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Abstract

Buffered Linear Toeplitz (BLT) matrices are a family of parameterized lower-triangular
matrices that play an important role in streaming differential privacy with correlated noise.
Our main result is a BLT inversion theorem: the inverse of a BLT matrix is itself a BLT matrix
with different parameters. We also present an efficient and differentiable O(d3) algorithm to
compute the parameters of the inverse BLT matrix, where d is the degree of the original BLT
(typically d < 10). Our characterization enables direct optimization of BLT parameters for
privacy mechanisms through automatic differentiation.

1 Introduction

We consider the inverses of a family of parameterized lower-triangular matrices known as Buffered
Linear Toeplitz (BLT) matrices [1]. Given a scale parameter α = (α1, . . . , αd) ∈ Rd and a decay
parameter λ = (λ1, . . . , λd) ∈ Rd, the n× n BLT matrix is defined as

BLTn(α,λ) :=




1 0 0 0 · · ·∑d
i=1 αi 1 0 0 · · ·∑d

i=1 αiλi

∑d
i=1 αi 1 0 · · ·

∑d
i=1 αiλ

2
i

∑d
i=1 αiλi

∑d
i=1 αi 1

. . .
...

...
...

...
. . .




n×n

. (1)

The matrix C = BLTn(α,λ) is lower triangular and Toeplitz (i.e., it has equal entries along each
diagonal from the top-left to the bottom-right), with ones along the principal diagonal:1

C[j, k] =





0, if j < k ,

1, if j = k ,∑d
i=1 αiλ

j−k−1
i , if j > k .

(2)

Such parameterized matrices (and their inverses) are central to streaming differential privacy with
correlated noise, achieving near-optimal tradeoffs between privacy, utility, and computation cost;
we describe this in detail in Section 2.

1We denote the (j, k)th entry of the matrix C ∈ Rn×n by C[j, k]; Table 1 in Appendix A provides a complete
notation summary.
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The main result of this note is that the BLT family of matrices is closed under inversion. In
particular, the inverse of a degree-d BLT matrix BLTn(α,λ) (which always exists) is also a BLT
matrix of the same order d:

BLTn(α,λ)−1 = BLTn(α̂, λ̂) for all n > 0

for all integers n > 0 for unique parameters α̂, λ̂ ∈ Rd. We also give an equivalence between repre-
senting a (BLT, inverse BLT) system BLTn(α,λ)−1 = BLTn(α̂, λ̂) using (a) both the parameters

α,λ of the first BLT, and (b) both the decay parameters λ, λ̂. Finally, we give a differentiable
algorithm to compute the BLT inverse in O(d3) time for any size n.

Next, we provide some background on streaming differential privacy in Section 2. BLT matrices
and their inverses play an important role in this setting. We give a full formal statement of our
BLT inversion theorem in Section 3. We give the key ideas behind the proofs in Section 4 with full
proof details in Section 5.

2 Background

Let G ∈ Rn×m be a sequence of n vectors in Rm stacked row-wise into a matrix. Each vector gt
(i.e. tth row of G) is assumed to satisfy ∥gt∥2 ≤ ζ for some constant ζ > 0. We aim to estimate
(in a differentially private manner) a sequence of (known) linear combinations of these vectors,
represented as the rows of AG ∈ Rn×m; here, A ∈ Rn×n is known as the workload matrix.

This setup captures diverse problems such as continual counting and stochastic optimization
under differential privacy. In the latter case, gt is an unbiased estimator of the loss gradient
evaluated at the current model parameters θt. The workload matrix captures the optimization
algorithm: stochastic gradient descent (SGD) with a constant learning rate η corresponds to the
prefix sum workload Apre, which is the lower triangular matrix with all ones. This is because each
iterate θt = θ0 − η

∑
τ<t gτ of SGD relies on estimating the prefix sums

∑
τ<t gτ , which are the

rows of ApreG. Other first-order optimizers such as SGD with momentum correspond to different
workloads.

The matrix mechanism for differential privacy [2, 3], known also as DP-FTRL [4, 5] in the
learning setting, injects correlated noise to release private estimates of AG. Given a factorization
A = BC with C invertible, this correlated noise mechanism is defined as

M(G) = B(CG+Z) = A(G+C−1Z) , (3)

where Z ∈ Rn×m is component-wise i.i.d. Gaussian noise. We scale2 Z ∼ Nn×m
(
0, sens(C)2σ2

)
,

where sens(C) is the ℓ2-sensitivity of the operation G 7→ CG, while σ is a noise multiplier de-
pending only on the desired privacy level; e.g. we take σ2 = 1/(2ρ) for a ρ-zero-concentrated DP
guarantee [6]. Note that multiplication by B is simply a post-processing step that does not affect
the privacy guarantee. The sensitivity sens(C) depends on how adjacent G,G′ are allowed to differ.
In the learning setting, if a data item can appear only once in training, then sens(C) = ∥C∥col is
the maximum column norm of the matrix C. Different expressions exist when each data item can
participate more than once [see e.g. 7, Eq. (2)].

In general, we aim to find the factorization A = BC to minimize the worst-case expected
(squared) ℓ2 norm across all rows of M(G) − AG = BZ = A−1CZ. This can be evaluated

2The notation Z ∼ Nn×m
(
0, σ2

)
denotes a random matrix Z ∈ Rn×m whose entries are i.i.d. N (0, σ2).
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(assuming the norm constant ζ = 1 w.l.o.g.) as the (square of the) max loss

L(C) := sens(C) ·
∥∥A−1C

∥∥
row

, (4)

where ∥B∥row denotes the maximum row norm of the matrix B. Sometimes, we may choose the
Frobenius norm ∥·∥F instead of ∥·∥row to compute the average expected (squared) ℓ2 norm across
rows of AG instead of the worst-case.

BLT Mechanism A major focus of prior research has been to improve the privacy-utility-
compute tradeoffs of the mechanism (3) in theory and practice; see [7, 8, 9, 10] and the references
therein. In particular, the computation cost of computing (C−1Z)[t, :] in each iteration t domi-
nates the running time of the algorithm in the learning setting. The BLT mechanism [1] achieves
state-of-the-art tradeoffs. In general, it restricts the C matrix to be Toeplitz and parameterizes its
first column c1, c2, . . . as ct = u⊤W t−1v using a matrix W and two vectors u,v. We focus on the
diagonal BLT formulation described in Eq. (1), which corresponds to diagonal W ; this formulation
has been preferred in empirical studies for being more computationally efficient without sacrificing
utility [1, 11].

A key advantage of the BLT mechanism is that the rows of the correlated noise C−1Z in Eq. (3)
can be generated in a streaming fashion with O(dm) time and space complexity [cf. 11, Alg. 2,3];
notably, this is independent of the iteration counter. Together with additive utility guarantee in
the streaming setting where sens(C) = ∥C∥col, this leads to near-optimal privacy-utility-compute
tradeoffs with the prefix sum workload A = Apre. In particular, for any size n > 0 and error
term δ > 0, there exist some parameters α,λ ∈ Rd for d = O(log2(n/δ)) that give an additive
approximation of the optimal max error:

L
(
BLTn(α,λ)

)
≤ min{L(C) : C ∈ Rn×n is lower-triangular & Toeplitz }+ δ . (5)

In this work, we show that the inverse of a diagonal BLT of the form of Eq. (1) is another diagonal

BLT; we give a precise statement in Section 3. We also describe how to find the parameters λ̂, α̂
of the inverse BLT in a differentiable manner so that max loss (4) can be optimized (as a function
of the BLT parameters α,λ) using automatic differentiation.

