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The performance of any elliptic curve cryptography hardware accelerator significantly relies on the 
efficiency of the underlying point multiplication (PM) architecture. This article presents a hardware 
implementation of field-programmable gate array (FPGA) based modular arithmetic, group operation, 
and point multiplication unit on the twisted Edwards curve (Edwards25519) over the 256-bit prime 
field. An original hardware architecture of a unified point operation module in projective coordinates 
that executes point addition and point doubling within a single module has been developed, taking 
only 646 clock cycles and ensuring a better security level than conventional approaches. The proposed 
point multiplication module consumes 1.4 ms time, operating at a maximal clock frequency of 
117.8 MHz utilising 164,730 clock cycles having 183.38 kbps throughput on the Xilinx Virtex-5 FPGA 
platform for 256-bit length of key. The comparative assessment of latency and throughput across 
various related recent works indicates the effectiveness of our proposed PM architecture. Finally, this 
high throughput and low latency PM architecture will be a good candidate for rapid data encryption in 
high-speed wireless communication networks.
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The emergence of the modern Internet of things (IoT) infrastructure is a manifestation of the prediction made 
by Moore’s Law (more computation capability due to aggressive technology scaling) and Edholm’s Law (more 
data communication due to modern wireless standards). Nowadays, billions of devices of various cyber-physical 
systems like smart cities, healthcare, and intelligent transportation are connected through the IoT network. 
Consequently, the IoT ecosystem has fostered a widespread network of wireless sensor nodes (WSNs) within its 
application layer, as shown in Fig. 1. Many IoT devices utilises cloud-based data storage solutions due to limited 
resources, allowing users to access and share data from anywhere over the Internet. However, this approach 
raises significant security concerns as attackers can manipulate data through unregistered devices deployed 
within the IoT ecosystem. Therefore, the futuristic IoT ecosystem demands a secure data transmission network 
to avert unauthorised access and protect sensitive data1–3. Asymmetric cryptography or public-key cryptography 
(PKC) based security protocols can be a viable solution to deal with the privacy aspects of such networks as it 
avoids key distribution compared to conventional symmetric cryptography4. There are several popular methods 
of PKCs, such as RSA5, ECC6,7 as well as Edward curve cryptography (EdCC)8. However, ECC has emerged as 
an intriguing replacement for traditional RSA encryption, owing to its superior strength-per-bit in achieving 
equivalent levels of security. Hence, ECC can be deployed in the limited-resource IoT environment to achieve 
fast computation while upholding the intended level of security.
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Side Channel Attacks (SCA) exploit information leaked during the physical implementation of cryptographic 
algorithms. These attacks target the hardware rather than the cryptographic algorithm itself, making them a 
significant concern for cryptographic implementations. Power analysis attacks are a type of SCA that involves 
measuring the power consumption of a cryptographic device during its operation. Simple Power Analysis 
(SPA) and Differential Power Analysis (DPA) are the two main types of power analysis attacks. SPA examines 
the power consumption patterns of a device to extract cryptographic keys and other sensitive information. 
SPA relies on identifying distinct power consumption patterns that correspond to specific operations within 
the cryptographic algorithm. DPA is a more sophisticated attack that involves statistical analysis of power 
consumption data collected from multiple cryptographic operations. By analysing the differences in power 
consumption, attackers can reveal secret information, such as cryptographic keys. Various techniques have been 
proposed to protect cryptographic hardware implementations against SPA and DPA attacks. For example, the 
paper by Joye and Tymen9 discusses countermeasures for ECC against power analysis attacks. Additionally, the 
study by Sasdrich and Güneysu10 presents hardware implementations of ECC with protection against SPA and 
DPA. Unlike Post-Quantum Cryptography10, which is designed to be secure against attacks from both quantum 
and classical computers, existing cryptographic systems are susceptible to side-channel attacks. While ECC is 
widely used and integrated into various cryptographic protocols such as Transport Layer Security, it is important 
to acknowledge that ECC is not resistant to attacks from quantum computers. Post-Quantum Cryptography 
aims to develop cryptographic algorithms that are secure against quantum adversaries. Nevertheless, ECC 
remains a well-established and diffused cryptosystem in current applications, and its efficiency and security are 
critical for many existing infrastructures.

