
Padding Matters – Exploring Function Detection in PE Files
Raphael Springer

Westphalian University of Applied
Sciences

Institute for Internet Security
Gelsenkirchen, Germany

springer@internet-sicherheit.de

Alexander Schmitz
Westphalian University of Applied

Sciences
Institute for Internet Security
Gelsenkirchen, Germany

schmitz@internet-sicherheit.de

Artur Leinweber
Westphalian University of Applied

Sciences
Institute for Internet Security
Gelsenkirchen, Germany

leinweber@internet-sicherheit.de

Tobias Urban
Westphalian University of Applied

Sciences
Institute for Internet Security
Gelsenkirchen, Germany

urban@internet-sicherheit.de

Christian Dietrich
Westphalian University of Applied

Sciences
Institute for Internet Security
Gelsenkirchen, Germany

dietrich@internet-sicherheit.de

ABSTRACT
Function detection is a well-known problem in binary analysis.
While previous research has primarily focused on Linux/ELF, Win-
dows/PE binaries have been overlooked or only partially considered.
This paper introduces FuncPEval, a new dataset for Windows x86
and x64 PE files, featuring Chromium and the Conti ransomware,
along with ground truth data for 1,092,820 function starts. Utilizing
FuncPEval, we evaluate five heuristics-based (Ghidra, IDA, Nucleus,
rev.ng, SMDA) and three machine-learning-based (DeepDi, RNN,
XDA) function start detection tools. Among the tested tools, IDA
achieves the highest F1-score (98.44%) for Chromium x64, while
DeepDi closely follows (97%) but stands out as the fastest by a
significant margin.

Working towards explainability, we examine the impact of padding
between functions on the detection results. Our analysis shows that
all tested tools, except rev.ng, are susceptible to randomized padding.
The randomized padding significantly diminishes the effectiveness
for the RNN, XDA, and Nucleus. Among the learning-based tools,
DeepDi exhibits the least sensitivity and demonstrates overall the
fastest performance, while Nucleus is the most adversely affected
among non-learning-based tools.

In addition, we improve the recurrent neural network (RNN)
proposed by Shin et al. and enhance the XDA tool, increasing the
F1-score by approximately 10%.

1 INTRODUCTION
Binary code analysis is a building block of several applications
addressing threats for Internet users, such as malware analysis or
vulnerability research. One of the essential first steps in analyzing
(compiled) applications is detecting functions in the code (e.g., as
input to decompilation or for function-level similarity methods).
For example, Haq and Caballero [11] find that 30 out of 61 binary
similarity methods operate on a function-level granularity and thus
rely on function detection as an initial analysis step. In this scenario,
missing a function or incorrectly detecting a false function start
might disrupt code similarity pipelines, potentially preventing them
from correctly identifying a malware sample as part of a specific
malware family. Further, without proper function detection, it is
hard to assess the important parts for further analysis (e.g., to

identify the malicious capabilities a malware sample might exhibit).
Hence, reliably extracting functions from compiled binary software
is critical for analyzing binary code.

With millions of hash-unique malware samples emerging every
year [14], automation is key to scalable analysis tooling in various
use cases, e.g., binary similarity and clustering, malware lineage,
actor and tool tracking for threat intelligence, or prioritization for
dynamic analysis such as sandboxing [22]. Thus, reliable, fast, and
automated function start detection is key.

Currently, existing tools often use heuristic or pattern-based
methods to identify function starts [1, 20, 23]. These heuristics are
compiled by experts based on their experiences when analyzing
binaries. Like all heuristics, these approaches might be incomplete
and must be updated regularly. Thus, recent work suggested ma-
chine learning-based approaches [7, 19, 25, 28] for function detec-
tion to increase performance and accuracy and reduce the need for
experts to identify new patterns. However, Koo et al. [17] outline
challenges and shortcomings when detecting functions in compiled
binary code and revisit previous datasets, metrics, and evaluations.
They show that previous work has suffered from effects such as
overfitting (e.g., due to missing normalization), in the appropri-
ate definition of true negatives, and imbalance due to significant
redundancy in the datasets (shared static library), skewing the eval-
uation [17]. Thus, it is unclear whether machine learning-based
approaches meet the expectations and can effectively reduce the
need for human experts to develop heuristics. Additionally, related
work often primarily covers functions in Linux/ELF samples and
only analyzes fewerWindows/PE functions, if any. However, with a
significant malware set targeting Windows operating systems [14],
evaluating function detection on PE plays an important role. While
the binary code parts of these two formats can use the same in-
struction set architecture (ISA) (e.g., x64), differences exist in the
application binary interfaces (ABI) of Linux and Windows. Factors
that may influence the function start detection efficacy include call-
ing conventions and compiler-specific quirks (e.g., padding schemes,
inline data, and metadata associated with Windows-specific tools
like Microsoft Visual Studio). Thus, it is unclear if and how the
proposed methods can be generalized from ELF samples to other
formats.

ar
X

iv
:2

50
4.

21
52

0v
1 

 [
cs

.C
R

] 
 3

0 
A

pr
 2

02
5

https://orcid.org/0009-0008-8298-7895
https://orcid.org/0009-0006-0514-9535
https://orcid.org/0009-0001-7623-1038
https://orcid.org/0000-0003-0908-0038
https://orcid.org/0009-0001-5523-4467


Raphael Springer, Alexander Schmitz, Artur Leinweber, Tobias Urban, and Christian Dietrich

In this work, we shed light on these challenges by comparing
eight (five heuristics-based and three machine-learning-based) func-
tion start detection tools. We specifically focus on 32-bit and 64-
bit Windows PE binaries of benign and malicious code examples.
More specifically, based on previous works [19, 25], we train two
machine-learning-based tools on a commonly used dataset [7] to
find function starts. We then test the efficiency of these tools and six
further tools [1, 5, 8, 9, 23, 28] on a newly built dataset consisting
of samples and ground truth. We evaluate the tools on a Chromium
sample for Windows and the Conti ransomware (x86 and x64). On
a high level, our results indicate that all tested tools generalize well
across file formats but that the effectiveness of machine-learning-
based tools collapses when they face toolchain-specific quirks (i.e.,
different padding schemes).
In summary, we make the following contributions:

• We introduce FuncPEval, a new x86 and x64 Windows PE
dataset that contains malicious and benign software sam-
ples spanning 1,092,820 functions. Using this dataset, we
compare eight tools, proposed within the past decade and
commonly used for function start detection in the field. We
show that all used tools can generally identify function
starts in regular PE files with high precision and recall.

• Based on previous work, we train two machine learning-
based function start detection tools [19, 25] on a commonly
used dataset. For further analysis, we optimize the provided
methods, improving XDA’s F1-score by approximately 10%.

• Finally, we demonstrate that modifying the padding be-
tween functions in a given sample impacts the function
start detection. For some tools, the effectiveness of function
start detection methods relies heavily on the unmodified
padding between functions as emitted by standard com-
pilers. When this padding is altered, the effectiveness for
learning-based methods deteriorates, with F1-scores down
30 to 70 percent points. Thus, our results indicate that the
machine learning approaches might be susceptible to spu-
rious correlation [6].

2 RELATEDWORK
Function detection can be categorized into heuristics- and pattern-
based detection (e.g., signatures on function prologues and epi-
logues), static analysis techniques (e.g., CFG extraction), and ma-
chine learning-based approaches described in more detail in the
following subsections.

2.1 Static code analysis and pattern-based
approaches

IDA Pro [23] uses proprietary patterns to identify function starts.
Similarly, Ghidra [1] uses a combination of signatures1 and static
analysis techniques. The signatures typically cover machine code
instruction sequences in the form of byte patterns that precede
a function, such as padding or an epilogue, or that are typically
observed at the start of a function, such as a prologue or allocation
routines. In September 2022, Ghidra introduced the Random Forest
1Ghidra’s patterns are available from https://github.com/NationalSecurityAgency/gh
idra/blob/b9496de7f573e6a73888abfb51c243723785dbdb/Ghidra/Processors/x86/data/
patterns/x86win_patterns.xml

Function Finder Plugin, a machine learning-based approach that
is trained on previously recognized functions of the currently ana-
lyzed binary and attempts to find similar function starts. This differs
from the following machine learning approaches in that it is ap-
plied on a per-sample scope and does not attempt to globally model
function starts. Andriesse et al. [4] evaluate existing disassemblers
and their function boundary recovery. They conclude that false neg-
ative rates of function starts typically reach 20% or more, indicating
significant shortcomings when applied in practice. A follow-up
work by Andriesse et al. [5] proposes Nucleus, a compiler-agnostic
function detection tool that constructs an inter-procedural control
flow graph. Similarly, rev.ng by Di Federico et al. [9] proposes a
set of analyses to extract function starts based on QEMU’s lifter
and LLVM’s intermediate representation, thus operating without
ISA-specific heuristics.

Alves-Foss and Song [2] propose detecting function boundaries
using control flow analysis, jump and call targets, exception meta-
data, and detection of terminal and missing functions. Their ap-
proach is implemented in the Jima tool, which supports Linux ELF
samples only and is currently only available in compiled form.
FETCH by Pang et al. [18] leverages call frames, i.e., frame descrip-
tion entries in the exception handling information as mandated by
the x64/amd64 System V Application Binary Interface. Such call
frame information is typically added by the compiler at build time.
While evaluating against x64 ELF samples only, the authors note
that x64 PE and ARM will likely exhibit similar metadata. However,
such metadata is not always present, especially in malware.

