
Bilateral Differentially Private Vertical Federated Boosted
Decision Trees

Bokang Zhang

The Chinese University of Hong

Kong, Shenzhen

bokangzhang@link.cuhk.edu.cn

Zhikun Zhang

Zhejiang University

zhikun@zju.edu.cn

Haodong Jiang

The Chinese University of Hong

Kong, Shenzhen

haodongjiang@link.cuhk.edu.cn

Yang Liu

Bytedance Inc.

liuyang.fromthu@bytedance.com

Lihao Zheng

The Chinese University of Hong

Kong, Shenzhen

lihaozheng@link.cuhk.edu.cn

Yuxiao Zhou

The Chinese University of Hong

Kong, Shenzhen

yuxiaozhou@link.cuhk.edu.cn

Shuaiting Huang

Zhejiang University

shuait_huang@zju.edu.cn

Junfeng Wu

The Chinese University of Hong

Kong, Shenzhen

junfengwu@cuhk.edu.cn

ABSTRACT
Federated learning is a distributed machine learning paradigm that

enables collaborative training across multiple parties while ensur-

ing data privacy. Gradient Boosting Decision Trees (GBDT), such as

XGBoost, have gained popularity due to their high performance and

strong interpretability. Therefore, there has been a growing interest

in adapting XGBoost for use in federated settings via cryptographic

techniques. However, it should be noted that these approaches may

not always provide rigorous theoretical privacy guarantees and

they often come with a high computational cost in terms of time

and space requirements. In this paper, we propose a variant of verti-

cal federated XGBoost with bilateral differential privacy guarantee:

MaskedXGBoost. We build well-calibrated noise to perturb the in-

termediate information to protect privacy. The noise is structured

with part of its ingredients in the null space of the arithmetical oper-

ation for splitting score evaluation in XGBoost, helping us achieve

consistently better utility than other perturbation methods and

relatively lower overhead than encryption-based techniques. We

provide theoretical utility analysis and empirically verify privacy

preservation. Compared with other algorithms, our algorithm’s

superiority in both utility and efficiency has been validated on

multiple datasets.

1 INTRODUCTION
Big data is widely recognized to play an essential role in machine

learning [48]. Traditionally, large datasets are aggregated from

multiple sources and processed by a central server through a process

known as centralized learning. However, this paradigm is becoming

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-XXXX-X/2018/06. . . $15.00

https://doi.org/XXXXXXX.XXXXXXX

increasingly problematic due to concerns over the unauthorized use

and exploitation of users’ personal data. Federated learning (FL) [38]
addresses this challenge by transferring intermediate results of the

training algorithm instead of the raw personal data. Based on how

data is partitioned, FL can be roughly classified into two categories:

Horizontal FL (HFL) and vertical FL (VFL). HFL, also known as

sample-wise FL, targets the scenarios where participants’ data have

the same feature space but differ in samples [48]. VFL, or feature-

wise FL, is applicable to cases where multiple datasets share the

same sample ID space but differ in feature space [48]. While HFL

has been extensively studied by the research community [2, 3, 37,

39, 41], less attention has been given to VFL. Existing VFL methods

heavily rely on cryptography technologies such as homomorphic

encryption and secure multiparty computation to calculate privacy-

related intermediate results [6, 48].

Gradient Boosting Decision Trees (GBDT), such as XGBoost [4],

are well-regarded for their high performance and interoperability.

They have found widespread use in various industrial applications,

including financial risk management [26, 36, 43] and online adver-

tising [21, 35]. In these applications, training data and labels often

belong to separate parties. For example, e-commerce companies

may want to personalize product recommendations using financial

data, like users’ bank loans. In this scenario, label data is with the

e-commerce company, and financial data is at the bank. This setup

falls under VFL. Our paper focuses on extending the benefits of

XGBoost to VFL settings with privacy guarantees.

Existing Solutions.Most of the existing studies on VFL-setting

XGBoost require different types of encryption-based protocols: Ho-

momorphic encryption (HE) [6, 25, 36] and secret-sharing [17],

resulting in a large communication and computing overhead. An-

other line of research adopts the notion of differential privacy (DP)

or local differential privacy (LDP) and performs the analysis on the

perturbed data [34, 44, 46]. Le et al. [30] propose perturbing the gra-

dient information at the label party, while Tian et al. [44] propose

perturbing the feature information on the feature party side. De-

spite DP-based methods reducing the training time a lot, the model

suffers accuracy loss from the injected noise. The work [30] also

1

ar
X

iv
:2

50
4.

21
73

9v
1

 [
cs

.C
R

]
 3

0
A

pr
 2

02
5

https://doi.org/XXXXXXX.XXXXXXX

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Zhang et al.

proposes to adopt secure matrix multiplication [27] in the private

training of vertical federated XGBoost [30]. Secure matrix multi-

plication is a cryptographic technique that allows two parties to

jointly compute the product of their matrices without revealing

their inputs to each other. This approach offers low communication

costs but without rigorous proof of privacy guarantee.

Our Contributions. Our proposed MaskedXGBoost ensures bi-
lateral differential privacy guarantees for both parties during the

training, and our method achieves consistently better model util-

ity. We consider the evaluation of a splitting score, the major step

requiring privacy guarantee in XGBoost, as the multiplication of

a categorical matrix and a vector [30]. Our approach constructs

well-calibrated noises to the sensitive information vector, which

significantly enhances privacy while having a minimal impact on

the utility of the data. Unlike previous research that only focused

on analyzing the privacy leakage of one party holding the label,

our approach employs differential privacy to ensure privacy preser-

vation for both parties involved. Additionally, we build an attack

model, trying to reveal any sensitive label information of users to

check whether our protocol is secure enough to protect against

label inference attacks. Our main contributions are as follows:

• (C1) MaskedXGBoost. We propose an algebra-based approach,

called MaskedXGBoost, to achieve better model utility than per-

turbation methods and higher efficiency than HE methods. We

conduct extensive experiments on six datasets to illustrate the

improvement of utility and efficiency of MaskedXGBoost. It
achieves 4.82× (Adult dataset) to 6.72× (Nomao dataset) training

time improvement. We provide a theoretical analysis of the better

utility property of MaskedXGBoost in Theorem 1.

• (C2) New Idea for Designing Differential Private Mecha-
nisms with Better Utility. Rather than relying on conventional

Gaussianmechanisms or other common differential privacy noise

mechanisms, our approach involves designing noises tailored to

the specific problem being solved to achieve differential privacy.

Most of the noise is allocated to the null space of the arithmetical

operation for splitting score evaluation in XGBoost, striking an

acceptable balance between training utility and data privacy.

• (C3) Differential Privacy Analysis for Both Parties. We pro-

vide sufficient differential privacy proof for the so-called active

party and passive party in the VFL setting. To the best of our

knowledge, our bilateral privacy analysis is the first in the litera-

ture. In particular, we discover that different noise ingredients

(see Section 4.2 for greater detail of noise calibration) affect the

two parties of MaskedXGBoost differently. The energy of the

whole noise should be considered for the active party’s privacy

protection(see Theorem 2), while the energy ratio of different

ingredients and the size of a training dataset are the main factors

for the passive party’s privacy (see Theorem 3). We conduct the

ablation study of the effect of the noise energy ratio on utility.

• (C4) Empirical Privacy Evaluation. We conduct empirical

privacy evaluation by building a label inference attacker and an

attribute inference attacker to verify the theoretical differential

privacy results(see Theorem 2 and Theorem 3). Under a strict

privacy budget, the attacker’s performance is poor(i.e., attack

acc 0.51 for AP and 0.52 for PP), demonstrating the security and

privacy of our approach.

2 PRELIMINARIES
2.1 Vertical Federated Learning
Federated learning (FL) aims to facilitate the collaboration of mul-

tiple participants in contributing distinct training data to train a

better model collectively. Based on how the data is partitioned,

FL can be roughly classified into two categories [48]: Horizontal
federated learning (HFL) and vertical federated learning (VFL). In

this paper, we focus on VFL.

VFL. Vertical FL, also known as feature-wise FL, is suitable for situ-

ations where multiple datasets share the same sample ID space but

have different feature spaces. For example, consider two different

companies in a city, one is a bank, and the other is an e-commerce

company. Their user sets are likely to contain most of the residents

of the area, so the intersection of their user spaces is large. Since

the bank has access to the user’s financial information, such as

revenue and expenditure behavior, while the e-commerce company

retains the user’s browsing and purchasing history, their feature

spaces are significantly distinct. We want both parties to have a

prediction model for product purchase based on user and product

information.

2.2 XGBoost
Consider a dataset D = {(𝑥𝑖 , 𝑦𝑖), 𝑥𝑖 ∈ R𝑑 , 𝑦𝑖 ∈ R, 𝑖 ∈ I}, where 𝑥𝑖
denotes the feature vectors of the 𝑖𝑡ℎ instance in a feature space

X, 𝑦𝑖 is the label of the 𝑖𝑡ℎ instance, and I denotes the index set of

instances. Let 𝑛 = |I | be the total number of instances.

XGBoost.XGBoost is a boosting-based machine learning algorithm

that ensembles a set of decision trees. Figure 1 shows an example

of XGBoost. Next, we take a closer look at the XGBoost training.

For a regression model𝜓 (·) consisting of 𝑇 regression trees 𝑓𝑡 , we

choose a set F of admissible tree models as follows

𝑦𝑖 := 𝜓 (𝑥𝑖) =
𝑇∑︁
𝑡=1

𝑓𝑡 (𝑥𝑖), 𝑓𝑡 ∈ F , 𝑥𝑖 ∈ X. (1)

With any differentiable convex loss function, 𝑙 : R × R → R,
capturing the disagreement between the labels 𝑦𝑖 ’s and predicted

outputs 𝑦𝑖 ’s, the objective function 𝐿0 (𝜓) for the model training

process can be defined as

𝐿0 (𝜓) =
𝑛∑︁
𝑖=1

𝑙 (𝑦𝑖 , 𝑦𝑖) +
𝑇∑︁
𝑡=1

Ω(𝑓𝑡), (2)

where Ω(𝑓𝑡) := 𝛾𝐿 (𝑡) + 1

2
𝜆

𝑤 (𝑡)

2 is the regularization on the

model complexity of tree 𝑓𝑡 to avoid overfitting, 𝐿 (𝑡) is the number

of leaves and𝑤 (𝑡) is the leaf weight of regression tree 𝑓𝑡 .

When we train a regression model, an iterative optimization

method can be used to minimize the objective (2). At the 𝑡𝑡ℎ it-

eration, the previously constructed trees 𝑓1, . . . , 𝑓𝑡−1 remain un-

changed, while a new tree 𝑓𝑡 is trained for the first time and added

to the regression model. Given the predicted output 𝑦
(𝑡−1)
𝑖

=

2

Bilateral Differentially Private Vertical Federated Boosted Decision Trees Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Tree 1 Tree 2

Is female

Age<=18

Y N

Y N

Income<=5000

Y N

5 4

3 6 8

f() = 5 + 6 = 11 f() = 4 + 8 = 12

Splitting Vector

Dataset{ }

[1, 0, 1, 0] [1, 1, 0, 0] Splitting Vector

Figure 1: An example of XGBoost and splitting vector. The
final prediction for instance is the sum of the predictions
from each regression tree. At the first level of Tree1, we split
the instances based on whether the individual is female or
not, which generates the splitting vector [1, 0, 1, 0].∑𝑡−1
𝑘=1

𝑓𝑘 (𝑥𝑖) at the (𝑡 − 1)𝑡ℎ iteration, the objective at the 𝑡𝑡ℎ it-

eration is formulated as

𝐿
(𝑡)
0

=

𝑛∑︁
𝑖=1

𝑙 (𝑦𝑖 , 𝑦 (𝑡−1)𝑖
+ 𝑓𝑡 (𝑥𝑖)) + Ω(𝑓𝑡) . (3)

To make the training process computationally efficient, rather

than the objective itself, we usually minimize a second-order ap-

proximation of the objective function as follows

𝐿 (𝑡) =
𝑛∑︁
𝑖=1

(
𝑙 (𝑦𝑖 , 𝑦̂ (𝑡−1)𝑖

) + 𝑔 (𝑡)
𝑖

𝑓𝑡 (𝑥𝑖) +
ℎ
(𝑡)
𝑖

𝑓 2𝑡 (𝑥𝑖)
2

)
+ Ω (𝑓𝑡), (4)

where 𝑔
(𝑡)
𝑖

= 𝜕
𝑦̂
(𝑡−1)
𝑖

𝑙 and ℎ
(𝑡)
𝑖

= 𝜕2
𝑦̂
(𝑡−1)
𝑖

𝑙 are the first and second

derivative of the loss function at 𝑦
(𝑡−1)
𝑖

, respectively.

Let I𝑙 𝑗 denotes the index set of instances at the 𝑗𝑡ℎ leaf, i.e.,

𝐼𝑙 𝑗 = {𝑖 |𝑥𝑖 belongs to 𝑗𝑡ℎ leaf of 𝑓𝑡 }. Chen [4] has shown that the

optimal weight of each leaf 𝑗 is computed by

𝑤
(𝑡),∗
𝑗

= −

∑
𝑖∈𝐼𝑙 𝑗 𝑔

(𝑡)
𝑖∑

𝑖∈𝐼𝑙 𝑗 ℎ𝑖 + 𝜆
. (5)

The following metric is often used to evaluate a splitting candi-
date at each node 𝑗 (associated with instance set I𝑗) [4]:

𝐿𝑠𝑝𝑙𝑖𝑡 (I𝐿,𝑗 , I𝑅,𝑗) = −𝛾+

1

2

©­«
(∑𝑖∈𝐼𝐿,𝑗 𝑔

(𝑡)
𝑖
)2∑

𝑖∈𝐼𝐿,𝑗 ℎ
(𝑡)
𝑖
+ 𝜆
+
(∑𝑖∈𝐼𝑅,𝑗 𝑔

(𝑡)
𝑖
)2∑

𝑖∈𝐼𝑅,𝑗 ℎ
(𝑡)
𝑖
+ 𝜆
−
(∑𝑖∈𝐼 𝑗 𝑔

(𝑡)
𝑖
)2∑

𝑖∈𝐼 𝑗 ℎ
(𝑡)
𝑖
+ 𝜆

ª®¬ ,
(6)

where I𝐿,𝑗 and I𝑅,𝑗 are associated with the left and right child

nodes, forming the dichotomy of the proposed splitting in question.

We refer the readers to Appendix A for more details about XGBoost

and the regression tree.

Splitting Vector. Next, we will illustrate XGBoost in another

way in terms of the so-called splitting vector [30]. Let 𝑑 =

[𝑥1·, . . . , 𝑥𝑛 ·]⊤ ∈ R𝑛 be the aggregation of a particular entry of

the feature vectors for all instances and 𝑠𝑖 ∈ R is the 𝑖𝑡ℎ splitting

candidate for 𝑑 to split the instance set into two separate sets at

a node. The splitting operation Split(𝑑, 𝑠𝑖) : R𝑛 × R −→ {0, 1}𝑛

performs the comparison of each element in 𝑑 with the splitting

candidate 𝑠𝑖 and outputs the 𝑖𝑡ℎ splitting vector𝑚𝑖 ∈ {0, 1}𝑛 as

𝑚𝑖 := Split(𝑑, 𝑠𝑖) := [𝑚1𝑖 , . . . ,𝑚𝑛𝑖]⊤,

where𝑚 𝑗𝑖 =

{
1, 𝑥 𝑗 · ≤ 𝑠𝑖
0, 𝑥 𝑗 · > 𝑠𝑖

.

There corresponds a splitting operation to the splitting vector

𝑚𝑖 for a splitting candidate 𝑠𝑖 , which labels any instances as “1" if

they are assigned to the left node and “0" to the right node. The

following example depicts the functionality of the splitting operator

and the splitting vector.

Example 1. Consider a bank that holds data on many dimensions
of its users, such as ages, genders, deposits, credit information, etc.
These data can reflect the economic situation of users, which is helpful
for predicting the purchasing powers of users. In Figure 1, the bank
builds the XGBoost model using ages, genders, and income informa-
tion. Suppose we were analyzing the effect of a user’s age. Let the
feature vector be 𝑑 = [24, 25, 20, 22, 15, 17, 18, 16]⊤ representing the
age data of a group of people. A splitting candidate 𝑠 is chosen as Age
= 18. The result of the splitting operator applied to the feature vector
𝑑 and the candidate 𝑠 is denoted by the following splitting vector

𝑚 = Split(𝑑, 𝑠) = [0, 0, 0, 0, 1, 1, 1, 1]⊤ .

“1" means that person is no older than 18, and “0" means older than
18. The splitting operation by 𝑠 (age = 18) is also depicted in Figure 1.

With the formulation of the splitting vector, the aggregated

gradient and Hessian in each node can be computed by multiplying

the splitting vector and gradient andHessian vector. Let the gradient

vector and Hessian vector of the𝑛 instances respectively be denoted

as

𝑔 = [𝑔1, . . . , 𝑔𝑛]⊤, ℎ = [ℎ1, . . . , ℎ𝑛]⊤ ∈ R𝑛 .
To evaluate a splitting candidate 𝑠 , we need to know the aggregated

gradients and Hessians for the split instances at the left and right

nodes, termed 𝑔𝐿𝑠 , ℎ
𝐿
𝑠 , and 𝑔

𝑅
𝑠 , ℎ

𝑅
𝑠 , respectively, which are computed

from𝑚,𝑔,ℎ as follows:

𝑔𝐿𝑠 =𝑚⊤𝑔, ℎ𝐿𝑠 =𝑚⊤ℎ, 𝑔𝑅𝑠 = 𝐺 − 𝑔𝐿𝑠 , ℎ𝑅𝑠 = 𝐻 − ℎ𝐿𝑠 , (7)

where𝐺 :=
∑𝑛
𝑖=1 𝑔𝑖 and𝐻 :=

∑𝑛
𝑖=1 ℎ𝑖 . Then we can obtain the score

𝐿𝑠
𝑠𝑝𝑙𝑖𝑡

of the splitting rule candidate as

𝐿𝑠
𝑠𝑝𝑙𝑖𝑡

= −𝛾 + 1

2

((𝑔𝐿𝑠)2
(ℎ𝐿𝑠) + 𝜆

+ (𝑔
𝑅
𝑠)2

(ℎ𝑅𝑠) + 𝜆
− 𝐺2

𝐻 + 𝜆

)
. (8)

The essential of the training process for splitting at a node is to find

the best splitting candidate 𝑠 with the highest score in (8). Splitting

is repeated from the newly constructed nodes until it reaches the

maximum depth of the tree. The so-constructed nodes together

form a whole tree structure.

