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Blockchain technology has set off a wave of decentralization in the world since its birth. The trust system constructed by
blockchain technology based on cryptography algorithm and computing power provides a practical and powerful solution to
solve the trust problem in human society. In order to make more convenient use of the characteristics of blockchain and
build applications on it, smart contracts appear. By defining some trigger automatic execution contracts, the application
space of blockchain is expanded and the foundation for the rapid development of blockchain is laid. This is blockchain 2.0.
However, the programmability of smart contracts also introduces vulnerabilities. In order to cope with the insufficient security
guarantee of high-value application networks running on blockchain 2.0 and smart contracts, this article will be represented
by Ethereum to introduce the technical details of understanding blockchain 2.0 and the operation principle of contract virtual
machines, and explain how cryptocurrencies based on blockchain 2.0 are constructed and operated. The common security
problems and solutions are also discussed. Based on relevant research and on-chain practice, this paper provides a complete
and comprehensive perspective to understanding cryptocurrency technology based on blockchain 2.0 and provides a reference
for building more secure cryptocurrency contracts.
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1 INTRODUCTION

Blockchain is a specialized form of distributed data storage that was first introduced as the underlying technology
of Bitcoin in the paper Bitcoin: A Peer-to-Peer Electronic Cash System, published in 2008 by an individual or
group under the pseudonym Satoshi Nakamoto during the subprime mortgage crisis. This technology pioneered
a novel solution to the trust problem in distributed ledger storage through the combination of hash chaining and
the proof-of-work mechanism. Due to its characteristics of data transparency, decentralization, and immutability,
blockchain has been widely adopted in decentralized digital currency issuance and payment systems. The
decentralization of digital currencies initiated and exemplified by Bitcoin is referred to as Blockchain 1.0[26, 37].
To enable blockchain to support more complex applications, programmable smart contracts were first introduced
on top of the blockchain ledger structure, allowing Turing-complete programs to run on-chain. This advancement
facilitated the development and execution of more sophisticated applications directly on blockchain platforms,
significantly expanding its application scope and laying the foundation for its rapid evolution—this stage is
known as Blockchain 2.0[1].

The most representative example of Blockchain 2.0 is Ethereum, which introduced a novel mechanism for
token crowdfunding, commonly known as Initial Coin Offerings (ICOs). Developers can effortlessly create their
own tokens on Ethereum via smart contracts—so-called programmable tokens—where the on-chain services
provided by contracts serve as a fundamental value anchor for these tokens. Under this paradigm, the integration
of smart contracts with digital assets has fostered a dynamic, decentralized, and multi-layered financial ecosystem
known as Decentralized Finance (DeFi)[48, 51]. As illustrated in Figure 1, taking the Ethereum ecosystem as an
example, this ecosystem is structured around Ethereum’s native currency, ETH, as Layer 0. With Ethereum 2.0
supporting ETH staking, a bond market emerges, where interest rates regulate the flow of ETH throughout the
ecosystem. Built upon this market, Layer 1 establishes a stability layer, ensuring stable value. MakerDAO, for
instance, employs Collateralized Debt Position (CDP) contracts to lock ETH and generate DA, a stablecoin pegged
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to the U.S. dollar[23]. Consequently, Layer 1 also functions as a capital formation layer, enabling individual users
to participate in token minting. Moving up, Layer 2 represents the capital utility layer, where DAI-based lending
mechanisms regulate borrowing costs through interest rate balancing. These tokens subsequently flow into the
application layer, providing liquidity for various decentralized applications. At this level, atomic financial services
such as token exchanges (Uniswap), prediction markets (Augur), and derivatives trading platforms (dYdX) operate
seamlessly. Ultimately, the ecosystem culminates in a user aggregation layer, facilitating cross-chain transactions,
credit card integrations, real estate exchanges, and other financial services.Even within the realm of decentralized
finance alone, Blockchain 2.0 has demonstrated immense vitality, giving rise to a sophisticated value-driven
internet. At the heart of this thriving value network lies smart contracts, which serve as the foundational
infrastructure. Programmable tokens have unlocked boundless possibilities for cryptocurrencies, cementing
blockchain’s role as a transformative force in the digital economy.
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Fig. 1. Layered Architecture of the Ethereum Ecosystem.