SMDA by Plohmann [8] combines recursive disassembly and
heuristics for function entry point discovery and later performs a
gap analysis to find missed functions.

In 2023, FunProbe by Kim et al. [15] proposes a probabilistic
model using a Bayesian Network over causal relationships between
heuristically identified function entry point candidates. First, an
inter-procedural CFG is recovered, and up to 16 function identifica-
tion hints are collected based on data-driven properties, e.g., FDE,
and code-driven properties, e.g., call targets. Then, a Bayesian Net-
work is built, followed by belief propagation. As a result, each byte
yields an inferred probability of being a function start when exceed-
ing a given threshold. FunProbe currently only supports ELF files
and has been evaluated on a total of 19,872 ELF samples covering
x86, x64, ARM, and MIPS architectures.

2.2 Machine learning based approaches
Approaches that leverage machine learning have initially been pro-
posed by Rosenblum et al. [24]. They model function start detection
as a classification problem using Conditional Random Fields.

In 2014, Bao et al. introduced a function boundary detection
approach called ByteWeight [7]. It uses a weighted prefix tree to
learn signatures that can be used to detect function starts. In the
case of ByteWeight, each branch represents a sequence of bytes
or instructions. The depth of the tree determines the length of the
sequence. The weighted prefix tree adds a weight to each node
in the tree, representing the probability that the branch starts a
function. The authors build the weighted prefix tree by training a
non-weighted prefix tree with all possible byte or instruction com-
binations using ground truth data. Therefore, ByteWeight suffers

https://github.com/NationalSecurityAgency/ghidra/blob/b9496de7f573e6a73888abfb51c243723785dbdb/Ghidra/Processors/x86/data/patterns/x86win_patterns.xml
https://github.com/NationalSecurityAgency/ghidra/blob/b9496de7f573e6a73888abfb51c243723785dbdb/Ghidra/Processors/x86/data/patterns/x86win_patterns.xml
https://github.com/NationalSecurityAgency/ghidra/blob/b9496de7f573e6a73888abfb51c243723785dbdb/Ghidra/Processors/x86/data/patterns/x86win_patterns.xml


Padding Matters – Exploring Function Detection in PE Files

Table 1: Function start detection methods and evaluation papers. The amount of PE functions for Nucleus [5] is an estimate as
the number of samples and the description in the paper indicate that the same dataset as in [4] was used. Compilers refers
to the compilers that were used to generate the dataset, i.e., GNU Compiler Collection, Clang, Visual Studio, and Intel C/C++
Compiler.

Tool/Paper Compilers Samples Functions ML

GCC Clang VS ICC ELF PE ELF PE

FuncPEval (our dataset) ✓ ✓ 0 4 0 1,092,820 ✗

FunProbe [15] ✓ ✓ 19,872 0 3,064,001 0 ✗

DeepDi [28] ✓ ✓ 1,440 688 n/a n/a ✓

Koo et al. [17] ✓ ✓ 152 0 769,069 0 ✗

FETCH [18] ✓ 43 0 1,105,278 0 ✗

XDA [19] ✓ ✓ ✓ 2,593 528 n/a n/a ✓

Jima [2] ✓ ✓ ✓ 3,790 0 4,913,753 0 ✗

LEMNA [10] ✓ 2,064 0 n/a 0 ✓

Nucleus [5] ✓ ✓ ✓ 324 152 n/a est. 378,965 ✗

REV.NG [9] ✓ ✓ 1,890 0 n/a 0 ✗

Andriesse et al. [4] ✓ ✓ ✓ 829 152 1,525,024 378,965 ✗

Shin et al. [25] ✓ ✓ ✓ 2,064 136 598,359 187,836 ✓

BAP/ByteWeight [7] ✓ ✓ 2,064 136 598,359 187,836 ✓

Rosenblum et al. [24] ✓ ✓ ✓ 728 443 283,626 100,427 ✓

from the same problems as traditional signature-based approaches,
e.g., depending on compiler versions. Nevertheless, ByteWeight
can automatically generate signatures when ground truth data is
available. For each architecture and compiler, ByteWeight has to
generate new signatures and, therefore, also requires new ground
truth data. While ByteWeight aims to detect function starts, Bao
et al. present further analysis techniques that can be applied af-
ter the function start detection that lift the approach to detect all
instructions belonging to the function.

In 2015, Shin et al. [25] introduced function boundary detection
using a bidirectional recurrent neural network (RNN). The RNN
uses a sequence of bytes as input and decides for each byte if it
marks the start of a function. Similar to ByteWeight, the weights of
the RNN are trained using ground truth data. The trained weights
form the model used to detect function starts. The RNN can also
detect the boundaries of a function by using two models. One model
detects function starts, and the other model detects function ends.
The authors do not provide an implementation of their approach.
However, a reimplementation was provided by Guo et al. [10] as
part of their work on the explainability of machine learning-based
methods.

In 2021, Pei et al. [19] propose XDA, which relies on transfer
learning of machine code disassembly and also recovers function
boundaries. They are motivated by masked language modeling to
infer dependencies between specific bytes in machine code. While
the paper evaluates on x86 and x86-64 samples, targeting both ELF
and PE, a fine-tuned model of XDA has only been published for
x86-64. XDA models function boundary detection as a multi-class
classification problem where a specific byte can either form the
start of a function, the end of a function, or neither of both.

DeepDi, a system published by Yu et al. [28] in 2022, combines
instruction-level sequences with a graph convolutional network to
achieve disassembly. First, given a byte string as input, all possible
instructions are decoded using a 15-byte sliding window over the

(a) IDA Pro. blue: code in functions, brown: instructions outside of
functions, grey: data, amber: unexplored.

(b) Ghidra. red: undefined data, green: data, purple: code in functions.

Figure 1: Comparison of code, data, and unexplored areas in
memory-mapped views of a Urausy malware sample.

input stream, yielding the superset of instructions. Then, an instruc-
tion flow graph is constructed that captures the most likely true
instructions and their relations. The system also contains heuristics
and a classifier for function start detection based on the result-
ing disassembly. In contrast to previous work, DeepDi is the first
learning-based approach that operates on the instruction level in-
stead of the byte level.

2.3 Limited focus on PE files in existing work
Table 1 summarizes the related work, including details such as the
number of samples and functions used for evaluation, where avail-
able. These figures are presented separately for ELF and PE binaries.
The table reveals that only 6 out of 13 studies evaluated PE samples.
Comparing the number of samples and functions between ELF and
PE in these six cases highlights a significant underrepresentation
of PE binaries in the existing literature. Given the importance of
function detection in PE samples, particularly in the context of
malware analysis [14], it becomes evident that a new evaluation
focusing on PE binaries with a larger set of functions is necessary.

3 BACKGROUND ON FUNCTION DETECTION
Function detection in compiled code is not straightforward. Dif-
ferent approaches to function detection are likely to yield varying



Raphael Springer, Alexander Schmitz, Artur Leinweber, Tobias Urban, and Christian Dietrich

sets of recognized functions stemming from the diverse method-
ologies employed. The following example highlights the significant
differences in the detection of functions in a malware analysis con-
text. Figure 1 shows two memory mapped representations of a
Urausy malware sample2, produced by IDA Pro [23] and Ghidra [1],
two popular reverse engineering tools. The colors represent the
types of data or code when mapped in memory. The tools differ
significantly regarding the detected functions. Figure 1a shows the
analysis results of IDA Pro where blue-colored areas represent de-
tected functions, brown-colored areas represent instructions that
do not belong to functions, gray-colored areas represent data, and
amber-colored areas represent unexplored areas that could not be
further specified by IDA. In contrast, Figure 1b shows the analysis
results of Ghidra where purple-colored areas represent detected
functions, green-colored areas represent data, and red-colored areas
represent undefined data. The figures show that the tools differ sig-
nificantly in the detected functions in this sample. Manual analysis
of this sample reveals that the instructions that IDA classified as
not belonging to functions actually belong to functions. Similarly,
Ghidra misclassified such code as undefined data. In practice, an an-
alyst would need to inspect the code and manually define functions
that were missed during function start detection, a labor-intensive
task. The example shows that the function detection problem is far
from being solved and that an evaluation of the existing tools is
appropriate and needed.

Following most related work, we refer to function detection
as finding bytes in compiled binary code that belong to the same
function in the source code and for which no symbol information
is given. There are other terms that refer to the same problem,
e.g. function boundary detection, function boundary identification,
function identification, and function recognition [5, 7, 17]. We will
use the term function detection to avoid confusion with library func-
tion recognition [21, 26]. This different problem may occasionally
also be referred to as function identification and describes recov-
ering the semantic meaning of a function given its binary code,
which is out of the scope of this paper.

Furthermore, we distinguish between i) function start detec-
tion, which only considers the start of functions, and ii) function
boundary detection, which typically detects function start and end
addresses, and iii) code ranges covering intervals of function code,
most relevant for non-continuous functions.

Unless stated otherwise, we focus on function start detection for
the remainder of this work because it applies to all related work
and thus allows us to include the most tools in our evaluation.
Furthermore, it can be modeled as a binary classification problem,
enabling the use of well-known and considered evaluation metrics.