2.3 Differential Privacy (DP) and Local
Differential Privacy (LDP)

Differential Privacy. Differential privacy (DP) is a formal defini-

tion of privacy that guarantees the output of a data analysis does not

depend significantly on a single individual’s data item. DP has been

widely used in various fields, including control systems [24, 31],

machine learning [1], data synthesis [45, 50, 53], etc.

3

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Zhang et al.

Table 1: Summary of notations.

Notations Descriptions

𝑛 Number of the instances in a dataset

𝑚𝑖 𝑖𝑡ℎ splitting vector

𝑀 Categorical matrix

𝑔, ℎ Gradient and Hessian vector

𝑔𝑖 , ℎ𝑖 Gradient and Hessian of 𝑖𝑡ℎ instance

𝑊 Number of noise vectors for each𝑚𝑖

𝑏𝑖 𝑗 𝑗𝑡ℎ noise vector for𝑚𝑖

𝐵𝑖 𝑖𝑡ℎ noise matrix for𝑚𝑖

⟨𝑔⟩𝑖 , ⟨ℎ⟩𝑖 Noised gradient and Hessian vector for𝑚𝑖

𝜀AP, 𝜀PP Privacy budgets for active party and passive party

Definition 1 (Differential Privacy [14]). A randomized
mechanismM satisfies (𝜀, 𝛿)-differential privacy ((𝜀, 𝛿)-DP), where
𝜀 ≥ 0 and 0 ≤ 𝛿 ≤ 1, if for any two datasets inputs 𝑑 and 𝑑′ that
differ in a single record and any measurable set O ofM’s outputs,

Pr(M(𝑑) ∈ O) ≤ exp(𝜀)Pr(M(𝑑′) ∈ O) + 𝛿.

Here 𝜀 is the privacy budget. To achieve (𝜀, 𝛿)-differential pri-
vacy, the Gaussian and Laplace mechanisms are usually adopted

by adding noise calibrated to the sensitivity of a function [13]. The

Laplace mechanism can achieve strict 𝜀-DP, while the Gaussian

mechanism can only achieve (𝜀, 𝛿)-DP. When 𝛿 = 0, the mecha-

nismM satisfies pure (strict) differential privacy (pure DP), namely,

𝜀-DP. When 𝛿 > 0, the mechanism satisfies approximate (relaxed)

differential privacy (approximate DP), namely, (𝜀, 𝛿)-DP [13].

The following results are fundamental to the privacy analysis

when multiple randomized functions are applied to a dataset.

Lemma 1 (Seqential Composition [14]). Let M =

{M1, . . . ,M𝑘 } be a series of randomized mechanisms per-
formed sequentially on a dataset. IfM𝑖 provides (𝜀𝑖 , 𝛿𝑖)-DP, thenM
provides (𝜀, 𝛿)-DP with 𝜀 := ∑𝑘

𝑖=1 𝜀𝑖 and 𝛿 :=
∑𝑘
𝑖=1 𝛿𝑖 .

Lemma 2 (Parallel Composition [14]). Let M =

{M1, . . . ,M𝑘 } be a series of mechanisms performed separately on dis-
joint subsets of the entire dataset. IfM𝑖 provides (𝜀𝑖 , 𝛿𝑖)-DP, thenM
provides (𝜀, 𝛿)-DP with 𝜀 := max{𝜀1, . . . , 𝜀𝑘 }, 𝛿 := max{𝛿1, . . . , 𝛿𝑘 }.

For a sequential of 𝑘 mechanismsM1, . . . ,M𝑘 satisfying (𝜀𝑖 , 𝛿𝑖)-
DP respectively, the basic sequential composition result [14] shows

that the privacy composes linearly, i.e., the sequential composition

satisfies

(∑𝑘
𝑖 𝜀𝑖 ,

∑𝑘
𝑖 𝛿𝑖

)
-DP. When 𝜀𝑖 = 𝜀 and 𝛿𝑖 = 𝛿 , the advanced

composition bound from [15] states that the composition satisfies(
𝜀
√︁
2𝑘 log (1/𝛿 ′) + 𝑘𝜀 (𝑒𝜀 − 1) , 𝑘𝛿 + 𝛿 ′)-DP, where 𝛿 ′ > 0.

Local Differential Privacy. A stronger notion of DP is local dif-
ferential privacy (LDP), which perturbs the individual’s data locally

to protect private information [9, 10, 47, 52]. LDP is a model of

differential privacy with the added restriction that even if an ad-

versary has access to the personal responses of an individual in the

database, that adversary is still unable to learn too much about the

user’s personal data. This is contrasted with DP, which incorporates

a central aggregator with access to the raw data.

User Age Gender Income

1 𝒙𝟏𝟏 𝒙𝟏𝟐 𝒙𝟏𝟐

2 𝒙𝟐𝟏 𝒙𝟐𝟐 𝒙𝟐𝟑
...

...
...

...

n 𝒙𝒏𝟏 𝒙𝒏𝟐 𝒙𝒏𝟑

Splitting
Candidate

Age 𝒔𝟏

Gender 𝒔𝟐
...

...

Income 𝒔𝒍

𝑴 =
𝟎 ⋯ 𝟏
⋮ ⋱ ⋮
𝟏 ⋯ 𝟎

= [𝒎𝟏⋯𝒎𝒍] ∈ {𝟎, 𝟏}𝒏×𝒍

No Plain
Data Exchange

User Label G H

1 𝒚𝟏 𝒈𝟏 𝒉𝟏

2 𝒚𝟐 𝒈𝟐 𝒉𝟐
...

...
...

...

n 𝒚𝒏 𝒈𝒏 𝒉𝒏

𝒈 =
𝒈𝟏
⋮
𝒈𝒏

∈ 𝑹𝒏 𝒉 =
𝒉𝟏
⋮
𝒉𝒏

∈ 𝑹𝒏

Active PartyPassive Party

[𝒎𝟏
𝑻𝒈,…𝒎𝒍

𝑻𝒈] ∈ 𝑹𝒍 [𝒎𝟏
𝑻𝒉,…𝒎𝒍

𝑻𝒉] ∈ 𝑹𝒍

Find optimal split Federated XGBoost
Models

Figure 2: Federated XGBoost problem setting.

Definition 2 (Local Differential Privacy [16]). A random-
ized mechanismM satisfies (𝜀, 𝛿)-local differential privacy ((𝜀, 𝛿)-
LDP), where 𝜀 ≥ 0 and 0 ≤ 𝛿 ≤ 1, if for any two of input 𝑑, 𝑑′, and
any measurable set O ofM’s outputs,

Pr(M(𝑑) ∈ O) ≤ exp(𝜀)Pr(M(𝑑′) ∈ O) + 𝛿.

2.4 Notations
Frequently used notations are summarised in Table 1.

3 PROBLEM STATEMENT AND EXISTING
SOLUTIONS

3.1 Problem Statement
Federated XGBoost. In this paper, we focus on VFL-setting XG-

Boost. We call a party that holds both feature data and the class

label active party (AP) and call a party that merely holds the feature

data passive party (PP). We consider that AP and PP want to train

an XGBoost model jointly. The essential part of the training state

is computing the splitting score (8) and then finding the optimal

splitting candidate. Assume that at each node, PP has 𝑙 splitting

candidates, through each splitting vector 𝑚𝑖 ∈ R𝑛 , the categori-
cal matrix 𝑀 is defined as 𝑀 = [𝑚1, . . . ,𝑚𝑙] ∈ R𝑛×𝑙 . According
to (7), AP has 𝑔, ℎ, while PP owns 𝑀 and they desire to compute

𝑀⊤𝑔,𝑀⊤ℎ securely. Gradient and Hessian vectors in plain text

cannot be sent directly, otherwise, users’ label information from

AP will be seriously leaked [6]. Figure 2 illustrates the problem

setting. With 𝑀⊤𝑔,𝑀⊤ℎ known, the optimal splitting candidate

can be found and the federated XGBoost model can be built step by

step.

Remark 1. Multi-party private set intersection [29] is employed to
determine the intersection of common databases among participants
securely, which is orthogonal to our paper. The primary challenge in
our setting lies in how to jointly conduct the training process among
participants with the aligned database.

Threat Model and Design Goals. In common with many other

works in the federated setting [6, 32, 37, 51], we assume an honest-

but-curious model, where the clients do not trust others with their

raw data. Given the above setting, we aim to propose a federated

XGBoost protocol with the following design goals:

• G1: Utility. Its utility should be close to centralized learning,

which is to pool all data into a centralized server.

4

Bilateral Differentially Private Vertical Federated Boosted Decision Trees Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Passive Party Active Party

① Initialization: determine MaskedXGBoost parameters.

② Noise Calibration in Passive Party.

𝑴 =
𝟎 ⋯ 𝟏
⋮ ⋱ ⋮
𝟏 ⋯ 𝟎

= [𝒎𝟏⋯𝒎𝒍] ∈ {𝟎, 𝟏}𝒏×𝒍

Build noises 𝒃𝒊𝟏 , … , 𝒃𝒊𝒘 for 𝒎𝒊
Nearly Lossless: 𝚬[𝒎𝒊

𝑻𝒃𝒊𝒋] = 0
𝑩𝒊 = [𝒃𝒊𝟏 , … , 𝒃𝒊𝒘]

Send {𝑩𝟏, … , 𝑩𝒍} to Active Party

Feature data

No Plain Data Exchange

Encrypted Entity Alignment

① Initialization

② Noise Calibration

③ Information Noising

④ Joint Optimal Splitting
Candidate Searching

MaskedXGBoost

Federated Models

③ Information Noising in Active Party.

𝒈

𝒉

Perturb with {𝑩𝟏, … , 𝑩𝒍} 𝒈 𝟏

𝒉 𝟏 𝒉 𝒍

𝒈 𝒍⋯

⋯

𝑮 = 6𝒈𝒊

𝑯 = 6𝒉𝒊

Send 𝑮,𝑯, { 𝒈 𝟏, 𝒉 𝟏, … 𝒈 𝒍, 𝒉 𝒍} to Passive Party

④ Joint Optimal Splitting Candidate Searching in both parties.

𝒈 𝟏

𝒉 𝟏 𝒉 𝒍

𝒈 𝒍⋯

⋯

Find optimal split

Figure 3: MaskedXGBoost overview. MaskedXGBoost is composed of four steps: initialization, noise calibration, information
noising, and joint optimal splitting candidate searching. AP and PP first determine the necessary algorithm parameters in
the initialization step. In the noise calibration step, PP builds well-calibrated noise according to the categorical matrix which
ensures the consistently better property of MaskedXGBoost. In the information noising step, AP uses the noises PP sent to
perturb the sensitive information 𝑔 and ℎ, then AP sends the information back to PP. Finally, AP and PP jointly find the optimal
splitting candidate. Then, splitting continues from the newly constructed nodes until it reaches the maximum depth of the
tree. AP and PP stand for active party and passive party respectively.

• G2: Privacy. Its privacy should be close to local training, i.e., each
participant trains with its local data only. To achieve this, all data

being transmitted should be protected either by cryptographic

technology or differential privacy.

• G3: Efficiency. Its efficiency should be close to traditional dis-

tributed ML [4, 20, 28], i.e., the number of cryptographic opera-

tions should be minimized.

3.2 Existing Solutions

HE Methods. Current approaches that rely on Homomorphic En-

cryption (HE) are proficient in safeguarding privacy but often lack

efficiency [5, 6]. At the same time, these methods lack the protec-

tion of PP’s private feature information. These methods can satisfy

G1 (Utility) and G2 (Privacy) of only one party AP, while they can-

not satisfy G2 (Privacy) of the other party PP and G3 (Efficiency).

DP Methods. The methods [30, 44] using DP have a great im-

provement in efficiency, but the utility is greatly disturbed. The

work [46] considers the VFL settings for decentralized labels, uti-

lizing secure aggregation and differential privacy to protect the

privacy. Since only AP owns the label in our two-party VFL setting,

this method is equivalent to adding noise directly to the gradient

information. These methods can satisfyG2 (Privacy) of both parties
and G3 (Efficiency), with serious sacrifice of G1 (Utility).

Other Methods. In the splitting vector view of XGBoost, Le et

al. [30] proposed FedXGBoost-SMM. FedXGBoost-SMM turns the

federated XGBoost into a secure matrix multiplication problem, and

its key idea is to build kernel vectors as noise vectors. FedXGBoost-

SMM can not provide a differential privacy guarantee and finding

kernel vectors for a large categorical matrix is still time-consuming.

FedXGBoost-SMM can satisfy G1 (Utility) with the sacrifice of

G2 (Privacy) and G3 (Efficiency).

4 OUR PROPOSAL: MASKEDXGBOOST
4.1 Overview
The general idea of MaskedXGBoost is that PP generates well-

calibrated noises according to the categorical matrix𝑀 , and AP uses

these noises to perturb sensitive vectors 𝑔, ℎ, and sends the masked

vectors back to PP. Then PP multiplies the categorical matrix and

themasked vectors to find an optimal splitting candidate. Thewhole

process of the protocol includes four steps: Initialization, noise cali-

bration, information noising, and joint optimal splitting candidate

searching. Figure 3 illustrates the main steps of MaskedXGBoost.

(S1) Initialization. Before the protocol begins in earnest, the two

parties negotiate a level of differential privacy guarantee. Then

according to this privacy setting, AP and PP can get the suitable

parameters 𝜎1, 𝜎2,𝐶,𝑊 which will be applied to the concrete pro-

cedures in the following steps, with the guidance of Theorem 1,

Theorem 2, and Theorem 3, which will be introduced in more detail

in Section 5. Before the whole training, AP randomly initializes the

predicted labels and computes the initial gradients and Hessians [6].

(S2) Noise Calibration in PP. In this step, PP builds noises cali-

brated to the categorical matrix𝑀 and then sends the noises to AP.

This step will be introduced in detail in Section 4.2.

(S3) Information Noising in AP. After receiving the noises PP
sent, AP uses these noises to perturb the sensitive information and

then sends them to PP for the next step. This step will be introduced

in detail in Section 4.3.

5

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Zhang et al.

Algorithm 1: Noise Calibration

1 Input: Private categorical matrix𝑀 = [𝑚1, . . . ,𝑚𝑙] ∈ R𝑛×𝑙 ,
𝑚𝑖 ∈ {0, 1}𝑛 ,MaskedXGBoost parameters 𝜎1, 𝜎2,𝑊 > 0

2 Output: Noise matrices set {𝐵1, . . . 𝐵𝑙 }
3 Procedures:

1: for 𝑖 = 1 to 𝑙 do
2: for 𝑗 = 1 to𝑊 do
3: 𝑢𝑖 𝑗 , 𝑣𝑖 𝑗 , 𝑟𝑖 𝑗 ← {0}𝑛
4: Generate 𝑝1, . . . , 𝑝𝑛𝐴,𝑖

∼ N
(
0, 𝜎2

1

)
,

𝑞1, . . . , 𝑞𝑛𝐼 ,𝑖
∼ N

(
0, 2𝜎2

1

)
, 𝑟𝑖 𝑗 ∼ N

(
0, 𝜎2

2
𝐼
)

5: for 𝑘 = 1 to 𝑛𝐴,𝑖 do
6: if 𝑘 = 1 then
7: [𝑢𝑖 𝑗]A(𝑚𝑖)𝑘 = 𝑝1 − 𝑝𝑛𝐴,𝑖

8: else
9: [𝑢𝑖 𝑗]A(𝑚𝑖)𝑘 = 𝑝𝑘 − 𝑝𝑘−1
10: end if
11: end for
12: for 𝑘 = 1 to 𝑛𝐼 ,𝑖 do
13: [𝑣𝑖 𝑗]I(𝑚𝑖)𝑘 = 𝑞𝑘
14: end for
15: 𝑏𝑖 𝑗 ← 𝑢𝑖 𝑗 + 𝑣𝑖 𝑗 + 𝑟𝑖 𝑗
16: end for
17: 𝐵𝑖 ← [𝑏𝑖1, . . . , 𝑏𝑖𝑊]
18: end for
Return: Noise matrices set {𝐵1, . . . , 𝐵𝑙 }

(S4) Joint Optimal Splitting Candidate Searching. With the

information AP sent, PP can evaluate splitting candidates and then

find the optimal splitting candidate according to (8). PP is requested

to reveal the corresponding splitting score and operation. AP finds

the best splitting candidate over AP and PP. Then AP constructs

new tree nodes and repeats the process with the new set of users.

The MaskedXGBoost algorithm repeats steps S2-S4 until a tree

reaches the maximum depth, and builds new trees till the maximum

training rounds. The predicted labels are updated based on the

evolving tree structure, and gradients and Hessians are updated

accordingly.

4.2 Noise Calibration
In this step, PP builds noise vectors according to the categorical

matrix 𝑀 . We combine the Gaussian mechanism to construct or-

thogonal vectors of each splitting vector𝑚𝑖 and then take these

orthogonal vectors as noise vectors.

Active Set and Inactive Set. To facilitate the presentation, we give
the definition of the active set and inactive set. The active set refers
to the index set of a splitting vector that has a value of “1", while

the inactive set refers to the index set that has a value of “0". For

each splitting vector𝑚𝑖 ∈ {0, 1}𝑛 , we define the active set A(𝑚𝑖)
and the inactive set I(𝑚𝑖) as follows:

A(𝑚𝑖) :=
{
𝑗 ∈ I | 𝑚𝑖 𝑗 = 1

}
.

I(𝑚𝑖) := I\A(𝑚𝑖) =
{
𝑗 ∈ I | 𝑚𝑖 𝑗 = 0

}
.

We denote 𝑛𝐴,𝑖 = |A(𝑚𝑖) | and 𝑛𝐼 ,𝑖 = |I(𝑚𝑖) |. The active set in-
cludes all the nonzero entries of a splitting vector, while the inactive

set encapsulates the zero. For noise calibration, We will combine

differently structured noises tailored to the active and inactive sets,

namely the active and inactive noises.