Parameter Restrictions We restrict ourselves to the BLT decay parameter λ ∈ (0, 1)d, and

our main result (Theorem 1) further focuses on the case where each αi > 0 and
∑d

i=1 αi < 1.
These restrictions are not strictly necessary, in that Eq. (1) is a well-defined (and invertible) matrix
for any parameters α,λ ∈ Rd. Why these restrictions? In short, we believe they identify the
most practically important subclass of BLTs where the goal is to approximate the optimal Toeplitz
matrix (see the right side of Eq. (5)). This allows sharper and simpler theoretical characterizations
and numerically stable mechanisms. The restriction α > 0 (or α < 0) is beneficial when optimizing
BLTs, and ensure our subclass is closed under matrix inversion. For example, the previous works
[1, 11] restrict the search over α to over strictly positive entries by imposing log-barrier functions
in the optimization.

Do these restrictions lead to sub-optimal mechanisms? For the problem of correlated noise DP
mechanisms for single-participation, strong empirical evidence from prior work [1, 11] shows that
this is not the case. In particular, Dvijotham et al. [1] showed BLTs that satisfy these restrictions
can for all practical purposes perfectly match the optimal Toeplitz matrix (i.e. the Toeplitz matrix
C minimizing L(C) optimizing, as in the right size of Eq. (5)), and McMahan et al. [11] showed

3



strong performance for a common multiple-participation setting. Nevertheless, it is possible that
for some applications the additional expressive power of allowing some λi < 0 could make it worth
investigating this case further.

Notation Summary We use the shorthand [d] := {1, . . . , d}. Vectors are denoted by boldfaced
lower-case (Greek or Latin) letters (e.g. λ, u) while matrices are denoted by boldfaced upper-case
letters (e.g. C or M); both are 1-indexed. Often, we will denote the first columns of the lower
triangular and Toeplitz matrices C and C−1 with shorthand ct = C[t, 1] and ĉt = (C−1)[t, 1]
respectively. We give a detailed summary of the notation in Table 1 of Appendix A.

3 Main Results

Our main result is a BLT inversion theorem: the inverse of a BLT matrix is also a unique BLT. We
give some properties of the inverse BLT parameters. All proofs are given in Sections 4 and 5. We
say a vector of parameters λ is distinct if it holds that

λi ̸= λj for all i, j ∈ [d] such that i ̸= j.

Theorem 1. The matrix BLTn(α,λ) is invertible for any integer n > 0 for any parameters α ∈ Rd

and λ ∈ Rd for all integers n > 0 and d > 0. In addition, if the scale parameters are positive
(αi > 0) and satisfy

∑d
i=1 αi < 1, and the decay parameters λ ∈ (0, 1)d are distinct, then there

exist parameters α̂, λ̂ ∈ Rd with λ̂ distinct such that BLTn(α,λ)−1 = BLTn(α̂, λ̂) for all integers
n > 0. Further, the scale parameters of the inverse are negative (i.e. α̂i < 0 for all i), and the
decay parameters of the inverse satisfy have the following:

(a) If
∑d

i=1 αi/λi < 1, then λ̂i ∈ (0, 1) for each i ∈ [d].

(b) If
∑d

i=1 αi/λi > 1, then there exists an integer j ∈ [d] such that λ̂j ∈ (−1, 0) and λ̂i ∈ (0, 1)
for all i ∈ [d], i ̸= j.

(c) Finally, if
∑d

i=1 αi/λi = 1, then there exists an integer j ∈ [d] such that λ̂j = 0 and λ̂i ∈ (0, 1)
for all i ∈ [d], i ̸= j.

Furthermore, these inverse parameters λ̂, α̂ are unique (up to permutations of indices).

Following Eq. (2), C[2, 1] =
∑d

i=1 αi, and so the assumption
∑d

i=1 αi < 1 is useful because
we typically want the first column of the C matrix to be decreasing in the context of streaming
differential privacy [1, 11]. Furthermore, we empirically observe that BLT parameters optimized for

the max loss tend to satisfy λ̂i ∈ (0, 1), paralleling the assumption that λi ∈ (0, 1) for the original
BLT; this is also true for the theoretical construction of Dvijotham et al. [1]. This corresponds to

the regime of
∑d

i=1 αi/λi < 1 as per Theorem 1(a).
BLTs satisfying the condition of Theorem 1(c) are degenerate in the sense that one of the decay

parameters is exactly zero. We give an example where this holds.

Example. Consider a BLT of degree d = 2 with parameters α = (2/5, 1/5) and λ = (4/5, 2/5) so
that

∑
i αi/λi = 1/2 + 1/2 = 1. Then, we have that its inverse is a BLT given by the parameters3

3This can be verified, for instance, using the upcoming Lemma 3.
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α̂ = (−1/15,−8/15) and λ̂ = (3/5, 0). In particular, notice that we have a decay parameter of
exactly 0 in the inverse, and hence α̂2 = −8/15 only influences the second Toeplitz coefficient

(C−1)[j + 1, j] =
∑d

i=1 α̂i.

For practical applications, we usually optimize for the BLT parameters, and hence will not reach
the measure zero set of parameters with

∑
i αi/λi = 1 when the optimizer is initialized randomly.

Further, a small numerical error in the BLT parameters is enough to make this degeneracy vanish.

Comparison to Previous Literature We make two remarks where Theorem 1 significantly
simplifies and extends prior work. First, Dvijotham et al. [1, Lemma 5.2] showed (using our nota-

tion) that given an appropriate pair of decay parameters (λ, λ̂), there exist scale parameters (α, α̂)

such that BLT(α,λ)−1 = BLT(α̂, λ̂). We strengthen this result with the help of Theorem 1 to
show that a (BLT, inverse BLT) system can be parameterized in two equivalent ways. We also give
significantly simplified expressions compared to [1, Lemma 5.2].

Theorem 2. Let λ, λ̂ ∈ Rd be distinct non-zero vectors (i.e., λi ̸= λj and λ̂i ̸= λ̂j for all i ̸= j)

that also satisfy λi ̸= λ̂j for all i, j ∈ [d]. Then, there exist unique scale parameters α, α̂ ∈ Rd that

achieve BLTn(α,λ) = BLTn(α̂, λ̂)−1 for all n > 0, given by:

αi =

∏d
j=1 λi − λ̂j∏
j ̸=i λi − λj

, and α̂i =

∏d
j=1 λ̂i − λj

∏
j ̸=i λ̂i − λ̂j

. (6)

Furthermore, the following two parameterizations describe the same class of (BLT, inverse BLT)

systems satisfying BLT(α,λ)−1 = BLT(α̂, λ̂):
(a) positive scale parameters α ∈ Rd

++ and distinct decay parameters λ ∈ (0, 1)d of the BLT that

satisfy
∑d

i=1 αi/λi < 1;

(b) a pair of decay parameters λ, λ̂ that satisfy the strict interlacing condition

1 > λ1 > λ̂1 > λ2 > λ̂2 > · · · > λ̂d−1 > λd > λ̂d > 0.