To evaluate function start classifiers, we use the precision, recall,
and F1-score as metrics. To illustrate, Figure 2 depicts a schematic,
fictional binary of size 24 bytes, alongside a hypothetical classifica-
tion of function starts. Here, the ground truth marks the bytes at
offsets 6 and 10 as valid function starts (e.g., obtained via debug-
ging symbols). In contrast, the hypothetical classifier considers the
bytes at offsets 4 and 10 to be function starts. True positives (TP)
refer to bytes correctly identified as function starts, matching the

2SHA256 hash value of 8f4296a0990ec245997bd2bb75edb512aae4e544b7d0c36e94
5bf19241fda426

0

classifier
function starts

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

ground truth
function starts

byte offsets

true
positive

false
negative

false
positive

Figure 2: Schematic of function start detection

ground truth, e.g., the byte at offset 10 in Figure 2. False positives
(FP) are bytes incorrectly classified as function starts, as they do
not correspond to function starts in the ground truth (e.g., byte 4
in Figure 2). False negatives (FN) are bytes that are not classified
as function starts but are function starts according to the ground
truth (e.g., all grey-shaded bytes in Figure 2).

Note that in Figure 2, only two out of 24 bytes represent function
starts. This highlights a common characteristic: the number of
function starts rarely exceeds a small fraction of the total number
of bytes in the file. Since a binary consists of much more than
function starts, and each function start is represented by only a
single byte, this imbalance is likely prevalent in most datasets. Such
imbalancemust be accounted for during training (e.g., by initializing
the biases accordingly) and evaluation (e.g., by avoiding accuracy
as a metric).

As previously described, most bytes in our context will not repre-
sent a function start. Given this imbalance, we avoid accuracy as a
metric because it factors in true negatives in the computation. The
example in Figure 2 would yield an accuracy of 92%, and an F1-score
of 50%. Similarly, while practically useless, a naive classifier that
predicts every byte as a non-function start would still result in a
(comparatively) high number of true negatives and, consequently,
high accuracy. Arp et al. [6] refer to such a pitfall as inappropriate
performance measures.

4 EMPIRICAL VALIDATION
Our work aims to assess all function start detection tools introduced
within the past decade that can operate on PE files. To achieve this,
we describe the BAP/ByteWeight dataset as it is typically used
to train models, and develop models for two learning-based ap-
proaches. We reproduce the work of Shin et al. [25], as their original
implementation is not publicly available, and existing reimplemen-
tations by other researchers [10, 19] do not include trained models.
Therefore, we provide a stable, well-documented implementation of
Shin’s RNN-based classifier and publish the x86 and x64 Windows
PE training data along with the trained models.

Additionally, we discovered a discrepancy in the implementation
of XDA [19], leading to the reproduced results deviating from those
reported in the original paper. To rectify this inconsistency, we
introduce a novel encoding for the training data, leading to results
that more closely align with those presented in the paper.

4.1 BAP/ByteWeight Dataset
To reproduce the original implementations of Shin’s RNN and XDA,
we use the same dataset for training and evaluation, as used in
the original studies. The dataset was initially compiled as part



Padding Matters – Exploring Function Detection in PE Files

of BAP/ByteWeight [7]. We only use a subset of the dataset, i.e.,
PE binaries targeting Microsoft Windows and their corresponding
ground truth files containing the function starts as virtual addresses
(VA). In the following, we refer to it as BAP dataset. This dataset
spans a total of 136 hash-unique PE samples, built using Microsoft
Visual Studio versions 2010 to 2013. It consists of 68 x86 and 68 x64
PE samples compiled from 17 programs (7z, vim, various PuTTy
tools, hidapi, libsodium, sfxsetup, smtpsend), using four optimiza-
tion levels (Od, O1, Ox, O2). In one case (filename msvs_whatever

_32_Od_SfxSetup), the ground truth in the dataset did not match
the provided sample as it contains a function VA where no section
is mapped in memory. This could potentially be due to a misun-
derstanding or an error made by the original authors. To avoid
label inaccuracy [6], we exclude this specific x86 sample from our
dataset, resulting in a total of 135 samples (67 x86 and 68 x64).

Koo et al. [17] highlight a pitfall of the BAP/ByteWeight dataset,
particularly in the ELF subset, that we do not use. When normaliz-
ing instructions by blinding immediates and call and jump targets,
only 17.6K (12.1%) out of the whole 146K functions of the ELF subset
form unique normalized functions [17]. In other words, without
normalization, overfitting becomes likely, especially when a signifi-
cant number of normalized functions is present in both the training
and the validation set. We decided against normalization in the
training part of our pipeline to keep our results comparable with
prior work. However, we consider uniqueness and normalization
in our new FuncPEval dataset introduced in Section 5.

4.2 Implementation of the RNN-based Classifier
Currently, no public implementation of Shin’s RNN includes trained
models for the classification of PE files. To incorporate the RNN
into our evaluation in Section 5, we reproduce the original imple-
mentation and train models for x86 and x64 PE. Based on previous
work by Shin et al. [25] and using the LEMNA reimplementation
by Guo et al. [10] as basis, we implement the RNN-based classi-
fier in Python using Keras 2.8.0 and TensorFlow 2.8.0 as backend.
Considering the function start detection as a binary classification
problem, we also implement a second variant with a slightly modi-
fied pipeline, namely one output neuron. In contrast, the LEMNA
reimplementation uses two output neurons (Figure 3a). Our modifi-
cation allows us to adapt the trigger threshold and thereby improve
the classification results as shown in Table 2. The LEMNA-based
RNN pipeline and our modified pipeline are shown in Figure 3.

Shin’s RNN architecture specifies that a sample must be divided
into 1000-byte slices. If the last slice is shorter than 1000 bytes, the
slice will be padded with zeros. Subsequently, the slice is fed into
the RNN, where i) the LEMNA-based RNN outputs two class proba-
bilities for each byte, and ii) our modified RNN yields a prediction
score for each byte. Thus, we can predict for each input byte if it is
the start of a function in the binary. Finally, a mathematical function
assigns a class label to the byte. Guo et al. [10] use 𝑎𝑟𝑔𝑚𝑎𝑥 , which
determines the class label based on the maximum of the two class
probabilities. Our variant uses a heuristic thresholding function:

𝐶Label (𝑃Score) =
{
0 if 𝑃Score ≤ 𝑡

1 if 𝑃Score > 𝑡
(1)

nop

push ebp

mov ebp, esp

sub esp, 8

0.1

0.9

0.4

0.3

0.3

0.4

0.2

Sl
ic

e 
(1

00
0 

B
yt

es
)

A
ss

em
bl

y

0.9

0.1

0.6

0.7

0.7
0.6

0.8

C
la

ss
 P

ro
ba

bi
lit

ie
s

ar
gm

ax

0

0

0

0

0

0

0

1

1

1

1

1

1

1

C
la

ss
 L

ab
el

s

F NF F NF

F:
NF:

nop 90 0.90.1 10999

0

1

2

3

4

5

6

999

0

1

2

3

4

5

6

999

90
55
89
E5
83
EC

08

0

1

2

3

4

5

6

B
id

ire
ct

io
na

l
R

ec
ur

re
nt

 N
eu

ra
l N

et
w

or
k

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

function start
no function start

(a) LEMNA-based RNN pipeline with two output neurons

0.1nop

push ebp

mov ebp, esp

sub esp, 8

0.9

0.4

0.3

0.3

0.4

0.2

Pr
ed

ic
tio

n 
Sc

or
es

Sl
ic

e(
10

00
 B

yt
es

)

A
ss

em
bl

y

Pr
ed

ic
tio

n 
Sc

or
es

 >
 T

hr
es

ho
ld

0

0

0

0

0
0

1

C
la

ss
 L

ab
el

s

F F

F: function start

90 0.1 0nop 999

1

0

2

3

4

5

6

999

1

0

2

3

4

5

6

999

90
55
89
E5
83
EC

08

1

0

2

3

4

5

6
B

id
ire

ct
io

na
l

R
ec

ur
re

nt
 N

eu
ra

l N
et

w
or

k

.
.
.

.
.
.

.
.
.

.
.
.

(b) Our modified RNN pipeline with one output neuron

Figure 3: Comparison of the original and the modified RNN
pipelines

If the prediction score 𝑃𝑆𝑐𝑜𝑟𝑒 exceeds the threshold 𝑡 , the class label
𝐶𝐿𝑎𝑏𝑒𝑙 for the byte will be set to 1 (i.e., function start), otherwise 0
(i.e., not a function start). To determine the optimal threshold, the
training dataset was evaluated with threshold values from 0 to 1 at
intervals of 0.01. Subsequently, the threshold (0.38) with the best
𝐹1-score was selected and used for the remaining experiments.

Note that when considering function starts on a per-byte level,
every dataset containing real-world binaries is imbalanced as shown
in Section 3, because bytes that do not represent a function start
appear more often than those that do represent a function start. We
randomly initialize the weights of the RNN and take the imbalance
into account by changing the bias of the output layer. The initial
bias 𝑏0 is computed as follows:

𝑏0 = 𝑙𝑜𝑔𝑒

(
𝑝𝑜𝑠

𝑛𝑒𝑔

)
(2)



Raphael Springer, Alexander Schmitz, Artur Leinweber, Tobias Urban, and Christian Dietrich

where 𝑝𝑜𝑠 is the number of bytes representing the start of a
function and 𝑛𝑒𝑔 is the number of bytes that are not the start of a
function. Shin et al. [25] use the adaptive learning rate optimizer
RMSprop [12] for training, while we use Adam [16], the same used
in LEMNA.

