, USA, October 14-18, 2024, pages
303–317. ACM, 2024.

[67] Ueli M. Maurer. Unifying zero-knowledge proofs of
knowledge. In Bart Preneel, editor, Progress in Cryptol-
ogy - AFRICACRYPT 2009, Second International Con-
ference on Cryptology in Africa, Gammarth, Tunisia,
June 21-25, 2009. Proceedings, volume 5580 of Lecture

Notes in Computer Science, pages 272–286. Springer,
2009.

[68] Alexander May and Floyd Zweydinger. Legendre PRF
(multiple) key attacks and the power of preprocessing. In
35th IEEE Computer Security Foundations Symposium,
CSF 2022, Haifa, Israel, August 7-10, 2022, pages 428–
438. IEEE, 2022.

[69] Fredrik Meisingseth and Christian Rechberger. Sok:
Computational and distributed differential privacy for
MPC. Proc. Priv. Enhancing Technol., 2025(1):420–
439, 2025.

[70] Fredrik Meisingseth, Christian Rechberger, and Fabian
Schmid. Practical two-party computational differential
privacy with active security. Proc. Priv. Enhancing
Technol., 2025(1):341–360, 2025.

[71] Ilya Mironov. On significance of the least significant bits
for differential privacy. In Ting Yu, George Danezis, and
Virgil D. Gligor, editors, the ACM Conference on Com-
puter and Communications Security, CCS’12, Raleigh,
NC, USA, October 16-18, 2012, pages 650–661. ACM,
2012.

[72] Ilya Mironov, Omkant Pandey, Omer Reingold, and
Salil P. Vadhan. Computational differential privacy. In
Shai Halevi, editor, Advances in Cryptology - CRYPTO
2009, 29th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 16-20, 2009. Proceed-
ings, volume 5677 of Lecture Notes in Computer Sci-
ence, pages 126–142. Springer, 2009.

[73] Shigeo Mitsunari. A portable and fast
pairing-based cryptography library. https:
//github.com/herumi/mcl, 2024. Commit hash:
52366af5f5e06d02c9cd2f64ae32541786aebe28.

[74] Arjun Narayan, Ariel Feldman, Antonis Papadimitriou,
and Andreas Haeberlen. Verifiable differential privacy.
In Laurent Réveillère, Tim Harris, and Maurice Herlihy,
editors, Proceedings of the Tenth European Conference
on Computer Systems, EuroSys 2015, Bordeaux, France,
April 21-24, 2015, pages 28:1–28:14. ACM, 2015.

[75] Joseph P. Near, David Darais, Chike Abuah, Tim
Stevens, Pranav Gaddamadugu, Lun Wang, Neel So-
mani, Mu Zhang, Nikhil Sharma, Alex Shan, and Dawn
Song. Duet: An expressive higher-order language and
linear type system for statically enforcing differential
privacy. CoRR, abs/1909.02481, 2019.

[76] Alex Ozdemir and Dan Boneh. Experimenting with
collaborative zk-snarks: Zero-knowledge proofs for dis-
tributed secrets. In Kevin R. B. Butler and Kurt Thomas,
editors, 31st USENIX Security Symposium, USENIX

19

https://github.com/herumi/mcl
https://github.com/herumi/mcl

Security 2022, Boston, MA, USA, August 10-12, 2022,
pages 4291–4308. USENIX Association, 2022.

[77] Torben P. Pedersen. Non-interactive and information-
theoretic secure verifiable secret sharing. In Joan Feigen-
baum, editor, Advances in Cryptology - CRYPTO ’91,
11th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 11-15, 1991, Proceed-
ings, volume 576 of Lecture Notes in Computer Science,
pages 129–140. Springer, 1991.

[78] Thorsten Peinemann, Moritz Kirschte, Joshua Stock,
Carlos Cotrini, and Esfandiar Mohammadi. S-BDT:
distributed differentially private boosted decision trees.
In Bo Luo, Xiaojing Liao, Jun Xu, Engin Kirda, and
David Lie, editors, Proceedings of the 2024 on ACM
SIGSAC Conference on Computer and Communications
Security, CCS 2024, Salt Lake City, UT, USA, October
14-18, 2024, pages 288–302. ACM, 2024.

[79] Roie Reshef, Anan Kabaha, Olga Seleznova, and Dana
Drachsler-Cohen. Verification of neural networks’ local
differential classification privacy. In Rayna Dimitrova,
Ori Lahav, and Sebastian Wolff, editors, Verification,
Model Checking, and Abstract Interpretation - 25th In-
ternational Conference, VMCAI 2024, London, United
Kingdom, January 15-16, 2024, Proceedings, Part II,
volume 14500 of Lecture Notes in Computer Science,
pages 98–123. Springer, 2024.

[80] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman.
A method for obtaining digital signatures and public-key
cryptosystems. Commun. ACM, 21(2):120–126, 1978.

[81] John K. Salmon, Mark A. Moraes, Ron O. Dror, and
David E. Shaw. Parallel random numbers: as easy as 1, 2,
3. In Scott A. Lathrop, Jim Costa, and William Kramer,
editors, Conference on High Performance Computing
Networking, Storage and Analysis, SC 2011, Seattle, WA,
USA, November 12-18, 2011, pages 16:1–16:12. ACM,
2011.

[82] Jacob T. Schwartz. Fast probabilistic algorithms for
verification of polynomial identities. J. ACM, 27(4):701–
717, 1980.

[83] Adi Shamir. How to share a secret. Commun. ACM,
22(11):612–613, 1979.

[84] Ali Shahin Shamsabadi, Gefei Tan, Tudor Cebere, Au-
rélien Bellet, Hamed Haddadi, Nicolas Papernot, Xiao
Wang, and Adrian Weller. Confidential-dpproof: Con-
fidential proof of differentially private training. In The
Twelfth International Conference on Learning Represen-
tations, ICLR 2024, Vienna, Austria, May 7-11, 2024.
OpenReview.net, 2024.

[85] Justin Thaler. Proofs, arguments, and zero-knowledge.
Found. Trends Priv. Secur., 4(2-4):117–660, 2022.

[86] Tianhao Wang, Jeremiah Blocki, Ninghui Li, and
Somesh Jha. Locally differentially private protocols
for frequency estimation. In Engin Kirda and Thomas
Ristenpart, editors, 26th USENIX Security Symposium,
USENIX Security 2017, Vancouver, BC, Canada, Au-
gust 16-18, 2017, pages 729–745. USENIX Association,
2017.

[87] Tianhao Wang, Bolin Ding, Jingren Zhou, Cheng Hong,
Zhicong Huang, Ninghui Li, and Somesh Jha. Answer-
ing multi-dimensional analytical queries under local dif-
ferential privacy. In Peter A. Boncz, Stefan Manegold,
Anastasia Ailamaki, Amol Deshpande, and Tim Kraska,
editors, Proceedings of the 2019 International Confer-
ence on Management of Data, SIGMOD Conference
2019, Amsterdam, The Netherlands, June 30 - July 5,
2019, pages 159–176. ACM, 2019.