Edward curves, a special species of the family of elliptic curves, have recently attracted significant research 
focus because of their high side-channel attack resilience, fast group operation and unified addition formulas. 
The primary operation of the Edward Curve Crypto Processor (EdCCP) is the Edward curve scalar multiplication 
(EdCSM) or Edward curve point multiplication (EdCPM), which is expressed as S = k.P; while k is a scalar 
number, P denotes a particular point on the Edward curve—the resultant point S is found by multiplying an 
Edward curve point P with a scalar value k. The efficient design of the point multiplication unit is mandatory 
for developing a high-performance EdCCP, where the performance of the particular point or group operation 
unit and the modular arithmetic unit determines the efficacy of the point multiplication unit. Thus, optimising 
the designs of these three units establishes a framework for achieving high efficiency in EdCCP9–12. The overall 
approach of the elliptic curve cryptography (ECC) hardware accelerator design is delineated in Fig. 2. The urge 
to produce a high-performance ECC accelerator has alluded many researchers to design a high-performance 
point multiplication unit. Owing to the flexible design environment offered by the FPGA platforms,  many 
FPGA-based hardware architectures for ECC point multiplication on both Galois prime field GF(p) as well as 

Fig. 1.  Privacy Aspects of the growing IoT environment.
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Galois binary field GF(2n) have been proposed by many researchers13–36. Some of these research were intended 
to save hardware resources required for small-device applications, while others were intended to minimise the 
computational time for efficient data encryption in different field sizes. However, a 256-bit architecture over 
the prime field is preferred most for direct comparison as it is suitable for modern cryptographic security 
applications. Our proposed EdCPM architecture can be implemented for other standard NIST prime curves.

In Hossain et al.19 put forward a hardware implementation of the elliptic curve scalar multiplication (ECSM) 
over a prime field, providing a novel modular multiplication unit using the Montgomery method. In Marzouqi et 
al.20 also designed Karatsuba–Ofman modular multiplication unit and Radix-4 Binary GCD Modular Division 
unit to achieve efficient ECSM operation over NIST curve P256. In the same year, i.e. Amiet et al.21 also developed 
a flexible ECSM architecture using an Iterative digit-digit Montgomery algorithm-based modular multiplication 
unit. The design reported by Salman et al.22 presents a scalable ECSM unit with mechanisms to prevent side-
channel attacks employing Montgomery ladder as well as exponent randomisation to withstand DPA along with 
SPA. In fact, a cost-effective dual-field ECC processor utilising a word-based Montgomery modular multiplication 
algorithm was put forward by Lai and Huang23. In the period of 2019–2020, Islam et al.24,25 designed a high-
throughput point multiplication module on the twisted Edward curve (Edwards25519) over a 256-bit prime 
field. In Yeh et al.26 produced an ECSM unit using a unique technique utilising signed binary representation 
(SBR) with the M-ary method for reducing the area as well as the energy usage while eschewing SPA. In Lee et 
al. developed a large field-size ECC processor utilising a novel Montgomery point multiplication (PM) algorithm 
for minimising the resource consumption while maximising the signal flow27. Using the Montgomery ladder 

Fig. 2.  Hierarchy of the ECC hardware accelerator.
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approach, Hao et al. devised a lightweight ECSM architecture favouring the random Weierstrass curves over a 
prime field29. In Rashid et al. presented an area-optimised ECC processor for large field-size deploying Lopez-
Dahab projective point arithmetic operations30. The article by Zhao et al.31 published in 2021 introduced an 
ECC processor on the binary field, providing an efficient modular inversion unit using the Itoh–Tsujii inversion 
algorithm. Between 2021 and 2022, Awaludin et al.32,35 demonstrated a fast ECSM module using the schoolbook 
long and Karatsuba multiplication technique for Generic Weierstrass Curves over a prime field. In Kieu-Do-
Nguyen et al.33 described an area-efficient multi-functional ECC processor with a modular inversion unit 
incorporating the Binary Euclidean algorithm. In Kudithi and Sakthivel34 implemented an optimised hardware 
ECC architecture in affine coordinates. In Hu et al.36 suggested a low-hardware architecture for ECC processors, 
over GF(p) to be applied in embedded applications, that shows resiliency against SPA attacks.