Noise Calibration. Algorithm 1 describes the procedure of build-

ing noises. For each𝑚𝑖 , we build a noise matrix 𝐵𝑖 = [𝑏𝑖1, . . . , 𝑏𝑖𝑊],
where 𝑏𝑖 𝑗 ∈ R𝑛 consists of three parts, active noise 𝑢𝑖 𝑗 , inactive
noise 𝑣𝑖 𝑗 , and disturbing noise 𝑟𝑖 𝑗 , i.e. 𝑏𝑖 𝑗 = 𝑢𝑖 𝑗 + 𝑣𝑖 𝑗 + 𝑟𝑖 𝑗 . The active
noise perturbs the bits of the active set in the gradient and Hessian

vector. It is spatially colored as it is in the null space of𝑚𝑖 . The

inactive noise perturbs the bits of the inactive set in the gradient

and Hessian vector freely. The disturbing noise perturbs all the bits

of the gradient and Hessian vector together. It is critical for the

privacy protection of PP’s categorical matrix. Next, we introduce

how the three kinds of noises are constructed.

Active Noise 𝑢𝑖 𝑗 . Generate i.i.d. random numbers 𝑝1, . . . , 𝑝𝑛𝐴,𝑖

following Gaussian distributionN(0, 𝜎2
1
). We useA(𝑚𝑖)𝑘 to denote

the 𝑘𝑡ℎ element in the set A(𝑚𝑖). Firstly, we initialize 𝑢𝑖 𝑗 ∈ R𝑛 as

0, and then assign values to 𝑢𝑖 𝑗 iteratively:

[𝑢𝑖 𝑗]A(𝑚𝑖)𝑘 =

{
𝑝1 − 𝑝𝑛𝐴,𝑖

, 𝑘 = 1

𝑝𝑘 − 𝑝𝑘−1, 𝑘 = 2, . . . , 𝑛𝐴,𝑖
.

It can be checked that𝑚⊤
𝑖
𝑢𝑖 𝑗 = 0 since the elements in the active

noise 𝑢𝑖 𝑗 cancel each other out. The active noise does not affect the

calculation result of𝑚⊤
𝑖
𝑔 and𝑚⊤

𝑖
ℎ if used for information noising,

indicating that this part of the noise is lossless.

Inactive Noise 𝑣𝑖 𝑗 .Generate i.i.d. random numbers 𝑝1, . . . , 𝑝𝑛𝐼 ,𝑖
fol-

lowing Gaussian distribution N(0, 2𝜎2
1
). We use I(𝑚𝑖)𝑘 to denote

the 𝑘𝑡ℎ element in the set I(𝑚𝑖). First we initialize the inactive
noise as 𝑣𝑖 𝑗 = 0, then assign values to 𝑣𝑖 𝑗 iteratively:

[𝑣𝑖 𝑗]I(𝑚𝑖)𝑘 = 𝑞𝑘 , 𝑘 = 1, . . . , 𝑛𝐼 ,𝑖 .

It is immediately known that𝑚⊤
𝑖
𝑣𝑖 𝑗 = 0 because 𝑣𝑖 𝑗 only operates

on the bits in the inactive set, which correspond to the bits in𝑚𝑖

with a value of 0. Similarly to the active noise, this implies that the

inactive noise does not affect the calculation result of𝑚⊤
𝑖
𝑔 and𝑚⊤

𝑖
ℎ

too if used for information noising, revealing the lossless property

of the inactive noise.

Disturbing Noise 𝑟𝑖 𝑗 . The disturbing noise is generated much

more easily. We generate 𝑟𝑖 𝑗 free from a multidimensional Gaussian

distribution, 𝑟𝑖 𝑗 ∼ N(0, 𝜎2
2
𝐼𝑛). It holds that

E[𝑚⊤
𝑖
𝑟𝑖 𝑗] = 0, Var(𝑚⊤

𝑖
𝑟𝑖 𝑗) = 𝑛𝐴,𝑖𝜎

2

2
.

This is because although 𝑟𝑖 𝑗 operates on all the bits, only the bits

in the active set will perturb the outcomes effectively.

Repeating the noise generation process above for 𝑊 times,

PP builds 𝑏𝑖1, . . . , 𝑏𝑖𝑊 as a whole noise matrix 𝐵𝑖 , i.e. 𝐵𝑖 =

[𝑏𝑖1, . . . , 𝑏𝑖𝑊] ∈ R𝑛×𝑊 . Similarly, PP can generate 𝐵1, . . . , 𝐵𝑙 ac-

cording to 𝑙 splitting vectors𝑚1, . . . ,𝑚𝑙 . Then PP sends the noise

matrices set {𝐵1, . . . , 𝐵𝑙 } to AP. The following example can visualize

the noise generation procedure.

Example 2. We consider the setting in Example 1, assuming the
splitting candidate 𝐴𝑔𝑒 = 18 is the 𝑖𝑡ℎ splitting candidate. After
analyzing the users’ age information, PP builds the splitting vector
𝑚𝑖 = [0 0 0 0 1 1 1 1]𝑇 . The active set A(𝑚𝑖) is {5, 6, 7, 8}, inactive
set I(𝑚𝑖) is {1, 2, 3, 4}. Generate i.i.d. random variables 𝑝1, . . . , 𝑝4
according to N(0, 𝜎2

1
) and 𝑞1, . . . , 𝑞4 according to N(0, 2𝜎2

1
). Next

we construct the first noise 𝑏𝑖1, which means constructing 𝑢𝑖1, 𝑣𝑖1, 𝑟𝑖1.

6

Bilateral Differentially Private Vertical Federated Boosted Decision Trees Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Algorithm 2: Information Noising

1 Input: Noise matrices set {𝐵1, . . . , 𝐵𝑙 }, Private data
𝑔, ℎ ∈ R𝑛 ,MaskedXGBoost parameter 𝐶 > 0

2 Output:
{{
⟨𝑔⟩𝑖 , ⟨ℎ⟩𝑖

}
𝑖∈{1,...,𝑙 } ,𝐺, 𝐻

}
3 Procedures:

1: for 𝑖 = 1 to 𝑙 do
2: Generate 𝑐𝑖1, . . . , 𝑐𝑖𝑊 and 𝑑𝑖1, . . . , 𝑑𝑖𝑊 satisfy∑𝑊

𝑘=1
𝑐2
𝑖𝑘

=
∑𝑊
𝑘=1

𝑑2
𝑖𝑘

= 𝐶

3: ⟨𝑔⟩𝑖 ← 𝑔 +∑𝑊
𝑘=1

𝑐𝑖𝑘𝑏𝑖𝑘 , ⟨ℎ⟩𝑖 ← ℎ +∑𝑊
𝑘=1

𝑑𝑖𝑘𝑏𝑖𝑘
4: end for
5: 𝐺 ← ∑𝑛

𝑖=1 𝑔𝑖 , 𝐻 ←
∑𝑛
𝑖=1 𝑔𝑖

Return:
{{
⟨𝑔⟩𝑖 , ⟨ℎ⟩𝑖

}
𝑖∈{1,...,𝑙 } ,𝐺, 𝐻

}

𝑢𝑖1 =

[
0

𝑝

]
, 𝑣𝑖1 =

[
𝑞

0

]
, 𝑟𝑖1 ∼ N

(
0, 𝜎2

2
𝐼

)
where 𝑝 = [𝑝1−𝑝4, 𝑝2−𝑝1, 𝑝3−𝑝2, 𝑝4−𝑝3]⊤ and𝑞 = [𝑞1, 𝑞2, 𝑞3, 𝑞4]⊤.
Overall, 𝑏𝑖1 = 𝑢𝑖1 + 𝑣𝑖1 + 𝑟𝑖1. Now We use a numerical simulation to
illustrate this procedure. Let 𝜎2

1
= 1, 𝜎2

2
= 0.1. Numerically generated

noises are 𝑝1 = 0.9109, 𝑝2 = −0.2397, 𝑝3 = 0.1810, 𝑝4 = 0.2442, and

𝑢𝑖1 = [0, 0, 0, 0, 0.6667,−1.1506, 0.4207, 0.0632]⊤,
𝑣𝑖1 = [−0.9613, 1.6737, 5.0767,−2.6467, 0, 0, 0, 0]⊤,

𝑟𝑖1 = [0.0138,−0.1907,−0.0365,−0.0848,
−0.0765,−0.1128, 0.0078, 0.2107]⊤ .

The noise vector is

𝑏𝑖1 = [−0.9475, 1.4830, 5.0402,−2.7315,
0.5902,−1.2634, 0.4285, 0.2739]⊤ .

Thus we can verify that

𝑚⊤𝑖 𝑢𝑖1 = 0,𝑚⊤𝑖 𝑣𝑖1 = 0,𝑚⊤𝑖 𝑟𝑖1 = 0.0292,𝑚⊤𝑖 𝑏𝑖1 = 0.0292

We see that the active noise 𝑢𝑖1 and inactive noise 𝑣𝑖1 are lossless.
and that 𝑏𝑖1 follows a Gaussian distribution N(0, Σ), where Σ =

𝑑𝑖𝑎𝑔(Σ1, Σ2) with Σ1 = 2.1𝐼4 and

Σ2 =


2.1 −1 0 −1
−1 2.1 −1 0

0 −1 2.1 −1
−1 0 −1 2.1


4.3 Information Noising
Algorithm 2 describes the process of noising sensitive information.

Concretely, AP has the sensitive information gradient and Hessian

𝑔, ℎ ∈ R𝑛 that needs to be perturbed. We use ⟨𝑔⟩𝑖 and ⟨ℎ⟩𝑖 to
denote the noised gradient and Hessian for 𝑖𝑡ℎ splitting candidate,

respectively. AP needs to generate ⟨𝑔⟩𝑖 , ⟨ℎ⟩𝑖 ∈ R𝑛 for each splitting

candidate 𝑠𝑖 .

Next we introduce how ⟨𝑔⟩𝑖 , ⟨ℎ⟩𝑖 are generated with 𝐵𝑖 =

[𝑏𝑖1, . . . , 𝑏𝑖𝑊] ∈ R𝑛×𝑊 . AP generates 2𝑊 random numbers

Algorithm 3: Split Finding

1 Input:
• Dataset D, with |D| = 𝑛

• AP: Private data 𝑔, ℎ ∈ R𝑛
• PP: Private categorical matrix𝑀 = [𝑚1, . . . ,𝑚𝑙] ∈ {0, 1}𝑛×𝑙

Output of protocols: optimal splitting candidate 𝑠∗

Procedures:

1: PP: {𝐵1, . . . , 𝐵𝑙 }
𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 1

←−−−−−−−−−−Noise Calibration(𝑀)

2: PP: Transmit {𝐵1, . . . , 𝐵𝑙 } to AP.

3: AP:
{{
⟨𝑔⟩𝑖 , ⟨ℎ⟩𝑖

}
𝑖∈{1,...,𝑙 } ,𝐺, 𝐻

} 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 2

←−−−−−−−−−− Information

Noising ({𝐵1, . . . , 𝐵𝑙 })
4: AP: Transmit

{{
⟨𝑔⟩𝑖 , ⟨ℎ⟩𝑖

}
𝑖∈{1,...,𝑙 } ,𝐺, 𝐻

}
to PP.

5: PP: /* Compute the aggregated gradients and Hessians */

6: {𝑔𝐿𝑠𝑖 , ℎ
𝐿
𝑠𝑖
} ← {𝑚⊤

𝑖
⟨𝑔⟩𝑖 ,𝑚⊤𝑖 ⟨ℎ⟩𝑖 }

7: 𝐿∗ ← −∞, 𝑠∗ ← 0

8: for 𝑖 = 1 to 𝑙 do
9: 𝑔𝑅𝑠𝑖 ← 𝐺 − 𝑔𝐿𝑠𝑖 , ℎ

𝐿
𝑠𝑖
← 𝐻 − ℎ𝐿𝑠𝑖

10: 𝐿 ← 1

2

(
(𝑔𝐿𝑠𝑖)

2

ℎ𝐿𝑠𝑖 +𝜆
+ (𝑔

𝑅
𝑠𝑖
)2

ℎ𝑅𝑠𝑖 +𝜆
− 𝐺2

𝐻+𝜆

)
11: if 𝐿∗ < 𝐿 then
12: 𝐿∗ ← 𝐿, 𝑠∗ ← 𝑠𝑖
13: end if
14: end for
15: Transfer 𝐿∗ to AP, save 𝑠∗

16: AP: Finds the optimal splitting candidate 𝑠∗ over AP and PP.

𝑐𝑖1, . . . , 𝑐𝑖𝑊 and 𝑑𝑖1, . . . , 𝑑𝑖𝑊 with a constraint that

𝑊∑︁
𝑘=1

𝑐2
𝑖𝑘

=

𝑊∑︁
𝑘=1

𝑑2
𝑖𝑘

= 𝐶.

Then we perturb 𝑔, ℎ as

⟨𝑔⟩𝑖 := 𝑔 +
𝑊∑︁
𝑘=1

𝑐𝑖𝑘𝑏𝑖𝑘 , ⟨ℎ⟩𝑖 := ℎ +
𝑊∑︁
𝑘=1

𝑑𝑖𝑘𝑏𝑖𝑘 . (9)

So ⟨𝑔⟩
1
, . . . , ⟨𝑔⟩𝑙 and ⟨ℎ⟩1, . . . , ⟨ℎ⟩𝑙 can be generated iteratively.

If PP wants to evaluate each splitting candidate, PP needs to know

the sum of gradients and Hessians 𝐺 and 𝐻 in (8). So after noising,

AP compute

𝐺 =

𝑛∑︁
𝑖=1

𝑔𝑖 , 𝐻 =

𝑛∑︁
𝑖=1

𝑔𝑖 .

Finally AP sends

{{
⟨𝑔⟩𝑖 , ⟨ℎ⟩𝑖

}
𝑖∈{1,...,𝑙 } ,𝐺, 𝐻

}
to PP.

Intuitively, we can observe that increasing the value of𝐶 leads to

a higher perturbation being added to 𝑔 and ℎ, resulting in stronger

privacy protection. We constrain the sum of 𝑐2
𝑖𝑘

and 𝑑2
𝑖𝑘

to control

the level of perturbation of the information. This will be analyzed

in detail in Section 5.

4.4 Putting Things Together
With the information AP sent at the end of the information nois-

ing step, PP evaluates splitting candidates and then finds the op-

timal splitting candidate according to (8). Algorithm 3 describes

7

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Zhang et al.

the procedure of optimal split finding. PP is requested to reveal

the corresponding splitting score and splitting operation. AP finds

the best splitting candidate according to the splitting score. AP

then constructs new nodes and repeats the process with the new

set of users. In the next section, we will discuss how to set the

MaskedXGBoost’s parameters 𝜎1, 𝜎2,𝐶,𝑊 considering both model

utility and privacy guarantee.

Remark 2. Our algorithm can be adapted to the GBDT algorithm.
GBDT is similar to XGBoost, but it only needs gradients to calculate
the splitting score. We can protect the gradients by transmitting the
noised gradients in Algorithm 2 for the adaption of GBDT.

5 THEORETICAL ANALYSIS
5.1 Utility Analysis
In this section, we show thatMaskedXGBoost is consistently better.
Similar to the related work that adds noise to the adjusted score

function [30], the performance of MaskedXGBoost is related to

the disturbance of the splitting scoring function (7). A higher level

of disturbance in the scoring function increases the likelihood of

failing to identify an optimal splitting candidate, which in turn

leads to sub-optimal performance.

We show this by evaluating 𝑖𝑡ℎ splitting candidate as an example.

Because of the particularity of the added noise in Algorithm 1, it

can be checked that

𝑚⊤𝑖 ⟨𝑔⟩𝑖 =𝑚⊤𝑖 𝑔 +
𝑊∑︁
𝑘=1

𝑐𝑖𝑘𝑟𝑖𝑘 ,𝑚
⊤
𝑖 ⟨ℎ⟩𝑖 =𝑚⊤𝑖 ℎ +

𝑊∑︁
𝑘=1

𝑑𝑖𝑘𝑟𝑖𝑘 , (10)

indicating that 𝑚⊤
𝑖
⟨𝑔⟩𝑖 and 𝑚⊤

𝑖
⟨ℎ⟩𝑖 are merely disturbed by 𝑟𝑖𝑘 ,

making a better utility protocol possible. Notice that the splitting

score function becomes random due to the noised aggregated gra-

dients and Hessians ⟨𝑔⟩𝑖 , ⟨ℎ⟩𝑖 . Define the newly noised splitting

score function ⟨𝐿𝑠𝑖
𝑠𝑝𝑙𝑖𝑡
⟩ as

⟨𝐿𝑠𝑖
𝑠𝑝𝑙𝑖𝑡
⟩ = −𝛾 + 1

2

(
(⟨𝑔𝐿

𝑖
⟩)2

⟨ℎ𝐿
𝑖
⟩ + 𝜆

+
(⟨𝑔𝑅

𝑖
⟩)2

⟨ℎ𝑅
𝑖
⟩ + 𝜆

− 𝐺2

𝐻 + 𝜆

)
.

where ⟨𝑔𝐿
𝑖
⟩ = 𝑚⊤

𝑖
⟨𝑔⟩𝑖 , ⟨ℎ𝐿𝑖 ⟩ = 𝑚⊤

𝑖
⟨ℎ⟩𝑖 . The utility of MaskedXG-

Boost can be evaluated by the following concentration analysis.

Theorem 1. Denote 𝜅 :=
√︁
𝑛𝐴,𝑖𝐶𝜎2, there exists an upper bound

𝑈 (𝛼,𝜅) such that for any deviation 𝛼 > 0:

Pr
(
| ⟨𝐿𝑠𝑖

𝑠𝑝𝑙𝑖𝑡
⟩ − 𝐿𝑠𝑖

𝑠𝑝𝑙𝑖𝑡
|≥ 𝛼

)
≤ 𝑈 (𝛼, 𝜅)

and lim𝜅→0𝑈 (𝛼, 𝜅) = 0. In particular, for 𝛼 ≤

min

(
((𝑔

𝐿
𝑖
)2

(ℎ𝐿
𝑖
)+𝜆 ,

(𝑔𝑅
𝑖
)2

(ℎ𝑅
𝑖
)+𝜆

)
,𝑈 (𝛼, 𝜅) is given by (11).