As the Value Internet continues to expand, an increasing amount of capital has flowed into tokenized assets,
leading to an exponential surge in token valuations over recent years. Meanwhile, the security concerns associated
with smart contracts have become increasingly critical. On-chain token contracts are immutable, meaning that
once deployed, all associated transactions are irrevocably determined. While this immutability ensures fairness and
transparency, it also introduces significant risks[5, 11]. If vulnerabilities exist in the smart contract underpinning
a token, any security breach could result in substantial digital asset losses, with no way to reverse or amend the
deployed contract[27, 35]. In June 2016, the large-scale The DAO project, which raised $150 million through an
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ICO within a month, was found to have a reentrancy vulnerability in its smart contract[34]. Exploiting this flaw,
hackers drained $60 million worth of Ether, causing a sharp drop in Ethereum’s market price and ultimately
leading to a hard fork of the Ethereum blockchain. In August 2016, the major exchange Bitfinex was attacked,
resulting in the theft of 119,756 Bitcoin, valued at approximately $65 million at the time.In July 2017, the widely
used Parity Ethereum wallet was compromised, leading to the theft of 150,000 Ether, worth $30 million. Later that
year, in November, another vulnerability in the Parity wallet resulted in 513,701 Ether being permanently locked.
In April 2018, the BEC and SMT token contracts fell victim to an integer overflow attack, allowing hackers to mint
and dump massive amounts of tokens, effectively reducing their value to near zero.In April 2020, the Lendf.Me
lending protocol was exploited due to reentrancy issues and security flaws in its unique token composition,
leading to a total depletion of assets from the contract, with losses amounting to $25 million.

In recent years, significant progress has been made in blockchain and smart contract security research both
domestically and internationally[13, 22]. Security-compliant audits and formal verifications have substantially
reduced the occurrence of major financial incidents on blockchain networks. However, security breaches leading to
economic losses remain frequent. Analyzing various attacks on smart contracts reveals that while the underlying
blockchain technology is inherently robust and rarely encounters critical failures, vulnerabilities are prevalent at
the smart contract layer. These issues primarily stem from two factors: inherent logical flaws introduced by the
programmability of smart contracts and security vulnerabilities arising from interactions between smart contracts
and the contract virtual machine. The application of blockchain in currency-related use cases necessitates
heightened attention to potential risks. Any oversight in the development of smart contracts can result in the
deployment of insecure applications onto the blockchain, where their immutable nature makes rectification
nearly impossible, leading to irreversible financial losses[14, 30]. Therefore, research on the security of smart
contracts in Blockchain 2.0 is of critical significance. As shown in Figure 2, the second section of this paper
will begin by discussing the foundational mechanisms that support blockchain, progressively introducing the
various technologies within the Blockchain 2.0 system that incorporates smart contracts. In the third section, the
Ethereum smart contract system will be presented as a typical example of Blockchain 2.0, along with its model.
The fourth section will explore the implementation of cryptocurrencies in the form of smart contracts, and finally,
in the fifth section, we will replicate significant security incidents that occurred on the Ethereum blockchain
by writing a simple token contract, analyzing common security issues, and discussing feasible solutions and
mitigation strategies.

2 BACKGROUND
2.1 Blockchain

Blockchain technology is a new distributed infrastructure and computing paradigm that uses a block-based data
structure to verify and store data, employs a consensus algorithm from distributed nodes to update data, ensures
the security of data transmission and access through cryptography, and utilizes smart contracts (automated script
code) to program and manipulate data[47].

Blockchain establishes a decentralized model under zero trust, making it the core of encrypted digital
currencies[31]. The main components of blockchain include blocks, chains, and the operations stored within
them, namely transactions.

e Block: A block records transactions and states within a specific period, serving as the fundamental storage
unit of the blockchain and a collection of transactions that have been completed.

e Chain: A chain structure that links blocks in chronological order using hashes.

e Transaction: All operations in the blockchain network are treated as transactions, also known as
operations, through which records are generated on the blocks and the corresponding states are altered.
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Fig. 2. Structural Framework of Token Contract Security Research.

2.2 Typical blockchain hierarchical structure

As shown in Figure 3, from the perspective of the blockchain hierarchical structure, the blockchain is composed
of the data layer, network layer, consensus layer, incentive layer, contract layer, and application layer, from
bottom to top[2]. At the data level, the blockchain structure with chain-based storage and Merkle trees stores data
in parallel, ensuring the integrity of the content through technologies such as hashing, digital signatures, and
asymmetric encryption. Transactions initiated by clients are broadcasted in the P2P network after verification and
temporarily stored as unconfirmed transactions on all nodes. Every period, machines across the network package
all transactions within that time slice into blocks, and consensus is reached at the consensus layer, ensuring
consistency of the data on the blockchain across all nodes in the network[49]. The typical consensus mechanism in
the blockchain 1.0 era was Proof of Work, and once the block achieved consensus, it possessed the characteristic
of immutability[50]. Later, Ethereum introduced the Proof of Stake (POS) mechanism. The operation of the
blockchain relies on miners, and at the incentive layer, virtual currency issuance and redistribution are realized.
Both running contracts and transactions require paying miners with Ether as transaction fees. On this basis,
blockchain 2.0 introduces smart contracts, which invoke contracts through data embedded in transactions. When
packaging blocks, the defined virtual machine executes the contract scripts, enabling complex programmable
functions. Finally, various user applications are realized through the interfaces provided by the smart contracts[45].

