
CachePrune: Neural-Based Attribution Defense Against Indirect Prompt
Injection Attacks

Rui Wang1 Junda Wu2 Yu Xia2 Tong Yu1 Ruiyi Zhang1 Ryan Rossi1
Lina Yao3,4 Julian McAuley2

1Adobe Research 2University of California San Diego
3University of New South Wales 4CSIRO’s Data61

{ruiwan,tyu,ruizhang,ryrossi}@adobe.com
{juw069,yux078,jmcauley}@ucsd.edu, lina.yao@unsw.edu.au

Abstract

Large Language Models (LLMs) are identi-
fied as being susceptible to indirect prompt
injection attack, where the model undesir-
ably deviates from user-provided instruc-
tions by executing tasks injected in the
prompt context. This vulnerability stems
from LLMs’ inability to distinguish be-
tween data and instructions within a prompt.
In this paper, we propose CachePrune that
defends against this attack by identifying
and pruning task-triggering neurons from
the KV cache of the input prompt con-
text. By pruning such neurons, we encour-
age the LLM to treat the text spans of in-
put prompt context as only pure data, in-
stead of any indicator of instruction follow-
ing. These neurons are identified via fea-
ture attribution with a loss function induced
from an upperbound of the Direct Prefer-
ence Optimization (DPO) objective. We
show that such a loss function enables ef-
fective feature attribution with only a few
samples. We further improve on the qual-
ity of feature attribution, by exploiting an
observed triggering effect in instruction fol-
lowing. Our approach does not impose any
formatting on the original prompt or intro-
duce extra test-time LLM calls. Experi-
ments show that CachePrune significantly
reduces attack success rates without com-
promising the response quality. Note: This
paper aims to defend against indirect prompt
injection attacks, with the goal of develop-
ing more secure and robust AI systems.

1 Introduction

The rapid advancements in Large Language Mod-
els (LLMs) (Achiam et al., 2023; Touvron et al.,
2023) have revolutionized natural language pro-
cessing (NLP) for a wide range of tasks (Becker
et al., 2024; Upadhyay et al., 2024). However,
these models exhibit a critical vulnerability on in-
direct prompt injection attacks (Yi et al., 2023;

Figure 1: Illustration of indirect prompt injection
attack with LLMs.

Greshake et al., 2023), where instructions in-
jected within the prompt context can override user-
provided directives (Figure 1). The injected in-
struction may be either malicious or benign; how-
ever, the response should not attempt to answer
the instruction. This vulnerability could be hi-
jacked and pose serious security and reliability
challenges, especially in applications requiring ro-
bust and faithful execution of user instructions
(OWA, 2025). Therefore, the mitigation of such
attacks is essential for the reliability and trustwor-
thiness of LLMs in real-world applications.

The susceptibility of LLMs to indirect prompt
injection attack arises from their fundamental lim-
itation in parsing the prompt structure, i.e., un-
able to distinguish between data and instructions
within a prompt (Zverev et al., 2024; Chen et al.,
2024a). In defending against such attacks, re-
training the LLMs (Chen et al., 2024a; Piet et al.,
2024; Chen et al., 2024b) to adhere to the prompt
structure can be computationally prohibitive. Al-

ar
X

iv
:2

50
4.

21
22

8v
1

 [
cs

.C
R

]
 2

9
A

pr
 2

02
5

ternatively, existing mitigation strategies focus on
imposing rigid prompt formatting with reminder
instructions (Wu et al., 2023; Hines et al., 2024) or
implementing supplementary test-time workflows
(Wang et al., 2024; Jia et al., 2024), so that the user
requests are prioritized in response generation.
Such modifications often result in limited defense
effects or incurring supplementary test-time com-
putation with extra LLM calls for each response
processed. Additionally, they could potentially in-
terfere with the intended user instructions, thereby
undermining the quality of the model’s output.
These limitations highlight the need for alterna-
tive and efficient solutions that mitigate the attacks
while not overly altering the original prompt and
its response generation workflow.