[88] Tianhao Wang, Ninghui Li, and Somesh Jha. Locally
differentially private frequent itemset mining. In 2018
IEEE Symposium on Security and Privacy, SP 2018, Pro-
ceedings, 21-23 May 2018, San Francisco, California,
USA, pages 127–143. IEEE Computer Society, 2018.

[89] Tianhao Wang, Milan Lopuhaä-Zwakenberg, Zitao Li,
Boris Skoric, and Ninghui Li. Locally differentially
private frequency estimation with consistency. In 27th
Annual Network and Distributed System Security Sympo-
sium, NDSS 2020, San Diego, California, USA, February
23-26, 2020. The Internet Society, 2020.

[90] Yuxin Wang, Zeyu Ding, Daniel Kifer, and Danfeng
Zhang. Checkdp: An automated and integrated ap-
proach for proving differential privacy or finding pre-
cise counterexamples. In Jay Ligatti, Xinming Ou,
Jonathan Katz, and Giovanni Vigna, editors, CCS ’20:
2020 ACM SIGSAC Conference on Computer and Com-
munications Security, Virtual Event, USA, November
9-13, 2020, pages 919–938. ACM, 2020.

[91] Chengkun Wei, Ruijing Yu, Yuan Fan, Wenzhi Chen,
and Tianhao Wang. Securely sampling discrete gaus-
sian noise for multi-party differential privacy. In Weizhi
Meng, Christian Damsgaard Jensen, Cas Cremers, and
Engin Kirda, editors, Proceedings of the 2023 ACM
SIGSAC Conference on Computer and Communications
Security, CCS 2023, Copenhagen, Denmark, November
26-30, 2023, pages 2262–2276. ACM, 2023.

[92] Yu Wei, Jingyu Jia, Yuduo Wu, Changhui Hu, Changyu
Dong, Zheli Liu, Xiaofeng Chen, Yun Peng, and
Shaowei Wang. Distributed differential privacy via shuf-
fling versus aggregation: A curious study. IEEE Trans.
Inf. Forensics Secur., 19:2501–2516, 2024.

20

Notation Definition

x←$ P x is independently sampled from a distribution P ,
the uniform distribution over a set S, or the output
distribution of a randomized function F (·)

x←$ S
x←$ F (·)
X ∼ P The random variable X has distribution P
nCli, nSer the total number of clients/servers
−→
Cli,
−→
Ser the set of potentially malicious clients/servers

Cli j , D j the jth client with sensitive local database D j
Seri the ith server who computes over the sensitive dataq

D j
y

i the secret share of D j transmitted to Seri
I j the set of servers receiving secret-shares from Cli j
Ji the set of clients secret-sharing its data to Seri
V the semi-honest verifier (e.g., data analyst) that is

interested in the computation output and therefore
verifies its authenticity

P1 ≡ P2 two distributions P1 and P2 are equivalent

a ?
= b verifier checks if a = b

Table 6: Notations

[93] Shuangqing Xu, Yifeng Zheng, and Zhongyun Hua.
Camel: Communication-efficient and maliciously secure
federated learning in the shuffle model of differential
privacy. In Bo Luo, Xiaojing Liao, Jun Xu, Engin Kirda,
and David Lie, editors, Proceedings of the 2024 on ACM
SIGSAC Conference on Computer and Communications
Security, CCS 2024, Salt Lake City, UT, USA, October
14-18, 2024, pages 243–257. ACM, 2024.

[94] Richard Zippel. Probabilistic algorithms for sparse poly-
nomials. In Edward W. Ng, editor, Symbolic and Alge-
braic Computation, EUROSAM ’79, An International
Symposiumon Symbolic and Algebraic Computation,
Marseille, France, June 1979, Proceedings, volume 72
of Lecture Notes in Computer Science, pages 216–226.
Springer, 1979.

A Additional Background

We summarize the notations used in this study in Table 6.

A.1 Local Differential Privacy

Definition A.1 (Local Differential Privacy). A mechanism
M : X → Y is (ε,δ)-locally differentially private if for any
x,x′ ∈ X and any measurable subset S⊆ Y ,

Pr [M (x) ∈ S]≤ eε Pr
[
M
(
x′
)
∈ S
]
+δ. (14)

A.2 Discrete Gaussian Mechanism

Similar to the discrete Laplacian mechanism, the discrete
Gaussian mechanism [23] involves perturbing the result with

additive discrete Gaussian noise NZ(σ
2), where

Pr
[
z←$ NZ(σ

2)
]

∝ exp
(
− z2

2σ2

)
. (15)

For any query q : D → Z with sensitivity ∆ (i.e.,
|q(D)−q(D′)| ≤ ∆ for any pair of neighboring databases D
and D′), and any ε > 0,δ > 0, perturbing the output q(D) by
the additive noise of NZ

(
∆2

ε2

)
achieves 1

2 ε2-concentrated DP

[22] and therefore (ε′,δ)-DP, where ε′ = 1
2 ε2 + ε ·

√
2log 1

δ
.

Moreover, for any multi-dimensional query q : D → Zd

where d is the dimensionality of the output, adding i.i.d.
discrete Gaussian samples to each dimension of the output,
NZd

(
∆2

ε2

)
, achieves the same DP guarantee when L2 dis-

tances in the output space Zd are used to define the sensitivity
∆ [22, 23].

A.3 Additional Details of RR
As stated in Theorem A.2, an unbiased estimator of the un-
perturbed histogram can be efficiently constructed.

Theorem A.2. Given the histogram that the data analyst
receives, n′ =

(
n′0,n

′
1, . . . ,n

′
k−1

)⊤, an unbiased estimation of
the unperturbed histogram n̂ can be formulated as

n̂←


p0 pK−1 . . . p1
p1 p0 . . . p2
...

...
...

...
pK−1 pK−2 . . . p0


−1

n′. (16)

Proof of Theorem A.2. Given the unperturbed counts

n = (n0,n1, . . . ,nK−1) ,

by Equation (3), for each k ∈ [K],

E
[
n′k
]
=

K−1

∑
k′=0

p(k−k′) mod K ·nk′ , (17)

such that

En′ =


p0 pK−1 . . . p1
p1 p0 . . . p2
...

...
...

...
pK−1 pK−2 . . . p0

n. (18)

Therefore, Equation (16) is an unbiased estimator of n.

A.4 Additional Details of PRNG
A PRNG is considered cryptographically secure if its output is
computationally indistinguishable from true randomness [62],
as formalized in Definition A.3:

21

Definition A.3. A PRNG G : S→ R, where S is the space
of random seeds, and R is the space of random outputs, is
cryptographically secure if for any PPT adversary A , there
exists µ(λ) ∈ negl(λ), such that∣∣∣∣Pr

[
A(G(s)) = 1 :

s←$ S

]
−Pr

[
A(r) = 1 :

r←$ R

]∣∣∣∣≤ µ(λ). (19)

A.5 Additional Details of ZKP
The KZG polynomial commitment [60] utilizes pairing, for-
malized as Definition A.4.