4.2.1 Training and Validation. We train and validate separately
for x86 and x64 PE samples. Given the BAP dataset of 67 x86 PE
samples, we perform 10-fold cross-validation as follows: Split the
dataset into ten (nearly) equally-sized disjoint subsets where each
subset spans ca. 10% of the samples.

In each fold, executable sections from 9 of the 10 subsets (ca. 90%
of the samples) are used for training, and executable sections from
the remaining subset (ca. 10% of the samples) are used for valida-
tion. Shin et al. use a batch size of 32, while Guo et al. [10] used
100. We use a batch size of 1,000 for the given dataset to increase
training speed. While Shin et al. trained for two hours, we followed
LEMNA and trained the RNN for 150 epochs for each fold (taking
approximately 55 minutes per fold). We run our experiments on a
server with two 2.20 GHz Intel Xeon Silver 4114 CPUs à 20 threads
and 128 GB of RAM.

4.2.2 Evaluation. Table 2 shows the precision, recall and F1-score,
on average. Although they do not exactly match the values from
the previous work by Shin et al., we consider the results similar,
indicating that our implementation provides a suitable RNN-based
function start classifier. Note that our modified variant, referred to
as one output neuron RNN, achieves higher F1-score values for both
x86 and x64, compared to the two output neurons RNN. As a result,
we use the one output neuron RNN in subsequent experiments.

In the original paper, Shin et al. yield higher F1-scores compared
to our models. However, we lack a precise explanation, as their
implementation and trained models are inaccessible. This may be
an artifact of different folds or implementation details. For the ex-
periments in Section 5, we train models for PE x86 and x64 using the
whole BAP dataset. We publish our documented implementation,
training data, and models.

4.3 Improving XDA
In preparation for the tool comparison in Section 5, we noticed
discrepancies in the encoding of function starts and ends in the
published XDA tooling. Consequently, we reproduce the results to
verify their correctness. We utilized the model and code published
by the authors for 64-bit PE files and applied it to the x64 part of the
BAP dataset (BAP-64). In the original evaluation, 90% of the BAP
dataset was used for evaluation because 10% was used to train XDA.
Since we do not know which samples were used for training and
which for evaluation, we use the entire dataset for evaluation. This
should only positively impact the results for XDA, as 10% of the
dataset was already seen during training. First, the function starts
and ends are predicted using the provided model. Subsequently,
we combine these starts and ends into function boundary pairs
using the published algorithm3. Following this, we utilized the F1-
score calculation provided by the authors4 to closely align with
3https://github.com/CUMLSec/XDA/blob/main/scripts/play/eval_pair_bound.py#L6,
Commit: c3cce2f
4https://github.com/CUMLSec/XDA/blob/main/scripts/play/eval_pair_bound.py#L
39, Commit: c3cce2f

byte
sequence

0

BAP
defined
functions

A (2,5)
B (5,8)

intended
encoding S S/E EN N NN N N

actually
encoded as S E EN N N N N N

new
encoding S S NN N N E N E

1  2   3   4   5   6   7   8  ...0

Figure 4: Labeling of Functions in XDA. For two adjacent
functions, XDA would need to assign two labels for one byte.
That is impossible, and a new encoding is required.

the original evaluation. The computed F1-score is shown in Table 3
in the column named our experiment, and the F1-score from the
original work in the column named reported.

We also include Nucleus, Ghidra, and IDA in the evaluation to
provide a better comparison with the original evaluation [19]. We
chose not to include the bi-RNN, as the XDA authors did not provide
trained models for its implementation, making a fair comparison
impossible.

The results in Table 3 indicate that the outcomes of our evalua-
tion for IDA and Ghidra are similar to those in the original evalua-
tion. The slight deviation could be attributed to the use of a slightly
different dataset (100% of BAP-64 in our evaluation instead of 90%).
However, there is a significant discrepancy between our evaluation
and the original evaluation in the results for XDA (~17 percent
points in F1-score) and Nucleus (~10 percent points in F1-score). To
investigate the cause of this discrepancy, we conducted a detailed
analysis of XDA’s detection mechanism.

4.3.1 XDA Label Encoding. Upon closer examination of the func-
tions detected by XDA, we noticed that XDA fails to correctly
identify functions when they are immediately adjacent to each
other, i.e., when one function ends and another begins directly af-
terward without any bytes in between. This issue stems from the
labeling of functions in the BAP dataset. In the BAP dataset, each
function is labeled with a start and an end. The start is inclusive,
marking the first byte of the function, while the end is exclusive,
indicating the first byte that does not belong to the function. When
one function directly follows another without intervening bytes,
the end of the first function is the same as the start of the second
function in the BAP notation. XDA assigns exactly one label per
byte, S for a function start, E for a function end, and N for neither.
In the scenario of two adjacent functions, XDA either correctly
identifies the end of the first function or the start of the second
function. Therefore, XDA cannot identify both functions in such
cases. Figure 4 illustrates this issue. Function B (5,8) directly follows
function A (2,5). XDA would need to assign both, the label S and
the label E, to byte 5 to identify both functions correctly. If XDA
classifies byte 5 as the end of a function, there are two function
ends, i.e., byte 5 and byte 8, without a function start in between,
and XDAs pairing code yields the function boundary pair (2,8),
effectively representing a single function starting at byte 2 and
ending at byte 8. This would result in one false positive and two
false negatives in the evaluation. Note that we do not consider this
a shortcoming of the XDA classifier but rather a labeling issue.

https://github.com/CUMLSec/XDA/blob/main/scripts/play/eval_pair_bound.py#L6
https://github.com/CUMLSec/XDA/blob/main/scripts/play/eval_pair_bound.py#L39
https://github.com/CUMLSec/XDA/blob/main/scripts/play/eval_pair_bound.py#L39


Padding Matters – Exploring Function Detection in PE Files

Table 2: Results from 10-fold cross-validation of our RNN models compared to previous work by Shin et al., using the BAP PE
dataset. Shin et al. report higher F1-scores, but their implementation and trained models are unavailable for inspection.

PE x86 PE x64
Method Precision Recall F1-score Precision Recall F1-score
Shin et al. [25] 99.01% 98.46% 98.74% 99.52% 99.09% 99.31%
two output neurons RNN 97.41% 92.42% 94.83% 98.66% 96.43% 97.53%
one output neuron RNN 96.96% 95.65% 96.29% 98.62% 98.29% 98.45%

Table 3: Improving XDA on the BAP-64 PE dataset. The col-
umn our experiment shows the results in our reproduction,
the column reported shows the results as presented in [19],
and adapted GT shows the results evaluated against the
adapted ground truth, which was potentially used in [19]

F1-score (PE x64)
Tool our

experiment
reported [19] adapted GT

IDA 91.13% 90.5% 78.66%
Ghidra 78.69% 80.6% 71.22%
Nucleus 79.80% 70% 67.55%
XDA reproduced 82.68% 99.4% 97.81%
XDA new encoding 93.66% - -

In the published artifacts, this issue also affects the training data
for XDA. Each byte is assigned exactly one label, and the label E
is assigned in case of a label conflict. Consequently, XDA never
encounters a function start that immediately follows the end of
another function during training. Additionally, the published code5
suggests that the ground truth data for the evaluation was encoded
similarly, causing the ground truth in XDA to deviate from the BAP
ground truth. We attempted to reconstruct the ground truth as used
in the original work by i) dividing the set of functions in the BAP
ground truth into pairs of function starts and ends, ii) extracting
all function starts in the set of function starts that also appeared in
the set of function ends, and iii) forming new function boundary
pairs by using the published algorithm6.

With the adapted ground truth, the evaluation results for XDA
and Nucleus are much closer to those in the original evaluation,
as shown in Table 3 in the rightmost column named adapted GT.
The minor discrepancies could be attributed to the slightly differ-
ent datasets used (100% of BAP-64 in our evaluation instead of
90%). However, the results for IDA and Ghidra deviate significantly
from the original evaluation compared to the BAP ground truth. Al-
though speculative, one possible explanation is that different tools
might have been evaluated differently, using the adapted ground
truth for XDA and Nucleus while using the original BAP ground
truth for IDA and Ghidra.

4.3.2 Retraining XDA. We aim to address the labeling inaccuracy
of the training data encoding by slightly modifying the training
5https://github.com/CUMLSec/XDA/blob/5315918317eda39bf5de8ca56935baabfc30
aa7e/scripts/play/eval_pair_bound.py#L144, Commit: c3cce2f
6https://github.com/CUMLSec/XDA/blob/main/scripts/play/eval_pair_bound.py#L6,
Commit: c3cce2f

data and retraining XDA. In the new encoding, we treat the end
of a function as inclusive, just like the start, marking it as the last
byte that still belongs to the function (new encoding in Figure 4).
During evaluation, we account for this new encoding method by
increasing the value of each function end by one. This adjustment
is also applied when evaluating Ghidra and Nucleus, as both also
consider the end of the function to be inclusive. With the help of
the new encoding, only labels for one-byte-sized functions would
result in a label conflict. In these cases, it is impossible to assign
a single correct label, as the first and only byte of the function
represents both the start and the end. To address this, a new label
would need to be introduced to mark a function’s start and end.
Since single-byte-sized functions are extremely uncommon, only
occurring in about 0.1% of the functions in the BAP-64 dataset, we
decided not to implement this change.