In this paper, we focus on the source of LLMs’
vulnerability, i.e., the model’s confusion between
user-specified context (data) and instruction. We
start our approach with a fundamental question:
What makes the difference between data and in-
struction from the LLMs’ perspective? Different
from the user, the LLM has its own way of telling
between data and instructions. Specifically, a text
span is identified as an instruction by the LLM if
the model responds to it by giving a solution, while
it is identified as data if the model only leverages
its content as supportive information. The indirect
prompt injection attack occurs when such defini-
tion misaligns with the user-defined spans of con-
text and instruction. To solve this misalignment,
we propose CachePrune that 1) identifies neurons
that can make a difference between data and in-
struction for the LLM, and 2) prune to enforce
such difference between the user-defined context
and instruction, so the context span is only treated
as supportive information instead of any indicator
of instruction following. Specifically, we leverage
feature attribution for 1) that attributes the model
generations back to the neurons in the Key-Value
(KV) cache of the prompt context. Notably, our
analysis reveals that the execution of injected in-
structions relies on the activating of only a small
subset of neurons (e.g., 0.5%). For 2), we prune
such neurons on the span of input context from
the prompt KV cache. In this way, we enforce the
LLM to interprete the input context exclusively as
pure data, thus mitigating the risk of responding to
its injected instructions.

Our feature attribution relies on a proposed
loss function induced from an upperbound of the

Direct Preference Optimization (DPO) (Rafailov
et al., 2024) objective. We show that it is sam-
ple efficiency that enables effective feature attri-
bution with only a few samples. We further im-
prove on the quality of feature attribution leverag-
ing an observed trigerring effect in the instruction
following. Notably, our proposed CachePrune
is lightweight, requiring only a mask of identi-
fied neurons for pruning, without introducing extra
test-time computation or LLM calls per response.
It is complementary to the existing defensive ap-
proaches that modify the original prompt or work-
flow of response generation.

To summarize, our contributions are as follows:

• We propose CachePrune that mitigates indi-
rect prompt injection attack, by identifying
and pruning neurons in the context KV cache
that trigger instruction following. This en-
forces the LLM to treat the input context as
pure data, thus preventing the LLM from re-
sponding to the injected instruction.

• In identifying these neurons, we propose a
feature attribution mechanism with a loss
function that enables effective attribution
with only few samples. We also leverage an
observed triggering mechanism that further
improves the quality of feature attribution.

• We demonstrate through experiments that our
approach significantly reduces the success
rates of prompt injection attacks while not
compromising the response quality.

2 CachePrune

2.1 Preliminary
Prompting LLMs: Let x = [xt]

T
t=1 ∼ X be an

input prompt with T tokens, consisting of the user-
specified instruction and its context. pθ(·|x) is the
output probability with an LLM of L layers pa-
rameterized by θ. The LLM is expected to answer
the user-specified instruction, leveraging the con-
text as data that provides supporting information.
Here, the data may not necessarily be numeric, but
a text span of supporting information that helps
solve the instruction.

State-of-the-art LLMs generally adopt the
Transformer (Waswani et al., 2017) architecture,
where each token xt is encoded by layer l into a
key vector kt,l ∈ RD and a value vector vt,l ∈
RD. Let Hx = [ht]

T
t=1 be the KV cache of

prompt x, where ht = [kt,1; vt,1; · · · ; kt,L; vt,L] ∈
R2×D×L is the concatenation of key and value
vectors from all layers in step t. For a length-K
response y = [yt]

K
t=1 ∈ Y , yt is generated with,

pθ(yt|x, y<t) = p(yt|Hx, y<t, θ) (1)

where y<t denotes the response tokens up to step
t. Hx is independent of the response, and thus is
reused with different yt.
Indirect Prompt Injection Attack: In an indirect
prompt injection attack, the prompt context is in-
jected with instructions from third party. The in-
jected instructions can be malicious or not, but are
not intended to be responded by the LLM. As il-
lustrated in Figure 1, we define yp ∼ Yp

x as a poi-
soned response of x, if yp deviates from the user
instruction but responds to the injected ones from
context. Similarly, we define yc ∼ Yc

x as a clean
response of x if yc ignores the injected instruc-
tions. In evaluation, we call an LLM being sub-
jected to indirect prompt injection attack with x if,

y∗ = argmaxy pθ(y|x) ∈ |Yp
x| (2)

| · | is the support of a distribution. y∗ can be ap-
proximated with greedy sampling.