Given either parameterization, the system BLT(α,λ)−1 = BLT(α̂, λ̂) is uniquely determined.

Next, we turn to BLT inversion theorems. Dvijotham et al. [1, Proposition 5.6] show that the
inverse of BLTn(α,λ) is a lower-triangular and Toeplitz matrix whose first column ĉ1, ĉ2, . . . is given
by

ĉt =

{
u⊤v + κ , if t = 1 ,

u⊤W t−1v if t > 1 .
(7)

for vectors u,v ∈ Rd, a matrix W ∈ Rd×d and a scalar κ ∈ R.4 Theorem 1 implies that we can
instead take

W =



λ̂1

. . .

λ̂d


 ∈ Rd×d, u =



1
...
1


 ∈ Rd, v =




α̂i/λ̂i

...

α̂d/λ̂d


 ∈ Rd , κ = 1−

d∑

i=1

αi

λi
.

4This representation is not unique, as ũ = Mu, W̃ = MWM⊤, ṽ = Mv satisfies u⊤W τv = ũ⊤W̃ τ ṽ for all
τ ≥ 0 for any orthonormal matrix M .
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We can verify by direct computation that this produces ĉ1 = 1 and ĉt =
∑d

i=1 α̂iλ̂
t−2
i for t ≥ 2, as

desired. In other words, Theorem 1 shows the existence of a W of rank d and all real eigenvalues
satisfying Eq. (7).

The representation in Theorem 1 is more convenient from a computational perspective, as
operations on diagonal W can be implemented more efficiently. Of course, given any u,v,W that
satisfy ĉt = u⊤W t−1v (e.g. by the approach of [1, Proposition 5.6]), we can then find the inverse

BLT decay parameter λ̂ by diagonalizing W = M diag(λ̂)M−1, assuming it is possible, and scale
parameter α̂ = (M⊤u)⊙ (M−1v), where ⊙ denotes component-wise multiplication of vectors. By
showing that W has all real and unique eigenvalues, Theorem 1 establishes that this matrix is
diagonalizable.

Algorithms for BLT Inversion We give an algorithm to directly find the parameters α̂ and
λ̂ of the inverse BLT. Specifically, the decay parameter λ̂ is obtained from the finding the roots
of a degree-d polynomial q (whose roots are guaranteed to all be real). While these roots can be
analytically obtained for degrees d = 4 or lower, analytical expressions for the roots of general
polynomials of degree d ≥ 5 are impossible. (This is also known as the Abel–Ruffini theorem, see
e.g. [12, 13].)

Instead, we use numerical polynomial root-finding procedures to find all the roots of the poly-
nomial q. The typical approach proceeds by constructing a non-symmetric matrix, known as the
companion matrix, and then finding its eigenvalues in O(d3) time (see e.g. [14] or the upcoming
Section 6)—these eigenvalues are exactly the roots of the polynomial q. Importantly, all these oper-
ations are supported by typical automatic differentiation frameworks, including JAX and PyTorch.
This allows us to parameterize the optimization of a BLT and its inverse as (α,λ), rather than as

(λ, λ̂) as in [1]. See Section 6 for details.

4 Technical Tools and Proof Outline

The proofs of Theorems 1 and 2 rely on a deep connection between Toeplitz matrices and ordinary
generating functions.

The ordinary generating function of a sequence (ct)
∞
t=1 is the formal power series:5

fc(x) :=

∞∑

t=0

ct+1x
t .

This is closely related to the Z-transform, which can be obtained by the symbolic substitution
z = 1/x. The sequence (ct)

∞
t=1 can be obtained from the Maclaurin expansion of the generating

function:

fc(x) =

∞∑

t=0

f
(t)
c (0)

t!
xt =

∞∑

t=0

ct+1x
t ⇐⇒ ct+1 =

f
(t)
c (0)

t!
,

where f
(t)
c denotes the tth derivative of the function fc (assuming it exists).

The key relationship between lower-triangular Toeplitz matrices and generating functions is that
the product of two Toeplitz matrices (i.e., the convolution of their first columns) is equivalent to

5The variable x in a formal power series should be interpreted as a formal symbol rather than a numerical value.
Specifically, we neglect any concerns related to convergence.
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the product of the generating functions of their respective coefficients. (This is analogous to the
fact that the convolution of two sequences can be obtained from the product of their Z-transforms.)

Lemma 3. For any sequences (at)
∞
t=1, (bt)

∞
t=1, (ct)

∞
t=1 that take values in a field K(e.g. the field R

of reals or C of complex numbers), the following are equivalent:
(i) The respective ordinary generating functions fa, fb, and fc of sequences (at)

∞
t=1, (bt)

∞
t=1, and

(ct)
∞
t=1 satisfy fa(x) = fb(x)fc(x).

(ii) For any integer n > 0, the n×n lower triangular Toeplitz matrices Ma,Mb,Mc with respective
first columns given by sequences (at)

n
t=1, (bt)

n
t=1, (ct)

n
t=1 satisfy Ma = MbMc.

We are most interested in real sequences. In particular, Lemma 3 tells us that we can calculate
the inverse Ĉ = C−1 of any lower-triangular Toeplitz matrix C whose first column is obtained as
a prefix of the sequence (ct)

∞
t=0 by the following steps:

• Compute its generating function fc(x);

• Calculate the reciprocal f̂c(x) = 1/fc(x);

• Calculate its Maclaurin series ĉt+1 = f̂
(t)
c (0)/(t!) for t ≥ 0;

• Construct the lower-triangular Toeplitz matrix Ĉ with first column ĉ1, ĉ2, . . ..

Moreover, this holds for any leading principal sub-matrix: that is, C[1 : n, 1 : n]−1 = Ĉ[1 : n, 1 : n]
for any integer n > 0. Thus, it suffices to consider infinite Toeplitz matrices; we denote infinite
BLT matrices as BLT(α,λ) by dropping the subscript n.

BLT to Generating Function We start by computing the generating function of the BLT and
inverse BLT:

Lemma 4. The generating function f(x) of BLT(α,λ) is given by

f(x) = 1 + x
r(x)

p(x)
=

q(x)

p(x)
, (8)

where we define the polynomials

p(x) =

d∏

i=1

(1− λix), r(x) =

d∑

i=1

αip(x)

1− λix
, and q(x) = p(x) + x r(x) . (9)

Moreover, the generating function of f̂ of the inverse matrix BLT(α,λ)−1 is given by

f̂(x) =
p(x)

q(x)
= 1− x

r(x)

q(x)
. (10)

Proof. By summing the geometric series, we get

f(x) = 1 +

∞∑

t=1

(
d∑

i=1

αiλ
t−1
i

)
xt = 1 +

d∑

i=1

αix

1− λix
.

7



Simplifying this gives Eq. (8). For the inverse, we have from Lemma 3 that

f̂(x) =
1

f(x)
=

p(x)

p(x) + x r(x)
= 1− x r(x)

p(x) + x r(x)
= 1 + x

−r(x)

q(x)
.

Note that the polynomial p is of degree d, while the polynomial r is of degree d − 1. The
polynomial q(x) = p(x)+x r(x) is thus a sum of two degree-d polynomials, and its degreeD = deg(q)

can be at most d. The generating functions f and f̂ are rational functions of degree at most d in
both the numerator and denominator.