The primary aim of our design is to achieve an architecture that demonstrates both low latency and high 
throughput and can be efficiently integrated with current high-speed wireless communication protocols. The 
major contributions of the research reported in this article, in each unit, are highlighted below:

A novel EdCPM module on a twisted curve (Edwards25519) has been proposed to accomplish fast compu-
tation and high security.
The EdCPM unit is designed in Jacobian coordinate instead of Affine coordinate to eliminate computationally 
intensive modular inversion operation.
An efficient hardware architecture for twisted Edward curve point operation has been designed for minimis-
ing arithmetic operations by utilising the parallelisation technique.
The point operation unit is capable of performing both point doubling (PD) as well as addition (PA) oper-
ations within a single operation using a unified point addition formula; thereby offering better resilience 
against side-channel attacks.
Multiplication and modular reduction operation are carried out separately utilizing fast reduction modulo as 
well as Booth radix-4 algorithms to minimise latency and hardware resources.

The subsequent sections of this article are organised along these lines: "Mathematical background" section 
briefly discusses group operations and field arithmetic on the twisted Edward Curve with relevant equations and 
algorithms. "Hardware architecture" section outlines proposed hardware architecture for the EdCC accelerator 
over Edwards25519. Then, "Implementation results" section highlights the implementation results as well as the 
comparative performance analysis of our EdPM architecture with other existing designs. Lastly, "Conclusions" 
section summarises and concludes this work.

Mathematical background
This section presents the mathematical concepts and algorithms associated with the modular arithmetic unit, 
group operation unit as well as point multiplication unit.

Finite field arithmetic
The arithmetic of Finite Fields, alias Galois Fields [GF(p)], is a mathematical abstraction of number systems 
wherein the set of elements in the field (F) is finite. The fundamental operations involved in field arithmetic are 
Addition and Multiplication. In finite field arithmetic, subtraction operation can be expressed as addition, where 
(a, b) ∈ F  and a − b = a + (−b). Here,(−b) ∈ F  such that b + (−b) = 0. Likewise, inversion/division can 
be performed in the form of multiplication. However, the inversion unit can be excluded from the Jacobian 
coordinate system. The finite field’s order (q) denotes the elements’ number present in any field. As a rule, a finite 
field is classified as a prime field if its order q could be expressed as a prime power (q = pm), where m = 1 and 
p denotes a prime value7.

Modular addition as well as subtraction over GF(p) are fundamental cryptosystem operations. Equations (1) 
and (2) hold the mathematical notation of modular addition and subtraction respectively.

	 Z = (x + y) mod p� (1)

	 Z = (x − y) mod p� (2)

Here, x along with y are the numbers provided, p denotes the prime number and Z signifies the output. The 
output of the modular addition is derived through the summation of x as well as y (x + y), followed by the 
deduction of p from (x + y) as long as the resultant (Z) is not less than p. On the other hand, in modular 
subtraction, if (x ≥ y), it could be promptly calculated by simple subtraction or using 2’s complement, whereas 
if (x < y), then y is subtracted from (x + p). However, modular reduction operation is less significant during 
modular addition and subtraction because the inputs x and y lie from 0 to p − 1, whereby Z must be ≤ 2p. This 
paper proposes a combined modular addition and subtraction unit instead of two distinct modules for EdCCP18.

Modular multiplication is one of the most crucial design units to devise a high-performance cryptosystem, 
as implementing the modular multiplication over GF(p) requires much area and time compared with other 
modular arithmetic operations. Generally, the modular multiplication operation can be mathematically 
expressed by Eq. (3), where M and R are the provided numbers, p denotes the prime number and Z is the output. 
This research establishes two modules for modular multiplication: one of them for the regular multiplication 
operation while the other is for the modular reduction operation18.