Defending against an indirect prompt injection
attack can be characterized as promoting yc over
yp in the response generation. In this paper, we
achieve it by identifying and pruning neurons of
the KV Cache that trigger the LLM responding to
the injected instructions in context. Our approach
that prunes on the KV Cache is compatible with
context caching (gem, 2025; ope, 2025), e.g., en-
abling efficient prompting when there are multiple
questions/instructions with the same cached con-
text. For such cases, the KV-Cache of the context
or prompts only needs to be pruned once, then reli-
ably saved for future LLM calls without worrying
about being attacked by its injections.

2.2 Defending Against Indirect Prompt
Injection Attack

To defend against indirect prompt injection at-
tacks, our approach leverages the LLM’s inher-
ent ability to distinguish between data and instruc-
tions, enforcing this distinction so the LLM can
recognize the boundary between user-provided
context and instruction.

Specifically, as discussed in Section 1, an input
text span is considered data if the LLM leverages

it solely as supporting information without follow-
ing it as an instruction. Therefore, we characterize
the distinction between data and instruction as fea-
tures in the prompt KV cache that trigger the LLM
to react on injected instructions. We identify these
features through feature attribution and selectively
prune them from the input context span, ensuring
that the LLM interprets the context as pure data.
By enforcing the LLM’s awareness on the bound-
ary between input context and instructions, this
approach enhances the model’s resilience against
prompt injection attacks.

Feature Attribution. We aim at identifying key
features within the prompt’s KV cache that con-
tribute to the observed difference in the LLM’s
behavior, i.e., when interpreting the input con-
text as either pure data or as instructions. Let
Lattr : Yc

x × Yp
x × X → R be an attribution loss

function that captures such difference in LLM out-
puts. Specifically, we have a larger Lattr indicat-
ing the LLM mistakenly treats the input context
as instructions, i.e., by preferring a poisoned re-
sponse yp over the clean one yc. For clarity, we
defer the details of the loss function to Section 2.3.

In attributing Lattr to features in the KV cache,
we follow Shrikumar et al. (2017); Yang et al.
(2022) that score each feature by its contribution
to Lattr(Yc

x,Y
p
x;X). Let hit be the ith feature of

the key-value vector ht, which is scored by,

ait = hit ×
∂Lattr(Yc

x,Y
p
x;X)

∂hit
(3)

where ait is the attribution score of hit. It is
straightforward to see that hit with larger ait sug-
gests a more significant contribution to Lattr, thus
is more indicative of the model’s interpretation on
data vs. instruction over the input context.

In our approach, we perform feature attribution
solely on the input context span, as injected in-
structions are embedded exclusively within the in-
put context. Let cs and ce be the input token in-
dex that marks the start and end of user-specified
context, respectively. We denote A = [at]

ce
t=cs be

our attribution matrix and at = [ait]
2×D×L
i=1 is the

attribution vector for ht. In the experiments, we
compute A with N = 8 samples. ht>ce will be
generated with the pruned [ht]

ce
t=cs during testing.

Aggregation. Note that hit with the same dimen-
sion i originate from the same neuron. Thus, we
aggregate attribution scores for each neuron by

Figure 2: Illustration of our workflow of defending against indirect prompt injection.

taking the maximum value across time steps,

ai,neu = max
t

ait, i ∈ [1, · · · , 2×D × L] (4)

where aneui is the aggregated score of the neuron
corresponding to the ith dimension. We take the
maximum for each neuron to emphasize its contri-
bution to outputs when the neuron is activated.

A neuron with large ai,neu is more influential
on the LLM’s output, i.e., either treating the con-
text as pure data or reacting on its injected instruc-
tions. This answers the question raised in Section
1: The activation of such neurons makes a differ-
ence on the LLM’s view over data vs instruction,
by triggering the LLM to respond to the injected
instruction in context.

Pruning. In our approach, we leverage the iden-
tified neurons with large ai,neu to enforce the
boundary between user-specified context and in-
struction. On way to achieve this is to prune the
top p% of neurons with the largest value of ai,neu.
However, this would result in response with low
quality since our Lattr is only about poison vs.
clean, without considering the response quality.