We use a randomly selected 10% of the samples from the BAP-
64 dataset to retrain (fine-tuning part only) XDA and evaluate the
entire BAP-64 dataset. This should not negatively impact the results
of XDA, as 10% of the evaluation dataset was already seen during
training.

This newly trained version of XDA achieves significantly better
results than the original version, as shown in the last row of Ta-
ble 3, with an increase from 82.68% to 93.66% in the F1-score. The
F1-score of the newly trained version is still more than 5 percent
points lower than the value reported in the original paper [19].
However, in our evaluation, the retrained version of XDA again
emerges as the tool with the best results compared to IDA, Ghidra,
and Nucleus. This supports our assumption that the XDA approach
fundamentally works well, although it does not quite meet the
claims of the original paper. To investigate this further, the evalua-
tion could be repeated on other datasets, i.e., SPEC2006, SPEC2017,
and the x86 versions. However, the pre-trained models used in the
original evaluation would need to be made available for a fair com-
parison. Our experience underlines the importance of reproducible
artifact and dataset publication in our research community to better
explain such differences.

Lessons learned. This section shows how Shin’s RNN can
benefit from using a one-output-neuron pipeline yielding F1-
scores of 96.29% for PE x86, and 98.45% for PE x64. Similarly,
XDA significantly benefits from a different labeling scheme,
improving its F1-score by nearly 11 percent points for PE x64.
Adjusting the labeling to account for adjacent functions un-
derscores the critical role of thoroughly understanding and
modeling the problem domain.

https://github.com/CUMLSec/XDA/blob/5315918317eda39bf5de8ca56935baabfc30aa7e/scripts/play/eval_pair_bound.py#L144
https://github.com/CUMLSec/XDA/blob/5315918317eda39bf5de8ca56935baabfc30aa7e/scripts/play/eval_pair_bound.py#L144
https://github.com/CUMLSec/XDA/blob/main/scripts/play/eval_pair_bound.py#L6


Raphael Springer, Alexander Schmitz, Artur Leinweber, Tobias Urban, and Christian Dietrich

5 COMPARING FUNCTION START
DETECTION TOOLS

As demonstrated in Section 2, prior research primarily focused
on evaluating function start detection tools using ELF binaries. In
contrast, our objective is to evaluate function start detection tools
developed over the past decade exclusively on PE binaries. We in-
troduce and release a new Windows PE dataset called FuncPEval to
facilitate this. This new PE evaluation dataset spans 549k functions
(233k normalized functions) for x86 and 543k functions (316k nor-
malized functions) for x64, more than twice compared to previously
available PE datasets. As a result, our dataset allows comparing
tool performance using F1-score and execution speed. Additionally,
we investigate the impact of padding bytes between functions on
function start detection.

5.1 FuncPEval
To address the limitation of prior research focusing predominantly
on ELF binaries, we introduce a new dataset, FuncPEval, which
exclusively comprises PE binaries. The dataset contains PE bina-
ries targeting Microsoft Windows, stripped off their debugging
information. As benign software, the core library chrome.dll of
Chromium version 109 is chosen, both as x86 and x64 PE. These
samples were compiled and linked by Google using LLVM clang
14.10.25019, using various per-module optimization levels, includ-
ing Ox, Os, Oy, O1, Ot, and O2. For x64, we use Chromium snapshot
10699227, and for x86, we use Chromium snapshot 10699568, both
released 10 Nov 2022. We choose to include Chromium for two
main reasons: First, given its wide adoption, relevance in practice,
and diverse code base, Chromium is a suitable target for binary
code analysis. Second, Chromium for Windows has not been used
in previous evaluations, rendering it unlikely that existing tools
have been particularly optimized for our dataset.

We extract ground truth on the function start addresses from
the associated PDB files using Microsoft’s DIA API and consider
functions that are designated as symbol type Function and are
listed under the respective compiled modules (*.obj). For each
module, relative virtual function addresses (RVA) and other sym-
bols (FuncDebugStart, FuncDebugEnd, etc.) are specified, which can
be found in the PE file after linking the respective modules. We ig-
nore all other symbol types, e.g. Thunk, because they do not provide
any relevant information in the context of the given problem.

In addition to Chromium, we evaluate against the code of the
Conti ransomware, a prevalent malicious software made publicly
available by a leak in early 2022 [27]. We compiled and linked Conti
version 3 using Visual Studio 2022 (version 14.34.31933) for both
x86 and x64 and generated PDB files to obtain the ground truth.
In the following, we consider the crypter (cryptor.exe), which
is the component that encrypts files on the victim machine. To
the best of our knowledge, no prior work has evaluated function
start detection using malware in combination with reliable ground
truth. While it would be beneficial to include a broader range of
7http://commondatastorage.googleapis.com/chromium-browser- snapshots/
index.html?prefix=Win_x64/1069922/, chrome.dll has a SHA256 hash value of
55f05fe24ebdf8eb263f75e88c8a71a42fb6240b59340a9abf9671ffe79a4f4a
8http://commondatastorage.googleapis.com/chromium-browser- snapsh
ots/index.html?prefix=Win/1069956/, chrome.dll has a SHA256 hash value of
1ce8b9551709581688a8199a0e0fcb48cfcac7fadf3671622ea8e66fbe39151f

samples and malware families, obtaining reliable ground truth is
challenging, as it necessitates access to either a compilable version
of the source code or corresponding debugging symbols.

To highlight the diversity in our evaluation dataset, we analyzed
the binary code as shown in Table 4. For example, Chromium x64
exhibits 542,902 distinct RVAs in its chrome.dll that denote the start
of a function. However, these represent 536,182 byte-unique func-
tions, i.e. some functions are byte-equal multiples. ByteWeight [7]
proposed normalizing instructions by removing immediates and
call/jump targets. When normalized, the Chromium x64 sample
contains 315,745 distinct normalized functions (roughly 58% of all
functions). This shows that Chromium exhibits enough diversity for
our evaluation. For reference, the overlap between Chromium x64
and BAP-64 is minimal, consisting of only 95 byte-unique functions
(out of 601,820), corresponding to 176 normalized functions.

In addition, we analyzed the function prologues for the x64 sam-
ples. Assuming that function start detection tools may consider
the bytes at the beginning of a function, which often represent
the function prologue, particularly important, their diversity in
the dataset becomes particularly noteworthy. Hence, the second-
rightmost columns in Table 4 describe the diversity of prologues.
Information about the prologue is derived from the .pdata section
in x64 PE files, and only available for functions that use excep-
tion handling 9. For Chromium x64, a non-zero-sized prologue was
present in 470,317 functions, representing 7,488 unique prologue
byte sequences. When normalizing the prologue instructions, 1,982
distinct sequences remain. While this number is significantly lower
than the number of functions that exhibit a prologue, it is expected,
as the diversity of prologues is certainly limited in general. Nev-
ertheless, the number of distinct normalized prologues provides
a measure of the diversity of function prologues. Since the tools
might also consider the bytes before the function starts in their
detection, we have included the number of functions with at least
one padding byte before the function start in the rightmost column
of Table 4.

For comparison, the BAP x64 PE dataset contains 65,733 byte-
unique functions, i.e., unique function byte sequences. With normal-
ization, only 18,169 normalized functions (ca. 28%) remain. Similarly,
out of 10,979 byte-unique prologues based on .pdata section, 1,775
normalized prologues (ca. 16%) remain. Both the absolute numbers
and the relative numbers, i.e., the number of normalized functions
over the total number of functions, demonstrate fewer duplicates
compared to the BAP dataset, indicating that the FuncPEval dataset
contains more diversity, which is a desirable property for an evalu-
ation dataset.

5.2 Evaluation and Tool Comparison
To assess the performance of function start detection tools on PE
files, we utilize our newly introduced comprehensive FuncPEval
dataset to evaluate eight tools, measuring their performance in
terms of speed and F1-score. The research question is as follows:
How do function detection tools perform when predicting func-
tion starts in PE programs with diverse code that exhibit different
build toolchains? For the tool comparison, we select function start

9See https://learn.microsoft.com/en-us/windows/win32/debug/pe-format#the-pdata-
section

http://commondatastorage.googleapis.com/chromium-browser-snapshots/index.html?prefix=Win_x64/1069922/
http://commondatastorage.googleapis.com/chromium-browser-snapshots/index.html?prefix=Win_x64/1069922/
http://commondatastorage.googleapis.com/chromium-browser-snapshots/index.html?prefix=Win/1069956/
http://commondatastorage.googleapis.com/chromium-browser-snapshots/index.html?prefix=Win/1069956/
https://learn.microsoft.com/en-us/windows/win32/debug/pe-format#the-pdata-section
https://learn.microsoft.com/en-us/windows/win32/debug/pe-format#the-pdata-section


Padding Matters – Exploring Function Detection in PE Files

Table 4: Properties of the training and the evaluation datasets, showing the number of functions and prologues. Normalization
includes blinding immediates as well as call and jump targets.