	 Z = (M, R) mod p� (3)
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Twisted Edward curve
The mathematical expression of a twisted Edward curve over the field k (k ̸= 2) is expressed as follows:

	 ea,d : ax2 + y2 = 1 + dx2y2� (4)

Here, a, d ∈ GF (p)\{0,1}. In fact, if a = 1, it is known as the untwisted Edwards curve. The specifications 
of the Edwards25519 over GF(p) are: a = −1, d = −121665/121666 and p = 2255 − 1911,12. Selecting the 
twisted Edward curve over conventional elliptic curves presents several advantages. Firstly, the twisted Edward 
curve follows a unified addition law which supports point addition as well as doubling while preserving the 
identity. Moreover, the Twisted Edward curve saves computational time by offering fewer arithmetic operations 
than the standard curve24.

Projective homogeneous coordinate system
The curve ea,d can be represented within a projective homogeneous coordinate system, where a triplet (X, Y, Z
) denotes every point (x, y). This triplet falls in with the affine point (x = Z/X, y = Z/Y ), where Z ̸= 0. Thus, 
the allied projective twisted Edwards curve can be expressed as:

	
(
aX2 + Y 2)

Z = Z4 + dX2Y 2� (5)

Several coordinate systems exist, e.g. the projective or Jacobian, affine, Chudnovsky and Lopez-Dahab projective 
coordinates, for point representation. However, for our research we chose Jacobian coordinates amongst the 
other popular ones for several reasons. First of all, Jacobian coordinates eliminate the inversion operation which 
is considered to be the most expensive division, reducing computations on the Edward curve. Secondly, it is 
possible to present the same affine point (x,y) by Z’s various values; hence, such points can be encoded using 
random values of Z that will offer an extra layer of security against side-channel attacks28.

Group law for twisted Edward curve
In twisted Edwards curve, (0, 1) signifies the zero or neutral element while the inverse of any point (x, y) is 
(−x, y). Let, both (X1 : Y1 : Z1) as well as (X2 : Y2 : Z2) are to be the paired points on the projective twisted 
Edward curve while (X3 : Y3 : Z3) is the sum of those points10. Then, (X3 : Y3 : Z3) can be represented as:

	 X3 = Z1Z2(X1Y2 + X2Y1)(Z2
1 Z2

2 − dX1X2Y1Y2)� (6)

	 Y3 = Z1Z2(Y1Y2 − aX1X2)(Z2
1 Z2

2 + dX1X2Y1Y2)� (7)

	 Z3 = (Z2
1Z2

2 − dX1X2Y1Y2)(Z2
1 Z2

2 + dX1X2Y1Y2)� (8)

Point multiplication
Computationally intensive point multiplication (PM) is considered to be the most significant function of an 
EdCC accelerator. Generally, the fundamental process of PM could be characterised as S = k.P ; while the 
P denotes a base point within the Edward curve, the k represents a confidential scalar (i.e. the secret/private 
key) where the S signifies another point within the curve that serves as the public key. Point multiplication can 
be executed by carrying out an array of point additions and doublings, adopting k’s binary bit sequence. The 
double-and-add method is considered the most forthright approach to execute PM, as outlined in Algorithm 6, 
wherein point doublings are executed in each cycle. In contrast, point additions are only carried out if ki = 1
19,24.

Algorithms

The algorithms used for various mathematical operations, including modular addition, modular reduction, 
multiplication, subtraction, unified point operation as well as point multiplication, are mentioned below.

Algorithm 1.  Addition in GF(p)7
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Algorithm 2.  Subtraction in GF(p)7

Algorithm 3.  Booth Radix-4 Multiplication12

Algorithm 4.  Fast Reduction Modulo p256 = 2256 − 2224 + 2192 + 296 − 17,13
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Algorithm 5.  Unified Twisted Edward Curve Point Operation15

Algorithm 6.  Double and Add Algorithm for Point Multiplication15

Hardware architecture
High-performance EdCCP requires efficient designing of modular arithmetic, group operation and point 
multiplication units. This research proposes five hardware architectures for modeling an EdCCP, which will be 
elaborated on in this section.