2.3 Consensus Mechanism

To address the trust issue in distributed networks, an effective consensus mechanism is required to balance
system efficiency and usability.
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Fig. 3. Layered Technical Stack of Blockchain Systems.

The consensus mechanism used by early virtual currency systems such as Bitcoin and the early stages of
Ethereum is Proof of Work (PoW), which ensures data consistency and consensus through computational power
competition among network nodes[16]. All nodes attempt to find a random number (Nonce) that makes the
hash of the current block smaller than a certain value or starts with a specific number of zeros. When a node
discovers this random number, it gains the right to record the block and is rewarded as a miner. The essence of
"mining" in blockchain is the computational brute force to break the hash. The Proof of Work mechanism can
secure the blockchain, ensuring that the accounting rights are random and providing effective protection for the
secure operation of blockchain systems like Bitcoin, as long as more than 51% of the computational power is
not controlled maliciously. Compared to Proof of Work, Proof of Stake significantly improves energy efficiency
by eliminating the need for large-scale ASIC computational power competition[4, 7, 40]. At the same time, it
greatly increases the cost of attacks and lowers the entry barriers for participating in blockchain maintenance,
thus enabling more individuals to get involved and providing stronger decentralization.

3 THE OPERATING PRINCIPLES OF THE ETHEREUM PLATFORM

This paper takes Ethereum as a typical representative of Blockchain 2.0 and studies the security issues of smart
contracts under Blockchain 2.0. Therefore, it first introduces the technical details of the Ethereum platform.



6 + PENGFEI GAO, DECHAO KONG, and XIAOQ] LI

3.1 Ethereum Application Technology

3.1.1  Ethereum Virtual Machine. The Ethereum Virtual Machine serves as the execution environment for smart
contracts[18]. All smart contracts and state modifications on the Ethereum blockchain are conducted through
transactions, and every transaction on the Ethereum network is executed by the EVM. The EVM introduces
an abstraction layer above Ethereum nodes, enabling Turing completeness through the execution of specific
operations defined by 140 opcodes[15, 17]. This capability allows the EVM to support the deployment and
execution of various smart contracts with diverse functionalities [16]. Essentially, the Ethereum Virtual Machine
is a stack-based machine, with its primary function being the execution of smart contracts. It operates with
a 256-byte word size, a stack depth of 1024, and is designed with simplicity, determinism, space efficiency,
blockchain-oriented functionality, security assurances, and optimization in mind. Data within the EVM can be
stored in three distinct locations: the stack, temporary storage, and persistent storage[3, 36]. The EVM executes
operations by interpreting opcodes within smart contracts, manipulating on-chain and transaction data to produce
a deterministic and unique outcome.

3.1.2  Smart Contract. A computer program capable of automatically enforcing contractual terms is defined as
a smart contract. Although the concept of smart contracts emerged almost simultaneously with the internet,
there was no perfect and reliable technological solution to ensure the security and trustworthiness of contract
execution until the advent of blockchain technology[9, 20]. In the context of Ethereum, a smart contract is an
executable program that runs on the Ethereum blockchain. These contracts are stored on-chain and assigned a
unique address. Their execution is triggered by transactions sent to this address, incurring computational costs
and modifying the blockchain state. Smart contracts also serve as a public interface for interactions between
users and decentralized applications [6? ]. Once deployed, a smart contract remains persistently available, is
difficult to modify, and cannot be revoked.

3.1.3 Ethereum Nodes. For an application to interact with the Ethereum blockchain, it must connect to an
Ethereum node, which serves as the gateway to the entire Ethereum network. An Ethereum node is a computer
running an Ethereum client—an implementation of the Ethereum protocol capable of validating all transactions
within each block, thereby ensuring network security and data accuracy. Ethereum nodes collectively maintain the
state of the blockchain and achieve consensus on state changes through the underlying consensus algorithm[46].
By facilitating communication between applications and the blockchain, Ethereum nodes play a crucial role in
maintaining the integrity and functionality of the Ethereum ecosystem.

3.1.4 Ethereum Client API. Applications connect to and communicate with the Ethereum blockchain through
API libraries developed and maintained by the Ethereum open-source community. These APIs abstract much
of the complexity associated with direct interaction with Ethereum nodes, significantly reducing the technical
burden on developers. Additionally, these libraries provide convenient functions that allow developers to spend
less time dealing with the intricacies of Ethereum clients and instead focus on implementing the business logic of
their applications.

3.1.5 End-User Applications. At the top of the stack are user-facing applications, which primarily include two
common types: web applications and mobile applications. Due to well-designed encapsulation and development,
users often do not need to be aware that the applications they are using are built on blockchain technology.