Functions Prologues (.pdata) Padding
Dataset PE sample(s) Arch RVAs unique norm. present unique norm. instances
BAP PE 68 samples x64 94,548 65,733 (70%) 18,169 (19%) 74,057 10,979 1,775 84,069
FuncPEval Chromium v109 x86 548,534 541,707 (99%) 232,781 (42%) 377,769
FuncPEval Chromium v109 x64 542,902 536,182 (99%) 315,745 (58%) 470,317 7,488 1,982 390,063
FuncPEval Conti v3 x86 722 721 (99%) 524 (73%) 310
FuncPEval Conti v3 x64 662 659 (99%) 450 (68%) 389 179 122 548

detection tools listed in Table 1 that support PE and have been
published within the past decade (2015-2025). This spans the three
learning-based approaches Shin et al. RNN, XDA, and DeepDi [28],
the three non-learning-based tools Nucleus [3], SMDA [8, 20], and
rev.ng [9], as well as two popular industry tools IDA Pro 7.7 [23]
and Ghidra 10.0.4 [1]. For our one output neuron RNN, we train
two models separately for x86 and x64, using the full BAP dataset,
described in Section 4.1, spanning PE samples with ground truth,
compiled and linked with MS Visual Studio versions 2010 to 2013
and using the optimization levels Od, O1, Ox, and O2. Similarly, we
use the XDA models described in Section 4.3, trained on 10% of the
BAP-64 dataset. For DeepDi, we use the provided model, trained
on a mixture of PE files from LLVM, SPEC CPU2006, and SPEC
CPU2017. Note that in contrast to the training datasets used by the
learning-based tools, the evaluation dataset spans PE samples built
with newer (MSVS 2022) or different (LLVM clang) compilers. This
approach allows us to work towards evaluating the generalizability
of the learning-based methods.

We evaluated the one output neuron RNN, XDA (in the original
and our modified version), DeepDi, SMDA, IDA Pro, Ghidra, Nu-
cleus, and rev.ng on the FuncPEval dataset, specifically Chromium
and Conti for both x86 and x64. The experiments for the RNN,
SMDA, IDA, Ghidra, Nucleus, and rev.ng ran on a server with two
2.20 GHz Intel Xeon Silver 4114 CPUs à 20 threads and 128 GB of
RAM. The experiments for XDA and DeepDi ran on a server with
two 2.9 GHz AMD EPYC 7542 CPUs à 64 threads, 256 GB of RAM,
and one NVIDIA Quadro RTX 8000.

Figure 5 shows the processing time for each tool and sample
in seconds, averaged over both the x86 and x64 duration. For
Chromium, rev.ng did not finish after 7 days, so we could not obtain
results. For Chromium x64, DeepDi is the fastest, completing in
seconds, followed by the RNN and Nucleus, both taking minutes.
XDA, Ghidra, and IDA ran for hours while SMDA finished after 35
hours.

Concerning F1-scores on the x64 Chromium sample, IDA (98.44%)
performs best, followed by DeepDi (97%), SMDA (95.54%), and
Ghidra (92.48%). Nucleus (88.52%), XDA (86.98%), and the RNN
(84.66%) score below 90%. Even though the F1-scores of the RNN
and XDA are much lower than in Section 4, both still detect a
significant number of functions in the evaluation dataset, given the
difference between training and evaluation datasets. Overall, the
RNN and XDA exhibit higher precision than recall. This reflects that
most predicted function starts are indeed function starts according
to the ground truth, but a significant number of functions is missed

(in the worst case, up to 33% for the RNN and 20% for XDA). At first,
this might indicate that the tools reliably detect function starts they
encountered during training while failing to recognize a significant
portion of function starts that were not part of the training data.
However, the results of Section 5.3 raise doubts whether these tools
generalize over code properties observed in function starts.

Lessons learned. IDA, DeepDi, SMDA, and Ghidra achieve
the best results in function start detection for PE files, with
F1-scores exceeding 90%. While Nucleus, XDA, and the RNN
produce slightly lower results, with F1-scores above 80%, they
remain valuable tools, particularly due to their relatively fast
execution speeds. If precise function detection is the primary
focus, IDA is the most suitable tool. However, if execution speed
is a critical factor, DeepDi is the preferred choice, as it delivers
the second-best F1-scores while being by far the fastest.

5.3 Randomizing the Padding between
Functions

To gain a better understanding of which features are predominantly
utilized by the ML-based tools, we analyze the overlap between
the detected functions and the training dataset. The RNN detects a
total of 439,363 functions in Chromium x64, with 415,810 of them
(95%) being true positives. For 353,995 of those functions, we have
information about the prologue from the .pdata section. Only
138,201 out of those 353,955 functions (39%) have a normalized
prologue that also occurs in the training dataset. Therefore, the
RNN detects function starts for which the normalized prologue
was not seen during training. We observe the same for XDA. Since
we do not have training data for DeepDi, we cannot measure the
overlap of normalized function prologues.

These values indicate that the RNN and XDA may not primarily
rely on function prologues when detecting function starts. Follow-
ing Compiler Coding Rule 12 of Intel’s Architecture Optimization
Reference Manual, compilers align the first instruction of each func-
tion at multiples of 16 bytes [13] and pad the area between the end
of the preceding function and the beginning of the next with spe-
cific bytes. Typically, the padding is filled with opcode 0xcc, which
reflects the mnemonic INT 3, or opcode 0x90, which is a single-byte
NOP instruction. Such padding forms a characteristic pattern before
a function start. Therefore, we suspect that the RNN and XDA learn
that a series of padding bytes is directly followed by a function start,
a pitfall referred to as a spurious correlation by Arp et al. [6], as the



Raphael Springer, Alexander Schmitz, Artur Leinweber, Tobias Urban, and Christian Dietrich

Tool Sample Precision Recall F1-score Precision Recall F1-score
Chromium v109 411 94.97% 67.32% 78.79% 94.64% 76.59% 84.66%
Chromium v109 RND-Padding 389 47.17% 3.23% 6.05% 62.30% 11.20% 18.99%
Conti v3 1 97.12% 88.64% 92.69% 99.06% 95.32% 97.15%
Conti v3 RND-Padding 1 91.69% 53.46% 67.54% 88.61% 27.04% 41.44%
Chromium v109 364 1.53% 0.65% 0.91% 41.08% 32.37% 36.21%
Chromium v109 RND-Padding 369 4.65% 2.28% 3.06% 40.01% 35.87% 37.83%
Conti v3 1 82.81% 76.04% 79.28% 92.31% 63.44% 75.20%
Conti v3 RND-Padding 1 81.93% 76.59% 79.17% 90.81% 65.71% 76.25%
Chromium v109 4872 - - - 96.30% 63.46% 76.51%
Chromium v109 RND-Padding 4869 - - - 31.80% 1.16% 2.23%
Conti v3 6 - - - 99.63% 80.97% 89.33%
Conti v3 RND-Padding 6 - - - 84.62% 3.32% 6.40%
Chromium v109 5011 - - - 94.88% 80.29% 86.98%
Chromium v109 RND-Padding 5127 - - - 40.61% 6.70% 11.50%
Conti v3 5 - - - 97.17% 93.20% 95.14%
Conti v3 RND-Padding 5 - - - 68.42% 27.49% 39.22%
Chromium v109 5013 - - - 2.81% 1.77% 2.17%
Chromium v109 RND-Padding 5075 - - - 5.45% 1.08% 1.80%
Conti v3 5 - - - 1.34% 1.21% 1.27%
Conti v3 RND-Padding 5 - - - 2.41% 0.60% 0.97%
Chromium v109 16 96.72% 99.81% 98.24% 96.29% 97.71% 97.00%
Chromium v109 RND-Padding 16 86.68% 66.70% 75.39% 73.22% 59.60% 65.71%
Conti v3 3 94.63% 97.65% 96.11% 99.84% 96.83% 98.31%
Conti v3 RND-Padding 0.5 91.95% 94.88% 93.39% 91.40% 86.71% 88.99%
Chromium v109 129k 95.94% 99.86% 97.86% 92.04% 99.33% 95.54%
Chromium v109 RND-Padding 138k 90.08% 96.89% 93.36% 85.30% 92.13% 88.58%
Conti v3 3 90.79% 96.95% 93.77% 95.94% 99.85% 97.85%
Conti v3 RND-Padding 3 86.84% 93.21% 89.91% 89.41% 95.62% 92.41%
Chromium v109 32810 97.71% 99.36% 98.53% 97.11% 99.80% 98.44%
Chromium v109 RND-Padding 28415 97.67% 98.94% 98.30% 88.95% 99.80% 94.06%
Conti v3 17 98.05% 97.37% 97.71% 99.85% 99.40% 99.62%
Conti v3 RND-Padding 17 97.40% 93.49% 95.41% 92.13% 99.09% 95.49%
Chromium v109 24775 97.52% 98.12% 97.82% 97.04% 88.33% 92.48%
Chromium v109 RND-Padding 68973 97.17% 87.11% 91.87% 97.00% 87.98% 92.27%
Conti v3 47 95.94% 91.55% 93.69% 100.00% 92.30% 95.99%
Conti v3 RND-Padding 46 95.87% 86.70% 91.05% 100.00% 85.50% 92.18%
Chromium v109 765 97.19% 97.13% 97.16% 83.69% 93.94% 88.52%
Chromium v109 RND-Padding 633 32.70% 33.28% 32.99% 27.76% 31.97% 29.71%
Conti v3 0.5 92.19% 96.40% 94.25% 94.56% 97.13% 95.83%
Conti v3 RND-Padding 0.5 49.94% 55.54% 52.59% 22.07% 24.17% 23.07%
Chromium v109 630 97.66% 90.99% 94.21% 86.24% 87.00% 86.61%
Chromium v109 RND-Padding 635 42.41% 39.48% 40.89% 36.65% 37.58% 37.11%
Conti v3 0.7 92.90% 95.98% 94.41% 94.51% 96.22% 95.36%
Conti v3 RND-Padding 0.7 60.03% 64.68% 62.27% 33.69% 38.52% 35.94%
Chromium v109 - - - - - - -
Chromium v109 RND-Padding - - - - - - -
Conti v3 130 88.21% 90.17% 89.18% 100.00% 78.55% 87.99%
Conti v3 RND-Padding 128 88.09% 90.17% 89.12% 100.00% 78.55% 87.99%

rev.ng

SMDA
1.13.21

XDA
INT3-Padding

XDA
new encoding
INT3-Padding

XDA
new encoding
RND-Padding

IDA Pro
7.7

Ghidra
10.0.4

DeepDi

Nucleus
recursive traversal

Nucleus
linear sweep

avg.
Time

PE x86 PE x86-64

RNN
INT3-Padding

RNN
RND-Padding

Figure 5: Precision, recall, and F1-score when predicting function starts in Chromium and Conti samples. Each cell is shaded
in red, with the intensity of the red color increasing as the value deviates further from 100%. INT3-Padding in tool names
indicates training on samples with INT3 instruction as padding between functions, while RND-Padding indicates training on
samples with random byte values as padding. RND-padding in sample names denotes the replacement of compiler-generated
padding with random byte values.

padding bytes are not required for the execution of a binary and
can be arbitrarily altered in value. To confirm our hypothesis, we
replace the characteristic padding bytes with random byte values
in our evaluation dataset and rerun the previous experiment.