Modular arithmetic unit
Combined modular addition-subtraction
The architecture shown in Fig. 3 starts functioning based on the selected operation (addition or subtraction) that 
must be carried out. Initially, out of two distinct predetermined values, one will be saved in registers depending 
on the operation selected. Then, an adder will perform the addition operation and hold the value. This value will 
be sent to the comparator, which will convert that value into a suitable range based on the selected operation. 
Finally, the outcome will be a 256-bit value for modular addition or subtraction.

Booth radix-4 multiplication unit
The diagram shown in Fig. 4 represents the Booth radix-4 multiplication, which operates following Algorithm 
3. Following the reset operation, appropriate values will be stored in prod-reg, state-reg, Q-reg as well as result-
reg. Subsequently, the values contained within the result-next, prod-next and state-next shall be modified. 
The multiplier as well as multiplicand values are be transferred to the prod-reg register as well as mcand-
reg, respectively, at the time of the IDLE state. Then, an 8X1 multiplexer determines the proper computation 
depending on the result-next register’s three least significant bits (LSBs); this process will continue throughout 
the BUSY state. When the final value is reached by counter, a 512-bit value is generated as the multiplication 
output using 128 Clock Cycles.

Modular reduction unit
The proposed hardware architecture presented in Fig. 5 executes modular reduction operation and has been 
developed using the fast reduction modulo algorithm (refer to Algorithm 4). At the onset of the operation, 
nine values shall be generated utilising the fast reduction modulo algorithm. After that, all values will undergo 
processing through left-shifters, not gates and adders to satisfy the necessary addition operation. The outcome 
of this operation will then be combined with six different pre-defined values. Subsequently, the multiplexers will 
select the appropriate bits based on the values produced by the adder. Finally, the 256-bit result is achieved from 
512-bit input using only one clock cycle.

Modular multiplication unit
Figure 6 illustrates the overall methodology underlying our proposed modular multiplication technique. The 
modular multiplication unit receives two inputs: a 256-bit multiplier as well as a 256-bit multiplicand. Initially, 
the two 256-bit inputs are processed through a Booth Radix-4 multiplication unit, resulting in a 512-bit output. 
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Finally, the outcome of the multiplication module, which yields a 512-bit output, undergoes modular reduction 
architecture to attain a 256-bit output. The complete process of modular multiplication necessitates 129 clock 
cycles, comprising 128 cycles for multiplication and an additional cycle for modular reduction.

Group/point operation unit
Elliptic curve group operations comprise modular adders, subtractors, multipliers and squares, distributed across 
multiple levels to execute point multiplication operations. The group operation module is designed in projective 
coordinates according to the Unified Point Operation algorithm, as mentioned in Algorithm 5. Figure  7 
depicts this unit’s hardware design, which has six successive levels that cost thirteen modular multipliers, one 
modular square operator, two modular additions operators and two modular subtraction operators denoted as 
(13 M + 1S + 4A). The six distinct levels are shown here to visualise the parallelisation that takes place in the overall 
operation. In order to reduce arithmetic operations and latency, the proposed group operation architecture 
is optimised using parallelisation techniques across various levels. In this design, modular multiplication and 
squaring necessitate m/2 + 1 clock cycles, while modular addition as well as subtraction require a single clock 
cycle to complete the operation. Here, m denotes the total count of bits involved per operation. In addition, 
computational complexity of a level is determined by squaring as well as multiplication operations. Levels having 
squaring and multiplication require m/2 + 1 clock cycles, while levels without squaring or multiplication require 

Fig. 3.  The proposed hardware architecture for combined modular addition as well as subtraction.
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Fig. 5.  The proposed hardware architecture for modular reduction.

 

Fig. 4.  The proposed hardware architecture for booth radix-4 multiplication.
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only one cycle to proceed to the following level. Thus, the total clock cycles (CCs) needed for the group operation 
unit is (5 m/2 + 6) CCs. Thus, for 256-bit, the latency (i.e. CCs) for group operation is 646 CCs.