3.2 Ethereum Blockchain Model

Compared to the Bitcoin system, Ethereum, despite having a similar cryptocurrency (ETH) that follows nearly
identical intuitive rules, offers more powerful functionality through smart contracts. Rather than merely serving
as a distributed ledger, Ethereum is better characterized as a distributed state machine. The state of Ethereum is a



Implementation and Security Analysis of Cryptocurrencies Based on Ethereum + 7

large data structure that not only records all accounts and balances but also maintains a machine state that can
transition between blocks according to a predefined set of rules and execute arbitrary machine code[33]. The
specific rules governing state transitions within blocks are defined by the Ethereum Virtual Machine.

The Ethereum state contains a vast number of transactions stored within blocks, which are linked sequentially
over time. Each time a new block is generated, it must be validated through a consensus algorithm to ensure
network-wide agreement.

3.2.1  Account. The global state of Ethereum consists of individual accounts, each with its own state and a unique
20-byte address. Ethereum accounts are categorized into externally owned accounts and contract accounts[24].
EOAs, controlled by external private keys, are not associated with any code and are entirely managed by their
respective private key holders. In contrast, contract accounts are governed exclusively by the smart contract
code deployed on the Ethereum network. Both types of accounts can receive, hold, and transfer Ether and
tokens, as well as interact with deployed smart contracts. An EOA can initiate a transaction by signing it with its
private key to transfer assets to another EOA or a contract account. When a transaction is sent to a contract
account, it triggers the execution of the associated contract code[42, 44]. Unlike EOAs, contract accounts cannot
independently initiate transactions; they can only generate transactions in response to received transactions
through their triggered code execution.

3.2.2 State. In the context of Ethereum, the state is a large data structure known as the modified Merkle Patricia
Trie, which links all accounts through hashes, allowing them to be traced back to a single root hash stored on the
blockchain. The state is divided into account state and global state, and these two types of state will be described
separately. The account state consists of four components: the nonce, balance, storage root, and code hash.

e Nonce: A block records transactions and states within a specific period, serving as the fundamental storage
unit of the blockchain and a collection of transactions that have been completed.

e Balance: A chain structure that links blocks in chronological order using hashes.

e StorageRoot: All operations in the blockchain network are treated as transactions, also known as
operations, through which records are generated on the blocks and the corresponding states are altered.

e CodeHash: For externally owned accounts (EOAs), the corresponding field is empty. In contrast, for
contract accounts, this field stores the hash of the account’s contract code.

The global state of Ethereum is represented as a mapping from account addresses to their corresponding
account states. This mapping is maintained in a data structure known as the Merkle Patricia Trie (MPT), a
specialized form of binary tree. The MPT is composed of a set of nodes and exhibits the following two properties.

e A large number of leaf nodes that contain the underlying data.
o Each parent node stores the hash values of its two child nodes.

The MPT enables lightweight clients in the blockchain network to process information such as transactions,
events, and balances without storing the entire blockchain. Due to the hash propagation property of the MPT,
maliciously submitted falsified data (e.g., fake transactions) can be effectively prevented[25]. By verifying the
hashes in the block header, all nodes can validate a small subset of Ethereum’s global state without needing to
maintain the full chain.

3.2.3 Transaction Fees. Similar to typical blockchain systems, all transactions on Ethereum require the payment
of a transaction fee, known as gas. Users specify a gasLimit to cap the maximum amount of gas they are willing to
consume for a transaction, and a gasPrice to determine the amount they are willing to pay per unit of gas. If the
gas provided is insufficient to complete the transaction, the transaction fails, and all state changes made during
its execution are reverted. Only when sufficient gas is supplied will the transaction be validated and confirmed.
The consumed gas serves as a reward for miners (or, in the context of Ethereum 2.0, validators).
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Miners have the autonomy to select which transactions they wish to validate or ignore. As a result, when
constructing a block, miners tend to prioritize transactions with higher gas prices in order to maximize their
rewards. Consequently, transaction initiators often increase the gas price to improve the likelihood of their
transactions being included in a block.

For contract-related transactions, gas is also required to cover the additional costs of computation and storage[8,
19]. Computation on Ethereum is intentionally expensive, a design choice aimed at safeguarding the network’s
integrity: every computation performed on-chain incurs a cost, thereby discouraging the submission of spam or
malicious activity. To further mitigate risks such as unintended or malicious infinite loops and other forms of
computational waste, each transaction must specify a limit on the number of computation steps it is allowed to
execute.

3.24 Transaction. Transactions are the fundamental operations in Ethereum, enabling the transition of the
system from one state to another. There are two types of transactions: message calls and contract creation. Both
types share the same structure, which includes the following fields.

Nonce: A sequential number indicating the sender’s transaction count.

Gas Price: The amount the sender is willing to pay per unit of gas.

Gas Limit: The maximum amount of gas the sender is willing to provide for the transaction.

To (Recipient Address): The address of the recipient. This field is left empty (i.e., set to the zero

address) for contract creation transactions.