To maintain the response quality after pruning,
we only prune from a subset of neurons Φ up to
p% of all the neurons. We defer the definition of
Φ to Section 2.3. This pruning effectively acts as
a mask over the feature dimensions. Let τ be a
threshold of pruning based on ai,neu,

τ = supτ∈RPr(ai,neu ≥ τ, i ∈ Φ) ≤ p (5)

Pr is uniform over all neurons. Each dimension i
is masked with mi that,

mi = 1− α · 1{ai,neu ≥ τ, i ∈ Φ} (6)

where 1 is the indicator function with α defaults as
1. mi reflects the LLM’s own recognition of what
differentiates pure data from instructions. Apply-
ing this mask over the context enforce the LLM
interprete the context solely as data, thus mitigat-
ing indirect prompt injection attack. We abstract
our workflow in Figure 2.

2.3 The Attribution Loss
According to Section 2.2, the feature attribution is
guided by an attribution loss Lattr, which quanti-
fies the observed difference between interpreting
the input context as either pure data or instruc-
tions. This can be evaluated as an objective of
preference optimization, among which the most
common and effective one is the Direct Preference
Optimization (DPO) (Rafailov et al., 2024).In the
context of indirect prompt injection, the DPO ob-
jective LDPO can be defined as,

LDPO = E(x,yc,yp)∼D[log σ(β log
pθ(y

p|x)
pref (yp|x)

− β log
pθ(y

c|x)
pref (yc|x)

)].

(7)

where β > 0, D = {X ,Yc
x,Y

p
x} is the perference

optimization dataset. σ(·) is the sigmoid func-
tion. An accurate estimation of LDPO will ideally
capture the difference between the LLM’s percep-
tion on data vs. instruction. Specifically, a higher
LDPO indicates the context being mistakenly per-
ceived as instruction, and vice-versa.

However, the LLM’s output complexity grows
exponentially with the response length. As a re-
sult, it requires substantial sampling and compu-
tation to estimate the expectation in (7) with low
variance. In this paper, we instead derive our loss
function from an upperbound of LDPO.
Theorem 1. Given the input prompt x ∼ X , let
yc ∼ Yc

x and yp ∼ Yp
x denotes the clean and poi-

soned responses to x, respectively. The preference
optimization with LDPO can be upperbounded by
Lu
DPO, s.t.,

Lu
DPO = Ex∼X (log

pθ(y ∈ |Yp
x| |x)

pθ(y ∈ |Yc
x| |x)

+H(Yc
x|x)−H(Yp

x|x)) + Cref,D
(8)

where | · | is the support of a distribution. Cref,D
is a constant to θ that is functioned by D and the

DPO reference model ref . H(Yc
x|x) and H(Yp

x|x)
are the entropy of clean and poisoned responses
given x. pθ(y ∈ |Yp

x| |x) is the gross probability of
generating poisoned responses from x, and similar
to pθ(y ∈ |Yc

x| |x). The proof is in Appendix A.
Lu
DPO in Theorem 1 provides us some insights

on preference optimization in the context of an in-
direct prompt injection attack. Specifically, the
objective of preference optimization can be cate-
gorized into the following two aspects:

• (Probability) pθ(y ∈ |Yp
x| |x) vs. pθ(y ∈

|Yc
x| |x). The first expectation term in (8)

promotes the generation of clean responses
(|Yc

x|), while suppressing the poisoned re-
sponses (|Yp

x|).

• (Uniformity) H(Yc
x|x) vs. H(Yp

x|x). From
the two entropy terms in (8), the preference
optimization also modifies the response uni-
formity by 1) maximizing the entropy of poi-
soned responses, so not a single poisoned re-
sponse gets a large probability. 2) minimiz-
ing the entropy of clean responses, so the
model can generate a few high-quality clean
responses with large likelihood.

Especially, the clean and poison probabilities
pθ(y ∈ |Yp/c

x | |x) are not sufficient to capture
the objective of preference optimization. In or-
der to minimize (8), we should also attend to
the uniformity with H(Yp/c

x |x). This requires
computing the expectation over the generated re-
sponses,which is sample inefficient due to the
complexity of the space of generated responses.
Here, we delegate the entropy terms with the most
probable poison and clean responses, denoted as
y
p/c,∗
x = argmax

y∈|Yp/c
x |pθ(y|x). Intuitively, given

the gross probability pθ(y ∈ |Yp/c
x | |x), H(Yp/c

x |x)
should be generally lowered if yp/c,∗x gets higher
probability, vice versa. Therefore, we define an
attribution loss that is inspired from (8), i.e.,

Lattr
full = Ex∼X (pθ(y

p,∗
x |x)− pθ(y

c,∗
x |x)) (9)

where full denotes feature attribution with all re-
sponse tokens, which will be discussed later.