The proof can be found in Appendix B. From (10), we see that

MaskedXGBoost’s performance is related to 𝐶 and 𝜎2, and it has

nothing to do with 𝜎1. Theorem 1 supports this hypothesis well.

We claim that MaskedXGBoost achieves better utility in the sense

that we can choose 𝜎2 and 𝐶 to make the error bound𝑈 (𝛼,𝜅) for
estimating the splitting score sufficiently small. In Section 6.7, we

also test the effect of 𝜎1 and 𝜎2 on MaskedXGBoost’s performance

numerically. Next, we introduce how to set reasonable parameters𝐶 ,

𝜎1, and 𝜎2 so thatMaskedXGBoost satisfies the differential privacy
guarantee for both parties of federated scenarios.

5.2 Privacy Analysis: Differential Privacy at
Active Party Side

According to our protocol described in Section 4, AP needs to

send the masked ⟨𝑔⟩𝑖 , ⟨ℎ⟩𝑖 to PP, which can be used to discover

the class label information [6]. So we need to analyze the privacy

preservation of AP.

For each splitting vector 𝑚𝑖 , AP uses the noises 𝑏𝑖1, . . . , 𝑏𝑖𝑊
received from PP to perturb 𝑔, ℎ according to Algorithm 2. This is

equivalent to adding a noise vector 𝜂𝑖 directly to 𝑔, ℎ, 𝜂𝑖 ∼ N (0, Σ),
where the submatrix with rows and columns indexed by A(𝑚𝑖) is
given as

ΣA(𝑚𝑖) = (12)

𝐶 (2𝜎2
1
+ 𝜎2

2
) −𝐶𝜎2

1
0 · · · 0 −𝐶𝜎2

1

−𝐶𝜎2
1

. . .
. . .

. . . 0

0

. . .
. . .

. . .
.
.
.

.

.

.
. . .

. . . 0

0

. . . −𝐶𝜎2
1

−𝐶𝜎2
1

0 · · · 0 −𝐶𝜎2
1

𝐶 (2𝜎2
1
+ 𝜎2

2
)


and the submatrix of all the other entries is given as

ΣI(𝑚𝑖) = 𝐶 (2𝜎2
1
+ 𝜎2

2
)𝐼 . (13)

Notice that ΣA(𝑚𝑖) is a circulant matrix [7]. We employ LDP to

evaluate the privacy preservation of our protocol.

To perform the LDP analysis, it is essential to bound the sen-

sitivity of the query function. In our context, this requires estab-

lishing upper bounds for both the gradients and Hessians. For bi-

nary classification problems, the gradient and Hessian are bounded,

i.e., there exists a 𝜇 > 0 such that |𝑔𝑖 |, |ℎ𝑖 | < 𝜇/2, and 𝜇 can

be conveniently derived. Specifically, the loss function is of the

form 𝑙 (𝑦𝑖 , 𝑦𝑖) = 𝑦𝑖 log(𝑦𝑖) + (1 − 𝑦𝑖) log(1 − 𝑦𝑖) (i.e., binary cross-

entropy). We have gradients 𝑔𝑖 ∈
[
− 1

2
,− 1

𝑒+1
]
∪

[
1

2
, 𝑒
𝑒+1

]
and Hes-

sians ℎ𝑖 ∈
[
0, 1

4

]
; thus 𝜇 = 2𝑒

𝑒+1 . For other problems (e.g., regression

problems), the loss functions may have unbounded gradient and

Hessian. We may use gradient clipping (similar to DP-SGD [1]) to

obtain bounded gradients and Hessians and then derive 𝜇.

Theorem 2. Recall that 𝑛𝐴,𝑖 and 𝑛𝐼 ,𝑖 are the sizes of the active set
and the inactive set of the splitting vector𝑚𝑖 respectively,MaskedXG-
Boost is (𝜀AP, 𝛿AP)-local differentially private, where 𝜀AP > 0, 0 <

𝛿AP < 1, for AP sending ⟨𝑔⟩𝑖 , ⟨ℎ⟩𝑖 each time if 𝑛𝐼 ,𝑖𝜇
2

𝐶 (2𝜎2

1
+𝜎2

2
) +

𝑛𝐴,𝑖𝜇
2

𝐶𝜎2

2

≤

2

(
𝜀AP − 2 ln𝛿AP − 2

√︁
ln𝛿AP (ln𝛿AP − 𝜀AP)

)
, where 𝜇 characterizes

the value range of the gradients and Hessians.
The proof can be found in Appendix C. By Theorem 2, we observe

that the noise energy required is related to the specific splitting

vector𝑚𝑖 , enabling our algorithm to adaptively adjust the noise

scale throughout the training process. In the following section, we

analyze the impact of 𝜎1 and 𝜎2 on PP’s privacy leakage.

5.3 Privacy Analysis: Differential Privacy at
Passive Party Side

Upon receiving the noisematrices𝐵1, . . . , 𝐵𝑙 , privacy leakage occurs

for PP. Specifically, with a given noise vector𝑏𝑖 𝑗 , AP aims to infer𝑚𝑖 .

8

Bilateral Differentially Private Vertical Federated Boosted Decision Trees Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

𝑈 (𝛼,𝜅) =
∫ ∞

0

©­­«Φ
(
−
√︁
𝛽𝐿𝑡 + 𝜇𝑋
𝜅

)
+ Φ

(
−
√︁
𝛽𝐿𝑡 − 𝜇𝑋
𝜅

)
+ Φ

©­­«
√︃
𝛽′
𝐿
𝑡 − 𝜇𝑋
𝜅

ª®®¬ + Φ
©­­«
√︃
𝛽′
𝐿
𝑡 + 𝜇𝑋
𝜅

ª®®¬
ª®®¬
1

𝜅
𝜙

(𝑡 − 𝜇𝑌
𝜅

)
d𝑡

+
∫ ∞

0

©­­«Φ
(
−
√︁
𝛽𝑅𝑡 + 𝜇𝑍
𝜅

)
+ Φ

(
−
√︁
𝛽𝑅𝑡 − 𝜇𝑍
𝜅

)
+ Φ

©­­«
√︃
𝛽′
𝑅
𝑡 − 𝜇𝑍
𝜅

ª®®¬ + Φ
©­­«
√︃
𝛽′
𝑅
𝑡 + 𝜇𝑍
𝜅

ª®®¬
ª®®¬
1

𝜅
𝜙

(𝑡 − 𝜇𝑊
𝜅

)
d𝑡

+ Φ (−𝜇𝑌 /𝜅) + Φ (−𝜇𝑊 /𝜅)

𝛽𝐿 :=
(𝑔𝐿
𝑖
)2

(ℎ𝐿
𝑖
) + 𝜆

+ 𝛼, 𝛽′𝐿 :=
(𝑔𝐿
𝑖
)2

(ℎ𝐿
𝑖
) + 𝜆

− 𝛼, 𝛽𝑅 :=
(𝑔𝑅
𝑖
)2

(ℎ𝑅
𝑖
) + 𝜆

+ 𝛼, 𝛽′𝑅 :=
(𝑔𝑅
𝑖
)2

(ℎ𝑅
𝑖
) + 𝜆

− 𝛼

𝜇𝑋 := (𝑔𝐿𝑖), 𝜇𝑌 := (ℎ𝐿𝑖) + 𝜆, 𝜇𝑍 := (𝑔𝑅𝑖), 𝜇𝑊 := (ℎ𝑅𝑖) + 𝜆
(11)

with standard normal density 𝜙 and cumulative distribution function Φ.

2 4 6 8
Privacy Budget for AP(AP)

0.4

0.5

0.6

0.7

0.8

0.9

Te
st

 A
UC

Credit 1

2 4 6 8
Privacy Budget for AP(AP)

0.4

0.5

0.6

0.7

0.8

0.9

Adult

2 4 6 8
Privacy Budget for AP(AP)

0.5

0.6

0.7

0.8

Higgs

2 4 6 8
Privacy Budget for AP(AP)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Bank

MaskedXGBoost FederBoost FedXGBoost-LDP XGBoost-LDP XGBoost-NonPrivate

Figure 4: Utility of different methods for different privacy budgets.

𝑚𝑖 reveals the privacy of the user’s feature data in PP. Recall Exam-

ple 1, where the feature vector is 𝑑 = [24, 25, 20, 22, 15, 17, 18, 16]⊤,
representing the ages of a group of people. A splitting candidate is

chosen as Age = 18. If AP can infer that𝑚𝑖 = [0, 0, 0, 0, 1, 1, 1, 1], it
can conclude that the ages of the first four individuals are greater

than those of the last four, leading to a privacy disclosure of the

users’ age data.

Due to the designed disturbing noise in Algorithm 1, AP is unable

to deduce a potential solution for𝑚𝑖 through straightforward brute

force enumeration. For each𝑚𝑖 , the output of MaskedXGBoost is
the noise matrix 𝐵𝑖 . Since this represents aggregated information

about𝑚𝑖 , we employ differential privacy (DP) to assess the privacy

leakage of PP.

Theorem 3. Recall that 𝑛 is the number of instances in datasets,
𝑊 is the number of noise vectors in a noise matrix 𝐵𝑖 , i.e.
𝐵𝑖 = [𝑏𝑖1, . . . , 𝑏𝑖𝑊]. For any 𝜀PP, 𝛿PP satisfy 𝜀PP > 𝑊 ln 2,
𝛿PP ≥𝑊 Pr𝑦∼N(0,𝐼3)

(
𝑦⊤𝑘𝑦 ≥ 2𝜀PP/𝑊 − 2 ln 2

)
, MaskedXGBoost is

(𝜀PP, 𝛿PP)-differentially private for PP sending each noise matrix 𝐵𝑖 ,
where 𝑘 = 𝑑𝑖𝑎𝑔(𝑘1, 𝑘2, 𝑘3), 𝑘1, 𝑘2, 𝑘3 are the eigenvalues of


𝑏 − 𝑐 𝑎 + 𝑐 𝑏 − 𝑎
𝑎 − 𝑏 2𝑏 𝑎 − 𝑏
𝑏 − 𝑎 𝑎 + 𝑐 𝑏 − 𝑐


and 𝑎 = 1

𝑛

∑𝑛−1
𝑗=0

𝜎2

1

2𝜎2

1
[1−cos(2𝜋 𝑗

𝑛
)]+𝜎2

2

, 𝑏 =

1

𝑛

∑𝑛−1
𝑗=0

𝜎2

1
cos(2𝜋 𝑗

𝑛
)

2𝜎2

1
[1−cos(2𝜋 𝑗

𝑛
)]+𝜎2

2

and 𝑐 = 1

𝑛

∑𝑛−1
𝑗=0

𝜎2

1
cos(4𝜋 𝑗

𝑛
)

2𝜎2

1
[1−cos(2𝜋 𝑗

𝑛
)]+𝜎2

2

.

Table 2: Overview of the six datasets.

Dataset n. f. p. Dataset n f. p.

Credit 1 150000 10 0.07 Higgs 200000 28 0.47

Adult 32651 14 0.24 Bank 45211 16 0.11

Credit 2 30000 23 0.22 Nomao 34465 10 0.28

We provide detailed proof of Theorem 3 in Appendix D. Based

on Theorem 3, one can get a hint on the relation between noise

ratio 𝜎2
1
/𝜎2

2
and privacy leakage in PP. According to our simulation

results in Appendix D, with fixed 𝜖PP, the lower-bound for 𝛿PP
increases monotonically with the noise ratio, indicating that a large

value of 𝜎2
1
/𝜎2

2
translates to increased privacy leakage from PP.

Intuitively, as the scale of disturbing noise 𝜎2 decreases, it becomes

easier for AP to deduce the splitting vector by observing dimension

additions close to zero, leveraging the insights from Algorithm 1.

6 EMPIRICAL EVALUATIONS
In this section, we first evaluate the model utility, convergence

performance, and computational efficiency of MaskedXGBoost,
respectively. Secondly, we conduct experiments to show the empir-

ical privacy-preserving property of MaskedXGBoost. Thirdly, we
conduct the ablation study to show how the PP privacy budget 𝜀PP
affectsMaskedXGBoost’s performance.

9

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Zhang et al.

6.1 Experimental Setup
Datasets.We conduct our experiments on six widely used public

XGBoost datasets including Credit 1, Adult, Higgs, Bank, Credit

2, and Nomao. All datasets are displayed in Table 2 detailing the

number of records(𝑛.), number of features(𝑓 .), and proportion of the

positive class (𝑝.). All these real-world datasets are from Kaggle [26,

49] and the UCI repository [11].

Metrics. In the design of MaskedXGBoost, we mainly consider two

aspects of performance, model utility, and computational efficiency.

• (M1) Model Utility. We use the AUC
1
score to measure the

model utility, which is widely used to evaluate the prediction

ability of XGBoost models on binary classification.

• (M2) Computational Efficiency.We calculate the average train-
ing time per tree to analyze the computational efficiency.

Competitors.We have four baselines: (1) XGBoost-NonPrivate [4]:

Train XGBoost without privacy concerns. (2) XGBoost-LDP: Di-

rectly add Gaussian noise to gradients and Hessians to achieve LDP.

(3) FedXGBoost-LDP [30]: Reduce the disturbance of LDP noises to

the utility by modifying the splitting scoring function and utilizing

only gradient information. (4) FederBoost [44]: Inject noise in data

feature information of PP to achieve DP. The definition of PP’s

privacy in this method is the same as inMaskedXGBoost, that is,
the relative order of private feature values of training data samples.

Implementation. We implement MaskedXGBoost based on

FedTree [33], which is an effective federated XGBoost template

with C++. All experiments are run on a server containing 40 2.20

GHz CPUs, with 2 TB memory and Ubuntu 18.04 LTS system. All

experiments are repeated 10 times and the mean and standard devi-

ation are reported.

6.2 Utility Evaluation
In this section, we evaluate the model utility of different methods.

The metric is the test AUC with 60 training rounds and tree depth

𝑑 = 6. We choose 𝜀AP from {0.5, 1, 2, 4, 6, 8}. In all experiments we

satisfy (𝜀AP, 𝛿AP)-LDP and (𝜀PP, 𝛿PP)-DP where 𝛿AP = 0.001, and

𝜀PP = 1, 𝛿PP = 1/𝑛. We use the advanced composition bound [15]

to calculate the privacy budget for each step. XGBoost-NonPrivate

represents the best AUC that can be achieved, and it is a horizontal

line because its test AUC does not change with the privacy budget

𝜀AP. The evaluation results on four datasets are shown in Figure 4,

and the other results are in Appendix H.

MaskedXGBoost’s Performance. As illustrated in Figure 4, we

can clearly observe thatMaskedXGBoost is far superior to the other
two methods. With the increment of privacy budget 𝜀AP, the AUC

of each method has been improved.MaskedXGBoost significantly
outperforms the other baselines because a large portion of our noise

used to protect privacy is carefully constructed and lossless.

Other Approaches’ Performance. In Figure 4, the AUCs of

XGBoost-LDP and FedXGBoost-LDP have considerable fluctuations.

During the XGBoost training process, if there is a significant er-

ror in the parent tree nodes, the error propagates to its left and

right children nodes, resulting in larger errors. Consequently, the

1
Measures such as accuracy are not useful for testing the performance of models in

cases of class imbalance.

Table 3: Efficiency evaluation of different methods on six
datasets. The average training time per tree is reported. We
highlight our method in the red ground.

Datasets
Methods Credit 1 Adult Higgs Bank Credit 2 Nomao

XGBoost-NonPrivate 0.25 0.15 0.58 0.17 0.38 0.15

MaskedXGBoost 3.95 1.54 11.17 2.21 5.17 1.77

HE-XGBoost 25.22 7.43 47.70 11.71 18.41 11.91

XGBoost-LDP 3.47 1.41 4.78 1.29 2.85 1.45

FedXGBoost-LDP 3.27 1.18 3.72 1.23 2.22 1.03

FederBoost 2.15 1.11 3.11 1.05 1.95 0.95

AUCs for these methods exhibit notable instability and do not show

substantial enhancement even with increased 𝜀AP.

MaskedXGBoost sometimes performs on average similarly to

FederBoost when the AP privacy budget is low (e.g., 𝜀AP = 0.5 on

Credit 1 andAdult), but it is more stable.Moreover,MaskedXGBoost
significantly outperforms FederBoost as the AP privacy budget

increases.

6.3 Convergence Evaluation
In order to better understand the differences betweenMaskedXG-
Boost and other approaches, we analyze the training process of

each algorithm. Figure 5 depicts the training process of the four

algorithms with different privacy budgets on Credit 1 dataset. The

results on other datasets are in Appendix H.

MaskedXGBoost’s Performance. In general, we observe that

the training process of the MaskedXGBoost is stable, and the test

AUC gradually rises. As the privacy budget 𝜀AP grows, the AUC

of MaskedXGBoost is getting higher and closer to the ground

truth: XGBoost-NonPrivate. As the privacy budget is relaxed, the

randomness of different runs gradually decreases, demonstrating

the stability of our algorithm.

Other Approaches’ Performance. The training process of the

other three algorithms has a large disturbance, even if the num-

ber of training rounds increases, the performance cannot be im-

proved stably. FedXGBoost-LDP has less disturbance than XGBoost-

LDP due to the adjustment of the scoring function. However, since

FedXGBoost-LDP does not consider the Hessian information, its

performance is degraded. The performance of XGBoost-LDP and

FedXGBoost-LDP is not increased with the number of training

rounds even with a relatively large privacy budget(i.e., 𝜀AP = 8).

Since there is no AP privacy breach in FederBoost, its training

process are not affected by the AP privacy budget. However, the

FederBoost AUC results are highly unstable due to significant per-

turbations in the feature data, which disrupt XGBoost’s splitting

candidate search process.

In XGBoost training, the error accumulates with the number

of layers in a tree and also with the number of training rounds.