Generating Function to Inverse BLT To reconstruct the inverse BLT, we need to find the
Maclaurin series of its generating function f̂ . When f̂ is a rational function, as is the case in
Lemma 4, this is most easily obtained by a partial fraction decomposition of f̂(x). This approach
is also commonly used in solving recursions in combinatorics and discrete mathematics, and filter
design in digital signal processing.

The first step to construct a partial fraction decomposition is to reason about the roots of the
denominator q(x) = p(x) + x r(x).

Proposition 5. Consider the setting of Theorem 1 with parameters α ∈ Rd
++ and λ ∈ (0, 1)d, and

let r(x) and p(x) be as defined in Eq. (9) (see Lemma 4). Then, the polynomial q(x) = p(x)+x r(x)

has degree D = d − 1 if
∑d

i=1 αi/λi = 1 and D = d otherwise. Moreover, all its roots ν1, . . . , νD
are unique and real.

Since the polynomial q(x) = p(x) + x r(x) has all unique and real roots, the partial fraction
decomposition of r(x)/q(x) takes a very simple form:

Proposition 6. Consider the setting of Proposition 5. The polynomials r and q are co-prime and
we have a unique partial fraction decomposition

r(x)

q(x)
= −

d∑

i=1

α̂i

1− λ̂ix
(11)

for some α̂, λ̂ ∈ Rd with α̂ non-zero component-wise. Further, we have the following based on
deg(q) = D:

(a) If D = d, then λ̂i ̸= 0 for all i ∈ [d].

(b) If D = d− 1, then λ̂i ̸= 0 for i ∈ [d− 1] and λ̂d = 0.

(c) Finally, we have λ̂i = 1/νi for i ∈ [D] where ν1, . . . , νD are the roots of the degree-D polyno-
mial q.

Together with Lemmas 3 and 4, this immediately implies a partial fraction decomposition of the
generating function f̂ of BLT(α,λ)−1:

8



Corollary 7. In the setting of Proposition 6, we have that the generating function of BLT(α,λ)−1

is given by

f̂(x) = 1 + x
−r(x)

q(x)
= 1 +

d∑

i=1

α̂ix

1− λ̂ix
, (12)

where α̂, λ̂ are as given in Proposition 6. In particular, we have that BLT(α,λ)−1 = BLT(α̂, λ̂).

Lemma 18 of Appendix A conveniently summarizes all the generating function results that we
have established so far.

Inverse BLT Parameter Properties In order to complete the proof, we must argue about the
signs and magnitudes of α̂i’s and λ̂i’s depending on the value of

∑
i αi/λi. The main technical

result we show is:

Proposition 8. Consider the setting of Theorem 1 with parameters α ∈ Rd
++ and λ ∈ (0, 1)d

distinct, and let r(x) and p(x) be as defined in Eq. (9) (see Lemma 4). Then, we have the following:

(a) If
∑d

i=1 αi/λi < 1, then all roots ν1, . . . , νd of q lie in (1,∞). Thus, the parameter λ̂i = 1/νi in
the denominator of the partial fraction decomposition (11) lies in (0, 1) for each i = 1, . . . , d.

(b) If
∑d

i=1 αi/λi > 1, then one root of q lies in (−∞,−1) while all other roots lie in (1,∞).

Thus, we have λ̂i ∈ (0, 1) for i = 1, . . . , d− 1 and λ̂d ∈ (−1, 0).

(c) Irrespective of the value of
∑d

i=1 αi/λi, we have that the numerator of the the partial fraction
decomposition (11) satisfies α̂i < 0 for i = 1, . . . , d.

Given Propositions 6 and 8, the proof of Theorem 1 is immediate.

Proof of Theorem 1. The matrix BLTn(α,λ) is a lower-triangular matrix with all ones on the di-

agonal; thus it is invertible for all n > 0. By Corollary 7, we have that BLT(α,λ)−1 = BLT(α̂, λ̂),

where α̂, λ̂ are as in Proposition 6. Then, the signs and magnitudes of α̂, λ̂ imply the various
parts of Theorem 1. In particular, part (a) of Theorem 1 follows directly from from part (a) of
Proposition 8. Similarly, part (b) of Theorem 1 follows from Proposition 8(b). Next, Theorem 1(c)
follows from Proposition 6(b), while the negative scale parameters follows from Proposition 8(c).
Finally, the uniqueness of the inverse BLT parameters follows from two observations:

• the decay parameters λ̂ are obtained as the roots of the polynomial q(x) = p(x) + x r(x) and
are unique.

• the scale parameters α̂ are the coefficients of a partial fraction and are unique as per Propo-
sition 6.

We summarize the key ideas behind the proofs of Propositions 5, 6 and 8, with full proofs
appearing in Section 5 (see Figures 1 and 2 for a key idea):

• Let µ1 < · · · < µd denote the roots of the polynomial p(x) =
∏d

i=1(1−λix). Since λi ∈ (0, 1),
we have µi = λ−1

i ∈ (1,∞). Notably, all these roots are real.

9
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Polynomial p(x) = q(x) + x r(x) of degree d = 5

Figure 1: Illustrations of the polynomials r, p, q for d = 5 in symmetrical log scale. First row: Let
µi := 1/λi > 1 for i = 1, . . . , d denote the roots of p(x) in ascending order. Second row: We show that
βi := r(µi) is positive for i odd and negative for i even. Due to sign changes, each of the d − 1 roots of r
lies between (µi, µi+1) for some i (denoted by the orange star). Third row: By the same argument, each
d− 1 non-zero roots of x r(x) lie in (µi, µi+1) for some i. Last row: The same argument accounts for d− 1
roots of the degree-d polynomial q(x) = p(x) + x r(x). Since d − 1 roots of the degree-d real polynomial
q are real, the final root must be real as well, establishing Proposition 5. This is continued in Figure 2; a
similar argument also works d even—see Figure 3.
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Figure 2: Continued from Figure 1, which shows d − 1 roots of q(x) = p(x) + x r(x) for an example
with d = 5. This figure illustrates how the final dth root of q(x) depends on the BLT parameters α,λ.
As previously, the dotted lines denote the roots µ1, . . . , µd of p(x) (where µi = 1/λi) and the orange
stars denote the roots of q(x). Top: When

∑d
i=1 αi/λi < 1, the last root of q is positive as well, as in

Proposition 8(a). Bottom: When
∑d

i=1 αi/λi > 1, then q has a negative root, as in Proposition 8(b).

• The key step in the proof is to argue about the sign of βi := r(µi). We show in the upcoming
Property 9 that βi > 0 for i odd and βi < 0 for i even.

• Thus, we have that q(µi) = p(µi) + µi r(µi) = µiβi is positive for i odd and negative for i
even. Thus, q admits a root in the interval (µi, µi+1) for each i = 1, . . . , d. This accounts for
d − 1 roots of q, which are real and positive. Thus, q is of degree d − 1 ≤ D ≤ d. If q is of
degree D = d, then the dth root of q is real as well, since complex roots of a real polynomial
can only occur in conjugate pairs—this gives Proposition 5.

• Next, reasoning about the partial fraction decomposition of the ordinary generating function
f̂ of the inverse BLT (defined in Lemma 4) gives us Proposition 6. In view of Corollary 7,
all that is now left for Proposition 8 is to reason about the final root of q (it can either be
smaller than 0 or larger than 1) as well as the α̂i coefficients.