Point multiplication unit
Figure 8 depicts the proposed EdCPM over the prime field using efficient group operations in Jacobian coordinate. 
The double and add algorithm is utilised for completion of the proposed point multiplication scheme, as outlined 
in Algorithm 6. The unified point operation module performs both PD and PA in Jacobian coordinates. The input 
of PA and the output of PD are compared using the comparative unit. The output of EdCPM is defined as k.P, 
while k (key) denotes a private key, P denotes a point within the twisted Edward curve. In EdCPM architecture, 
the input of PD is P (Px, Py, Pz) and the output is Q (Q2x, Q2y, Q2z). The input of PA is P (Px, Py, Pz) + Q 
(Q2x, Q2y, Q2z) and the output is (Q2px, Q2py, Q2pz). The output of the bit patterns of the input key depends 
upon the MUX2 output. The total clock cycles required for EdCPM is computed by: CCEdCPM = (m − 1) 
(CCEdUPO) = (m − 1) (5 m/2 + 6) = (5m2/2 + 7 m/2 − 6). For 256-bit EdCPM, CCEdUPO = 164,730 clock cycles.

Implementation results
This section analyses and reports the post-synthesis performance of the preferred modular arithmetic 
architectures, a point operation unit and a point multiplication unit over GF(p). The proffered EdCC accelerator 
has been materialised utilising Xilinx ISE 14.5 Design Suite, which was synthesised on the Virtex-5 (xc5vl50t-
2ff1136) FPGA platform. The simulations were performed utilising Modelsim and Isim, while the outcomes 
were verified employing the Maple software. On the Virtex-5 FPGA, the maximum frequency of the proposed 
modular arithmetic, point operation and point multiplication modules is 117.809 MHz.

Various multiplication architectures have been designed which is depicted in Table 1, among them Booth 
radix-4 shows the best hardware performance. After that, the best multiplication hardware (Booth radix-4) is 
selected for modular multiplication with the help of our designed modular reduction module. Based on the 
implementation results in Table 1, Booth Radix-4 multiplication with the fast reduction modulo is by far the 
most efficient hardware implementation approach both in terms of optimized area and time having 1290(4%) 
slices, 4915(17%) LUTs, 584(10%) FFs and 2.04 µs delay. All hardware architectures have been implemented on 
Virtex-5 FPGA.

A comparative analysis with other relevant works has been presented, in this section, to demonstrate the 
efficacy of the proposed research. This work employs a unified design approach for modular addition and 
subtraction instead of discrete execution of these operations to minimise hardware resources. The combined 
modular addition and subtraction unit operates within a single clock cycle. Thus, this architecture requires 
only 0.575 ns and 4% of the available slice LUTs for a 256-bit prime field. The proposed modular multiplication 
architecture is developed by merging the Booth Radix-4 multiplication algorithm as well as the fast reduction 
modulo algorithm. This modular multiplication approach utilises 1290 slices (constituting 4% of the total), 

Fig. 6.  The proffered modular multiplication architecture’s block diagram.
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4915 LUTs (17%), and 584 FFs (10%) and incurs a delay of 2.04 µs. The total count of clock cycles necessary 
for conducting the multiplication can be determined as (128 + 1) due to the utilisation of the Booth Radix-4 
multiplication algorithm, which simultaneously processes two (2) bits and the modular reduction operation, 
which necessitates one clock cycle. Consequently, the time required for executing the modular multiplication 
operation calculated to be (15.832  ns × 129), which equals to 2.04 microsecond in Virtex-5 FPGA over GF 
(256). Furthermore, our proposed architecture for the point operation module on the twisted Edward curve 
is based on the unified point operation algorithm. The implementation results reveal that it only takes 3102 
slices (10% of the available slices) for a prime field of 256-bit in Virtex-5 FPGA. The average time of the point 
operation unit is (646 X 8.48 ns) = 5.48 µs at 117.809 MHz frequency, where the rate of throughput of this unit 
is (256/5.48 µs) = 46.72 Mbps. The Edward Curve point multiplication (EdPM) module is designed using the 
high-performance modular arithmetic and point operation unit that utilises the Double and Add algorithm 
for optimal efficiency. The EdPM unit exhibits a latency of 164,730 clock cycles, while it requires 1.4  ms to 
execute single-point multiplication for any 256-bit key with a throughput of 183.38 kbps. Table 2 summarises the 
implementation outcomes of the proffered EdCCP for a 256-bit prime field.