5.3.1 Introducing Random Padding in the FuncPEval Dataset. We
use the FuncPEval dataset described in Section 5.1 and modify the
samples to understand the impact of padding bytes on the evalua-
tion. In our original dataset, we only observe padding with opcode



Padding Matters – Exploring Function Detection in PE Files

1 # iterate over the 20 bytes preceding the function
2 for i in range(1, 20):
3 current_byte =
4 sample_bytes[current_function_start - i]
5 # make sure the current byte does not belong
6 # to another function
7 if belongs_to_function(current_byte):
8 break
9 # make sure the byte is actually a padding
10 # byte
11 if current_byte.value == 0xcc:
12 # replace byte value by random value
13 current_byte.value = random_byte ()

Listing 1: Pseudocode of algorithm used to replace padding
bytes

0xcc (mnemonic INT 3 representing a software interrupt). List-
ing 1 shows the algorithm used to replace the padding bytes. For
each function in the samples, we i) collect up to 20 bytes before
the beginning of the function, ii) consider only those bytes that do
not belong to a preceding function, and iii) replace each padding
byte of value 0xccwith a random arbitrary byte value. We select 20
bytes preceding the function to cover any possible padding, which
can be up to 15 bytes in length, with an additional margin for tol-
erance. This modification does not impact the runtime behavior
of the samples because the padding is not part of the control flow
and is never executed. Therefore, malicious actors could arbitrarily
alter the values of the padding bytes as an obfuscation to impede
automated analyses. We have observed non-standard padding used
by malicious actors in the wild. The wineloader10 malware uses op-
code 0xC3 as inter-function padding, which reflects the mnemonic
RET. While possibly an artifact of a rare compiler or compiler con-
figuration, or resulting from deliberate manipulation, the intentions
for using non-standard padding are unclear in this specific case.

5.3.2 Results. Figure 5 shows that the padding significantly im-
pacts the performance of the RNN andXDA. In the case of Chromium
x86, the F1-score dropped from 78.79% to 6.05% for the RNN. For
our modified version of XDA, the F1-score dropped from 86.98% to
11.50% for Chromium x64. The modified padding also negatively
affects DeepDi, the third machine learning approach, albeit signifi-
cantly less (drop from 97% to 65.71% in F1-score for Chromium x64).
We draw two conclusions: First, if a characteristic padding byte pat-
tern is present during training, the RNN and XDA predominantly
rely on such a pattern as a delimiter of functions. Second, unlike
RNN and XDA, DeepDi is less affected, most likely as it operates on
the granularity of machine code instructions instead of raw bytes.

Given a learning-based approach, it may be considered unfair
to train on samples with unmodified padding and evaluate against
randomized padding. To accommodate, we applied the padding
randomization to the samples in the BAP training dataset of the
RNN and trained a new model to see if the results improve. The
new model (RND-Padding in Figure 5) performs overall worse on
samples without random padding in comparison to the original
model. In the case of Chromium x86, the new model even produces
10SHA256 hash value of: 72b92683052e0c813890caf7b4f8bfd331a8b2afc324dd54
5d46138f677178c4

worse results for the modified sample. Therefore, we conclude it is
not straightforward to train an RNN model that can handle both
normal and randomized padding effectively, which raises the ques-
tion of whether the RNN can identify function start patterns be-
yond padding. We also finetuned XDA using a randomized-padding
version of the newly encoded dataset. Overall, the results were
significantly worse for both samples with unmodified padding and
samples with randomized padding, even though similar results to
those in the experiment in Section 4.3 were achieved during valida-
tion in training. Consequently, we were unable to train a model for
XDA that is robust against randomized padding. Due to the training
code of DeepDi not being publicly available, we could not retrain a
version of DeepDi.

The randomized padding also negatively affects IDA, Ghidra,
and SMDA; however, the impact on their F1-scores never exceeds
10 percent points. rev.ng is the only tool that is nearly unaffected
by the randomized padding; however, we cannot make a statement
regarding its results on Chromium.

Nucleus’ detection of function starts is severely negatively im-
pacted by randomized padding. Both precision and recall are simi-
larly affected. In the case of Chromium x86, the F1-score drops from
97.16% to 32.99%. Theoretically, modifying padding bytes should not
affect Nucleus’ function start detection, unlike the machine learning
tools that have learned with padding during training, since Nucleus
operates on the interprocedural control flow graph (ICFG), which
does not include padding. Through code review and debugging, we
have confirmed that Nucleus is already affected by the randomized
padding before creating the ICFG, specifically during disassem-
bling. Nucleus disassembles using linear sweep. The randomized
padding bytes are interpreted as instructions by the linear sweep
disassembler. This can result in instructions consuming parts of the
randomized padding and the beginning of the subsequent function.
In this case, at least the function’s first instruction is incorrectly
disassembled. The effect is exacerbated by Nucleus detecting that
callers point to the middle of an instruction. Nucleus attempts to fix
this by shifting the start of the basic block to the beginning of the
next instruction. This shift does not resolve the issue, resulting in an
incorrect function start being assumed in such cases. Nucleus also
provides an experimental recursive traversal disassembling strat-
egy, which shows no significant improvement. While the padding
bytes are initially ignored by the recursive strategy, a heuristic11
later reconsiders them, leading to the same problem as with the
linear sweep. This heuristic is intended to improve code coverage
by assuming another basic block after the end of the current basic
block. Removing this heuristic significantly improves precision but
also greatly reduces recall, as the overall code coverage becomes
very low.

Lessons learned. Function start detection tools are signif-
icantly affected by modifications to the compiler-generated
padding between functions. When this padding is replaced
with random byte values, detection performance deteriorates
for the RNN, XDA, DeepDi, and Nucleus. In contrast, IDA,
Ghidra, and SMDA are much less impacted. Attempts to retrain

11https://bitbucket.org/vusec/nucleus/src/e3ab49db579adbdd8451171e980e9b8f8a54
6a3c/strategy.cc#lines-149

https://bitbucket.org/vusec/nucleus/src/e3ab49db579adbdd8451171e980e9b8f8a546a3c/strategy.cc#lines-149
https://bitbucket.org/vusec/nucleus/src/e3ab49db579adbdd8451171e980e9b8f8a546a3c/strategy.cc#lines-149


Raphael Springer, Alexander Schmitz, Artur Leinweber, Tobias Urban, and Christian Dietrich

the RNN and XDA using samples with randomized padding did
not resolve the issue, indicating generalization limitations and
leaving it unclear whether these tools can operate effectively
on such samples.

6 LIMITATIONS & CONCLUSION
We conclude that randomized padding between functions in PE
binaries significantly diminishes the effectiveness of the RNN, XDA,
and Nucleus. Even training on samples with randomized padding
does not resolve the issue for the learning-based methods RNN
and XDA, highlighting their limitations in generalizability. The
remaining tools are also affected by randomized padding, although
to a much lesser degree. Threat actors may evade the affected
tools through randomized padding impacting subsequent analysis
toolchains, e.g., for malware analysis. Among the learning-based
tools, DeepDi is the least affected and, overall, the fastest.

When considering the unmodified version of Chromium x64,
IDA (98.44%) performs best, closely followed by DeepDi (97%) and
SMDA (95.54%). For large-scale applications, DeepDi likely offers
the best combination of F1-score and processing speed.

Finally, by modifying the label encoding, we improve XDA’s F1-
score significantly, resulting in an F1-score of 86.98% for Chromium
x64 in comparison to 76.51% for the unmodified version.

Since no pre-trained models for x86 were provided for XDA, we
decided not to include XDA in our x86 evaluation. Future work
could incorporate a newly pre-trained and finetuned version of XDA
for x86 in the evaluation. We assume that the results do not differ
significantly between x86 and x64. Another limitation is that our
dataset only contains one malware family (Conti), using a C/C++
code base. Ideally, it would be extended to also cover malware
using different obfuscation techniques, compilers, and toolchains
such as Rust, Nim, Go, and corresponding ground truth. However,
obtaining such ground truth data is challenging due to missing
or partial debug symbols. Finally, while our work focuses on the
Windows PE file format, randomized padding likely also impacts
the function detection in other executable file formats, such as
ELF, given that padding is an architectural recommendation. Future
work could investigate the impact of randomized padding on other
file formats.