Value:The amount of Ether to be transferred to the recipient address.

e Init:A field used only in contract creation transactions. It contains the initialization code for the smart
contract. Upon execution, it returns the address of the newly deployed contract.

e Data:A field used only in message call transactions. It carries input parameters to be passed during the

invocation of the contract function.

4 |IMPLEMENTATION OF ETHEREUM TOKEN CONTRACTS
4.1 Token Standard Interface

Ethereum smart contracts offer powerful and reliable execution capabilities. Once predefined conditions are
met, the contract automatically executes according to the logic encoded within it. This makes smart contracts
particularly well-suited for applications in the domain of digital assets. One common use case is the development
of tokens on the Ethereum platform. A token represents a unit of value or ownership on the blockchain. Like
traditional cryptocurrencies, tokens can be transferred between contracts, queried for their total supply, or
checked for individual account balances.

In late 2015, Fabian Vogelsteller proposed the ERC-20 standard (also known as EIP-20), which defines a
standardized interface capturing these token characteristics[12]. This interface enables Ethereum wallets and
other contracts to interact with tokens in a unified manner. ERC-20 specifies a set of rules that all fungible
Ethereum tokens should follow, allowing developers to predict how new tokens will behave within the broader
Ethereum ecosystem. For instance, token exchange protocols like Uniswap can support any newly issued ERC-
20-compliant token without modification.

The ERC-20 standard is closely associated with Initial Coin Offering contracts, where a predefined amount
of Ether is raised, and corresponding tokens are issued to users once the fundraising goal is met[10]. ERC-20
defines only the standard interface and not its concrete implementation; developers must implement and maintain
the actual contract code themselves. Since ERC-20 tokens focus solely on token quantity and treat all units as
identical and interchangeable, they are classified as fungible tokens, and ERC-20 is the de facto standard for such
tokens[39, 41, 43].
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In contrast, non-fungible tokens, where each token is unique and distinguishable from others, follow the
ERC-721 standard[21, 38]. This type of token is widely used in scenarios involving digital collectibles, intellectual
property rights, and digital agreements. The core interface includes the following functions:

e totalSupply: Returns the total supply of the token. Although token supply is usually fixed, this function
allows the contract to return the effective circulating supply.

e balanceOf: Takes an address as input and returns the token balance of that address. All token balances
are publicly visible.

e transferFrom: Transfers a specified number of tokens from one address to another. This operation must
emit a Transfer event. It is primarily used to allow a designated spender to transfer tokens on behalf of
the owner. The number of tokens that can be transferred is constrained by the allowance, which must be
set via the approve function.

e approve: Grants permission to a spender to withdraw a specified number of tokens from the owner’s
account.

4.2 Contract Compilation and Deployment
4.2.1 Tools.

e MetaMask: MetaMask is currently the most widely used Ethereum wallet and gateway. Available as a
browser extension and mobile application, it manages digital assets through a secure local key vault.
MetaMask enables users to buy, store, send, and exchange tokens, and also provides a simple and secure
interface for connecting to Ethereum-based blockchain applications via RPC endpoints. This allows
seamless interaction with decentralized applications directly from web pages using the local wallet.

e TestNet: All nodes operating on the same blockchain are considered part of a single network. The network
most commonly used in practice is the main network (MainNet), where users conduct real transactions
and deploy production smart contracts. Due to its large user base, the MainNet provides high security
and strong resistance against attacks and tampering, making it a robust and trustworthy environment.
Consequently, Ether on the MainNet has real-world value, and testing on the MainNet incurs a significant
cost. While a blockchain typically has only one MainNet, it may also support multiple test networks
(TestNets) designed for experimentation, learning, and testing. A TestNet is an independent blockchain
that starts from a different genesis block and may employ a different consensus mechanism than the
MainNet. Users can mine blocks and perform testing without incurring real-world costs, making TestNets
essential for safe and effective development workflows.

4.2.2  Deployment. After compiling the contract in Remix, the Injected Web3 environment is used to connect to
the Rinkeby test network via MetaMask. The constructor parameter is set to 2048, indicating the issuance of a
total of 2048 tokens. All tokens are initially assigned to the deployer’s own address to facilitate testing.

After confirming the transaction and paying the gas fee, the deployment is completed once the transaction
is mined and confirmed. The contract can then be inspected via Etherscan. The transaction was confirmed in
block number 10593657 on the test network. The previously empty To field is filled with the generated contract
address. Since the transaction is only intended to deploy or invoke a contract, the Ether transfer amount can
be zero. Given that a sufficient amount of gas was provided, the transaction was successfully executed and all
allocated gas was consumed.

As discussed earlier, Ethereum operates as a distributed state machine. This transaction resulted in state
transitions for three different account addresses. As shown in Figures 4 and 5, a new contract address was created
with associated storage space, and the sender’s account balance was reduced due to the gas fee. Additionally, the
nonces of both the sender and the contract addresses were incremented by one after the transaction.
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Fig. 4. Contract Bytecode Embedded in the Transaction.