• Next, we argue about the last root of q, in the case that its degree is D = d. The leading
coefficients of p(x) and x r(x) have opposite signs; see Figure 1. We calculate the coefficient
qd of xd in the polynomial q as

qd = (−1)d

(
d∏

i=1

λi

)(
1−

d∑

i=1

αi

λi

)
.

11



Thus, we get the following cases (see Figure 2):

(Case I) If
∑d

i=1 αi/λi < 1, then q(−∞) = +∞. We show that q(µd) and q(∞) have
opposite signs. Thus, the dth root of the polynomial q is also larger than 1.

(Case II) If
∑d

i=1 αi/λi > 1, then q(−∞) = −∞. We show that q(−1) > 0, leading to the
conclusion that the dth root of the polynomial q lies in (−∞,−1).

(Case III) If
∑d

i=1 αi/λi = 1, the leading order terms of p(x) and x r(x) cancel out and q(x)
is a polynomial of degree d − 1. Thus, it only has d − 1 roots, all of which have
previously been accounted for.

This yields parts (a) and (b) of Proposition 8.

• Finally, we need to argue that the scale parameters α̂i are negative. We do so by arguing
about their signs from their closed-form expressions.

See Section 5 for full proofs of each of these steps.

Proof of Theorem 2 We conclude this section with a proof of Theorem 2.

Proof of Theorem 2. The expressions of Eq. (6) can be obtained by simplifying Eq. (5.2) of Dvi-
jotham et al. [1, Lemma 5.2]. Alternatively, Lemma 14 of Section 5 gives a short and elementary
proof of the expression for α̂i. Then, the expression for αi can be obtained by symmetry.

Next, we turn to the equivalence of various representations.

• (a) =⇒ (b): Assuming w.l.o.g. the ordering λ1 > · · ·λd, Theorem 1(a) gives us unique α̂ < 0

and λ̂ ∈ (0, 1)d. The proof that λ, λ̂ satisfy the claimed ordering is given in Corollary 13 in
Section 5.

• (b) =⇒ (a): We can evaluate the signs of the scale parameters αi in Equation (6). For α1,
we have that all the terms in Eq. (6) are positive. For i = 2, we have only one negative term

(λ2−λ̂1) in the numerator and only one negative term (λ2−λ1) in the denominator, and is thus
positive. Similarly, each αi has i− 1 negative terms each in the numerator and denominator,
so that αi > 0. To show the bound on

∑
i αi/λi, rearranging Eq. (19) of Lemma 14 (with

(α,λ) and (α̂, λ̂) swapped) gives:

d∑

i=1

αi

λi
= 1−

∏d
i=1 λ̂i∏d
i=1 λi

< 1 ,

since 0 < λ̂i/λi < 1 by assumption.

5 Full Proof Details

We give the full proofs of all remaining statements from Section 4, i.e., Propositions 5, 6 and 8.
In particular, Proposition 5 from Section 4 is a special case of Properties 11 and 12(a), while
Proposition 6 is established in Step 4 below and Proposition 8 follows directly from Property 12

12



and Proposition 15 below. The assumptions of Theorem 1 are assumed to hold throughout. We also
fix the BLT parameters α ∈ Rd

++ and λ ∈ (0, 1)d throughout, except when explicitly mentioned
otherwise (e.g. Lemma 14 is a notable exception).

Step 1: Notation and Properties of p(x) As introduced previously, define µi = λ−1
i for

i = 1, . . . , d. These are the roots of the polynomial p(x) from Eq. (9). We assume that µ1 <
µ2 < · · · < µd; this is without loss of generality as we assumed in Theorem 1 that λi’s are distinct.
Finally, define the constant

M =

d∏

i=1

µi . (13)

Using this, we can rewrite p(x) from Eq. (9) as

p(x) =
(−1)d

M

d∏

i=1

(x− µi) . (14)

Step 2: Behavior of r(x) at the roots of p(x) Let βi := r(µi) be the values of the polynomial
r at the roots µ1, . . . , µd of p. (See Eq. (9) for the definition of r.) We now argue that βi is positive
if i is odd and negative otherwise.

Property 9. We have

βi := r(µi) =
αiµi

M

∏

j ̸=i

(µj − µi) .

In particular, βi > 0 if i is odd and βi < 0 if i is even.

Proof. Starting from the definition of the degree-(d− 1) polynomial r from Eq. (9), we have,

r(x) =

d∑

i=1

αi

∏

j ̸=i

(1− λjx) =

d∑

i=1

αiµi

M

∏

j ̸=i

(µj − x) , (15)

where we substituted µi = λ−1
i and M =

∏d
i=1 µi. When computing r(µi), we note that all but

the ith term will be zero, yielding the claimed expression for βi. Next, we turn to the signs: βi has
(i− 1) negative terms in the product, so its sign is the same as (−1)i−1.

Remark 10. The polynomial r(x) can also be interpreted through the lens of Lagrange interpolation.
We can rewrite Eq. (15) as

r(x) =

d∑

i=1

βi

∏

j ̸=i

x− µj

µi − µj
,

which is the Lagrange interpolant through (µ1, β1), . . . , (µd, βd). In fact, r(x) is the unique degree
(d− 1) polynomial interpolating these d points. This fact was used in the proof of [1, Lemma 5.2],
but we prove Property 9 (and the upcoming Lemma 14) by more direct and elementary means.
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Step 3: Roots of q(x) The polynomial q(x) = p(x) + x r(x) is of degree D ≤ d. Let ν1, . . . , νD
be the roots of the polynomial (if they exist). We establish Proposition 5 with some additional
properties which will be useful later:

Property 11. The polynomial q(x) = p(x) + x r(x) is of degree D ∈ {d− 1, d} are all its roots are
unique and real. Further, there exists a root νi of q in the interval (µi, µi+1) for i = 1, . . . , d− 1.

Proof. Recall that the µi > 1 are the roots of p(x). From Property 9, we deduce that q(µi) = p(µi)+
µi r(µi) = µiβi is positive for i odd and negative for i even. Next, we invoke the intermediate value
theorem: since q(µi) and q(µi+1) have opposite signs and q is a polynomial (and thus continuous),
there exists νi ∈ (µi, µi+1) such that q(νi) = 0 for each i = 1, . . . , d− 1.

Finally, since d − 1 roots exist, the polynomial q can only be of degree d or d − 1. If q is of
degree D = d− 1, there is nothing left to prove, so suppose that q is of degree D = d. Since d− 1
roots of a degree-d real polynomial are real, then the final dth root should be real as well—this is
because complex roots can only occur in conjugate pairs.

It remains to argue about the potential final root of the polynomial q:

Property 12. In the setting of Property 11, we have the following:

(a) If
∑d

i=1 αi/λi = 1, then q is a polynomial of degree D = d − 1. Otherwise, it is of degree
D = d.

(b) If
∑d

i=1 αi/λi < 1, then, the dth root νd of q satisfies νd > µd > 1.

(c) If
∑d

i=1 αi/λi > 1 but
∑d

i=1 αi < 1, then, the dth root νd of q satisfies νd < −1.

Proof. We reason about the leading coefficient qd of xd in the polynomial q(x) = p(x)+x r(x) such
that q(x)− qdx

d is a polynomial of degree (d− 1). From Eqs. (14) and (15), we deduce that

qd =
(−1)d

M

(
1−

d∑

i=1

αiµi

)
=

(−1)d

M

(
1−

d∑

i=1

αi

λi

)
.