Definition A.4 (Pairing [46, 64]). Assume cyclic groups
G1,G2,GT with prime order q where the discrete log as-
sumptions hold. A pairing is a function e : G1×G2 → GT
such that

• (Bilinear) e
(
ga

1,g
b
2
)
= e(g1,g2)

ab;
• (Non-degenerate) e ̸= 1;
• (Computability) e can be efficiently computed.

The scheme comprises the following components:
• pp← SetupKZG (F,G1,G2,d−1) sets up the public param-

eters used for committing to the polynomials. Specifically,
for |F|= |G1|= |G2|= q, it samples g,h←$ G1, g2←$ G2
and τ←$ F, and computes

pp :=
(

g,gτ,gτ2
, . . . ,gτd−1

,h,hτ,hτ2
, . . . ,hτd−1

,g2,gτ
2

)
.

Note that this operation is of O(d) complexity.
• comF ← CommitKZG (F,R;pp) computes the commitment

of F≤d−1[X] using randomly sampled R←$ F≤d−1[X], as

comF := gF(τ)hR(τ) =
d−1

∏
j=0

(
gτ j
)Fj
(

hτ j
)R j

.

Note that this operation is of O(d) complexity, while the
size of the commitment is O(1).

• π← PKZG (y,x,F,R;pp) proves that y = F(x) by showing
(X− x) divides (F(X)− y). Specifically,

π :=
(

ρ := R(x),γ := g
F(τ)−y

τ−x h
R(τ)−r

τ−x

)
.

Note that this operation is of O(d) complexity, while the
size of the proof is O(1).

• accept/reject ← VKZG (y,x,π,com;pp). Specifically, the
verifier checks whether

e
(
comF ′ ,g

τ
2 ·g−x

2

)
= e
(
comF ·g−y ·h−r,g2

)
.

Note that this operation is of O(1) complexity.
In the absence of the requirement of hiding (e.g., commit-

ting to the publicly known polynomial F), the randomness R
is set as 0 and omitted in the notations. Moreover, for single-
dimensional entities, the commitment scheme (i.e.,the Peder-
sen commitment scheme [77]) corresponds to the case that
d−1, such that x ∈ F is committed as gxhr where r←$ F.

Moreover, the commitment scheme satisfies the following
properties:
• (Binding) For any pp, any PPT adversary A , and any com∈
G

Pr


F1 ̸= F2

∧CommitKZG (F1,R1;pp) = com
∧CommitKZG (F2,R2;pp) = com :

F1,F2,R1,R2← A (com,F ;pp)

≤ negl(λ),

i.e., it is hard for A to compute two valid polynomials with
the same commitment.

• (Hiding) There exists a simulator Sim such that for any pp,
Sim(pp) is computationally indistinguishable from

CommitKZG (F,R;pp) : R←$ F≤d−1[X]

for any pp and F .
Note that the verifier only has access to comF , while F

and R are kept secret by the prover. The verifier learns no
information about F due to the randomness of R.

A.6 Additional Details of Secret Sharing
In additive secret sharing scheme, the secret x ∈ F is split
into n shares such that the sum of all shares equals the secret.
Formally, for n shares, (JxKi)i∈[n−1] are uniformly randomly
chosen from F, and the final share is computed as:

JxKn−1 = x−
n−2

∑
i=0

JxKi . (20)

This ensures that the sum of all shares equals the original se-
cret x. The threshold t for recovering the secret in this scheme
is n, meaning that any n shares can be used to reconstruct the
secret, while fewer than n shares are uniformly random and
provide no information about x.

The multi-dimensional version of this scheme is straight-
forwardly Equation (20) applied element-wise, with each ele-
ment of the secret vector shared independently.

B Details for VDDP (Section 3)

B.1 Adversary’s View in I2DP
In this appendix, we formalize the collective view of the adver-
saries C in a I2DP Π as in Figure 6. Note that the adversaries
C update their collective internal state st upon receiving any
additional information from the honest parties. In Lines 1 to
6, the honest parties compute the secret shares and their com-
mitments, such that C is transmitted the secret shares from j
to all servers in I j\H j, S, and the corresponding randomness
terms R used in the commitment schemes, in addition to the
commitments C of the secret share from Cli j to each server in
I j, which have all been transmitted to the verifier. With addi-
tional information of S,R,C, in Lines 7 to 11, C determines

22

ViewC
Π (D j;pp)

1 :
(q

D j
y

i

)
i∈In
←$ SecretShare(D j)

2 :
q

r j
y

i←$ Pr,∀i ∈ I j

3 :
q
com j

y
i← CommitShare

(q
D j

y
i ,

q
r j

y
i ;pp

)
,∀i ∈ I j

4 : S :=
(q

D j
y

i

)
i∈I j\H j

5 : R :=
(q

r j
y

i

)
i∈I j\H j

6 : C :=
(q

com j
y

i

)
i∈H j

7 :
(q

D j′
y

i ,
q

r j′
y

i

)
i∈H j , j′∈JH j \{ j} ,st←$ C1 (S,R,C;pp)

8 : foreach i ∈ H j, j′ ∈ JH j\{ j} do

9 :
q
com j′

y
i← CommitShare

(q
D j′

y
i ,

q
r j′

y
i ;pp

)
10 : endfor
11 :

(q
com j′

y
i′
)

i/∈H j , j′ /∈JHj
,st←$ C2 (st;pp)

12 : foreach i ∈ H j do
13 : σi←$ Pσ,ρi←$ Pρ

14 : ψi← CommitOb(σi,ρi;pp)

15 : endfor
16 : Ψ := (ψi)i∈H j

17 : (ψi)i/∈H j
,st←$ C3 (st,Ψ;pp)

18 : −→pc←$ P⊗nSer
pc

19 : πdata←$ tr
[
Πdata

(
Cli j,com j;pp

)]
20 : foreach j′ ̸= j do
21 : bClij′ ,st←$ Πdata

(
C4(st,

−→pc,πdata),com j′ ;pp
)

22 : endfor

23 : J∗←
{

j′ : bClij′ = 1
}

// j ∈ J∗

24 : foreach i ∈ H j do
25 : JDKi← AggrShare

(q
D j

y
i ,J
∗∩ Ji

)
26 : JyKi← f (JDKi ,σi,pci)

27 : πcomp,i←$ tr [Πcomp (Seri,JyKi ,JcomKi ,ψi,pci;pp)]

28 : endfor
29 : Y := (JyKi)i∈H j

30 : −→π comp :=
(
πcomp,i

)
i∈H j

31 : return st,Y,−→π comp

Figure 6: Adversaries’ view in an I2DP Π.

the secret shares transmitted back to the honest parties, and
the commitments of the secret shares from all clients other
than Cli j. Then, in Lines 12 to 16, the servers in H j compute
and commit to the obfuscation factors σi, such that C has the
knowledge of their commitments Ψ. In Line 17, C computes
the commitments of the obfuscation factors of all servers not
in H j. In Lines 19 and 20 to 22, Cli j and the other clients
conduct Πdata, respectively. Since the verifier is semi-honest,
Cli j’s proof πdata is accepted, and the accepting bits bClij′ for

other clients are also correctly determined by the verifier. In
Lines 24 to 28, each server in H j computes f honestly, accom-
panied with the accepted proof, on the data aggregated over
the clients Cli j and all other accepted clients in J∗. The final
view of C contains the output of the servers in H j (denoted Y
as in Line 29), the proofs (denoted −→π comp as in Line 30), as
well as the previous internal state st which may carry all the
information transmitted from the honest parties.