Overview State

Advanced A set of information that represents the current state is updated when a transaction takes place on the network. The below is a summary of those changes :

State Difference

Address Before After
0x000000000000000000... 2,432.174842569978687036 Eth 2,432.176750032478687036 Eth - 0.0019074625
v 0x4792099d158e97bc2.. 0 Eth 0 Eth
Nonce: 0 Nonce: 1
0xd25ab061e10aabc7b4... 0.989229637488004605 Eth 0.986515169977389565 Eth ~ 0.00271446751061504
Nonce: 4 Nonce: 5

Fig. 5. State Transitions Caused by the Transaction.

Asillustrated in Figure 6, the contract’s storage was initially empty upon deployment. This transaction initializes
the storage layout. Specifically, the first storage slot holds the totalSupply_ variable set during construction, while
the second slot stores the mapping entry that associates the current wallet address with its token balance.

0 Eth

Nonce: 1

~ 0x4792099d158e9f7bc2... 0 Eth

Nonce: 0

Storage (2)
Storage Address: 0x0000000000000000000000000000000000000000000000000000000000000002

Before: Hex v = @x8

After: Hex v =

Storage Address: 0xa2681b5f6ca15d2fc36657701a4b8211a76d34e8fe38849e48a58d626a1f20ef

Before: Hex v = 0x@

After: Hex v =
Fig. 6. Storage Changes at the Contract Address Resulting from the Transaction.

As shown in Figure 7, the transaction that invoked the contract included a sequence of encoded data. This
data encodes the function selector followed by its parameters in order: the target address (parameter 1) and the
amount to transfer (parameter 2).

Due to the standardized ERC-20 interface, Etherscan can automatically recognize the token properties and
generate a token tracking page with key metadata, as shown in Figure 8. As a result of the transfer operation
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Fig. 7. Token Transfer Invocation via Remix’s Contract Interaction Interface.

performed in this transaction, the number of token-holding addresses increased from one to two, with token
balances of 2047 and 1, respectively.

5 COMMON SECURITY THREATS IN TOKEN CONTRACTS

Smart contract vulnerabilities refer to potential security flaws in the contract code that, if exploited by attackers,
can result in asset losses within the contract[28, 29]. Since The DAO attack, hackers have realized that smart
contracts represent a lucrative target, leading to an era of active vulnerability hunting. Numerous security issues
have since been uncovered. In this paper, we classify these vulnerabilities into two categories: those arising from
the design characteristics of the Ethereum platform, and those caused by traditional attack techniques. Classic
vulnerabilities are reproduced and analyzed to better understand their causes and consequences.

5.1 Ethereum Platform-Induced Vulnerabilities

5.1.1 Re-Entrancy Vulnerability. Re-entrancy is a vulnerability where an attacker exploits the fallback function
to recursively invoke a vulnerable transfer method, allowing repeated withdrawals before the contract’s state is
correctly updated. This recursive behavior continues until the transaction either runs out of gas or reaches a
specified termination condition. As a result, attackers can withdraw tokens far exceeding their initial deposit.
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Token ATOKEN ®

Qverview [ERC-20 Profile Summary

Max Total Supply 0.000000000000002048 ATK (1 Contract: 0x4792099

Holders 2 Decimals 18

Transfers: 1

Transfers  Holders  Contract a

& Token Holders Chart

Atotal of 2 token holders

Rank Address Quantity Percentage

0.000000000000002047 99.9512%

0.000000000000000001 0.0488%

Fig. 8. Token Tracking Page for ATOKEN on Etherscan.

The fallback function is a special unnamed function in a contract, and each contract may define only one
such function. In versions prior to Solidity 0.4.x, visibility was not strictly required. From version 0.5.x onward,
fallback functions must be explicitly marked as external. These functions can be virtual, overridden, or decorated
with modifiers, and are triggered in the following two scenarios:

e Function Not Found:If a function call does not match any defined function signatures in the contract,
the fallback function is automatically invoked. This means that any invalid call (i.e., one with an undefined
function selector) will result in fallback execution.

e Using send() to Transfer Ether: When Ether is sent to a contract via the send() method without any
attached data, the fallback function is invoked. As long as no valid contract method is explicitly called,
the fallback function will be executed by default.