CODE ARTIFACTS
To foster future research, we publish our source code, data, and
other supplementary information online at: https://github.com
/internet-sicherheit/Padding-Matters---Exploring-Function-
Detection-in-PE-Files.

ACKNOWLEDGMENTS
The authors gratefully acknowledge funding from the Federal Min-
istry of Education and Research (grants 13FH101KB1 and 16KIS1746),
nicos AG, and Cyberus Technology GmbH. The authors thank Jan
Fedler for his assistance with debugging Nucleus.

REFERENCES
[1] National Security Agency. Ghidra Software Reverse Engineering Framework.

https://ghidra-sre.org/, 2022.
[2] Jim Alves-Foss and Jia Song. Function boundary detection in stripped binaries. In

Proceedings of the 35th Annual Computer Security Applications Conference, ACSAC

’19, page 84–96, New York, NY, USA, Dec 2019. Association for Computing
Machinery.

[3] Dennis Andriesse. Nucleus function detector. https://bitbucket.org/vusec/nucl
eus/src/e3ab49db579adbdd8451171e980e9b8f8a546a3c/, 2018.

[4] Dennis Andriesse, Xi Chen, Victor Van Der Veen, Asia Slowinska, and Herbert
Bos. An In-Depth Analysis of Disassembly on Full-Scale x86/x64 Binaries. In
25th USENIX Security Symposium (USENIX Security 16), pages 583–600, 2016.

[5] Dennis Andriesse, Asia Slowinska, and Herbert Bos. Compiler-Agnostic Function
Detection in Binaries. In 2017 IEEE European Symposium on Security and Privacy
(EuroS P), page 177–189, Apr 2017.

[6] Daniel Arp, Erwin Quiring, Feargus Pendlebury, Alexander Warnecke, Fabio
Pierazzi, Christian Wressnegger, Lorenzo Cavallaro, and Konrad Rieck. Dos
and Don’ts of Machine Learning in Computer Security. In 31st USENIX Security
Symposium (USENIX Security 22), pages 3971–3988, Boston, MA, August 2022.
USENIX Association.

[7] Tiffany Bao, Jonathan Burket, Maverick Woo, Rafael Turner, and David Brumley.
BYTEWEIGHT: Learning to Recognize Functions in Binary Code. In 23rd USENIX
Security Symposium (USENIX Security 14), page 845–860, 2014.

[8] Daniel Johannes Plohmann. Classification, Characterization, and Contextualiza-
tion of Windows Malware using Static Behavior and Similarity Analysis. PhD
thesis, Rheinische Friedrich-Wilhelms-Universität Bonn, July 2022.

[9] Alessandro Di Federico, Mathias Payer, and Giovanni Agosta. REV.NG: A Unified
Binary Analysis Framework to Recover CFGs and Function Boundaries. In
Proceedings of the 26th International Conference on Compiler Construction, pages
131–141, 2017.

[10] Wenbo Guo, Dongliang Mu, Jun Xu, Purui Su, Gang Wang, and Xinyu Xing.
LEMNA: Explaining Deep Learning based Security Applications. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security,
CCS ’18, page 364–379, New York, NY, USA, Oct 2018. Association for Computing
Machinery.

[11] Irfan Ul Haq and Juan Caballero. A survey of binary code similarity. ACM
Computing Surveys (CSUR), 54(3):1–38, 2021.

[12] Hinton. Neural Networks for Machine Learning. http://www.cs.toronto.edu/~tij
men/csc321/slides/lecture_slides_lec6.pdf, 2012.

[13] Intel. Intel® 64 and IA-32 Architectures Optimization Reference Manual. https:
//www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimizati
on-manual.pdf, 2012.

[14] AV-TEST-The Independent IT-Security. AV-ATLAS - Malware & PUA. https:
//portal.av-atlas.org/malware, 2024.

[15] Soomin Kim, Hyungseok Kim, and Sang Kil Cha. Funprobe: Probing functions
from binary code through probabilistic analysis. In Satish Chandra, Kelly Blincoe,
and Paolo Tonella, editors, Proceedings of the 31st ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineer-
ing, ESEC/FSE 2023, San Francisco, CA, USA, December 3-9, 2023, pages 1419–1430.
ACM, 2023.

[16] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.
https://arxiv.org/abs/1412.6980, 2014.

[17] Hyungjoon Koo, Soyeon Park, and Taesoo Kim. A Look Back on a Function
Identification Problem. In Annual Computer Security Applications Conference,
ACSAC, page 158–168, New York, NY, USA, Dec 2021. Association for Computing
Machinery.

[18] Chengbin Pang, Ruotong Yu, Dongpeng Xu, Eric Koskinen, Georgios Portokalidis,
and Jun Xu. Towards optimal use of exception handling information for function
detection. In 2021 51st Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), pages 338–349. IEEE, 2021.

[19] Kexin Pei, Jonas Guan, David Williams-King, Junfeng Yang, and Suman Jana.
XDA: accurate, robust disassemblywith transfer learning. In 28th Annual Network
and Distributed System Security Symposium, NDSS 2021, virtually, February 21-25,
2021. The Internet Society, 2021.

[20] Daniel Plohmann. SMDA. https://github.com/danielplohmann/smda, 2024.
[21] Jing Qiu, Xiaohong Su, and Peijun Ma. Library functions identification in binary

code by using graph isomorphism testings. In 2015 IEEE 22nd International
Conference on Software Analysis, Evolution, and Reengineering (SANER), page
261–270, Mar 2015.

[22] Bernardo Quintero, Alex Berry, Ilfak Guilfanov, and Vijay Bolina. Scaling Up
Malware Analysis with Gemini 1.5 Flash. https://cloud.google.com/blog/topics/t
hreat-intelligence/scaling-up-malware-analysis-with-gemini, July 2024.

[23] Hex Rays. IDA Pro. https://hex-rays.com/ida-pro/, 2022.
[24] Nathan Rosenblum, Xiaojin Zhu, Barton Miller, and Karen Hunt. Learning to

analyze binary computer code. In Proceedings of the 23rd national conference on
Artificial intelligence - Volume 2, AAAI’08, page 798–804, Chicago, Illinois, Jul
2008. AAAI Press.

[25] Eui Chul Richard Shin, Dawn Song, and Reza Moazzezi. Recognizing Functions
in Binaries with Neural Networks. In 24th USENIX Security Symposium (USENIX
Security 15), page 611–626, 2015.

[26] Paria Shirani, Lingyu Wang, and Mourad Debbabi. BinShape: Scalable and
Robust Binary Library Function Identification Using Function Shape. In Michalis
Polychronakis and Michael Meier, editors, Detection of Intrusions and Malware,

https://github.com/internet-sicherheit/Padding-Matters---Exploring-Function-Detection-in-PE-Files
https://github.com/internet-sicherheit/Padding-Matters---Exploring-Function-Detection-in-PE-Files
https://github.com/internet-sicherheit/Padding-Matters---Exploring-Function-Detection-in-PE-Files
https://ghidra-sre.org/
https://bitbucket.org/vusec/nucleus/src/e3ab49db579adbdd8451171e980e9b8f8a546a3c/
https://bitbucket.org/vusec/nucleus/src/e3ab49db579adbdd8451171e980e9b8f8a546a3c/
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf
https://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf
https://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf
https://portal.av-atlas.org/malware
https://portal.av-atlas.org/malware
https://arxiv.org/abs/1412.6980
https://github.com/danielplohmann/smda
https://cloud.google.com/blog/topics/threat-intelligence/scaling-up-malware-analysis-with-gemini
https://cloud.google.com/blog/topics/threat-intelligence/scaling-up-malware-analysis-with-gemini
https://hex-rays.com/ida-pro/


Padding Matters – Exploring Function Detection in PE Files

and Vulnerability Assessment, Lecture Notes in Computer Science, page 301–324,
Cham, 2017. Springer International Publishing.

[27] vx-underground.org. Conti v3. https://github.com/vxunderground/MalwareSo
urceCode/blob/main/Win32/Ransomware/Win32.Conti.c.7z, 2022.

[28] Sheng Yu, Yu Qu, Xunchao Hu, and Heng Yin. DeepDi: Learning a relational
graph convolutional network model on instructions for fast and accurate dis-
assembly. In 31st USENIX Security Symposium (USENIX Security 22), pages
2709–2725, Boston, MA, August 2022. USENIX Association.

https://github.com/vxunderground/MalwareSourceCode/blob/main/Win32/Ransomware/Win32.Conti.c.7z
https://github.com/vxunderground/MalwareSourceCode/blob/main/Win32/Ransomware/Win32.Conti.c.7z

	Abstract
	1 Introduction
	2 Related Work
	2.1 Static code analysis and pattern-based approaches
	2.2 Machine learning based approaches
	2.3 Limited focus on PE files in existing work

	3 Background on Function Detection
	4 Empirical Validation
	4.1 BAP/ByteWeight Dataset
	4.2 Implementation of the RNN-based Classifier
	4.3 Improving XDA

	5 Comparing Function Start Detection Tools
	5.1 FuncPEval
	5.2 Evaluation and Tool Comparison
	5.3 Randomizing the Padding between Functions

	6 Limitations & Conclusion
	Acknowledgments
	References