We can observe that (9) captures both the ob-
jectives of probability and uniformity in (8): a)
Minimizing (9) promotes pθ(y ∈ |Yc

x| |x), while
suppressing pθ(y ∈ |Yp

x| |x). b) Given the gross
probability pθ(y ∈ |Yp/c

x | |x), we have

• ↓pθ(yp,∗x |x) ⇒↑H(Yp
x|x), which corresponds

to the above discussed uniformity 1).

• ↑ pθ(y
c,∗
x |x) ⇒↓ H(Yc

x|x), which fulfills the
above uniformity 2).

Formally, the association between (8) and (9) can
be described with the following Lemma.

Lemma 1. Lattr
full that is ranged between [−1, 1] is

closely associated with Lu
DPO by,

lim
Lattr
full→1

Lu
DPO = +∞ (10)

lim
Lattr
full→−1

Lu
DPO = −∞ (11)

We can obseve that Lemma 1 will no longer
hold with only few samples, if we follow (7)
that replace yp/c,∗ with yp/c in Lattr

full. This sug-
gests to sample with the most probable responses
for feature attribution. In experiemnt, we sam-
ple yp,∗ with greedy decoding when pθ(y

p,∗|x) >
pθ(y

c,∗|x), then pθ(y
c,∗|x) is approximated also

using greegy decoding but with injected instruc-
tion removed. Conversely, we sample yc,∗ with
greedy decoding when pθ(y

p,∗|x) <= pθ(y
c,∗|x).

In this case, yp,∗ is approximated by concatenat-
ing the injected instruction with user queries, so
that the model cannot ignore the injected instruc-
tion. Please refer to Figure 6 for details.

The subset Φ. With (9), we can find that the attri-
bution score (3) can be decomposed into,

ait = hit ×
∂Ex pθ(y

p,∗
x |x)

∂hit︸ ︷︷ ︸
ait,p

−hit ×
∂Ex pθ(y

c,∗
x |x)

∂hit︸ ︷︷ ︸
ait,c

(12)
ait,p and ait,c are the scores for poisoned and clean
contributions. Correspondinglly, we can have
ai,neup = maxt a

i
t,p and ai,neup = maxt a

i
t,c. We

want to avoid pruning on neurons with significant
clean contribution, so that the pruned LLM can
generate clean responses that address the user in-
struction. Let ai,normp = ai,neup /

∑
i′ a

i′,neu
p and

ai,normc = ai,neuc /
∑

i′ a
i′,neu
c be the normalized

contribution scores, we have Φ defined by,

Φ = {i |ai,normp > ai,normc ,

|ai,normp − ai,normc | > 2 ·min(|ai,normp |, |ai,normc |)}
(13)

0 2 4 6 8
Step t

300

200

100

0

100

200

300

400

500
Ra

nk
 o

f T
ok

en
 P

re
di

ct
io

n y *
c : Clean Response

y *
p : Posioned Response

(a) clean greedy (Mistral)

0 2 4 6 8
Step t

2

0

2

4

6

8

Ra
nk

 o
f T

ok
en

 P
re

di
ct

io
n

(b) clean greedy (LLama3)

0 2 4 6 8
Step t

40

20

0

20

40

60

80

100

Ra
nk

 o
f T

ok
en

 P
re

di
ct

io
n

(c) poison greedy (Mistral)

0 2 4 6 8
Step t

5.0

2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0
Ra

nk
 of

 To
ke

n P
red

ict
ion

(d) poison greedy (LLama3)

Figure 3: The rank of predicted response to-
kens. Taking (a) as an example, "clean greedy"
means the response from greedy decoding is clean.
Therefore, the tokens from y∗c are always ranked
zero. In this case, a clean response can be trig-
gered with only one or two tokens. Note that we
assume yp,∗x starts with answering the injected in-
structions. We do not find such effect when the
injected instructions are answer in the end.