B.2 Details of VDBM

We first formalize the translation from the central DP guaran-
tee of the binomial mechanism to that of the distributed DP
guarantee of VDBM as Lemma B.1. The proof of Lemma
B.1 is deferred and merged with that of Lemma 4.3, as in
Appendix C.3.

Lemma B.1. The server function of VDBM is (nSer−1,ε,δ)-

DDP where ε = 10
√

1
nb

ln 2
δ

and δ = o
(

1
nb

)
, when nb > 30

is a constant.

We then present the modification of ΠBin which violates
the zero-knowledge property yet preserves the DP property
as described in Theorem 3.12. First, observe that, in the origi-
nal zero-knowledge version, ΠBin has the same distribution
of proof transcripts for x = 0 and x = 1. By considering 0
and 1 neighboring inputs, this is equivalent to 0-DP. There-
fore, we aim at generalizing the original version with privacy
parameters ε′ > 0.

We present the modified protocol Π
K,ξ
Bin in Figure 7, where

PK,ξ is defined for any integer 1≤ K ≤ |F|−1
2 and real number

ξ≥ 1 such that

Pr
[
k←$ PK,ξ

]
=


2

ξ+1
1
|F| if k = 0,2,4, . . . ,2K−2

2ξ

ξ+1
1
|F| if k = 1,3,5, . . . ,2K−1

1
|F| otherwise

.

(21)
Note that ξ = 1 corresponds to the original zero-knowledge
version, and setting ξ > 1 is the only modification made to
the original ΠBin.

Lemma B.2. Π
K,ξ
Bin satisfies the conditions in Theorem 3.12

with ε′ = logξ and δ′ = 0.

Proof of Lemma B.2. The view can be simulated by

23

PBin (x = 0,rx,comx;g,h) VBin (comx;g,h)
1 : b,e1←$ F,v1←$ PK,ξ

2 : d0← hb,d1← hv1

(
c
g

)−e1
(d0,d1) (d0,d1)

3 : e0← e− e1,v0 = b+ e0rx
e e←$ F

4 : (v0,e0,v1,e1) e0 + e1
?
= e∧ come0

x
?
= hv0 ∧ come1

x
?
= ge1 hv1

PBin (x = 1,rx,comx;g,h) VBin (comx;g,h)
1 : b,e0←$ F,v0←$ PK,ξ

2 : d0← hv0 c−e0 ,d1← hb (d0,d1) (d0,d1)

3 : e1← e− e0,v1 = b+ e1rx
e e←$ F

4 : (v0,e0,v1,e1) e0 + e1
?
= e∧ come0

x
?
= hv0 ∧ come1

x
?
= ge1 hv1

Figure 7: Π
K,ξ
Bin , protocol for proving the knowledge of x ∈ {0,1} and r ∈ F such that comx = gxhr. ξ = 0 corresponds to the

original zero-knowledge version [31, 33, 85].

Sim
K,ξ
Bin (x,comx;g,h)

1 : if x = 1 do
2 : (v0,e0,v1,e1)←$ PK,ξ×F×F×F

3 : elseif x = 0 do
4 : (v0,e0,v1,e1)←$ F×F×PK,ξ×F

5 : endif
6 : e← e0 + e1

7 : d0← com−e0
x ·hv0

8 : d1← com−e1
x ·ge1 hv1

9 : return v0,e0,v1,e1,e,d0,d1,

which satisfies the condition in Theorem 3.12, with the sam-
pling of (v0,v1) as G(·) and the remaining part as h.

In particular, note that the outputs of G(0) and G(1) are the
uniform distributions over F×PK,ξ and PK,ξ×F respectively.
For any (a,b) ∈ F2, the

Pr[G(0) = (a,b)]
Pr[G(1) = (a,b)]

≤
1
|F| ·

2ξ

ξ+1
1
|F|

2
ξ+1

1
|F| ·

1
|F|

= ξ. (22)

Symmetrically, it also holds that Pr[G(1)=(a,b)]
Pr[G(0)=(a,b)] ≤ ξ. Therefore,

G is (logξ,0)-DP.

Therefore, the modified protocol still satisfies
(nSer−1,ε+ logξ,δ)-VDDP. It is also worth noting
that the completeness and knowledge soundness are pre-
served, as the modification only involves the shifting of the
sampling distribution of either v0 or v1.

B.3 Deferred Proofs

In this appendix, we present the missing proofs in Section 3.

Proof of Lemma 3.5. Condition on any fixed tuple of

(σ0,σ1, . . . ,σnSer−1).

By the Definition 3.3, the conditional distribution of
f (xi,σi,pci) is identical to F (xi). Moreover, since all pcis
are i.i.d. sampled, the conditional distributional distributions
of the f (xi,σi,pci)s is identical to

⊗
i∈[nSer] F (xi). There-

fore, for any joint distribution of σis, the joint distribution
of f (xi,σi,pci) are identically

⊗
i∈[nSer] F (xi).

Proof of Theorem 3.9. We construct the knowledge extractor
Ext by assembling an independent instance of Extdata for each
client, and an independent instance of Extcomp for each server.
Denote µdata(λ),µcomp(λ) as the soundness error of Extdata
and Extcomp, respectively.

For any deterministic set of prover strategies
−→
Cli∗,
−→
Ser∗, by

running the multiple instances of Πdata and Πcomp, as well
as Extdata and Extcomp independently, conditioned on any
fixed bCli (therefore fixed JcomKis) and Y := (JyKi)i∈[nSer], for
any subset I∗ ⊆ [nSer] and J∗ ⊆ [nCli], there exists µSer(λ) ∈

24

negl(λ) such that the probability that

∏
i∈I∗

Pr


JyKi = f (JDKi ,σi,pci)

∧JcomKi = Commit(JDKi ,JrKi ;pp)
∧ψi = CommitOb(σi,ρi;pp) :

(JDKi ,JrKi ,σi,ρi)←
Extcomp (Ser

∗
i ,JyKi ,JcomKi ,ψi,pci;pp)

∣∣∣∣∣∣∣∣∣∣
bCli,Y


(23)

≥∏
i∈I∗

(
Pr
[

bSeri = 1
∣∣bCli,Y

]
−µSer(λ)

)
(24)