Therefore, increasing the number of training rounds (number of

trees) does not guarantee an improvement in performance in the

presence of noise. MaskedXGBoost adaptively adjusts the noise

scale during the training process and increases communication to

10

Bilateral Differentially Private Vertical Federated Boosted Decision Trees Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

0 10 20 30 40 50 60
Number of trees (T)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Te
st

 A
UC

AP = 0.5 on Credit 1

0 10 20 30 40 50 60
Number of trees (T)

0.3

0.4

0.5

0.6

0.7

0.8

0.9
AP = 1 on Credit 1

0 10 20 30 40 50 60
Number of trees (T)

0.3

0.4

0.5

0.6

0.7

0.8

0.9
AP = 4 on Credit 1

0 10 20 30 40 50 60
Number of trees (T)

0.3

0.4

0.5

0.6

0.7

0.8

0.9
AP = 8 on Credit 1

MaskedXGBoost FederBoost FedXGBoost-LDP XGBoost-LDP XGBoost-NonPrivate

Figure 5: Training process of the four XGBoost algorithms with different privacy budgets on Credit 1 dataset

Noised
Information

Predict
Label

Label Inference Attacker Passive PartyActive Party

Split Vectors
& Noises

Real
Label

Successful Attack
Buy

or Not?

Figure 6: Illustration of the neural network-based attacker.
PP receives the perturbed information and leverages the
splitting vectors and noises in their possession to conduct a
label inference attack using a pre-trained attacker model.

0.5 1 2 4 6 8 10
Privacy Budget(AP)

0.50

0.55

0.60

0.65

0.70

0.75

Ac
cu

ra
cy

(a) Varying AP with AP = 0.001

0.5 1 2 4 6 8 10
Privacy Budget(AP)

0.50

0.55

0.60

0.65

0.70

0.75

Ac
cu

ra
cy

(b) Varying AP with AP = 0.01

0.5 1 2 4 6 8 10
Privacy Budget(AP)

0.50

0.55

0.60

0.65

0.70

0.75

Ac
cu

ra
cy

(c) Varying AP with AP = 0.1

Label inference attack on Credit 1
Label inference attack on Adult

Label inference attack on Higgs
Label inference attack on Bank

Figure 7: Empirical privacy evaluation for AP with varying
privacy budget 𝜀AP and 𝛿AP. As long as the privacy budget is
small enough, the attacker cannot infer successfully.

correct errors, resulting in reduced disturbance from noise during

modeling.

6.4 Efficiency Evaluation
We show the training time comparison among MaskedXGBoost,
XGBoost-NonPrivate, XGBoost-LDP, FedXGBoost-LDP, FederBoost,

and HE-XGBoost (using the HE method Paillier to protect privacy).

The computation overhead of our approach mainly comes from

building the categorical matrix 𝑀 and noise vectors. Thus, this

overhead increases as the number of dimensions of training data

increases. The majority of time consumption in HE-XGBoost arises

from the encryption and decryption processes, as well as the cipher-

text operations. Table 3 shows the average training time per tree

of each method. The training time per tree for MaskedXGBoost
is significantly lower than that of HE-XGBoost.MaskedXGBoost
achieves 4.82× (Adult dataset) to 6.72× (Nomao dataset) training

time improvement compared with the HE method. Although our

algorithm is not as efficient as other DP algorithms, it is acceptable,

and our utility is better. We provide the communication overhead

analysis in Appendix F.

0.75 2 4 6 8
Privacy Budget(PP)

0.45

0.50

0.55

0.60

A
cc

ur
ac

y

(a) AP = 0.5, AP = 0.001

0.75 2 4 6 8
Privacy Budget(PP)

0.45

0.50

0.55

0.60

A
cc

ur
ac

y

(b) AP = 4, AP = 0.001

0.75 2 4 6 8
Privacy Budget(PP)

0.45

0.50

0.55

0.60

A
cc

ur
ac

y

(c) AP = 8, AP = 0.001

Attribute inference attack on Credit 1
Attribute inference attack on Adult

Attribute inference attack on Higgs
Attribute inference attack on Bank

Figure 8: Empirical privacy evaluation for PP with varying
privacy budget 𝜀PP and 𝜀AP. Even with a very loose privacy
budget(e.g., 𝜀PP = 8, 𝛿𝐴𝑃 = 8), attacks on PP’s splitting vector
are still not effective.

6.5 Empirical Privacy Evaluation for AP
While we possess a theoretical privacy guarantee through local

differential privacy, we also perform empirical privacy evaluations

to confirm the adequacy of our algorithm’s privacy. In the honest-

but-curious threat model, PP aims to perform a label inference

attack. We introduce the following attacker for AP under this threat

model.

Attack Setting & Goal. PP builds the noise vectors 𝑏𝑖1, . . . , 𝑏𝑖𝑊
according to a splitting vector 𝑚𝑖 , and receive ⟨𝑔⟩𝑖 , ⟨ℎ⟩𝑖 from

AP, which are perturbed in virtue of (9). With the awareness of

𝑏𝑖1, . . . , 𝑏𝑖𝑊 , ⟨𝑔⟩𝑖 , ⟨ℎ⟩𝑖 , PP wants to de-noise ⟨𝑔⟩𝑖 and ⟨ℎ⟩𝑖 . Then
with the estimated plain information 𝑔 and ℎ, PP can infer the label

of instances. Figure 6 shows the attack process of our attacker.

Attack Methodology.We construct a 5-layer neural network at-

tacker for executing the attack. This neural network provides esti-

mates for the plaintext information, denoted as 𝑔 and ℎ, which are

subsequently used to calculate the predicted label. PP emulates the

real communication process by introducing noise and applying it to

the fabricated gradients and Hessians. These fabricated datasets are

generated based on PP’s own splitting vector to simulate training

data. For the testing, the attacker comprises the perturbed gradi-

ents and Hessians that AP sends during the actual execution of

our method. We use L2 regularization with a parameter of 0.01 to

mitigate overfitting.

Evaluation Results. After PP trains the attacker to convergence,

we evaluate its performance by testing it on real, noisy gradients

and Hessians, denoted as ⟨𝑔⟩𝑖 and ⟨ℎ⟩𝑖 , which are generated by AP

using our MaskedXGBoost. We conduct evaluations with different

privacy budgets 𝜀AP and 𝛿AP on six datasets.

In Figure 7, we present the attack results on four datasets. Other

results are available in Appendix H. Under a small privacy bud-

get(e.g., 𝜀AP = 0.5, 𝛿𝐴𝑃 = 0.001), the privacy of users can not be

11

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Zhang et al.

1 2 3 4 5 6 7 8
PP

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Te
st

 A
UC

Varying PP

AP = 0.5
AP = 1
AP = 4
AP = 8

0 10 20 30 40 50 60
Number of trees (T)

0.50

0.55

0.60

0.65

0.70

AP = 0.5 on Credit 1
PP = 0.75
PP = 1
PP = 4
PP = 8

0 10 20 30 40 50 60
Number of trees (T)

0.50

0.55

0.60

0.65

0.70

0.75

0.80
AP = 4 on Credit 1

PP = 0.75
PP = 1
PP = 4
PP = 8

0 10 20 30 40 50 60
Number of trees (T)

0.50

0.55

0.60

0.65

0.70

0.75

0.80
AP = 8 on Credit 1

PP = 0.75
PP = 1
PP = 4
PP = 8

Figure 9: Ablation study on Credit 1: the effect of 𝜀PP on final test AUC and training process.

compromised. When the privacy budget parameters are relaxed,

the effectiveness of attacks slightly improves.

6.6 Empirical Privacy Evaluation for PP
For the privacy of PP, besides providing theoretical differential

privacy protection, we design an empirical privacy evaluation for

PP. In the honest-but-curious threat model, AP aims to perform an

attribute inference attack. Under this threat model, we introduce

the following attacker for PP.

Attack Setting & Goal. AP receives the noise vectors 𝑏𝑖1, . . . , 𝑏𝑖𝑊
according to the splitting vector𝑚𝑖 owned by PP. Since the distri-

bution of these noise vectors is related to the splitting vector𝑚𝑖 ,

the attacker wants to infer the private splitting vector𝑚𝑖 based on

the noise vectors 𝑏𝑖1, . . . , 𝑏𝑖𝑊 .

Attack Methodology. Recall that noise consists of active noise,
inactive noise, and disturbing noise in Section 4.2, where all di-

mensions of active noise add up to exactly 0. We assume that the

attacker knows the size of the active set 𝑛𝐴,𝑖 . If no disturbing noise

is injected, the attacker can traverse all possibilities 𝐶
𝑛𝐴,𝑖
𝑛 , where

the one that adds exactly 0 is the correct active set. Due to the

addition of disturbance noise, the corresponding dimensions of the

active set are not added to 0, but the corresponding disturbance is

still much smaller than that of other combinations. So the attacker

can find the predicted active set based on the minimum absolute

value of the sum.

Evaluation Results.We measure the attack effectiveness by the

bit match between the splitting vector predicted by the attacker

and the real vector. We conduct evaluations with different privacy

budgets 𝜀PP and 𝜀AP and on six datasets. 𝛿PP and 𝛿AP is set to be

1/𝑛, 0.001 respectively.
In Figure 8, we present the attack results on four datasets. Other

results are available in Appendix H. We find that the attack is

ineffective due to the presence of disturbing noise, and even when

the privacy budget is relaxed, the attack success rate does not exceed

0.6. This demonstrates thatMaskedXGBoost fully guarantees the

privacy of PP. The empirical privacy evaluation is based on the

honest-but-curious adversary assumption, we provide the analysis

if adversaries deviate from the protocol in Appendix G.

6.7 Ablation Study
Now we evaluate the impact of 𝜀PP on MaskedXGBoost’s perfor-
mance. As shown in Figure 9,MaskedXGBoost’s utility improves

with higher 𝜀PP values. This aligns with the findings in Theorem 1

and Theorem 3, where a larger 𝜀PP corresponds to a smaller 𝜎2,

allowingMaskedXGBoost to improve performance. Consider the

training process, regardless of the 𝜀PP setting, MaskedXGBoost

exhibits a relatively fast convergence rate, although there may be a

slight difference in the final test AUC. For other datasets’ results,

please refer to Appendix H.

7 RELATEDWORK

Vertical Federated XGBoost. Recently, Cheng et al. [6] proposed

SecureBoost, a federated XGBoost framework for vertically parti-

tioned data. In SecureBoost, AP calculates 𝑔𝑖 and ℎ𝑖 for all samples,

encrypts themusing additively homomorphic encryption, and sends

the ciphertexts to PP. Using the homomorphic property, PP com-

putes the ciphertext sum of gradients and Hessians of left and right

nodes for all possible splitting candidates and returns the cipher-

texts to AP. AP decrypts all ciphertexts and finds the best split. This

protocol is expensive since it requires cryptographic computation

and communication for each possible split.

Some related works propose approaches that avoid encryption

operations to get better efficiency. Tian et al. [44] suppose that

PP adds differentially private noise to the users’ bucket, which is

formed by the division of splitting candidates. Such an approach is

still impractical because the user information in a bucket is highly

compromised and performance decreases significantly as the pri-

vacy budget decreases.

Horizontal Federated XGBoost. Recent studies have explored
GBDT implementations, such as XGBoost, for secure training in

horizontal federated settings [8, 18]. These approaches typically rely

on cryptographic techniques like Secure Multi-Party Computation

(MPC) or HE, which result in high computational and communi-

cation overhead. Tian et al. [44] propose methods under the local

DP model but experience significant utility loss due to the local

noise[44]. Maddock et al. [37] use lightweight MPC techniques such

as secure aggregation to balance DP efficiency with cryptographic

security. Peinemann et al. [40] introduce non-spherical multivariate

Gaussian noise to improve the utility-privacy trade-off.

8 CONCLUSION AND FUTUREWORK
In this paper, we proposed MaskedXGBoost that enables the state-
of-the-art tree ensemble model XGBoost to be conducted under VFL

settings. Different from the previous work applying homomorphic

encryption, our protocolMaskedXGBoost achieves lower overhead
while maintaining consistently better accuracy and provides a bi-

lateral differential privacy guarantee with rigorous proof. In our

protocolMaskedXGBoost, we design a special privacy protection

mechanism for VFL XGBoost instead of directly applying DP noise

perturbation, which may have great potential to be applied to other

privacy-preserving algorithms.

12

Bilateral Differentially Private Vertical Federated Boosted Decision Trees Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

In our future work, we plan to enhance the performance of

MaskedXGBoost. This involves optimizing the construction of the

categorical matrix and the matrix operation process. Additionally,

we aim to implement MaskedXGBoost in real-world industrial

scenarios to evaluate its performance with more realistic data.

REFERENCES
[1] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov,

Kunal Talwar, and Li Zhang. 2016. Deep learning with differential privacy. In

Proceedings of the 2016 ACM SIGSAC conference on computer and communications
security. 308–318.

[2] Yoshinori Aono, Takuya Hayashi, Lihua Wang, Shiho Moriai, et al. 2017. Privacy-

preserving deep learning via additively homomorphic encryption. IEEE Transac-
tions on Information Forensics and Security 13, 5 (2017), 1333–1345.

[3] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan

McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. 2017. Prac-

tical secure aggregation for privacy-preserving machine learning. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security.
1175–1191.

[4] Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A scalable tree boosting system.

In Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge
Discovery and Data Mining. 785–794.

[5] Weijing Chen, Guoqiang Ma, Tao Fan, Yan Kang, Qian Xu, and Qiang Yang. 2021.

Secureboost+: A high performance gradient boosting tree framework for large

scale vertical federated learning. arXiv preprint arXiv:2110.10927 (2021).

[6] Kewei Cheng, Tao Fan, Yilun Jin, Yang Liu, Tianjian Chen, Dimitrios Papadopou-

los, and Qiang Yang. 2021. Secureboost: A lossless federated learning framework.

IEEE Intelligent Systems 36, 6 (2021), 87–98.
[7] Philip J Davis. 1979. Circulant Matrices Wiley. Vol. 120. Wiley New York.

[8] Kevin Deforth, Marc Desgroseilliers, Nicolas Gama, Mariya Georgieva, Dimitar

Jetchev, and Marius Vuille. 2022. XORBoost: Tree boosting in the multiparty

computation setting. Proceedings on Privacy Enhancing Technologies (2022).
[9] Linkang Du, Zhikun Zhang, Shaojie Bai, Changchang Liu, Shouling Ji, Peng

Cheng, and Jiming Chen. 2021. AHEAD: Adaptive Hierarchical Decomposition

for Range Query under Local Differential Privacy. In ACM CCS.
[10] Yuntao Du, Yujia Hu, Zhikun Zhang, Ziquan Fang, Lu Chen, Baihua Zheng, and

Yunjun Gao. 2023. LDPTrace: Locally Differentially Private Trajectory Synthesis.

In VLDB.
[11] Dheeru Dua and Casey Graff. 2017. UCI Machine Learning Repository. http:

//archive.ics.uci.edu/ml

[12] Lutz Duembgen. 2010. Bounding standard gaussian tail probabilities. arXiv
preprint arXiv:1012.2063 (2010).

[13] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and

Moni Naor. 2006. Our data, ourselves: Privacy via distributed noise generation. In

Annual International Conference on the Theory and Applications of Cryptographic
Techniques. Springer, 486–503.

[14] Cynthia Dwork, Aaron Roth, et al. 2014. The algorithmic foundations of differ-

ential privacy. Foundations and Trends® in Theoretical Computer Science 9, 3–4
(2014), 211–407.

[15] Cynthia Dwork, Guy N Rothblum, and Salil Vadhan. 2010. Boosting and differ-

ential privacy. In 2010 IEEE 51st Annual Symposium on Foundations of Computer
Science. IEEE, 51–60.

[16] Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. 2014. Rappor: Random-

ized aggregatable privacy-preserving ordinal response. In Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security. 1054–1067.

[17] Wenjing Fang, Chaochao Chen, Jin Tan, Chaofan Yu, Yufei Lu, Li Wang, Lei

Wang, Jun Zhou, and Alex X Liu. 2020. A hybrid-domain framework for secure

gradient tree boosting. In The 29th ACM International Conference on Information
and Knowledge Management (CIKM’20), Galway, Ireland. ACM, New York, NY,
USA.

[18] Zhi Feng, Haoyi Xiong, Chuanyuan Song, Sijia Yang, Baoxin Zhao, LichengWang,

Zeyu Chen, Shengwen Yang, Liping Liu, and Jun Huan. 2019. Securegbm: Secure

multi-party gradient boosting. In 2019 IEEE international conference on big data
(big data). IEEE, 1312–1321.

[19] Jerome H Friedman. 2001. Greedy function approximation: a gradient boosting

machine. Annals of statistics (2001), 1189–1232.
[20] Fangcheng Fu, Jiawei Jiang, Yingxia Shao, and Bin Cui. 2019. An experimental

evaluation of large scale GBDT systems. arXiv preprint arXiv:1907.01882 (2019).
[21] Nayanaba Pravinsinh Gohil and Arvind D Meniya. 2021. Click ad fraud detec-

tion using XGBoost gradient boosting algorithm. In International Conference on
Computing Science, Communication and Security. Springer, 67–81.

[22] Robert M Gray et al. 2006. Toeplitz and circulant matrices: A review. Foundations
and Trends® in Communications and Information Theory 2, 3 (2006), 155–239.

[23] Roger AHorn and Charles R Johnson. 2012.Matrix analysis. Cambridge university

press.

[24] Lingying Huang, Junfeng Wu, Dawei Shi, Subhrakanti Dey, and Ling Shi. 2024.

Differential privacy in distributed optimization with gradient tracking. IEEE
Trans. Automat. Control (2024).

[25] Chao Jin, Jun Wang, Sin G Teo, Le Zhang, CS Chan, Qibin Hou, and Khin Mi Mi

Aung. 2022. Towards End-to-End Secure and Efficient Federated Learning for

XGBoost. (2022).

[26] Kaggle.2012. [n. d.]. Give Me Some Credit Competition Dataset. https://www.

kaggle.com/competitions/GiveMeSomeCredit/data?select=cs-test.csv.

[27] Alan F Karr, Xiaodong Lin, Ashish P Sanil, and Jerome P Reiter. 2009. Privacy-

preserving analysis of vertically partitioned data using secure matrix products.