Table 3 presents performance comparisons of our proposed point multiplication (PM) unit and other avant-
garde point multiplication designs over GF(p). Hossain et al., 2016 proposed a PM architecture, adopting a 
Double and Add algorithm that takes 5.26 ms with a corresponding throughput of 48.67 Kbps for executing 
a point multiplication operation over the prime curve p-25619. The proposed accelerator exhibits better 
speed and throughput compared to the one proposed in19. Marzouqi et al.20 put forward an ECC processor 
architecture based on RSD that consumes 397,300 CCs to perform a point multiplication, almost 2.5 times 
greater than our proposed design. Amiet et al.21 designed a PM architecture using Virtex-7 FPGA platform that 
completes a point multiplication in 1.49 ms; however, the CCs requirement of this design is higher (335,360). 
Salman et al.22 engineered a PM scheme with countermeasures to side-channel attacks where the throughput 
rate is 34.57 Kbps. Our design offers better latency and side-channel attack resilience due to utilising a unified 

Fig. 7.  Proposed hardware architecture for unified point operation.
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point operation algorithm than the design recommended in22. The dual field PM architecture reported by Lai 
and Huang23 necessitates 2.66 ms time which is higher than our design. Our proposed PM architecture shows 
better design performance with respect to latency compared with that of the other reported designs24,28,29,33,34. 
The processor documented in research by Hu et al.36 is reconfigurable in terms of various field orders as 
well as immune to the side-channel attacks. In addition, computational costs of the design in36 for point 
multiplication are 610  k clock cycles, whereas our proposed design exhibits lower computational costs of 
164.7 k clock cycles for point multiplication. Its ECPM performance requires 29.84 ms, almost 20 times higher 
than our design. Therefore, our proposed EdCC hardware accelerator will advance the rapid data encryption 
process especially in high-speed wireless communication networks. The implementations in37,38 used Intel 
Agilex, which uses superior technology compared to our Virtex-5. Hence, these implementations can achieve 
higher clock speeds, lower latency and further acceleration through specialised DSP units. Therefore, our 
proposed implementation is to yield better results on the Intel Agilex FPGA platform. Besides, Choi et al. 

Operation Platform Field Size Clock cycles Maximum frequency(MHz) Time Throughput

Modular Multiplication Virtex-5 256 129 117.809 2.04 μs 131.9 Mbps

point Operation Virtex-5 256 646 117.809 5.48 μs 46.72 Mbps

point Multiplication Virtex-5 256 164,730 117.809 1.4 ms 183.38 Kbps

Table 2.  Results of the implementation of the proposed EdCCp module over GF(256).

 

Multiplication approach

Area

Time (µs)Slices LUTs, FFs

Booth Radix-4 1290(4%) 4915(17%), 584(10%) 2.04

Booth Radix-2 2046(7%) 4377(15%), 1087(20%) 4.01

Normal approach 2055(7%) 4646(16%), 1033(18%) 4.07

Moore approach 1280(4%) 3357(11%), 363(8%) 4.01

Table 1.  Overall comparison among our Modular Multiplication Architectures.

 

Fig. 8.  Proposed point multiplication hardware architecture.
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proposed an ECC processor with variable partial product bit38. Their FPGA implementation resource usage 
depends on the selection of partial product bit-width. Both40,41  presented unconventional architectures, 
based on residue number system and double-point multiplier respectively, both of which achieved a very 
high throughput but cost more FPGA resources. In42, the authors proposed a low-resource using ECC, which 
traded off substantial throughput. A pipelined approach was proposed in43, where the authors achieved high 
performance on their Atrix-7 FPGA with field size of 251. However, the resource usage was significantly 
higher compared to the other works.