≥∏
i∈I∗

Pr
[

bSeri = 1
∣∣bCli,Y

]
−nSerµSer(λ) (25)

Therefore, averaging over all possible values of
(
bCli,Y

)
,

Pr


JyKi = f (JDKi ,σi,pci)

∧JcomKi = Commit(JDKi ,JrKi ;pp)
∧ψi = CommitOb(σi,ρi;pp)

(JDKi ,JrKi ,σi,ρi)←
Extcomp (Ser

∗
i ,JyKi ,JcomKi ,ψi,pci;pp)

: ∀i ∈ I∗


≥ Pr

[
bSer

i = 1 : i ∈ I∗
]
−nSerµSer(λ) (26)

Similarly, there exists µCli(λ) ∈ negl(λ), such that

Pr
[

D j ∈D ∧ com j = Commit(D j,r j;pp) :
D j,r j← ExtCli

(
Cli∗j ,com j;pp

) : ∀ j ∈ J∗
]

≥ Pr
[
bCli

j = 1 : j ∈ J∗
]
−nCliµCli(λ) (27)

Furthermore, conditioned on any bSer and bCli, for (I,J)←
IdUsable(I∗,J∗), by the homomorphic commitments,

AggrDBCom(com j : j ∈ J) =

RecDBCom(JcomKi : i ∈ I) , (28)

such that the LHS of (28) is a valid commitment of DCli←
AggrDB(D j : j ∈ J), and the RHS of (28) is a valid commit-
ment of DSer← RecDB(JDKi : i ∈ I). Therefore, by the bind-
ing properties of the commitment schemes, µcom(λ)∈ negl(λ)
such that Pr [DCli ̸= DSer]≤ µcom (λ).

Summarizing all the above, the total soundness error of
the extraction is nSerµSer(λ)+nCliµCli(λ)+µcom(λ)∈ negl(λ),
since nSer,nCli ∈ negl(λ).

Proof of Theorem 3.12. Given that commitment schemes are
hiding, Πcomp is zero-knowledge, and the existence of Simdata,
for any instantiation of C, there exist PPT algorithms C1 and
C2 such that ViewC

Π (D j;pp) can be simulated by SimC
Π (D j)

as defined below:

SimC
Π (D j;pp)

1 :
(q

D j
y

i

)
i∈In
←$ SecretShare(D j)

2 : S :=
(q

D j
y

i

)
i∈I j\H j

3 :
(q

D j′
y

i

)
i∈H j , j′∈JHj \{ j} ,st1←$ C1 (S;pp)

4 : G←$ G(D j)

5 : J∗,st2←$ C2 (st1,G;pp) // j ∈ J∗

6 : −→pc←$ P⊗nSer
pc

7 : foreach i ∈ H j do
8 : σi←$ Pσ

9 : JDKi← AggrShare
(q

D j
y

i ,J
∗∩ Ji

)
10 : JyKi← f (JDKi ,σi,pci)

11 : endfor
12 : Y := (JyKi)i∈H j

13 : return st2,Y,
−→pc

By the design of RD, pci causes no additional information
leakage. Moreover, since the secret shares S leak no informa-
tion, the distribution of S is the same given any D j, which is
denoted as PS. Therefore, the simulator is equivalent to:

SimC
Π (D j;pp)

1 : S←$ PS

2 :
(q

D j′
y

i

)
i∈H j , j′∈JHj \{ j} ,st1←$ C1 (S;pp)

3 : G←$ G(D j)

4 : J∗,st2←$ C2 (st1,G;pp) // j ∈ J∗

5 :
(q

D j
y

i

)
i∈H j
←$ PartialShare

(
D j,S

)
6 : foreach i ∈ H j do
7 : JDKi← AggrShare

(q
D j

y
i ,J
∗∩ Ji

)
8 : JyKi←$ F (JDKi)

9 : endfor
10 : Y := (JyKi)i∈H j

11 : return st2,Y

By Definition 3.2, Lines 5 to 10 are equivalent to

ViewC
DDP

(
D j,S,

(q
D j′

y
i

)
i∈H j , j′∈JHj \{ j} ,J

∗
)

=S

(
M (D j),S,

(q
D j′

y
i

)
i∈H j , j′∈JHj \{ j} ,J

∗
)
, (29)

where M is (ε,δ)-DP and S is a PPT function. Therefore,
the simulator is equivalent to the following:

25

SimC
Π (D j;pp)

1 : S←$ PS

2 :
(q

D j′
y

i

)
i∈H j , j′∈JHj \{ j} ,st1←$ C1 (S;pp)

3 : G←$ G(D j)

4 : J∗,st2←$ C2 (st1,G;pp)

5 : Y ←S

(
M (D j),S,

(q
D j′

y
i

)
i∈H j , j′∈JHj \{ j} ,J

∗
)

6 : return st2,Y

Moreover, observe the outputs of Lines 1 and 2 do not de-
pend on D j. Meanwhile, in Line 3, G is (ε′,δ′)-DP. Therefore,
by sequential composition and post-processing,

S,
(q

D j′
y

i

)
i∈H j , j′∈JHj

,J∗,st2

is (ε′,δ′)-DP. Moreover, since M (·) is (ε,δ)-DP, by sequen-
tial composition and post-processing again, SimC

Π (D j;pp) is
(ε+ ε′,δ+δ′)-DP.

C Details for VDDLM (Section 4)

C.1 Verifiable Sampling from Bernoulli Distri-
butions

To realize the verifiable sampling of the Bernoulli distribution
with any parameter 0 < p∗ < 1, we utilize Algorithm 2 to con-
vert the generated fair coins to unfair ones. We precompute an
approximation of the real number p∗ as a binary representa-
tion p = 0.β0β1 . . .βν−1. WLOG, we assume βν−1 = 1, or the
trailing zero can be removed. The correctness of Algorithm 2
is stated in Lemma C.1.

Algorithm 2 Approximate sampling of Ber(p∗)
Require: p∗ ∈ (0,1); precision parameter ν; precomputed

p = 0.β0β1 . . .βν−1; βν−1 = 1; input b ∈ {0,1}ν

1: function CBer(b; p∗,ν)
2: r← bν−1
3: for i← ν−2,ν−3, . . . ,0 do
4: if βi = 1 then r← r∨bi else r← r∧bi
5: end for
6: return r
7: end function

Lemma C.1. With b←$ {0,1}ν, CBer (b; p∗,ν) follows the

distribution of Ber
(

0.β0β1 . . .βν−1

)
.

Proof of Lemma C.1. Clearly, when ν = 1, b0 is a fair coin.
Inductively, if Lemma C.1 holds for ν = N, then when ν =
N + 1, r ∼ Ber (p) where p = 0.β1β2 . . .βN at the end of it-
eration i = 1. Then if β0 = 0, by the ∧ operation and uni-
form randomness of b0, after iteration i = 0, r ∼ Ber

(p
2

)

such that p
2 = 0.0β1β2 . . .βN . Similarly, if β0 = 1, by the ∨

operation and uniform randomness of b0, after iteration i = 0,
r ∼ Ber

(
1+p

2

)
such that 1+p

2 = 0.1β1β2 . . .βN .