Part (a) follows because qd = 0 if and only if
∑d

i=1 αi/λi = 1. Next, suppose that
∑d

i=1 αi/λi < 1.
We have two cases:

• d is odd (see Figure 2 for reference): We have that q(µd) > 0 and limx→∞ q(x) = −∞ (because
qd < 0).

• d is even (see Figure 4 for reference): We have that q(µd) < 0 and limx→∞ q(x) > 0 (because
qd > 0).

In both cases, by the intermediate value theorem, the final root νd of q must lie in (µd,∞), yielding
part (b).

The proof of part (c) also proceeds similarly. We have limx→−∞ q(x) < 0 both for even and odd
degree d. On the other hand, we have

q(−1) = p(−1)− r(−1) =

d∏

i=1

(1 + λi)

(
1−

d∑

i=1

αi

1 + λi

)
> 0 ,
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where the last inequality followed from αi, λi > 0 and

d∑

i=1

αi

1 + λi
<

d∑

i=1

αi < 1

by assumption. Another invocation of the intermediate value theorem implies that νd ∈ (−∞,−1),
completing the proof.

We summarize the ordering of the decay parameters λ, λ̂:

Corollary 13. In the setting of Proposition 8, we have

λ1 > λ̂1 > λ2 > λ̂2 > · · · > λ̂d−1 > λd > λ̂d .

Proof. Recall that we assumed the roots µi = λ−1
i of p(x) are ordered as µ1 < · · · < µd. Propo-

sition 5 and Property 12 tell us that the roots ν1, . . . , νd of q(x) satisfy µi < νi < µi+1 for

i = 1, . . . , d − 1. Thus, we have that λi = µ−1
i for i ∈ [d] and λ̂i = ν−1

i for i ∈ [d] are or-
dered as claimed. If

∑
i αi/λi < 1 (as in Proposition 8(a)), we have that νd > µd, leading to

λd > λ̂d. If not, we have λ̂d ≤ 0 by Property 12 again and λd > 0 by assumption, leading to the
claimed order.

Step 4: Partial Fraction Decomposition We now give the proof of Proposition 6 from Sec-
tion 4.

Proof of Proposition 6. We first prove that the polynomials r and q are co-prime, meaning that
they do not share any roots.6 Note that r and p are co-prime because r(µi) is non-zero as per
Property 9, where µi’s are the roots of p. Then, we get that the greatest common divisor (denoted
“gcd”) of r and q is

gcd(r(x), q(x)) = gcd(r(x), p(x) + x r(x)) = gcd(r(x), p(x)) = 1 ,

where the second equality used the property that gcd(r, p) = gcd(r, p + φ r) for any polynomial φ
(we take φ(x) = x). Thus, the r(x)/q(x) is the ratio of of degree d − 1 polynomial to a degree
D ∈ {d − 1, d} polynomial. Using the fact that the roots ν1, . . . , νD of the polynomial q are real
and unique by Proposition 5, we have the general form of the partial fraction decomposition

r(x)

q(x)
= κ0 +

D∑

i=1

κi

x− νi
, (16)

for some reals κ0, κ1, . . . , κD. Note that κ1, . . . , κD are non-zero, while κ0 is allowed to take zero
values. Indeed, if any of κ1, . . . , κD were zero, we would not obtain the correct degree in the
denominator on the left side. We consider two separate cases depending on the degree D of the
polynomial q.

• Case D = d: If κ0 ̸= 0, then numerator on the right side would have degree d. This is a
contradiction because the degree of the numerator r on the left side is d− 1. Thus, we must
have κ0 = 0. In this case, we set λ̂i = 1/νi and α̂i = κi/νi for i ∈ [d] to obtain (11)—note
that all of these are non-zero.

6Note that if r and q are co-prime, then the rational function r/q is irreducible.
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• CaseD = d−1: If κ0 = 0, then the numerator on the right side would have degreeD−1 = d−2,
which is again a contradiction (since deg(r) = d − 1 on the left side). Thus, we must have

κ0 ̸= 0. In this case, we set λ̂i = 1/νi and α̂i = κi/νi for i ∈ [d− 1]—note that all of these are

non-zero. We set λ̂d = 0 and set the constant term α̂d = −κ0 to obtain Eq. (11), as desired.

Further, since the factors of the denominator are linear and unique (since q(x) has no repeated
roots), there exist unique coefficients κ0, . . . , κD that satisfy the partial fraction decomposition.

Step 5: Scale Parameters of the Inverse BLT It remains to show Proposition 8(c) regarding
the sign of the scale parameters. We start with a self-contained proof of the expression for the scale
parameters from Theorem 2, and then argue about its sign.

Lemma 14. Let λ, λ̂ ∈ (R \ {0})d be distinct non-zero vectors (i.e., λi ̸= λj and λ̂i ̸= λ̂j for all

i ̸= j).7 Suppose also that λi ̸= λ̂j for all i, j ∈ [d]. Then, the constants α̂1, . . . , α̂d defined by

α̂i =

∏d
j=1 λ̂i − λj

∏
j ̸=i λ̂i − λ̂j

(17)

satisfy the following partial fraction decomposition for the rational function

f̂(x) =
p(x)

q(x)
=

∏d
i=1(1− λix)∏d
i=1(1− λ̂ix)

= 1 +

d∑

i=1

α̂ix

1− λ̂ix
. (18)

Further, α̂1, . . . , α̂d from Eq. (17) are the unique values that satisfy the decomposition of Eq. (18).
They also satisfy the identity

d∑

i=1

α̂i

λ̂i

+

∏d
i=1 λi∏d
i=1 λ̂i

= 1 . (19)

Proof. Eq. (17) can be derived by simplifying Eq. (5.3) of [1, Lemma 5.2], but we give a short

elementary proof here. We start by multiplying Eq. (18) through by (1− λ̂ix) and taking the limit

x → λ̂−1
i to get:

lim
x→λ̂−1

i

(1− λ̂ix) f̂(x) = lim
x→λ̂−1

i


(1− λ̂ix) +

d∑

j=1

α̂jx (1− λ̂ix)

1− λ̂jx


 =

α̂i

λ̂i

.

Thus, we can evaluate the scale parameter as

α̂i = lim
x→λ̂−1

i

λ̂i(1− λ̂ix) f̂(x) =
λ̂i

∏d
j=1(1− λj/λ̂i)

∏
j ̸=i(1− λ̂j/λ̂i)

,

and rearranging yields Eq. (17).

7Note that (a) we do not restrict any of the decay parameters to lie in (0, 1), and (b) the assumptions allow us

to swap the roles of (λ,α) and (λ̂, α̂).
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Next, we can show Eq. (19) by taking the limit of x → ∞ in Eq. (18):

(−1)d
∏d

i=1 λi

(−1)d
∏d

i=1 λ̂i

= lim
x→∞

p(x)

q(x)
= lim

x→∞

(
1 +

d∑

i=1

α̂ix

1− λ̂ix

)
= 1−

d∑

i=1

α̂i

λ̂i

.