The infamous The DAO vulnerability on Ethereum falls into this category. This vulnerability led to over $10
million in losses and directly triggered the Ethereum hard fork. It also inspired a wave of vulnerability research
in the smart contract community. In the payout method, if the _recipient is a contract address, the call instruction
will invoke the recipient’s fallback function. Since call does not restrict gas usage, the fallback function can
recursively invoke payout, leading to a re-entrant attack that drains the contract’s balance. After deploying the
vulnerable contract, we fund it by transferring Ether to its address. Based on the vulnerability, we can write an
attack contract as shown in Listing 1. The core part of the attack is implemented in the fallback function, where a
call to the splitDAO function of the TheDAO contract is made to achieve the reentrancy effect. A limit on the
number of iterations is set to prevent the transaction from reverting due to gas exhaustion. Finally, a withdrawal
function is used to extract the Ether obtained from the attack.
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Listing 1: Attack contract

1 contract HackCode {

2 address public daoContract;

3 uint public count = 50;

4 uint public n;

5 function setDAO(address _addr) public {

[3 daoContract = _addr;

7 }

8 function getBalance() public view returns (uint) {
9 return address(this).balance;

10 }

11 function withdraw() public {

12 msg.sender.transfer (address (this).balance);
13 3}

14 function setCount(uint newCount) public {
15 count = newCount;

16 3}

17 function () public payable {

18 if(n < count){

19 n++;

20 TheDAO (daoContract).splitDAO();
21 }

22 3}

23}

Attack Execution Process:

Deploy the attack contract.

Invoke the setDAO method via a transaction to set the target address variable to the victim contract.
Invoke the setCount method via a transaction to set the count to an appropriate value.

Trigger the fallback function of the attack contract through a regular transaction.

The attack contract will call the victim DAO contract’s splitDAO method, which internally invokes
withdrawRewardFor, and ultimately calls payout. Within payout, a call is made to transfer Ether to the
attack contract, which triggers the fallback function again, leading to re-entrancy. The splitDAO method
is entered again, causing Ether to be withdrawn repeatedly. Even if a check is placed after the transfer, it
will not take effect during this process.

e Upon a successful attack, the attack contract extracts most of the Ether from the victim contract. At this
point, the attacker can call withdraw to retrieve the stolen funds from the attack contract and end the
attack.

Mitigation and Prevention:

e Whenever possible, use send or transfer instead of call. The gasLimit of send and transfer is 2300, which
is insufficient to support even the simplest function call, thus preventing fallback execution.

o For functions involving transfers and payments, adopt a "checks-effects-interactions" pattern: first validate
conditions, then update state, and finally perform the transfer. This helps prevent many potential issues.

5.1.2  Delegatecall Vulnerability. In Solidity, there are two methods to invoke external contracts: call and dele-
gatecall, each with different contextual behaviors.
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e Call: When using call to invoke an external contract method, the execution context is that of the external
contract. When Contract A calls a function of external Contract B via call, it executes in the context of
Contract B and then returns to Contract A to continue execution.

e delegatecall: When using delegatecall to invoke an external contract method, the execution context is
that of the local contract. When Contract A calls a function of external Contract B via delegatecall, it is
equivalent to copying Contract B’s code and executing it within Contract A’s context.

Attack Execution Process:

Account 1 deploys the Delegate contract.

Account 1 deploys the Delegation contract, specifying the address of the Delegate contract to act as its
proxy.

At this point, verify that the owner of both contracts is the same, i.e., the address of Account 1.
Account 2 invokes the fallback function of Delegation, modifying the owner address.

Check the owner of Delegation, which has now been changed to the address of Account 2.

Mitigation and Prevention:

o Use delegatecall with caution, and clearly define function visibility. Sensitive functions should be declared
as external to prevent unintended external invocation.

5.2 Traditional Vulnerabilities Reproduced on the Ethereum Platform

5.2.1 Integer Overflow Vulnerability. Due to the limited number of bits that a register can represent, when a
stored value exceeds the maximum representable range, overflow may occur. Maximum value overflow wraps
around to the minimum value, and minimum value overflow wraps around to the maximum. This issue can
occur on any platform and is one of the most common and universal types of vulnerabilities [25]. Similarly,
the Ethereum Virtual Machine (EVM) assigns fixed-size data types for integers. An integer variable can only
represent values within a specific range. For example, the largest integer type is uint256, which has a maximum
value of 2**256 - 1. Exceeding this range will result in overflow.

In the transfer condition check, require(balances[msg.sender] - _value >= 0) presents a clear integer overflow
issue. Since uint is actually uint256, transferring more than the initial balance causes an underflow, turning
(balances[msg.sender] - _value) into a large positive integer. This allows transferring more tokens than the actual
balance and inflates the sender’s balance to an extremely large number. The attack method involves directly
calling the transfer function with a value greater than the available balance.

To protect contracts from overflow vulnerabilities, arithmetic functions in the SafeMath library are typically
used to replace regular addition, subtraction, multiplication, and division. However, any oversight may lead to
severe vulnerabilities.