Journal of Official Statistics 25, 1 (2009), 125.
[28] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma,

Qiwei Ye, and Tie-Yan Liu. 2017. Lightgbm: A highly efficient gradient boosting

decision tree. Advances in Neural Information Processing Systems 30 (2017).
[29] Vladimir Kolesnikov, Naor Matania, Benny Pinkas, Mike Rosulek, and Ni Trieu.

2017. Practical multi-party private set intersection from symmetric-key tech-

niques. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. 1257–1272.

[30] Nhan Khanh Le, Yang Liu, Quang Minh Nguyen, Qingchen Liu, Fangzhou Liu,

Quanwei Cai, and Sandra Hirche. 2021. FedXGBoost: Privacy-Preserving XGBoost

for Federated Learning. arXiv preprint arXiv:2106.10662 (2021).
[31] Jerome Le Ny and George J Pappas. 2013. Differentially private filtering. IEEE

Trans. Automat. Control 59, 2 (2013), 341–354.
[32] Oscar Li, Jiankai Sun, Xin Yang, Weihao Gao, Hongyi Zhang, Junyuan Xie, Vir-

ginia Smith, and Chong Wang. 2021. Label Leakage and Protection in Two-party

Split Learning. In International Conference on Learning Representations.
[33] Qinbin Li, Zhaomin Wu, Yanzheng Cai, Yuxuan Han, Ching Man Yung, Tianyuan

Fu, and Bingsheng He. 2023. FedTree: A Federated Learning System For Trees.

In Proceedings of Machine Learning and Systems.
[34] Qinbin Li, Zhaomin Wu, Zeyi Wen, and Bingsheng He. 2020. Privacy-preserving

gradient boosting decision trees. In Proceedings of the AAAI Conference on Artifi-
cial Intelligence, Vol. 34. 784–791.

[35] Xiaoliang Ling, Weiwei Deng, Chen Gu, Hucheng Zhou, Cui Li, and Feng Sun.

2017. Model ensemble for click prediction in bing search ads. In Proceedings of
the 26th international conference on world wide web companion. 689–698.

[36] Wen-jie Lu, Zhicong Huang, Qizhi Zhang, Yuchen Wang, and Cheng Hong. 2023.

Squirrel: A Scalable Secure {Two-Party} Computation Framework for Training

Gradient Boosting Decision Tree. In 32nd USENIX Security Symposium (USENIX
Security 23). 6435–6451.

[37] Samuel Maddock, Graham Cormode, Tianhao Wang, Carsten Maple, and Somesh

Jha. 2022. Federated Boosted Decision Trees with Differential Privacy. In Pro-
ceedings of the 2022 ACM SIGSAC Conference on Computer and Communications
Security. 2249–2263.

[38] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise

Aguera y Arcas. 2017. Communication-Efficient Learning of Deep Networks

from Decentralized Data. In Proceedings of the 20th International Conference on
Artificial Intelligence and Statistics (Proceedings of Machine Learning Research,
Vol. 54), Aarti Singh and Jerry Zhu (Eds.). PMLR, 1273–1282. https://proceedings.

mlr.press/v54/mcmahan17a.html

[39] H Brendan McMahan, Eider Moore, Daniel Ramage, and Blaise Agüera y Arcas.

2016. Federated learning of deep networks using model averaging. arXiv preprint
arXiv:1602.05629 2 (2016).

[40] Thorsten Peinemann, Moritz Kirschte, Joshua Stock, Carlos Cotrini, and Esfandiar

Mohammadi. 2023. S-BDT: Distributed Differentially Private Boosted Decision

Trees. arXiv e-prints (2023), arXiv–2309.
[41] Reza Shokri and Vitaly Shmatikov. 2015. Privacy-preserving deep learning. In

Proceedings of the 22nd ACM SIGSACConference on Computer and Communications
Security. 1310–1321.

[42] Garry J Tee. 2007. Eigenvectors of block circulant and alternating circulant

matrices. New Zealand Journal of Mathematics 36, 8 (2007), 195–211.
[43] Zhenya Tian, Jialiang Xiao, Haonan Feng, and Yutian Wei. 2020. Credit risk

assessment based on gradient boosting decision tree. Procedia Computer Science
174 (2020), 150–160.

[44] Zhihua Tian, Rui Zhang, Xiaoyang Hou, Lingjuan Lyu, Tianyi Zhang, Jian Liu,

and Kui Ren. 2023. FederBoost:Private Federated Learning for GBDT. IEEE
Transactions on Dependable and Secure Computing (2023).

[45] Haiming Wang, Zhikun Zhang, Tianhao Wang, Shibo He, Michael Backes, Jim-

ing Chen, and Yang Zhang. 2023. PrivTrace: Differentially Private Trajectory

Synthesis by Adaptive Markov Model. In USENIX Security.
[46] Rui Wang, Oğuzhan Ersoy, Hangyu Zhu, Yaochu Jin, and Kaitai Liang. 2022.

Feverless: Fast and secure vertical federated learning based on xgboost for de-

centralized labels. IEEE Transactions on Big Data (2022).
[47] Tianhao Wang, Joann Qiongna Chen, Zhikun Zhang, Dong Su, Yueqiang Cheng,

Zhou Li, Ninghui Li, and Somesh Jha. 2021. Continuous Release of Data Streams

under both Centralized and Local Differential Privacy. In ACM CCS.
[48] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. 2019. Federatedmachine

learning: Concept and applications. ACM Transactions on Intelligent Systems and
Technology (TIST) 10, 2 (2019), 1–19.

13

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://www.kaggle.com/competitions/GiveMeSomeCredit/data?select=cs-test.csv
https://www.kaggle.com/competitions/GiveMeSomeCredit/data?select=cs-test.csv
https://proceedings.mlr.press/v54/mcmahan17a.html
https://proceedings.mlr.press/v54/mcmahan17a.html

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Zhang et al.

[49] I-Cheng Yeh and Che-hui Lien. 2009. The comparisons of data mining techniques

for the predictive accuracy of probability of default of credit card clients. Expert
systems with applications 36, 2 (2009), 2473–2480.

[50] Quan Yuan, Zhikun Zhang, Linkang Du, Min Chen, Peng Cheng, and Mingyang

Sun. 2023. PrivGraph: Differentially Private Graph Data Publication by Exploiting

Community Information. In USENIX Security.
[51] Bokang Zhang, Yanglin Zhang, Zhikun Zhang, Jinglan Yang, Lingying Huang,

and Junfeng Wu. 2024. S2NeRF: Privacy-preserving Training Framework for

NeRF. In Proceedings of the 2024 on ACM SIGSAC Conference on Computer and
Communications Security. 258–272.

[52] Zhikun Zhang, Tianhao Wang, Ninghui Li, Shibo He, and Jiming Chen. 2018.

CALM: Consistent Adaptive Local Marginal for Marginal Release under Local

Differential Privacy. In ACM CCS.
[53] Zhikun Zhang, Tianhao Wang, Ninghui Li, Jean Honorio, Michael Backes, Shibo

He, Jiming Chen, and Yang Zhang. 2021. PrivSyn: Differentially Private Data

Synthesis. In USENIX Security.

A DETAILS OF XGBOOST
Regression Tree. A regression tree, which belongs to the family

of decision trees, is a commonly used algorithm for predicting

numerical output variables in a given dataset, where the numerical

output variables are defined as

𝑓 (𝑥) = 𝑤𝑞 (𝑥) , 𝑞 : X −→ {1, . . . , 𝐿} ,𝑤 ∈ R𝐿

where 𝑞 denotes the tree structure that maps the feature of an

instance to a unique leaf,𝑤 is the weight vector of the leaf, and 𝐿

is the number of leaves of one tree.

The regression tree is capable of assigning any instance 𝑥 to a

specific leaf node with a leaf index 𝑞(𝑥). This index corresponds to a
unique leaf weight value𝑤𝑞 (𝑥) . The process of training a regression
tree is essentially learning a tree structure 𝑞 and leaf weight 𝑤 .

Splitting Rules. To learn a tree structure at the 𝑡𝑡ℎ iteration, many

splitting rules, i.e., mappings that assign an instance 𝑥𝑖 to a specific

leaf node, are proposed according to the order of feature data [19].

The algorithm proposed in [4] is a greedy rule that splits the in-

stances into two disjoint sets of instances (which are associated with

the left and right child nodes) at a node and repeats the splitting

multiple times. (6) is often used to evaluate a splitting candidate

at each node 𝑗 (associated with instance set I𝑗) [4]. In (6), I𝐿,𝑗 and
I𝑅,𝑗 are associated with the left and right child nodes, forming the

dichotomy of the proposed splitting in question, and 𝜆 and 𝛾 are

the regularization parameters in (2).

The proposed that gets the highest score in (6) will be selected

as the tree structure at this node. Then, splitting continues from

the newly constructed nodes until it reaches the maximum depth

of the tree. The deepest nodes are called the leaves of a tree.

B PROOF OF THEOREM 1
We use 𝐿

𝑠𝑖
𝑠𝑝𝑙𝑖𝑡

to denote the true splitting score of the 𝑖𝑡ℎ splitting

candidate and ⟨𝐿𝑠𝑖
𝑠𝑝𝑙𝑖𝑡
⟩ to denoteMaskedXGBoost’s estimation of

it.𝑚𝑖 is the corresponding splitting vector. ⟨𝑔⟩𝑖 , ⟨ℎ⟩𝑖 ∈ R𝑛 are the

noised gradient and Hessian vectors of the 𝑛 instances. 𝐺 and 𝐻

are the sums of all gradients and hessians. We have

𝐿
𝑠𝑖
𝑠𝑝𝑙𝑖𝑡

= −𝛾 + 1

2

(
(𝑔𝐿
𝑖
)2

(ℎ𝐿
𝑖
) + 𝜆

+
(𝑔𝑅
𝑖
)2

(ℎ𝑅
𝑖
) + 𝜆

− 𝐺2

𝐻 + 𝜆

)
.

⟨𝐿𝑠𝑖
𝑠𝑝𝑙𝑖𝑡
⟩ = −𝛾 + 1

2

(
(⟨𝑔𝐿

𝑖
⟩)2

⟨ℎ𝐿
𝑖
⟩ + 𝜆

+
(⟨𝑔𝑅

𝑖
⟩)2

⟨ℎ𝑅
𝑖
⟩ + 𝜆

− 𝐺2

𝐻 + 𝜆

)
.

where ⟨𝑔𝐿
𝑖
⟩ =𝑚⊤

𝑖
⟨𝑔⟩𝑖 , ⟨ℎ𝐿𝑖 ⟩ =𝑚⊤

𝑖
⟨ℎ⟩𝑖 , ⟨𝑔𝑅𝑖 ⟩ = 𝐺 − ⟨𝑔𝐿

𝑖
⟩, ⟨ℎ𝑅

𝑖
⟩ = 𝐻 −

⟨ℎ𝐿
𝑖
⟩. According to Section 4.2, we have E[⟨𝑔𝐿

𝑖
⟩] = 𝑔𝐿

𝑖
,𝑉𝑎𝑟 [⟨𝑔𝐿

𝑖
⟩] =

𝑉𝑎𝑟 [⟨𝑔𝑅
𝑖
⟩] = 𝑛𝐴𝐶𝜎

2

2
, and we denote the variance by 𝜅2 in Theo-

rem 1.

We want to upper bound:

Pr
(
| ⟨𝐿𝑠𝑖

𝑠𝑝𝑙𝑖𝑡
⟩ − 𝐿𝑠𝑖

𝑠𝑝𝑙𝑖𝑡
|≥ 𝛼

)
∀𝛼 > 0 (14)

Denote 𝑋 := ⟨𝑔𝐿
𝑖
⟩, 𝑌 := ⟨ℎ𝐿

𝑖
⟩ + 𝜆, 𝑍 := ⟨𝑔𝑅

𝑖
⟩ and 𝑊 :=

⟨ℎ𝑅
𝑖
⟩ + 𝜆, then 𝑋,𝑌, 𝑍,𝑊 are normal with variance 𝜅2 and mean

𝜇𝑋 , 𝜇𝑌 , 𝜇𝑍 , 𝜇𝑊 . Denote 𝐶𝐿 :=
(𝑔𝐿

𝑖
)2

(ℎ𝐿
𝑖
)+𝜆 and 𝐶𝑅 :=

(𝑔𝑅
𝑖
)2

(ℎ𝑅
𝑖
)+𝜆 . We can

write (14) as:

Pr
(
| 𝑋

2

𝑌
−𝐶𝐿 +

𝑍 2

𝑊
−𝐶𝑅 |≥ 2𝛼

)
. (15)

We have (15) upper bounded by Pr(𝐿) + Pr(𝑅), as short hands for
Pr

(
| 𝑋 2

𝑌
−𝐶𝐿 |≥ 𝛼

)
and Pr

(
| 𝑍 2

𝑊
−𝐶𝑅 |≥ 𝛼

)
, respectively. It’s also

possible to derive a tighter bound Pr(𝐿) + Pr(𝑅) − Pr(𝐿 ∩ 𝑅), but
much more tedious.

For simplicity, we only present the derivation of Pr(𝐿) while omit

the derivation for Pr(𝑅), which is very similar. Denote𝐶𝐿 +𝛼 := 𝛽𝐿 ,

𝐶𝐿 − 𝛼 := 𝛽′
𝐿
, we proceed by conditioning 𝐿 on the sign of 𝑌 :

Pr(𝐿) = Pr (𝐴 ∩ {𝑌 > 0}) + Pr (𝐵 ∩ {𝑌 > 0})
+ Pr

(
𝐵𝑐 ∩ {𝑌 < 0}

)
+ Pr

(
𝐴𝑐 ∩ {𝑌 < 0}

)
(16)

where 𝐴 := {𝑋 2 ≥ 𝛽𝐿𝑌 }, 𝐵 := {𝑋 2 ≤ 𝛽′
𝐿
𝑌 }.

We can write the first term in (16) as an integration:∫ ∞

0

Pr
(
𝑋 2 ≥ 𝛽𝐿𝑡

)
d𝐹𝑌 (𝑡)

=

∫ ∞

0

(
Φ

(
−
√︁
𝛽𝐿𝑡 + 𝜇𝑋
𝜅

)
+ Φ

(
−
√︁
𝛽𝐿𝑡 − 𝜇𝑋
𝜅

))
d𝐹𝑌 (𝑡)

where d𝐹𝑌 (𝑡) = 1

𝜅𝜙

(
𝑡−𝜇𝑌
𝜅

)
d𝑡 , 𝜙 (·) and Φ(·) are the density and

cdf of the standard normal distribution.

Similar integration can be done for the second and third terms

in (16), while the last term is zero. In summary:

• If 𝛼 ≤ 𝐶𝐿 , i.e. 𝛽
′
𝐿
≥ 0, Pr(𝐿) is no greater than:

Pr (𝐴 ∩ {𝑌 > 0}) + Pr (𝐵 ∩ {𝑌 > 0}) + Pr ({𝑌 < 0}) (17)

• if 𝛼 ≥ 𝐶𝐿 , i.e. 𝛽
′
𝐿
≤ 0, Pr(𝐿) is no greater than:

Pr (𝐴 ∩ {𝑌 > 0}) + Pr
(
𝐵𝑐 ∩ {𝑌 < 0}

)
(18)

As 𝜅2 ↓ 0, 𝑌 𝑎.𝑠.→ 𝜇𝑌 , 𝑋
2
𝑎.𝑠.→ 𝜇2

𝑋
. From the facts that𝐶𝐿 · 𝜇𝑌 = 𝜇2

𝑋

and 𝜇𝑌 > 0, we conclude that as 𝜅2 ↓ 0, Pr(𝐴), Pr(𝐵), and Pr({𝑌 <

0}) converge to zero; as a result, the upper bounds (17) and (18)

converge to zero. ■

Remark 3. To facilitate numerical evaluation, we can further use
various inequalities [12] for Φ(·) in integration, such as:

2𝜙 (𝑥)
√
4 + 𝑥2 + 𝑥

< 1 − Φ(𝑥) < 2𝜙 (𝑥)√︁
8/𝜋 + 𝑥2 + 𝑥

∀𝑥 > 0

14

Bilateral Differentially Private Vertical Federated Boosted Decision Trees Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

C PROOF OF THEOREM 2
Assume 𝑔,𝑔′ ∈ R𝑛 are any two gradient vectors of 𝑛 instances

from AP, 𝑔 = [𝑔1, . . . , 𝑔𝑛]⊤, 𝑔′ = [𝑔′
1
, . . . , 𝑔′𝑛]⊤. Let 𝑣 = 𝑔 − 𝑔′ =

[𝑣1, . . . , 𝑣𝑛], and we have |𝑣𝑖 | ≤ 𝜇. For each splitting vector 𝑚𝑖 ,

our algorithm is equivalent to adding a noise vector on 𝑔: ⟨𝑔⟩𝑖 =
𝑔 + 𝜂𝑖 , 𝜂𝑖 ∼ N(0, Σ), where the submatrix with rows and columns

indexed by A(𝑚𝑖) is given as

Σ2 = (19)

𝐶 (2𝜎2
1
+ 𝜎2

2
) −𝐶𝜎2

1
0 · · · 0 −𝐶𝜎2

1

−𝐶𝜎2
1

. . .
. . .

. . . 0

0

. . .
. . .

. . .
.
.
.

.

.

.
. . .