2.4 The Triggering Effect

Feature attribution with Lattr
full in (9) relies on the

probabilities for all the tokens in yp,∗x and yc,∗x .
However, we show that not all the response tokens
are necessary for feature attribution. Specifically,
we find that the same input context can be treated
as data or instruction by LLMs, depending on the
generation of only few trigger tokens, e.g., Figure
7, that precede the model response. We call this
the triggering effect.

To illustrate, we plot in Figure 3 the prediction
rank of tokens from y

p/c,∗
x in the LLM’s predic-

tion. Formally, the rank for token y
p/c,∗
x,t is,

r(yp,∗x,t) =
∑
v∈V

1{pθ(v|x, yp,∗x,<t) > pθ(y
p,∗
x,t |x, y

p,∗
x,<t)}

(14)
where V is the set of vocabulary. Figure 3 shows
how easily the LLM can switch between generat-
ing clean or poisoned outputs, triggered by only
one or two tokens.

Motivated by Figure 3, we only perform feature
attribution with the first k tokens in the response,
which has been enough to make the difference be-
tween the clean and poisoned responses. We de-

fine the final attribution loss function as,

Lattr = Ex∼X (pθ(y
p,∗
x,<k+1|x)− pθ(y

c,∗
x,<k+1|x))

(15)

where we default with k = 1. In experiments, we
show that the expectation term in (15) can be es-
timated with only N = 8 samples. In Figure 3,
we use yp,∗x that starts with answering the injected
instruction. Thus, in computing (15) for feature
attribution, we construct such yp,∗x by adding "An-
swer this at the end." before the user query. Note
that we do not assume our testing data contains
such instruction.

3 Related Works

Indirect Prompt Injection Attack Different from
the direct prompt injection attack (Perez and
Ribeiro, 2022; Yu et al., 2023) which straightfor-
wardly inserts undesirable content into the LLM’s
prompt, the indirect prompt injection attack occurs
when the input context is injected with third-party
instructions (Liu et al., 2023; Zhan et al., 2024;
Wu et al., 2024; Liu et al., 2024). These instruc-
tions can be malicious or not, but not intended to
be responded to by the LLM. The success of indi-
rect prompt inject exploits the LLM’s inability to
distinguish between the data and instruction (Gre-
shake et al., 2023), i.e., it happens when the LLM
fails to leverage the context as pure data but re-
sponding to its instructions.
Defending Against Prompt Injection Attack
Previous defenses against prompt injection attacks
can be categorized into training-based and testing-
based. For the training-based, the LLM that is
identified as subject to indirect prompt injection
attack will be trained with extra SFT (Chen et al.,
2024a) or preference data (Chen et al., 2024b) that
inform the model on input prompt structure over
context vs. instructions. For testing based, ex-
isting approaches either modify on the original
prompt with prompt engineering (Wu et al., 2023;
Hines et al., 2024), or design complex workflows
(Wang et al., 2024; Jia et al., 2024) that introduce
extra computations or LLM calls. In this paper,
we mitigate the attack with a focus on the founda-
tional problem of the discretion between data and
instructions. Our CachePrune is compatible with
the existing approaches, while not modifying the
prompt or introducing extra two time LLM calls.

Model Method
SQuAD HotpotQA Wildchat

ASR F1(clean) F1 (attack) ASR F1(clean) F1 (attack) ASR GPT-Score

LLama3-8B

Vanilla 27.86 28.20 19.56 69.01 16.24 5.12 14.50 3.32
Delimiting 23.60 29.34 20.56 77.24 17.06 6.34 16.00 3.12

Datamarking 13.25 28.56 21.45 26.23 16.16 10.34 7.50 2.98
Encode_Base64 6.56 13.34 11.56 3.05 4.24 3.19 5.50 1.52

CachePrune 7.44 ± 0.22 28.68 ± 0.30 22.84± 0.18 15.23 ± 1.56 16.21 ± 0.61 10.97 ± 0.35 2.00 ± 0.41 3.32 ± 0.10

Mistral-7B

Vanilla 9.01 22.78 19.04 25.60 14.10 10.12 2.00 3.88
Delimiting 5.28 24.38 20.07 17.02 14.34 12.01 0.5 3.93