As shown in Listing 3, the vulnerability that once caused BeautyChain tokens to be minted infinitely and their
value to drop to zero is of this integer overflow type. Although the contract included and used the SafeMath
library, one instance of default multiplication led to the problem.
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Listing 2: The vulnerability function of Meitu Coin

1 contract BeautyChain {

2 using SafeMath for uint256;

3 mapping (address => uint256) public balances;

4

5 function batchTransfer (address[] _receivers, uint256 _value) public returns (bool) {
[3 uint cnt = _receivers.length;

7 uint256 amount = uint256(cnt) * _value;

8 require(cnt > @ && cnt <= 20);

9 require(_value > @ && balances[msg.sender] >= amount);

10

11 balances[msg.sender] = balances[msg.sender].sub(amount);

12 for (uint i = 0; i < cnt; i++) {

13 balances[_receivers[i]] = balances[_receivers[i]].add(_value);
14 }

15

16 return true;

17 3}

18 3}

The variable amount is then used as a condition in a subsequent transfer operation. Since this is a public
function, both _receivers and _value are controllable. By causing amount to overflow upwards into a very small
value, the validation can be bypassed to allow the transfer of a large value. A feasible set of attack vectors can be
constructed accordingly.

e Set _receivers as an array containing two recipient addresses, such that _receivers.length = 2.
o Set _value = 0x8000000000000000000000000000000000000000000000000000000000000000.

Under this condition, _receivers.length * _value causes an overflow, resulting in amount = 0, thereby bypassing
the balance check and allowing the transfer of the aforementioned amount of tokens.
Fix and Prevention:

e Simply replacing * with the mul function from the SafeMath library can prevent the overflow issue.

Such problems are easy to detect through tooling and auditing. When performing arithmetic operations in
a contract, overflow checks must be properly implemented. Starting from Solidity version 0.8.0, all arithmetic
operations include built-in overflow checks by default, eliminating the need for external libraries. Therefore,
using a newer version of Solidity also contributes to improved security.

5.2.2  Random Number Predictability. Random numbers are widely used in scenarios such as lotteries, games,
and signature algorithms. They form the foundation of cryptography and privacy security in traditional internet
applications. However, achieving true randomness on the blockchain is particularly challenging. As a distributed
consensus network, everything on the blockchain is public—including algorithms, variables, and states—and there
is often no suitable source of entropy, making random numbers predictable. Platforms often rely on on-chain
public information as randomness sources. Each platform has unique attributes that are publicly accessible;
therefore, using such attributes as seeds for randomness undermines unpredictability. Many real-world attacks
have occurred on platforms like Ethereum and EOS.

In this example, the most significant bit of the previous blockhash is used as the random bit for the coin flip.
Since the hash of the previous block is fully known, one can observe it and then call the guessing function before
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the next block is mined. An attacker can deploy a contract to predict and interact with the vulnerable contract, as
shown in Listing 3, achieving consecutive wins through random number prediction.

Listing 3: Prediction attack contract targeting the coin-flip contract

1 contract Attack {

2 CoinFlip fliphack;

3 address victim;

4 uint256 FACTOR =
57896044618658097711785492504343953926634992332820282019728792003956564819968;

5

6 function Attack(address victim) {

7 fliphack = CoinFlip(victim);

8 }

9 function predict() public view returns (bool) {

10 uint256 blockValue = uint256(block.blockhash(block.number - 1));
11 uint256 coinFlip = uint256(uint256(blockValue) / FACTOR);
12 return coinFlip == 1 ? true : false;

13 }

14 function hack () public {

15 bool guess = predict();

16 fliphack.flip(guess);

17 }

In 2018, the FoMo3D contract on Ethereum suffered a prediction attack on its random airdrop algorithm
because it used the previous block hash as the entropy source. The attacker used random number prediction to
decide in advance whether to participate, thereby capturing large airdrop rewards.

Mitigation Strategies:

e Since all content on the blockchain is transparent to participants, using randomness in Ethereum is
inherently complex. However, several approaches can improve security. For instance, using less predictable
pseudo-random sources such as block timestamps, or relying on off-chain oracles to generate randomness
for on-chain use [27].

6 CONCLUSION

This paper uses Ethereum as a case study to analyze the technical applications of cryptocurrency and associated
security issues in Blockchain 2.0, characterized by support for smart contracts. Compared to traditional application
platforms, smart contracts represent a relatively new paradigm. While they generally consist of smaller codebases,
increasing complexity combined with insufficiently tested code and inherent platform features still present
many security vulnerabilities. For a blockchain network that supports millions of contracts and a value-based
ecosystem, security is a highly sensitive concern. Despite the current low levels of security assurance, substantial
investment in blockchain will continue to drive security research. As new attack patterns and vulnerabilities
are discovered, classification of related issues will continue to evolve.Research into smart contract security
contributes to enhancing their robustness and supports the development of a more secure and reliable Blockchain
2.0 environment. Currently, the primary method for ensuring contract security involves auditing and detection-
based validation [28], along with formal verification of certain components [29]. However, existing tools and
audits cannot eliminate security risks. Many contracts that have passed both automated and manual checks still
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exhibit vulnerabilities. Thus, the security of smart contracts needs further reinforcement, and the development of
corresponding security detection tools remains an open and critical area for advancement[32].
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