. . . 0

0

. . . −𝐶𝜎2
1

−𝐶𝜎2
1

0 · · · 0 −𝐶𝜎2
1

𝐶 (2𝜎2
1
+ 𝜎2

2
)


and the submatrix of all the other entries is given as

Σ1 = 𝐶 (2𝜎2
1
+ 𝜎2

2
)𝐼 . (20)

Notice that Σ1 ∈ R𝑛𝐼 ,𝑖×𝑛𝐼 ,𝑖 , Σ2 ∈ R𝑛𝐴,𝑖×𝑛𝐴,𝑖
, where 𝑛𝐼 ,𝑖 =

|I(𝑚𝑖) |, 𝑛𝐴,𝑖 = |A(𝑚𝑖) |. Without loss of generality, we assume

Σ = 𝑑𝑖𝑎𝑔(Σ1, Σ2). For any measurable set O ⊂ R𝑛 , we have
Pr(⟨𝑔⟩𝑖 ∈ O)

=

∫
R𝑛

1√︁
(2𝜋)𝑛 |Σ|

1O (𝑔 +𝑤)𝑒−
1

2
𝑤⊤Σ−1𝑤

d𝑤

=

∫
R𝑛

1√︁
(2𝜋)𝑛 |Σ|

1O (𝑢)𝑒−
1

2
(𝑢−𝑔)⊤Σ−1 (𝑢−𝑔)

d𝑢

=

∫
O

1√︁
(2𝜋)𝑛 |Σ|

𝑒−
1

2
(𝑢−𝑔′)⊤Σ−1 (𝑢−𝑔′)𝑒 (𝑢−𝑔

′)⊤Σ−1𝑣− 1

2
𝑣⊤Σ−1𝑣

d𝑢

≤
∫
O

1√︁
(2𝜋)𝑛 |Σ|

𝑒−
1

2
(𝑢−𝑔)⊤Σ−1 (𝑢−𝑔)

1S (𝑢)d𝑢

+ exp(𝜀AP)Pr(
〈
𝑔′

〉
𝑖
∈ O),

where S := {𝑢 ∈ R𝑛 |𝑒 (𝑢−𝑔′)⊤Σ−1𝑣−
1

2
𝑣⊤Σ−1𝑣 ≥ 𝑒𝜀AP }. Now we

proceed to bound the integral term.∫
O

1√︁
(2𝜋)𝑛 |Σ|

𝑒−
1

2
(𝑢−𝑔)⊤Σ−1 (𝑢−𝑔)

1S (𝑢)d𝑢

≤
∫
R𝑛

1√︁
(2𝜋)𝑛 |Σ|

𝑒−
1

2
(𝑢−𝑔)⊤Σ−1 (𝑢−𝑔)

1S (𝑢)d𝑢

=Pr((𝑢 − 𝑔′)⊤Σ−1𝑣 − 1

2

𝑣⊤Σ−1𝑣 ≥ 𝜀AP)

=Pr𝑤∼N(0,Σ) ((𝑤 + 𝑣)⊤Σ−1𝑣 −
1

2

𝑣⊤Σ−1𝑣 ≥ 𝜀AP)

=Pr𝑤∼N(0,Σ) (𝑤⊤Σ−1𝑣 +
1

2

𝑣⊤Σ−1𝑣 ≥ 𝜀AP)

We denote 𝑣 = [𝑣⊤
1
, 𝑣⊤

2
], 𝑣1 ∈ R𝑛𝐼 ,𝑖 , 𝑣2 ∈ R𝑛𝐴,𝑖

, then we bound

the above term as follows:

Pr(𝑦⊤Σ−
1

2 𝑣 + 1

2

(𝑣⊤
1
Σ−1
1
𝑣1 + 𝑣⊤2 Σ

−1
2
𝑣2) ≥ 𝜀AP)

≤Pr(𝑦⊤Σ−
1

2 𝑣 ≥ 𝜀AP −
𝑛𝐼 ,𝑖𝜇

2

2𝐶 (2𝜎2
1
+ 𝜎2

2
)
−
𝑛𝐴,𝑖𝜇

2

2𝐶𝜎2
2

)

where 𝑦 ∼ N(0, 𝐼𝑛), 𝐼𝑛 is the 𝑛-by-𝑛 identity matrix. The inequality

follows from the eigenvalues bound of Σ−1
2

[42]:

𝜆 𝑗 =
1

𝐶 (2𝜎2
1
[1 − cos(2𝜋 𝑗𝑛)] + 𝜎22)

≤ 1

𝐶𝜎2
2

Notice that 𝑦⊤Σ−
1

2 𝑣 ∼ N(0,

Σ− 1

2 𝑣

2
2

), and

Σ− 1

2 𝑣

2
2

= 𝑣⊤Σ−1𝑣 ≤
𝑛𝐼 ,𝑖𝜇

2

𝐶 (2𝜎2
1
+ 𝜎2

2
)
+
𝑛𝐴,𝑖𝜇

2

𝐶𝜎2
2

Let 𝜎2 =
𝑛𝐼 ,𝑖𝜇

2

𝐶 (2𝜎2

1
+𝜎2

2
) +

𝑛𝐴,𝑖𝜇
2

𝐶𝜎2

2

, we have

Pr(𝑦⊤Σ−
1

2 𝑣 ≥ 𝜀AP −
𝜎2

2

) ≤ Pr𝑧∼N(0,𝜎2) (𝑧 ≥ 𝜀AP −
𝜎2

2

)

If 𝜎2 ≤ 2

(
𝜀AP − 2 ln𝛿AP − 2

√︁
ln𝛿AP (ln𝛿AP − 𝜀AP)

)
, we can ver-

ify that

Pr𝑧∼N(0,𝜎2) (𝑧 ≥
𝜎2

2

) ≤ 𝛿AP

where the last inequality follows from a Gaussian tail bound.

D PROOF OF THEOREM 3
Without loss of generality, we consider two adjacent splitting vec-

tors𝑚𝑖 ,𝑚
′
𝑖
that only differ in the first entry (i.e.,𝑚𝑖1 = 0,𝑚′

𝑖1
= 1)

and with all other entries being 1. The other cases can be proved

similarly.With𝑚𝑖 and𝑚
′
𝑖
, PP generates two noise matrices, denoted

as 𝐵𝑖 and 𝐵′
𝑖
. Each column vector 𝑏𝑖 𝑗 (𝑗 = 1, . . . ,𝑊) of the matrix

𝐵𝑖 is randomly and independently drawn from N (0, Σ1) and each

column vector 𝑏′
𝑖 𝑗
(𝑗 = 1, . . . ,𝑊) of the matrix 𝐵′ randomly and

independently drawn from N (0, Σ2), where Σ1 and Σ2 are shown
as follows:

Σ2 =



2𝜎2
1
+ 𝜎2

2
−𝜎2

1
0 · · · 0 −𝜎2

1

−𝜎2
1

. . .
. . .

. . . 0

0

. . .
. . .

. . .
.
.
.

.

.

.
. . .

. . . 0

0

. . . −𝜎2
1

−𝜎2
1

0 · · · 0 −𝜎2
1

2𝜎2
1
+ 𝜎2

2


Σ1 =

2𝜎2
1
+ 𝜎2

2
0 0 0 · · · 0 0

0 2𝜎2
1
+ 𝜎2

2
−𝜎2

1
0 · · · 0 −𝜎2

1

0 −𝜎2
1

. . .
. . .

. . . 0

0 0

. . .
. . .

. . .
.
.
.

.

.

.
.
.
.

. . .
. . . 0

0 0

. . . −𝜎2
1

0 −𝜎2
1

0 · · · 0 −𝜎2
1

2𝜎2
1
+ 𝜎2

2


Since each column of 𝐵𝑖 is generated independently, we can only

consider 𝑏𝑖1 and 𝑏
′
𝑖1

and apply Lemma 1 to obtain the result for the

whole matrix.

15

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Zhang et al.

Denote Σ := Σ−1
1
− Σ−1

2
and S := {𝑤 :

√︃
|Σ2 |
|Σ1 | 𝑒

− 1

2
𝑤⊤Σ𝑤 ≥ 𝑒𝜀 },

for any measurable set O ⊂ R𝑛 , we have

Pr(𝑏𝑖1 ∈ O) =
∫
O

1√︁
(2𝜋)𝑛 |Σ1 |

𝑒−
1

2
𝑤⊤Σ−1

1
𝑤
d𝑤

=

∫
O

1√︁
(2𝜋)𝑛 |Σ1 |

𝑒−
1

2
𝑤⊤Σ−1

2
𝑤𝑒−

1

2
𝑤⊤Σ𝑤

d𝑤

=

∫
O

1√︁
(2𝜋)𝑛 |Σ2 |

𝑒−
1

2
𝑤⊤Σ−1

2
𝑤

√︄
|Σ2 |
|Σ1 |

𝑒−
1

2
𝑤⊤Σ𝑤

d𝑤

≤
∫
O

1√︁
(2𝜋)𝑛 |Σ1 |

𝑒−
1

2
𝑤⊤Σ−1

1
𝑤
1S (𝑤)d𝑤

+ exp(𝜀)Pr(𝑏′𝑖1 ∈ O),

Now we proceed to bound the integral term. The following fact is

used in the derivation: the determinant ratio
|Σ2 |
|Σ1 | ∈ (

1

4
, 2), and we

provide the proof of it in Appendix E.∫
O

1√︁
(2𝜋)𝑛 |Σ1 |

𝑒−
1

2
𝑤⊤Σ−1

1
𝑤
1S (𝑤)d𝑤

≤
∫
R𝑛

1√︁
(2𝜋)𝑛 |Σ1 |

𝑒−
1

2
𝑤⊤Σ−1

1
𝑤
1S (𝑤)d𝑤

=Pr𝑤∼N(0,Σ1)

(√︄
|Σ2 |
|Σ1 |

𝑒−
1

2
𝑤⊤Σ𝑤 ≥ 𝑒𝜀

)
<Pr𝑤∼N(0,Σ1)

(
2𝑒−

1

2
𝑤⊤Σ𝑤 ≥ 𝑒𝜀

)
=Pr𝑤∼N(0,Σ1)

(
𝑤⊤ (−Σ)𝑤 ≥ 2𝜀 − 2 ln 2

)
=Pr𝑦∼N(0,𝐼)

(
𝑦⊤Σ

1

2

1
(Σ−1

2
− Σ−1

1
)Σ

1

2

1
𝑦 ≥ 2𝜀 − 2 ln 2

)
=Pr𝑦∼N(0,𝐼)

(
𝑦⊤ (Σ

1

2

1
Σ−1
2

Σ
1

2

1
− 𝐼)𝑦 ≥ 2𝜀 − 2 ln 2

)
Because Σ

1

2

1
Σ−1
2

Σ
1

2

1
−𝐼 is symmetric, we have unitary decomposition

Σ
1

2

1
Σ−1
2

Σ
1

2

1
− 𝐼 = 𝑈Λ𝑈⊤

where 𝑈 is orthogonal, and Λ is a diagonal matrix composed of

the eigenvalues of Σ
1

2

1
Σ−1
2

Σ
1

2

1
− 𝐼 , where 𝑦 ∼ N(0, 𝐼), we have

𝑈⊤𝑦 ∼ N(0, 𝐼). It follows that

Pr𝑦∼N(0,𝐼)

(
𝑦⊤ (Σ

1

2

1
Σ−1
2

Σ
1

2

1
− 𝐼)𝑦 ≥ 2𝜀 − ln 2

)
=Pr𝑦∼N(0,𝐼)

(
𝑦⊤Λ𝑦 ≥ 2𝜀 − 2 ln 2

)
Next, we prove that Λ only has three non-zero diagonals. By

Theorem 1.3.22 of [23], the set of the eigenvalues of Σ
1

2

1
Σ−1
2

Σ
1

2

1
− 𝐼

are equal to that of Σ−1
2

Σ1 − 𝐼 , which are further equal to that of

(𝑃Σ2𝑃⊤)−1𝑃 (Σ1 − Σ2)𝑃⊤, where 𝑃 can be any orthogonal matrix.

Specifically, we choose the following permutation matrix:

𝑃 =



0 0 · · · 0 1

1 0 · · · · · · 0

0 1 0 · · · 0

.

.

.
. . .

. . .
.
.
.

0 . . . 0 1 0



Figure 10: Simulation results for Theorem 3: Greater 𝜎2
1
/𝜎2

2

values correlate with increased privacy leakage.

Notice that

𝑃Σ2𝑃
⊤ = Σ2

𝑃 (Σ1 − Σ2)𝑃⊤ = 𝜎2
1



0 1 −1 0 · · · 0

1 0 1 0 · · · 0

−1 1 0 0 · · · 0

0 0 0 0 · · · 0

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

0 0 0 0 · · · 0

𝑛×𝑛
≜ Δ

As a result, the set of the eigenvalues of Σ
1

2

1
Σ−1
2

Σ
1

2

1
− 𝐼 is equivalent

to that of Σ−1
2

Δ.

Noticed that only the first three columns of Σ−1
2

Δ have non-zero

entries. Therefore, Σ−1
2

Δ only has three non-zero real eigenvalues

which are also the eigenvalues of the upper left 3 × 3 block matrix,

denoted as

[
Σ−1
2

Δ
]
3×3.

As Σ2 is a symmetric circulant matrix, the eigenvalues {𝜆 𝑗 , 𝑗 =
0 . . . 𝑛 − 1} and eigenvectors {u𝑗 , 𝑗 = 0 . . . 𝑛 − 1} of Σ−1

2
write as

follows [22]:

𝜆 𝑗 =
1

2𝜎2
1
[1 − cos(2𝜋 𝑗𝑛)] + 𝜎22

u𝑗 =
1

√
𝑛

[
1, cos(2𝜋 𝑗

𝑛
), cos(4𝜋 𝑗

𝑛
), . . . , cos((𝑛 − 1)2𝜋 𝑗

𝑛
)
]⊤

Let 𝑟 :=
𝜎2

2

2𝜎2

1

. Use the above formula, we write

[
Σ−1
2

Δ
]
3×3 explicitly.

Denote

𝑎(𝑟) ≜ 1

𝑛

𝑛−1∑︁
𝑗=0

𝜎2
1

2𝜎2
1
[1 − cos(2𝜋 𝑗𝑛)] + 𝜎22

𝑏 (𝑟) ≜ 1

𝑛

𝑛−1∑︁
𝑗=0

𝜎2
1
cos(2𝜋 𝑗𝑛)

2𝜎2
1
[1 − cos(2𝜋 𝑗𝑛)] + 𝜎22

𝑐 (𝑟) ≜ 1

𝑛

𝑛−1∑︁
𝑗=0

𝜎2
1
cos(4𝜋 𝑗𝑛)

2𝜎2
1
[1 − cos(2𝜋 𝑗𝑛)] + 𝜎22

16

Bilateral Differentially Private Vertical Federated Boosted Decision Trees Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

We have

[
Σ−1
2

Δ
]
3×3 =


𝑏 − 𝑐 𝑎 + 𝑐 𝑏 − 𝑎
𝑎 − 𝑏 2𝑏 𝑎 − 𝑏
𝑏 − 𝑎 𝑎 + 𝑐 𝑏 − 𝑐


Notice that 𝑘2 (𝑟) = 𝑎 − 𝑐 is an eigenvalue with eigenvector

1√
2

[1, 0, 1]⊤, and the other two satisfy

𝑘1 (𝑟) + 𝑘3 (𝑟) = 4𝑏 − 𝑎 − 𝑐 𝑘1 (𝑟)𝑘3 (𝑟) = 2(𝑏2 − 𝑎2 + 𝑏2 − 𝑎𝑐)

We have following bound: for any measurable set O ⊂ R𝑛 ,

Pr(𝑏𝑖1 ∈ O) ≤ 𝛿 (𝜀, 𝑟) + exp(𝜀)Pr(𝑏′𝑖1 ∈ O)

where

𝛿 (𝜀, 𝑟)

=Pr𝑦∼N(0,𝐼)
(
𝑘1 (𝑟)𝑦21 + 𝑘2 (𝑟)𝑦

2

2
+ 𝑘3 (𝑟)𝑦23 ≥ 2𝜀 − ln 2

)
Since 𝑦1, 𝑦2, 𝑦3 are independent, 𝛿 (𝜀, 𝑟) can be easily obtained by a

Monte Carlo simulation. Similarly, we can show that O ⊂ R𝑛 ,

Pr(𝑏′𝑖1 ∈ O) ≤ 𝛿 (𝜀, 𝑟) + exp(𝜀)Pr(𝑏𝑖1 ∈ O)

Finally, we apply Lemma 1 to obtain the (𝜀PP, 𝛿PP)−DP result for

Algorithm 3, and 𝜀PP =𝑊𝜀, 𝛿PP =𝑊𝛿 (𝜀, 𝑟).
We also include numerical simulations with𝑊 = 1 in Figure 10 to

confirm our intuition that larger values of 𝜎2
1
/𝜎2

2
result in increased

privacy leakage. When 𝜎2
1
/𝜎2

2
is raised, holding 𝜀𝑃𝑃 constant, we

observe a corresponding increase in the lower bound of 𝛿𝑃𝑃 , signi-

fying heightened privacy leakage.

■

E PROOF OF THE DETERMINANT BOUND
By [22, Theorem3.1], we have

|Σ2 |
|Σ1 | = 𝑓 (𝑟, 𝑛) where

ln 𝑓 (𝑟, 𝑛) = − ln(1 + 𝑟) +
𝑛∑︁
𝑖=0

ln

(
1 + 𝑟 − cos(2𝜋𝑖

𝑛
)
)

−
𝑛−1∑︁
𝑖=0

ln

(
1 + 𝑟 − cos(2𝜋𝑖

𝑛 − 1)
)

E.1 Upper Bound
Firstly, we can assume 𝑛 is even. Denote

𝑇 (𝑛, 𝑖) := ln

(
1 + 𝑟 − cos(2𝜋𝑖

𝑛
)
)

One has

ln 𝑓 (𝑟, 𝑛)

= − ln(1 + 𝑟) +
𝑛∑︁
𝑖=0

𝑇 (𝑛, 𝑖) −
𝑛−1∑︁
𝑖=0

𝑇 (𝑛 − 1, 𝑖)

= ln

2 + 𝑟
1 + 𝑟 + 2

𝑛
2
−1∑︁

𝑖=0

(𝑇 (𝑛, 𝑖) −𝑇 (𝑛 − 1, 𝑖))

< ln

2 + 𝑟
1 + 𝑟

where the last inequality comes from

cos(2𝜋𝑖
𝑛
) > cos(2𝜋𝑖

𝑛 − 1), 𝑖 = 1, . . . ,
𝑛

2

− 1;

cos(2𝜋𝑖
𝑛
) > cos(2𝜋 (𝑖 − 1)

𝑛 − 1), 𝑖 = 𝑛

2

+ 1, . . . , 𝑛 − 1

Thus, when 𝑛 is even, one has 𝑓 (𝑟, 𝑛) < 2. A similar proof works

for the case where 𝑛 is odd.