C.2 Utility and Overhead Analysis of VDBM
In VDBM, the additive noise is drawn from Binom

(
nb,

1
2

)
,

such that (ε,δ)-DP is satisfied with ε = 10
√

1
nb

log 2
δ
. There-

fore, nb = Θ

(
1
ε2 log 1

δ

)
, which, unlike VDDLM, admits a di-

rect dependence on the privacy costs.
Therefore, with nSer servers, the expected L1 error of the

binomial mechanism in each dimension after removing the
bias terms becomes

Ex←$Binom(nSernb,
1
2)

∣∣∣x− nSernb

2

∣∣∣ (30)

≤2−nSernbnSernb

(
nSernb−1⌊ nSernb

2

⌋) (31)

≤
Γ
(⌈ nSernb

2

⌉
+ 1

2

)
√

πΓ(
⌈ nSernb

2

⌉
)

(32)

By Stirling’s formula, Equation (32) is Θ
(√

nSernb
)
.

As nb = Θ

(
1
ε2 log 1

δ

)
, the overall expected L1 error is

Θ

(√
nSer
ε

√
log 1

δ

)
, and therefore Θ

(√
nSerd

ε

√
log 1

δ

)
with d

dimensions. Moreover, the prover’s overhead is proportional
to the product of nb and d, and is therefore Θ

(
d
ε2 log 1

δ

)
.

Since the communication and verifier’s overhead highly
depend on the exact implementation [85], we report these
complexities of actual implementation in Table 1. VDDLM
achieves a more significant improvement in these aspects
than in the prover’s overhead, thanks to the use of the data
representation and KZG commitment scheme in Section 2.2.

C.3 Deferred Proofs
In this appendix, we present the missing the proofs in Section
4.

Proof of Theorem 4.2. For any subset S⊂ Z and neighboring
databases D,D′, we consider

S+ :=S∩
(
Supp(M (D))∩Supp

(
M
(
D′
)))

(33)

S− :=S∩
(
Supp(M (D))\Supp

(
M
(
D′
)))

, (34)

such that

Pr[M (D) ∈ S] =Pr[M (D) ∈ S+]+Pr[M (D) ∈ S−] (35)

WLOG, assuming q(D′)−q(D) = 1, then

Supp(M (D))\Supp
(
M
(
D′
))

= {q(D)−2γ} .

26

Therefore,

Pr[M (D) ∈ S−]≤Pr[M (D) = q(D)−2γ] (36)
=Pr[−2γ← CLap] (37)
=Pr[bz = 1,s =−1,a = 2γ] (38)

=(1− pz) ·
1
2
·

γ−1

∏
i=0

pi (39)

=δ. (40)

Note that the equality holds iff q(D)−2γ ∈ S.
Furthermore, given any r ∈ {−2γ +1, . . . ,2γ}, the proba-

bility

Pr[M (D) = q(D)+ r] = Pr[r← CLap] (41)
Pr[M (D′) = q(D)+ r] = Pr[r−1← CLap] (42)

As we aim at upper bounding Pr[M (D) = q(D) + r] by
Pr[M (D′) = q(D) + r], we only need to consider the case
that r ≤ 0.

If r = 0, the ratio of the two probabilities

Pr[M (D) = q(D)+ r]
Pr[M (D′) = q(D)+ r]

=
pz

1−pz
2 ∏

γ−1
i=0 (1− pi)

= az. (43)

Otherwise, by representing

r =−b100 . . .0︸ ︷︷ ︸
i×

(44)

r+1 =−b011 . . .1︸ ︷︷ ︸
i×

(45)

for any bit string b, the ratio between the two probabilities
becomes

Pr[M (D) = q(D)+ r]
Pr[M (D′) = q(D)+ r]

=
pi ∏

i−1
j=0(1− p j)

(1− pi)∏
i−1
j=0 p j

= ai (46)

Therefore,

Pr[M (D) ∈ S+]≤ eε Pr[M
(
D′
)
∈ S], (47)

where the equality holds when the S+ is a subset of the maxi-
mizer in Equation (11).

Summarizing all above,

Pr[M (D) ∈ S]≤ eε Pr[M
(
D′
)
∈ S]+δ, (48)

the equality holds for S = S+∪S− where S+ and S− satisfy
the aforementioned equality conditions.

Proof of Lemmas B.1 and 4.3. WLOG, consider Cli0 with
H0 = [τ′] where τ′ ≤ nSer − 1. Consider any single-
dimensional counting query M (x) := x+ r (where x ∈ F is
the unperturbed count, and r is an additive noise such that
Supp(r) ⊂ F) that achieves (ε,δ)-DP, which is the case for

both the binomial mechanism and the modified Laplacian
mechanism. The multidimensional version extends M to d-
dimensional for any d ≥ 1 such that M is applied element-
wise, i.e.,

M (x0,x1, . . . ,xd−1) := (M (x0) ,M (x1) , . . . ,M (xd−1)) .

By the independence among all d dimensions, for any x,x′ ∈
Fd such that ∥x−x′∥1 ≤ 1,

Pr [M (x) ∈ S]≤ eε Pr
[
M (x′) ∈ S

]
+δ.

Therefore, M achieves (ε,δ)-DP. For VDDLM where the
additive randomness is sampled using LPRF, the actual real-
ization of M achieves (ε,δ)-CDP.

Consider

Sim(x0,Sout,Sin,J∗)

1 : y0←$ M ◦ · · · ◦M︸ ︷︷ ︸
τ′×

(x0)

2 : for i← 1,2, . . . ,τ′−1 do

3 : Jy0Ki←$ Fd

4 : JyKi← Jy0Ki + ∑
j∈J∗\{0}

q
x j

y
i

5 : endfor

6 : Jy0K0← y0−
τ′−1

∑
i=1

Jy0Ki−
nSer−1

∑
i=τ′

Jx0Ki

7 : JyK0← Jy0K0 + ∑
j∈J∗\{0}

q
x j

y
0

8 : return JyK0

which perfectly simulates ViewC
F (D j,Sout,Sin,J∗) for any

Sout :=(Jx0Ki)τ′≤i≤nSer−1 (49)

Sin :=
(
Jx jKi ,Jx jKi , . . . ,Jx jKi

)
i∈[τ′]

1≤ j≤nCli−1
(50)

and J∗⊆ [nCli]\{0}. By post-processing, Sim(x0,Sout,Sin,J∗)
satisfies the conditions in Definition 3.2. Therefore, for both
VDBM and VDDLM, the underlying F are (nSer− 1,ε,δ)-
DDP.