Finally, the uniqueness of the αi parameters follows from the uniqueness properties of the coefficients
of a partial fraction decomposition of a rational function f̂ whose numerator and denominator are
co-prime degree-d polynomials. Specifically, this proof is identical to that of Proposition 6 with the
observation that the degree-(d − 1) polynomial r(x) = (q(x) − p(x))/x is co-prime with q(x), and
is omitted for brevity.

Finally, we argue about the signs of the scale parameters.

Proposition 15. Consider the setting of Proposition 8. Then, we have that α̂i < 0 for all i ∈ [d].

Proof. Corollary 13 tells us that λ1 > λ̂1 > λ2 > λ̂2 > · · · > λ̂d−1 > λd > λ̂d (irrespective of the
value of

∑
i αi/λi − 1). We use these relations to argue about the signs of each term in Eq. (17).

For example, for i = 1, we have the term λ̂1 − λ1 in the numerator is negative but all other terms
are strictly positive, leading to α̂1 < 0. In general the expression for α̂i has i negative terms in the
numerator and i− 1 negative term in the denominator, lead to α̂i < 0.

6 Differentiable Algorithms for Inverse BLTs

We now give an algorithm to find the parameters corresponding to the inverse BLT.
From the preceding sections proving Theorem 1, we see that the decay parameters λ̂ of the

inverse BLT are obtained from the reciprocal of the roots of the polynomial q(x) = p(x)+x r(x), with
scale parameters α̂i as derived in Lemma 14. The entire procedure is summarized in Algorithm 1.

In particular, the standard procedure to find roots of the polynomial q is finding the eigenvalues
of the companion matrix; numerical procedures to compute the eigenvalues of a matrix are widely
available in common software packages. This is based on the following result:

Lemma 16 (Thm. 3.3.14 of [15]; [16]). For any q0, . . . , qd−1 ∈ C, the characteristic polynomial
q(x) = det(M − xId) of the matrix

M =




0⊤
d−1 −q0

Id−1

−q1
...

−qd−1


 ∈ Cd×d .

is given by q(x) = q0 + q1x+ · · ·+ qd−1x
d−1 + xd. In particular, the eigenvalues ν1, . . . , νd (real or

complex) of M are the roots of the degree-d polynomial q. Furthermore, the map (q0, . . . , qd−1) 7→
(ν1, . . . , νd) is continuously differentiable over the set

R =
{
(q0, . . . , qd−1) ∈ Cd : the roots ν1, . . . , νd of q(x) are distinct

}
.

Thus, we get the following correctness guarantee:
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Algorithm 1 Inverse BLT Parameterization

Input: BLT parameters α ∈ Rd
++ and λ ∈ (0, 1)d with

∑d
i=1 αi/λi ̸= 1 and αi’s distinct.

Return Parameters α̂, λ̂ ∈ Rd such that BLTn(α,λ)−1 = BLTn(α̂, λ̂) for all integers n > 0.
1: Define polynomials r, p, q as

p(x) =

d∏

i=1

(1− λix), r(x) =

d∑

i=1

αi

∏

j ̸=i

(1− λjx), q(x) = p(x) + x r(x) .

2: Find the (real and distinct) roots ν1, . . . , νd of q. One way is to return the eigenvalues of the
companion matrix

M =




0⊤
d−1 −q0/qd

Id−1

−q1/qd
...

−qd−1/qd


 ∈ Rd×d ,

where q0, q1, . . . , qd are the coefficients of q so that q(x) =
∑d

k=0 qkx
k, and 0m ∈ Rm denotes

the vector of zeros, while Im ∈ Rm×m denotes the identity matrix.
3: For i = 1, . . . , d, set the decay parameters λ̂i = 1/νi and

α̂i =

∏d
j=1 λ̂i − λj

∏
j ̸=i λ̂i − λ̂j

.

4: Return α̂ = (α1, . . . , αd) and λ̂ = (λ1, . . . , λd).

Corollary 17. Given parameters α ∈ Rd
+ and λ ∈ (0, 1)d such that λ′

is are distinct and
∑d

i=1 αi/λi ̸=
1. Then, Algorithm 1 returns parameters α̂, λ̂ such that BLTn(α,λ)−1 = BLTn(α̂, λ̂) for all n > 0.

Furthermore, the map (α,λ) 7→ (α̂, λ̂) is continuously differentiable.

Proof. The correctness of Algorithm 1 follows from Theorem 1, Propositions 8 and 15, and Lemma 3.
We get the following composition of continuously differentiable functions to get from α,λ to α̂, λ̂:

• α,λ to the coefficients of the polynomials r(x), p(x), and q(x) = p(x) + x r(x);

• the coefficients of the degree-d polynomial q(x) to its roots ν1, . . . , νd (which are unique due
to Property 11, and thus this map is continuously differentiable due to Lemma 16);

• ν1, . . . , νd and the coefficients of the polynomial p to α̂, λ̂ as per Line 3 of Algorithm 1.

Thus, As a composition of continuously differentiable functions, the map (α,λ) 7→ (α̂, λ̂) is also
continuously differentiable.

Compatibility with Automatic Differentiation The max loss from Eq. (4) is also a differ-
entiable function of the BLT parameters α,λ, thanks to Corollary 17. We can thus optimize α,λ
to minimize the max loss (4) using first-order optimization, provided we can find the gradients of
the loss w.r.t. α and λ. This can be achieved with automatic differentiation packages, including
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JAX and PyTorch which support hardware accelerators like GPUs. Indeed, the only non-trivial
operations (excluding addition, subtraction, multiplication, division) used to obtain the inverse pa-
rameters is the eigenvalue computation, and this function is differentiable when the eigenvalues are
unique [16].

7 Discussion and Open Problems

We give an inversion theorem for a family of Buffered Linear Toeplitz (BLT) matrices, a family
of parameterized lower-triangular and Toeplitz matrices introduced by Dvijotham et al. [1] for
streaming differential privacy with correlated noise. The key contribution is proving that the inverse
of a BLT matrix is also a BLT matrix, deriving the parameters of this inverse. Specifically, we show
that under certain conditions on the original BLT parameters, the inverse BLT parameters exhibit
desirable properties for differential privacy applications. Furthermore, we provide a differentiable
algorithm for computing the inverse BLT parameters in O(d3) time, enabling the optimization of
BLT mechanisms for private learning and estimation.

There are several interesting open problems in this space. The first one is to find the largest
class of (BLT, inverse-BLT) systems that admit an inversion theorem such as Theorem 1, or an
equivalence theorem such as Theorem 2. Moreover, we observe theoretically (from the construction
of [1]) and empirically that most practically relevant BLTs (in the context of streaming differential

privacy) seem to satisfy the constraint
∑d

i=1 αi/λi < 1 (or that such a constraint does not hurt).
This leads to a practical question: what is the best set of BLTs to optimize over?

The BLT class as introduced by Dvijotham et al. [1, Sec 1.2] is more general than the parame-
terization we give in Eq. (1) — they allow BLTs to be defined by Toeplitz coefficients given by an
arbitrary order-d linear recurrence, or equivalently, an arbitrary degree d rational generating func-
tion, while the more restricted class we consider only captures rational generating functions with
distinct roots and (except in degenerate cases) equal degree in the numerator and denominator.
It is an interesting open question whether the generalization to arbitrary linear recurrences yields
practical benefit.