Datamarking 6.37 23.56 21.34 6.26 14.56 12.94 1.50 3.91
Encode_Base64 4.78 15.32 9.56 8.68 5.23 3.67 0.60 1.24

CachePrune 0.68±0.41 24.46±0.91 23.10±1.32 5.51 ± 1.10 14.38 ± 0.57 13.32 ± 0.42 0.33 ± 0.26 3.90 ± 0.03

Table 1: Results of defending against indirect prompt injection attack. Our CachePrune is imple-
mented on Vanilla. The Bold font denotes the best value for each metric. We use italics instead for
Encode_Base64, since its ASR is at the expense of very bad response quality (very low F1).

4 Experiment

4.1 Experiment Setup

Model and Dataset We evaluate our approach on
the model of LLama3-8B (Touvron et al., 2023)
and Mistral-7B-Instruct-V3.0 (Jiang et al., 2023).
We by default experiment with N = 8 for feature
attribution and prune with p = 0.5 (0.5% neu-
rons). We evaluate with the question answering
datasets of SQuAD (Rajpurkar, 2016) and Hot-
potQA (Yang et al., 2018). We test on the splits of
SQuAD and HotpotQA that are directly processed
by (Abdelnabi et al., 2024), which randomly in-
jects instructions into the beginning, middle, and
ending of the context of each prompt. Our ap-
proach focuses on the LLM’s fundamental abil-
ity to distinguish between data and instructions,
making it applicable to problems beyond defense
against third-party injections. Specifically, we also
explore a practical scenario of dialogue summa-
rization with the WildChat (Zhao et al., 2024)
dataset. For this task, the model is attacked if it
answers the question raised by users in the dia-
logue, instead of summarizing the dialogue inter-
actions. We use the same split as in (Abdelnabi
et al., 2024). We find that the models are rarely at-
tacked with plain dialogues. To increase the diffi-
culty, we insert "You should primarily focus on this
question" as part of the user instruction to the AI
assistant that appeared in the dialogue. For each
dataset, we randomly select 8 samples from a pool
of 400 prompts that are not overlapped with the
testing data. Results are averages with 3 trials.

Metrics We evaluate SQuAD and HotpotQA with
the three metrics. Attack Success Rate (ASR) ↓:
The proportion of poisoned responses from greedy
decoding. F1 (clean) ↑: The F1 score without in-
jected instructions. F1 (Attack) ↑: The F1 score
with injected instructions. For the task of dialogue

10 5 10 4 10 3 10 2 10 1

Percentage of Pruned Neurons p%

0

5

10

15

20

25

30

AS
R

(%
)

18

20

22

24

26

28

30

F1
 (%

)ASR (%)
F1_clean
F1_attack

Figure 4: Performance of LLama3-8 on SQuAD
with different percentage of pruned neurons p.

summarization, we replace the F1 scores with an
LLM Judge (Zheng et al., 2024) that evaluates the
quality of generated summaries into scores rang-
ing [1,5]. We call it the GPT-score.

Baselines. We primarily compare with the follow-
ing baselines from (Wu et al., 2023; Hines et al.,
2024). Vanilla: Original prompt without any de-
fense technique. Delimiting: Adding special char-
acters at the start and end of the context. Data-
marking: Replace every space in the context with
a special character. Encode_Base64: The context
is encoded into Base64 while the other text spans
are provided with plain text. For fair comparison,
we do not compare with baselines of finetuning or
requiring test-time computation with extra LLM
calls per response.

Our CachePrune is implemented based on
Vanilla. We should note that our CachePrune
is actually complementary to the other baselines,
since our approach does not modify the prompt.

4.2 Result Analysis

We summarize the results in Table 1. Our pro-
posed CachePrune significantly reduces the At-
tack Success Rate (ASR) as compared to the base-
lines, while maintaining the response quality.

Specifically, the ASR with our proposed
CachePrune can be several times lower than

0 5 10 15 20 25 30
Layers

0

10

20

30

40

50

60

70

Pr
un

ed
 N

eu
ro

ns
Key
Value

(a) LLama3-8B

0 5 10 15 20 25 30
Layers

0

20

40

60

80

100

Pr

un
ed

 N
eu

ro
ns

Key
Value

(b) Mistral-7B
Figure 5: Distribution of the pruned neurons
across different layers on the SQuAD dataset.