Proof of Theorem 4.5. We follow the notation in Section 4.1.
Conditioning on bz,

E
∣∣M (D)−q(D)

∣∣ (51)
=pz ·0+(1− pz)Ea (52)

=(1− pz)

(
1+

γ−1

∑
i=0

2i Pr [ri = 1]

)
(53)

=(1− pz)

(
1+

γ−1

∑
i=0

2i pi

)
(54)

27

C.4 Generalization of Theorem 4.2

Theorem C.2 (Theorem 4.2, generalized). Given query q :
D→Z with sensitivity ∆≥ 1, the modified discrete Laplacian
mechanism defined in Theorem 4.2 satisfies (ε,δ)-differential
privacy, where

ε = ∆ · log
(
max

{
az,a0, . . . ,aγ−1

})
, (55)

δ = ∑
i∈[∆]

Pr[−2γ + i← CLap], (56)

where az and ais are defined in Theorem C.2.

Proof of Theorem C.2. For any subset S⊂ Z and neighbour-
ing databases D,D′, we consider

S+ :=S∩
(
Supp(M (D))∩Supp

(
M
(
D′
)))

(57)

S− :=S∩
(
Supp(M (D))\Supp

(
M
(
D′
)))

, (58)

such that

Pr[M (D) ∈ S] =Pr[M (D) ∈ S+]+Pr[M (D) ∈ S−]. (59)

WLOG, assuming q(D′)−q(D) = ∆, then

Supp(M (D))\Supp
(
M
(
D′
))

= {q(D)−2γ + i : i ∈ [∆]} .

Therefore,

Pr[M (D) ∈ S−]≤
∆−1

∑
i=0

Pr[M (D) = q(D)−2γ + i] = δ. (60)

Furthermore, given any r ∈ {−2γ +∆, . . . ,2γ}, the proba-
bility

Pr[M (D) = q(D)+ r] =Pr[r← CLap], (61)
Pr[M (D′) = q(D)+ r] =Pr[r−∆← CLap]. (62)

As we aim at upper bounding Pr[M (D) = q(D) + r] by
Pr[M (D′) = q(D)+ r], by repeatedly applying the argument
in the proof of Theorem 4.2, the ratio of the probability is
upper bounded by(

max
{

az,a0, . . . ,aγ−1
})∆

,

such that

Pr[M (D) ∈ S+]≤ eε Pr[M
(
D′
)
∈ S]. (63)

Summarizing all the above,

Pr[M (D) ∈ S]≤ eε Pr[M
(
D′
)
∈ S]+δ. (64)

C.5 Discussions on extending to discrete Gaus-
sian mechanism

We argue that the extension of VDDLM to the distributed
discrete Gaussian mechanism is likely to result in efficiency
issues due to the underlying sampling methods of the dis-
crete Gaussian mechanism. The current sampling algorithms
of the discrete Gaussian distribution utilize rejection sam-
pling [23], which is equivalent to a circuit with indefinite
depth. To preserve completeness and ensure that all dimen-
sions are accepted, all parties need to prescribe that the rejec-
tion sampling loop be executed for a sufficiently large number
of iterations, especially for higher dimensions. Although the
existing MPC mechanisms [91] propose dynamically termi-
nating the rejection sampling loop by revealing the acceptance
bits in each iteration, transplanting this workaround to VDDP
will significantly increase the verifier’s load by multiplying
the total number of iterations. Therefore, the verifiable execu-
tion of the discrete Gaussian mechanism would benefit from
the development of alternative sampling methods.

D Details for VRR (Section 5)

D.1 Proof of polynomial evaluation
As the the proposed scheme involves evaluations of publicly-
known polynomials at private values, we describe in Figure
8 the corresponding protocol where the prover PEvSc to the
verifier VEvSc that y = F(x) for a publicly-known polynomial
y included in the public parameters as gF(τ) and private values
x,y ∈ F committed as comx and comy, respectively.

Lemma D.1. Given 2(K +2) accepting transcripts, namely

π
(k,i) =

(
comF ′ ,u

(k),com
(k)
z′ ,π

(k,i)
Prod,π

(k)
KZG,π

′
KZG

(k)
)

for 1 ≤ k ≤ K + 2 and i ∈ {1,2}, it can be extracted from
x,rx,y,ry ∈ F such that

comx = gxhrx ∧ comy = gyhry ∧ y = F(x).

Proof of Lemma D.1. For each 1≤ k ≤ K +2, by the knowl-
edge soundness of PProd ↔ VProd, since u(k) and z(k) =
F
(

u(k)
)

are both public, it can be extracted from π(k,1) and

π(k,2) the values x,rx,y,ry,z′
(k),r′z

(k) such that

y−F
(

u(k)
)
=
(

x−u(k)
)

z′∧

comx = gxhrx ∧ comy = gyhry ∧ comz′ = gz′hr′z .

By the Diffie-Hellman assumption, the extracted x,rx,y,ry are
the same.

Furthermore, in Line 6, by the knowledge of exponent as-
sumption, it can be extracted G(k),R(k)

G ∈ F≤K [X] such that

G(k)(u) = 0∧ comF ′ ·
(
com

(k)
z′

)−1
= gG(k)(τ)hR(k)

G (τ),

28

PEvSc

(
y,ry,x,rx,F,comy,comx;pp

)
VEvSc

(
comy,comx,gF(τ);pp

)
1 : F ′(X)← y−F(X)

(x−X)
,R′F (X)←$ F≤K [X]

2 : comF ′ ← CommitKZG
(
F ′,R′F ;pp

) comF ′ comF ′

3 : z← F(u),z′← F ′(u),r′z←$ F u u←$ F

4 : comz′ ← gz′hr′z comz′ comz′

5 : PProd

(
y− z,ry,x−u,rx,z′,r′z,comy ·g−z,comx ·g−u,comz′ ;pp

)
πProd VProd

(
comy ·g−z,comx ·g−u,comz′ ;pp

)
6 : πKZG← PKZG (z,u,F ;pp) πKZG VKZG (z,u,πKZG,comF ;pp)

7 : π
′
KZG← PKZG

(
0,u,F ′− z′,R′F − r′z;pp

)
π
′
KZG VKZG

(
0,u,π′KZG,comF ′ · com−1

z′ ;pp
)

Figure 8: Protocol for proving y = F(x) for public F ∈ F[X] can secret x,y ∈ F.

therefore, for F ′(X)← G(k)(X)+ z′, R′F ← R(k)
G (X)+ r′z,

F ′
(

u(k)
)
= z′∧ comF ′ = gF ′(τ)hR′F (τ),

where the uniqueness of F ′ and R′F are also by the Diffie-
Hellman assumption.

Therefore,

y−F
(

u(k)
)
=
(

x−u(k)
)

F ′
(

u(k)
)
,

for all K + 2 different u(k)s. Since LHS and RHS are both
at most of degree K + 1, it must hold that y−F(X) = (x−
X)F ′(X), such that y = F(x).