E.2 Lower Bound
We define

ln𝑔(𝑟, 𝑛) = ln 𝑓 (𝑟, 𝑛) − ln(2 + 𝑟) + ln(1 + 𝑟)

= − ln(2 + 𝑟) +
𝑛∑︁
𝑖=0

ln

(
1 + 𝑟 − cos

(
2𝜋𝑖

𝑛

))
−

𝑛−1∑︁
𝑖=0

ln

(
1 + 𝑟 − cos

(
2𝜋𝑖

𝑛 − 1

))
We have

𝜕 ln𝑔(𝑟, 𝑛)
𝜕𝑟

= − 1

2 + 𝑟 +
𝑛∑︁
𝑖=0

1

1 + 𝑟 − cos
(
2𝜋𝑖
𝑛

) − 𝑛−1∑︁
𝑖=0

1

1 + 𝑟 − cos
(
2𝜋𝑖
𝑛−1

)
With

cos

(
2𝜋𝑖

𝑛

)
> cos

(
2𝜋𝑖

𝑛 − 1

)
𝑖 = 1, . . . ,

𝑛

2

− 1;

cos

(
2𝜋𝑖

𝑛

)
> cos

(
2𝜋 (𝑖 − 1)
𝑛 − 1

)
, 𝑖 =

𝑛 + 1
2

, . . . , 𝑛 − 1,

we get
𝜕 ln𝑔 (𝑟,𝑛)

𝜕𝑟 > 0. So ln𝑔(𝑟, 𝑛) is monotonically increasing

with 𝑟 . ∀𝑟,∀𝑛, we have

ln𝑔(𝑟, 𝑛) > lim

𝑟→0

ln𝑔(𝑟, 𝑛)

=

𝑛−1∑︁
𝑖=1

ln

(
1 − cos

(
2𝜋𝑖

𝑛

))
−

𝑛−2∑︁
𝑖=1

ln

(
1 − cos

(
2𝜋𝑖

𝑛 − 1

))
− ln 2

Assume

ℎ(𝑛) =
𝑛−1∑︁
𝑖=1

ln

(
1 − cos

(
2𝜋𝑖

𝑛

))
−

𝑛−2∑︁
𝑖=1

ln

(
1 − cos

(
2𝜋𝑖

𝑛 − 1

))
We have

ℎ(𝑛) − ℎ(𝑛 − 1)

=

𝑛−1∑︁
𝑖=1

ln

(
2 sin

2
𝜋𝑖

𝑛

)
− 2

𝑛−2∑︁
𝑖=1

ln

(
2 sin

2
𝜋𝑖

𝑛 − 1

)
+
𝑛−3∑︁
𝑖=1

ln

(
2 sin

2
𝜋𝑖

𝑛 − 2

)
=

𝑛−1∑︁
𝑖=1

ln

(
sin

𝜋𝑖

𝑛

)
− 2

𝑛−2∑︁
𝑖=1

sin

𝜋𝑖

𝑛 − 1 +
𝑛−3∑︁
𝑖=1

ln sin

𝜋𝑖

𝑛 − 2

= ln

∏𝑛−1
𝑘=1

sin
𝑘𝜋
𝑛 ·

∏𝑛−3
𝑘=1

sin
𝑘𝜋
𝑛−2∏𝑛−2

𝑘=1
sin

𝑘𝜋
𝑛−1 ·

∏𝑛−2
𝑘=1

sin
𝑘𝜋
𝑛−1

According to

∏𝑛−1
𝑘=1

sin
𝑘𝜋
𝑛 = 𝑛

2
𝑛−1 , we have:

ℎ(𝑛) − ℎ(𝑛 − 1) = ln

𝑛2 − 2𝑛
𝑛2 − 2𝑛 + 1

< 0

So ℎ(𝑛) is monotonically decreasing with 𝑛. Then we have

17

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Zhang et al.

ln𝑔(𝑟, 𝑛) > lim

𝑟→0

𝑔(𝑟, 𝑛) = ℎ(𝑛) − ln 2

> lim

𝑛→∞

(
𝑛−1∑︁
𝑖=1

ln

(
1 − cos

(
2𝜋𝑖

𝑛

))
−

𝑛−2∑︁
𝑖=1

ln

(
1 − cos

(
2𝜋𝑖

𝑛 − 1

)))
− ln 2

=
1

2𝜋

∫
2𝜋

0

ln(1 − cos𝑥)𝑑𝑥 − ln 2

= − 2 ln 2
Therefore,

ln 𝑓 (𝑟, 𝑛) − ln(2 + 𝑟) + ln(1 + 𝑟) > −2 ln 2
and

𝑓 (𝑟 + 𝑛) > exp(−2 ln 2 + ln 2 + 𝑟
1 + 𝑟) >

1

4

■

F COMMUNICATION OVERHEAD ANALYSIS
Let 𝑛, 𝑙,𝑊 denote the number of instances, splitting candidates, and

noise vectors per splitting candidate, respectively. For each node

split, the communication overhead of different methods is:

• Other DP methods: (2𝑛 + 𝑙) messages.

• MaskedXGBoost: (𝑙𝑊 + 2𝑙)𝑛 + 𝑙 messages.

• HE method: (2𝑛 + 2𝑙) × 𝑐𝑡 messages, where 𝑐𝑡 is the ciphertext

size.

For 𝑛 = 1000, 𝑙 = 32,𝑊 = 3, and HE method (Paillier) using 4096

bits encryption, the overhead is 16KB, 1.2MB, 2.1MB respectively.

Our method has a lower overhead than the HE method but is still

higher than other DP methods.

G ADVERSARY ANALYSIS
We further provide analysis on adversaries deviating from the pro-

tocol, building upon the honest-but-curious results in Section 6.5

and Section 6.6.

The protocol involves three components: the PP constructs the

noise vectors (Algorithm 1), the AP adds noise based on these

vectors (Algorithm 2), and the AP calculates the splitting score to

determine the optimal split(Algorithm 3).

• The 𝜎2 component of the noise vector constructed by the PP pro-

tects its own privacy (as demonstrated in Theorem 3). However,

as indicated by Theorem 1, increasing 𝜎2 leads to a degradation

of the model’s utility. If the PP deviates from the protocol by

reducing 𝜎2, it will expose more privacy; conversely, increasing

𝜎2 would compromise the goal of improving utility.

• For the AP, noise is added according to the parameter𝐶 . If the AP

deviates from the protocol by reducing 𝐶 , the privacy protection

of its gradients will be weakened (as per Theorem 2). Increasing

𝐶 would introduce additional disturbing noise into the vector,

thereby reducing the utility, as to Theorem 1.

• If the AP deviates from the protocol in Algorithm 3, it will fail

to identify the optimal split, leading to a decrease in the model’s

utility.

In our vertical federated learning setting with two parties, if

either party violates the protocol, it will only affect its own privacy

and will not improve its ability to launch a privacy attack against

the other party. Additionally, it will reduce the model’s utility.

H ADDITIONAL EXPERIMENTAL RESULTS
Figure 12 illustrates the utility evaluation results on Credit 2 and

Nomao datasets. Figure 11 is the convergence evaluation results on

Adult, Higgs, Bank, Credit 2, and Nomao datasets. Figure 13 is the

empirical privacy evaluation results for AP on Credit 2 and Nomao

datasets. Figure 14 is the empirical privacy evaluation results for

PP on Credit 2 and Nomao datasets. Figure 15 shows the ablation

study results on Adult, Higgs, Bank, Credit 2, and Nomao datasets.

18

Bilateral Differentially Private Vertical Federated Boosted Decision Trees Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

0 10 20 30 40 50 60
Number of trees (T)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 A
UC

AP = 0.5 on Adult

0 10 20 30 40 50 60
Number of trees (T)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0 AP = 1 on Adult

0 10 20 30 40 50 60
Number of trees (T)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0 AP = 4 on Adult

0 10 20 30 40 50 60
Number of trees (T)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0 AP = 8 on Adult
MaskedXGBoost FederBoost FedXGBoost-LDP XGBoost-LDP XGBoost-NonPrivate

0 10 20 30 40 50 60
Number of trees (T)

0.5

0.6

0.7

0.8

Te
st

 A
UC

AP = 0.5 on Higgs

0 10 20 30 40 50 60
Number of trees (T)

0.5

0.6

0.7

0.8

AP = 1 on Higgs

0 10 20 30 40 50 60
Number of trees (T)

0.5

0.6

0.7

0.8

AP = 4 on Higgs

0 10 20 30 40 50 60
Number of trees (T)

0.5

0.6

0.7

0.8

AP = 8 on Higgs
MaskedXGBoost FederBoost FedXGBoost-LDP XGBoost-LDP XGBoost-NonPrivate

0 10 20 30 40 50 60
Number of trees (T)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 A
UC

AP = 0.5 on Bank

0 10 20 30 40 50 60
Number of trees (T)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
AP = 1 on Bank

0 10 20 30 40 50 60
Number of trees (T)

0.4

0.5

0.6

0.7

0.8

0.9

1.0
AP = 4 on Bank

0 10 20 30 40 50 60
Number of trees (T)

0.4

0.5

0.6

0.7

0.8

0.9

1.0
AP = 8 on Bank

MaskedXGBoost FederBoost FedXGBoost-LDP XGBoost-LDP XGBoost-NonPrivate

0 10 20 30 40 50 60
Number of trees (T)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Te
st

 A
UC

AP = 0.5 on Credit 2

0 10 20 30 40 50 60
Number of trees (T)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

AP = 1 on Credit 2

0 10 20 30 40 50 60
Number of trees (T)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

AP = 4 on Credit 2

0 10 20 30 40 50 60
Number of trees (T)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

AP = 8 on Credit 2
MaskedXGBoost FederBoost FedXGBoost-LDP XGBoost-LDP XGBoost-NonPrivate

0 10 20 30 40 50 60
Number of trees (T)

0.2

0.4

0.6

0.8

1.0

Te
st

 A
UC

AP = 0.5 on Nomao

0 10 20 30 40 50 60
Number of trees (T)

0.2

0.4

0.6

0.8

1.0 AP = 1 on Nomao

0 10 20 30 40 50 60
Number of trees (T)

0.2

0.4

0.6

0.8

1.0 AP = 4 on Nomao

0 10 20 30 40 50 60
Number of trees (T)

0.2

0.4

0.6

0.8

1.0 AP = 8 on Nomao
MaskedXGBoost FederBoost FedXGBoost-LDP XGBoost-LDP XGBoost-NonPrivate

Figure 11: Training process of the four XGBoost algorithms with different privacy budgets on Adult, Higgs, Bank, Credit 2, and
Nomao datasets.

19

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Zhang et al.

1 2 3 4 5 6 7 8
Privacy Budget for AP(AP)

0.4

0.5

0.6

0.7

0.8

0.9

Credit 2

1 2 3 4 5 6 7 8
Privacy Budget for AP(AP)

0.2

0.4

0.6

0.8

1.0 Nomao

MaskedXGBoost FederBoost FedXGBoost-LDP XGBoost-LDP XGBoost-NonPrivate

Figure 12: Utility of different methods for different privacy budgets on Credit 2 and Nomao.

0.5 1 2 4 6 8 10
Privacy Budget(AP)

0.50

0.55

0.60

0.65

0.70

0.75

Ac
cu

ra
cy

(a) Varying AP with AP = 0.001

0.5 1 2 4 6 8 10
Privacy Budget(AP)

0.50

0.55

0.60

0.65

0.70

0.75

Ac
cu

ra
cy

(b) Varying AP with AP = 0.01

0.5 1 2 4 6 8 10
Privacy Budget(AP)

0.50

0.55

0.60

0.65

0.70

0.75

Ac
cu

ra
cy

(c) Varying AP with AP = 0.1

Label inference attack on Credit 2 Label inference attack on Nomao

Figure 13: Empirical privacy evaluation for AP with varying privacy budget 𝜀𝐴𝑃 and 𝛿𝐴𝑃 . This is evaluated on Credit 2 and
Nomao.

0.75 2 4 6 8
Privacy Budget(PP)

0.45

0.50

0.55

0.60

A
cc

ur
ac

y

(a) AP = 0.5, AP = 0.001

0.75 2 4 6 8
Privacy Budget(PP)

0.45

0.50

0.55

0.60

A
cc

ur
ac

y

(b) AP = 4, AP = 0.001

0.75 2 4 6 8
Privacy Budget(PP)

0.45

0.50

0.55

0.60

A
cc

ur
ac

y

(c) AP = 8, AP = 0.001

Attribute inference attack on Credit 2 Attribute inference attack on Nomao

Figure 14: Empirical privacy evaluation for PP with varying privacy budget 𝜀PP and 𝜀AP. This is evaluated on Credit 2 and
Nomao.

20

Bilateral Differentially Private Vertical Federated Boosted Decision Trees Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1 2 3 4 5 6 7 8
PP

0.60

0.65

0.70

0.75

0.80

0.85

Te
st

 A
UC

Varying PP

AP = 0.5
AP = 1
AP = 4
AP = 8

0 10 20 30 40 50 60
Number of trees (T)

0.50

0.55

0.60

0.65

0.70

0.75 AP = 0.5 on Adult

PP = 0.75
PP = 1
PP = 4
PP = 8

0 10 20 30 40 50 60
Number of trees (T)

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

AP = 4 on Adult

PP = 0.75
PP = 1
PP = 4
PP = 8

0 10 20 30 40 50 60
Number of trees (T)

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

AP = 8 on Adult

PP = 0.75
PP = 1
PP = 4
PP = 8

1 2 3 4 5 6 7 8
PP

0.70

0.72

0.74

0.76

0.78

Te
st

 A
UC

Varying PP

AP = 0.5
AP = 1
AP = 4
AP = 8

0 10 20 30 40 50 60
Number of trees (T)

0.50

0.55

0.60

0.65

0.70

0.75
AP = 0.5 on Higgs

PP = 0.75
PP = 1
PP = 4
PP = 8

0 10 20 30 40 50 60
Number of trees (T)

0.50

0.55

0.60

0.65

0.70

0.75

AP = 4 on Higgs

PP = 0.75
PP = 1
PP = 4
PP = 8

0 10 20 30 40 50 60
Number of trees (T)

0.50

0.55

0.60

0.65

0.70

0.75

AP = 8 on Higgs

PP = 0.75
PP = 1
PP = 4
PP = 8

1 2 3 4 5 6 7 8
PP

0.65

0.70

0.75

0.80

0.85

Te
st

 A
UC

Varying PP

AP = 0.5
AP = 1
AP = 4
AP = 8

0 10 20 30 40 50 60
Number of trees (T)

0.50

0.55

0.60

0.65

0.70

0.75

0.80

AP = 0.5 on Bank

PP = 0.75
PP = 1
PP = 4
PP = 8

0 10 20 30 40 50 60
Number of trees (T)

0.55

0.60

0.65

0.70

0.75

0.80

0.85 AP = 4 on Bank

PP = 0.75
PP = 1
PP = 4
PP = 8

0 10 20 30 40 50 60
Number of trees (T)

0.55

0.60

0.65

0.70

0.75

0.80

0.85
AP = 8 on Bank

PP = 0.75
PP = 1
PP = 4
PP = 8

1 2 3 4 5 6 7 8
PP

0.58

0.60

0.62

0.64

0.66

0.68

0.70

Te
st

 A
UC

Varying PP

AP = 0.5
AP = 1
AP = 4
AP = 8

0 10 20 30 40 50 60
Number of trees (T)

0.500

0.525

0.550

0.575

0.600

0.625

0.650

0.675
AP = 0.5 on Credit 2

PP = 0.75
PP = 1
PP = 4
PP = 8

0 10 20 30 40 50 60
Number of trees (T)

0.500

0.525

0.550

0.575

0.600

0.625

0.650

0.675

0.700
AP = 4 on Credit 2

PP = 0.75
PP = 1
PP = 4
PP = 8

0 10 20 30 40 50 60
Number of trees (T)

0.500

0.525

0.550

0.575

0.600

0.625

0.650

0.675

0.700
AP = 8 on Credit 2

PP = 0.75
PP = 1
PP = 4
PP = 8

1 2 3 4 5 6 7 8
PP

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Te
st

 A
UC

Varying PP

AP = 0.5
AP = 1
AP = 4
AP = 8

0 10 20 30 40 50 60
Number of trees (T)

0.5

0.6

0.7

0.8

0.9

AP = 0.5 on Nomao

PP = 0.75
PP = 1
PP = 4
PP = 8

0 10 20 30 40 50 60
Number of trees (T)

0.5

0.6

0.7

0.8

0.9

AP = 4 on Nomao

PP = 0.75
PP = 1
PP = 4
PP = 8

0 10 20 30 40 50 60
Number of trees (T)

0.5

0.6

0.7

0.8

0.9

AP = 8 on Nomao

PP = 0.75
PP = 1
PP = 4
PP = 8

Figure 15: Ablation study on Adult, Higgs, Bank, Credit 2, and Bank datasets: the effect of 𝜀𝑃𝑃 on final test AUC and training
process.

21

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Vertical Federated Learning
	2.2 XGBoost
	2.3 Differential Privacy (DP) and Local Differential Privacy (LDP)
	2.4 Notations

	3 Problem Statement and Existing Solutions
	3.1 Problem Statement
	3.2 Existing Solutions

	4 Our Proposal: MaskedXGBoost
	4.1 Overview
	4.2 Noise Calibration
	4.3 Information Noising
	4.4 Putting Things Together

	5 Theoretical Analysis
	5.1 Utility Analysis
	5.2 Privacy Analysis: Differential Privacy at Active Party Side
	5.3 Privacy Analysis: Differential Privacy at Passive Party Side

	6 Empirical Evaluations
	6.1 Experimental Setup
	6.2 Utility Evaluation
	6.3 Convergence Evaluation
	6.4 Efficiency Evaluation
	6.5 Empirical Privacy Evaluation for AP
	6.6 Empirical Privacy Evaluation for PP
	6.7 Ablation Study

	7 Related Work
	8 Conclusion and Future Work
	References
	A Details of XGBoost
	B Proof of Theorem 1
	C Proof of Theorem 2
	D Proof of Theorem 3
	E Proof of the Determinant Bound
	E.1 Upper Bound
	E.2 Lower Bound

	F Communication Overhead Analysis
	G Adversary Analysis
	H Additional Experimental Results