Here, we have some evidence in the affirmative, in that banded lower-triangular Toeplitz matri-
ces are in fact such BLTs with a trivial recurrence (equivalently: a polynomial ordinary generating
function). Such matrices have proved useful in DP with multiple participations and/or privacy am-
plification via randomizaton of the data order [7, 9, 17]. On the other hand, banded matrices are
generally straightforward to reason about without the machinery of general BLTs or rational gen-
erating functions, so showing a strict improvement from this generalization remains an interesting
open problem.
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A Notation Summary

Notation Table We summarize our main notation in Table 1.

Generation Function Summary The following lemma summarizes the key results of the gen-
erating function that we use throughout.

Lemma 18. We show two characterizations of the generating functions of BLTs.

• For non-zero scale parameters α ∈ Rd
++ and decay parameters λ ∈ (0, 1)d, we define the

polynomials

p(x) :=

d∏

i=1

(1− λix) and r(x) :=

d∑

i=1

αip(x)

1− λix
.

Then, there exist α̂ ∈ Rd, λ̂ ∈ Rd such that the statements below hold.

• Given non-zero distinct decay parameters λ, λ̂ ∈ (R \ {0})d, we define the polynomials

p(x) :=

d∏

i=1

(1− λix) and q(x) :=

D∏

i=1

(1− λ̂ix).

Assuming λi ̸= λ̂j for all i, j ∈ [d], there exist α, α̂ ∈ Rd such that the statements below hold.

Then, in either of the above scenarios, the following equalities hold:

p(x) =

d∏

i=1

(1− λix) =
(−1)d

M

d∏

i=1

(x− µi) of degree d with roots µi = λ−1
i and M =

d∏

i=1

µi

r(x) =

d∑

i=1

αip(x)

1− λix
of degree d− 1, and

q(x) = p(x) + xr(x) =

d∏

i=1

(1− λ̂ix) of degree D ≤ d with roots νi = λ̂−1
i for i ∈ [D].

Further, f(x) and f̂(x) are the ordinary generating functions for BLT(α,λ) and BLT(α̂, λ̂) =
BLT(α,λ)−1:

f(x) = 1 + x
r(x)

p(x)
=

p(x) + xr(x)

p(x)
=

q(x)

p(x)
= 1 +

d∑

i=1

αix

1− λix
, (20)

f̂(x) =
1

f(x)
= 1 + x

−r(x)

q(x)
=

p(x)

p(x) + xr(x)
=

p(x)

q(x)
= 1 +

d∑

i=1

α̂ix

1− λ̂ix
. (21)
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Symbol Meaning

C[j, k] The (j, k)th entry of the matrix C.

Z ∼ Nn×m
(
0, σ2

)
A random matrix Z ∈ Rn×m whose entries are i.i.d. N (0, σ2).

d Number of buffers (positive integer)

[d] The set {1, 2, . . . , d}.
α ∈ Rd Scale parameters of the BLT. We assume αi ≥ 0 and

∑d
i=1 αi < 1

λ ∈ Rd Decay parameters of the BLT. We assume distinct λi ∈ (0, 1) for each i

BLT(α,λ) A semi-infinite lower triangular Toeplitz matrix whose first column is given by
1,
∑d

i=1 αi,
∑d

i=1 αiλi,
∑d

i=1 αiλ
2
i ,
∑d

i=1 αiλ
3
i , . . .

BLTn(α,λ) An n×n lower triangular and Toeplitz matrix which is the principal sub-matrix
of BLT(α,λ)

α̂ ∈ Rd, λ̂d Scale and decay parameters such that BLT(α,λ)−1 = BLT(α̂, λ̂) (whose exis-
tence is posited by Theorem 1)

p(x) The degree-d polynomial
∏d

i=1(1− λix); λi’s are assumed distinct throughout

r(x) The degree-(d− 1) polynomial

d∑

i=1

αip(x)

1− λix

q(x) The polynomial q(x) = p(x) + x r(x); its degree-D can be d− 1 or d

D Degree of the polynomial q

ν1, . . . , νD Roots of q; the decay parameter λ̂ of the inverse BLT satisfies λ̂i = ν−1
i for

i ∈ [D]

f

Generating function of the first column of BLT(α,λ). It satisfies

f(x) = 1 + x
r(x)

p(x)
=

q(x)

p(x)
= 1 +

d∑

i=1

αix

1− λix

f̂

Generating function of the first column of BLT(α,λ)−1 = BLT(α̂, λ̂). It satisfies

f̂(x) = 1 + x
−r(x)

q(x)
=

p(x)

q(x)
= 1 +

d∑

i=1

α̂ix

1− λ̂ix

µ1, . . . , µd Roots of the polynomial p(x); satisfies µi = λ−1
i and sorted in ascending order

M Shorthand for
∏d

i=1 µi

β1, . . . , βd Constants that satisfy βi = r(µi)

Table 1: Summary of main notation. Matrices and vectors are denoted in boldface.
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B More Illustrations and Details

We give examples illustrating the behaviors of the polynomials r, p, q defined in Lemma 4 for degree
d = 5 in Figures 1 and 2 and for degree d = 4 in Figures 3 and 4. They use the following BLT
parameters:

• Figure 1 and the top row of Figure 2: α = (0.2, 0.15, 0.1, 0.1, 0.1) and λ = (0.9, 0.8, 0.7, 0.6, 0.5).

We have
∑d

i=1 αi/λi ≈ 0.919 < 1.

• Bottom row of Figure 2: α = (0.2, 0.15, 0.2, 0.2, 0.2) and λ = (0.9, 0.8, 0.7, 0.6, 0.5). We have∑d
i=1 αi = 0.95 < 1 and

∑d
i=1 αi/λi ≈ 1.43 > 1.

• Figure 3 and the top row of Figure 4: α = (0.25, 0.2, 0.15, 0.1) and λ = (0.9, 0.8, 0.7, 0.6). We

have
∑d

i=1 αi/λi ≈ 0.909 < 1.

• Bottom row of Figure 4: α = (0.24, 0.24, 0.24, 0.24) and λ = (0.9, 0.8, 0.7, 0.6). We have∑d
i=1 αi = 0.96 < 1 and

∑d
i=1 αi/λi ≈ 1.31 > 1.
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Figure 3: Illustrations of the polynomials r, p, q for d = 4 in symmetrical log scale. This is the counterpart
of Figure 1 for even degree d.

24



0 100 101

x

−103

−101

−10−1

−10−3
0

10−3

10−1

101

103

p(−∞) = +∞
p(+∞) = +∞

Polynomial p(x) of degree d = 4 when
∑

iαi/λi < 1

−100 0 100

x

−103

−101

−10−1

−10−3
0

10−3

10−1

101

103

p(−∞) = −∞ p(+∞) = −∞

Polynomial p(x) of degree d = 4 when
∑

iαi/λi > 1

Figure 4: The counterpart of Figure 2 for even degree: this plot shows examples for d = 4 and is continued
from Figure 3, which shows d− 1 roots of q(x) = p(x)+x r(x). This figure illustrates how the final dth root
of q(x) depends on the BLT parameters α,λ. As previously, the dotted lines denote the roots µ1, . . . , µd

of p(x) (where µi = 1/λi) and the orange star denotes the roots of q(x).

25


	Introduction
	Background
	Main Results
	Technical Tools and Proof Outline
	Full Proof Details
	Differentiable Algorithms for Inverse BLTs
	Discussion and Open Problems
	Notation Summary
	More Illustrations and Details