Lemma D.2. For any pp ∈ Supp
(
Setup

(
1λ
))

, y,ry,x,rx ∈ F,
F ∈ F≤K [X] and comx ∈G such that

y = F(x)∧ comx = gxhrx ∧ comy = gyhry ,

there exists a simulator

SimEvSc (comy,comx,F ;pp)

com′z←$ G
u←$ F

πProd←$ SimProd

(
comz,comx ·g−u,comz′ ;pp

)(
c′,π′KZG

)
←$ SimKZG (0,u;pp)

πKZG← PKZG (F(u),u,F ;pp)

comF ′ ←$ c′ · comz′

return comF ′ ,u,comz′ ,πProd,πKZG,π
′
KZG

that perfectly simulates the the view of VEvSc, that is

View

[
PEvSc (y,ry,x,rx,F,comy,comx;pp)

↔ VEvSc

(
comy,comx,gF(τ);pp

)]
= SimEvSc (comy,comx,F ;pp) , (65)

Proof of Lemma D.2. We first consider the joint distribution
of transcript π in PEvSc↔VEvSc described in Figure 8. Clearly,
the marginal distribution of (u,comz′) is the uniform distribu-
tion in F×G. Moreover, due to the uniform randomness of
R′F , the conditional distribution of π′KZG on (u,comz′), where

π
′
KZG =

(
ρ
′ := R′F(u)− r′z,γ

′ := g
F ′(τ)−F ′(u)

τ−u h
R′F (u)−R′F (τ)

τ−u

)
,

(66)

is the uniform distribution over F×G. Therefore, the afore-
mentioned joint distribution is the uniform distribution over

G×F× (F×G),

which is perfectly simulated by SimEvSc.
Moreover, SimEvSc correctly captures that

• πProd can be perfectly simulated using

SimProd

(
comz,comx ·g−u,comz′ ;pp

)
,

• comF ′ and πKZG can be deterministically computed from(
u,com′z,π

′
KZG

)
and the only inputs to SimEvSc, i.e., comy,comx,F,pp.
This concludes the proof of the equality of distributions in

(65).

29

D.2 Proof of Theorem 5.1
By Theorem 3.11, to prove Theorem 5.1, it suffices to prove
the completeness, soundness, and zero-knowledge of the pro-
tocol described in Figure 5.

Proof Sketch of Theorem 5.1 (completeness). The complete-
ness of Figure 5 directly follows from that of the subroutines
involved.

Proof of Theorem 5.1 (soundness). In Figure 5, consider
4(|Ω|+2) accepting transcripts(

comz,α
(j),π

(j,k)
EvSc,π

(j)
Prod

)
where j ∈ {1,2} and 1≤ k≤ 2(|Ω|+2). By Lemma D.1, for
each j ∈ {1,2}, it can be extracted z,rz, t,rt from π

(j,k)
Prods such

that

z = F(t)+α
(j)FΩ(t)∧gzhrz = comz∧gthrt = comt .

With a(1) ̸= a(2), it must hold that

F(t) = z∧FΩ(t) = 0.

Therefore, for it ← logω t, and iσ← it − ipc, we have z =
F(ωiσ+ipc). Moreover, by

gω
iσ+ipc

hrt = comt = ψ
ω

ipc
,

it holds that for rσ← rtω
−ipc , gωiσ hrσ =ψ. Finally, from π

(1)
Prod

and π
(2)
Prod it can be extracted x,rx such that com= gxhrx and

y = xz = xF(ωiσ+ir). Moreover, since y ∈ X and F(ωiσ+ir),
x = yF(ωiσ+ir)

−1 ∈ X .

Proof Sketch of Theorem 5.1 (zero-knowledge). Given out-
put y, hiding commitments com,ψ and the public coin ipc,
the view of verifier in Figure 5 can be simulated by

SimRR (com,ψ,y, ipc;pp)

comz←$ G
α←$ F

πEvSc← SimEvSc

(
comz,ψ

ωipc
,F +αFΩ;pp

)
πProd← SimProd (g

y,comz,com;pp)

return comz,α,πEvSc,πProd

E Additional experiments on VRR

We conduct further experiments to measure the running time
of the different components in VRR and record the results
as shown in Figure 9. It can be observed that the proving
time is the most time-consuming component and linearly

64 128 256 512 1024 2048 4096
| |

10 5

10 4

10 3

10 2

10 1

100

Ti
m

e
(s

)

Setup Committing Computing Proving Verifying

Figure 9: Running time of each component of VRR.

increases with respect to |Ω| (the quantization accuracy of the
probability space), as projected in Section 5.3. Meanwhile,
the setup of the public parameters takes a similar amount
of time but is only executed once in the entire system. The
computing times admit a similar increase as the proving time
but are negligible compared to the time needed to conduct the
proofs by the same clients. Since only a constant amount of
values need to be committed, the committing time by each
client is mostly constant. Additionally, the verifier only takes
constant time to authenticate the output by each client, as
described in Section 5.3, therefore significantly increasing the
scalability of VRR.

F Additional Related Work

Due to concerns related to compatibility with cryptographic
primitives, the discrete DP mechanisms [6,23,48] and the dis-
tributed DP mechanisms [1, 2, 27, 57] constructed over them
via SecAgg [19] have been considered for constructing the se-
cure computations, including MPCs and verifiable executions,
of DP mechanisms.

While deviations from DP mechanisms may cause adver-
sarial behaviors, the correctness of the mechanisms may also
lead to unintentional privacy leakages. Therefore, verifica-
tion tools in programming languages have been applied to
ensure that the mechanisms, as programs, are bug-free and
can achieve the claimed DP guarantees [75, 79, 90]. Note that
these studies focus on a different aspect of security in DP
mechanisms, which may serve as complementary but do not
overlap with the verifiable executions of the protocols.

30

	Introduction
	Preliminaries
	Differential Privacy (DP)
	Cryptographic Primitives

	Privacy Definition
	Problem Setup
	Towards Verifiability: Challenges
	Randomness Disentanglement
	I2DP: Interactive Distributed Proof of Differential Privacy
	Security Guarantees
	Privacy Guarantees

	VDDLM: Verifiable Distributed Discrete Laplacian Mechanism
	Construction of RD for VDDLM
	Design of the VDDLM Protocol
	Analysis of VDDLM

	VRR: Verifiable Randomized Response
	Construction of RD for VRR
	Design of the VRR Protocol
	Analysis of VRR

	Experiments
	Related Work
	Conclusion
	Additional Background
	Local Differential Privacy
	Discrete Gaussian Mechanism
	Additional Details of RR
	Additional Details of PRNG
	Additional Details of ZKP
	Additional Details of Secret Sharing

	Details for VDDP (Section 3)
	Adversary's View in I2DP
	Details of VDBM
	Deferred Proofs

	Details for VDDLM (Section 4)
	Verifiable Sampling from Bernoulli Distributions
	Utility and Overhead Analysis of VDBM
	Deferred Proofs
	Generalization of Theorem 4.2
	Discussions on extending to discrete Gaussian mechanism

	Details for VRR (Section 5)
	Proof of polynomial evaluation
	Proof of Theorem 5.1

	Additional experiments on VRR
	Additional Related Work