In terms of latency, our point multiplication module requires only 164,730 clock cycles to perform a 
single-point multiplication, which is significantly lower than many existing designs (e.g.,19–24,28,29,33,34,36). As 
for throughput, our design achieves a throughput of 183.38 kbps, which is higher than most of the compared 
works (e.g.,19,20,22–24,28,29,33,34,36). Considering the area efficiency, our modular multiplication unit uses only 
1290 slices (4% of the total available slices) on the Xilinx Virtex-5 FPGA platform, which is highly efficient 
compared to other designs.

The clock cycles and computation time of our design are quite competitive, ensuring that our design is more 
efficient for modern high-speed wireless communication standards. Although our designs are implemented in 
an earlier FPGA technology (Virtex-5), which has higher power consumption and fewer input/output blocks 
(IoBs), it achieves better outcomes than the other relevant designs.

Conclusions
Within the scope of this research, a high-speed point multiplication architecture for the EdCC hardware 
accelerator has been developed using the Edwards25519 curve in a projective coordinate system. An efficient 
modular multiplier is implemented by adopting Booth Radix-4 Multiplication and Fast modular reduction, 
which necessitates 129 CCs to multiply two 256-bit integers. A new hardware structure for a group operation 
unit using a unified point operation algorithm is proposed that requires 646 CCs to execute a single operation. 
The point multiplication module utilises a double and add always algorithm for faster computation. The 
designs have been employed on Xilinx Virtex-5 FPGA platform, on a 256-bit prime field. It has been observed 
that our proposed accelerator completes a point multiplication operation in 164,730 clock cycles, while the 
processing time is 1.4 ms having a throughput of 183.38 kbps. Our proposed design offers better efficiency in 
both latency and throughput without compromising security. The comprehensive performance analyses infer 
that this EdCC will definitely be a viable option for fast and secured data encryption.

Data availability
All data generated or analysed during this study are included in this published article.
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Design Platform Frequency (MHz) Field size Reported area Latency (CCs) Time (ms) Throughput (Kbps) Area × Time

This work Virtex-5 117.809 256 7.9 K Slices 164.7 K 1.40 183.38 11.06
19 Virtex-5 75.43 256 393 K Slices 397.3 K 5.26 48.67 2067.18
20 Virtex-5 160 256 34.6 K LUTs 361.7 K 2.26 113.25 –
21 Virtex-7 225 256 6.8 K LUTs + 20 MLUTs 335.4 K 1.49 171.76 –
22 Virtex-7 214 256 1.3 K Slices + 2.7 K LUTs + 4 BRAMS 1584.9 K 1.80 34.57 –
23 Virtex-2 94.7 256 41.6 K Slices 252.2 K 2.66 96.56 110.66
24 Virtex-7 177.7 256 8.9 K Slices 262.7 K 1.48 173.20 13.172
27 Virtex-7 168 409 11.1 Slices 21.95 K – – 244
28 Virtex-6 93.23 256 6.6 K Slices 198.6 K 2.13 120.12 14.06
29 Kintex-7 156.3 256 6.5 K Slices 270.1 K 1.73 147.9 11.25
33 Virtex-7 149.23 256 7.2 K Slices 261.7 K 1.75 146 12.6
34 Virtex-7 124.2 224 5.4 K Slices 464.1 K 3.73 68.52 20.14
36 Virtex-4 20.44 256 6.4 K Slices 610.0 K 29.84 8.58 54.528
37 Agilex 203.96 256 5.4 K Slices + 15.6 K LUTs + 13.2 K FF + 128 DSP units 45.3 K 0.22 – –
38 Agilex 200 256 – 5652 – – –
39 Virtex-6 121.6–125.1 256 – – 0.30–2.94 – 18.6 k – 8.1 k
40 Virtex-7 86.6 256 12.1 k LUTs 52.8 K 0.61 420 7.4
41 Virtex-7 120 256 16,907 LUTs + 4.2 K slices 23 K 0.188 – –
42 Virtex-5 76.31 256 8.7 K slices 300 K 3.93 65.14 34.25
43 Atrix-7 289 251 6827 slices + 24,778 LUTs 3263 11.29 µs – 0.077

Table 3.  Comparison of the proffered PM unit with other designs over GF(256).
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