ASR F1 (clean) F1 (attack)

k=1 7.44 ± 0.22 28.68 ± 0.30 22.84 ± 0.49
k=2 5.57 ± 0.30 26.03 ± 0.28 22.47 ± 0.37
k=4 10.77 ± 0.45 24.71 ± 0.37 19.29 ± 0.33
Lattr
full 14.81 ± 0.59 25.63 ± 0.39 19.78 ± 0.55

Table 2: Performance of LLama3-8b on SQuAD
with different k. Lattr

full means we attribute with all
the tokens in the response.

Vanilla, Delimiting, and Datamarking. The
Encode_Base64 yields ASR that is comparable to
CachePrune, but at the expense of very low F1
scores. We reckon that this is because the modifi-
cation on context with Encode_Base64 is too com-
plex for our LLMs, resulting in the model under-
standing the context. This highlights a deficiency
of defending with prompt engineering, i.e., the
manually designed complex marking on the input
context may increase the difficulty for the LLM to
comprehend the context information. On the con-
trary, our approach leverage the LLMs’ perspec-
tive on the difference between data and instruc-
tion, instead of relying on complex human engi-
neering. Additionally, we can find that the score
of F1 (attack) is generally lower than F1 (clean),
suggesting that responding to the injected instruc-
tions could limit the LLMs’ ability to solve the
user-specified ones.

In Figure 5, we plot the distribution of pruned
neurons across layers. It can be observed that the
neurons that are indicative of the data vs instruc-
tion concentrate in the middle layers of the LLM.
This is aligned with previous studies, e.g., Huang
et al. (2024), showing that the middle layers are
more capable of capturing abstract and complex
concepts. Additionally, it is interesting to find that
there are more key neurons being pruned in layers
of LLama3-8b, indicating that the LLama model is
trained to perceive instructions with the key vec-
tors. In comparison, the Mistral model is more
balanced with keys and values in distinguishing
between the concepts of data vs. instructions. In

ASR F1 (clean) F1 (attack)

α=1.5 6.40 ± 0.32 26.71 ± 0.53 20.22 ± 0.56
α=1.0 7.44 ± 0.22 28.68 ± 0.30 22.84 ± 0.49
α=0.5 10.77 ± 0.61 28.33 ± 0.40 21.29 ± 0.61
α=0.3 13.50 ± 0.70 28.91 ± 0.37 21.78 ± 0.43

Table 3: Performance of LLama3-8b on SQuAD
with differen values of α.

ASR F1 (clean) F1 (attack)

Vanilla Code 17.5 29.01 22.56
Code → Code 1.77 ± 0.13 31.38 ±1.22 24.30 ± 0.65
Text → Code 3.20 ± 0.53 32.20 ± 1.08 25.87 ± 0.82
Vanilla Text 45.15 26.96 12.35
Text → Text 9.23 ± 0.39 27.33 ± 1.45 21.39 ± 1.13
Code → Text 16.9 ± 1.25 26.57 ± 0.76 20.21 ±0.42

Table 4: Transferring the mask from feature attri-
bution between code-based and text-based attack.

Figure 5, we plot the model performance with the
prune ratio p. It can be observed that the prun-
ing not necessarily decrease the F1 (clean). This
could because the masking on context improves
the LLM’s undersdanding of the prompt structure
(context vs instruction).

In Table 2, we list the performance of LLama3-
8B on SQuAD, with different values of k. It sug-
gests that the earlier tokens in the generation of the
response are more indicative of the model’s deci-
sion on data vs. instruction. Table 3 shows the
performance with the ratio of masking α. This
shows that our identified neurons are indeed re-
flects the model’s own definition of data vs. in-
struction, with lower ASR corresponding to larger
degree of masking (α ↑). In Table 4, we show
with SQUaD that the mask learn from text/code-
based attack can be effectively transferred to de-
fend code/text-based attack. We inject on SQuAD
context with code-based attack from Chaudhary
(2023) and text-based attack from Ji et al. (2023).

5 Discussion

We presented a lightweight and efficient approach
to mitigate the indirect prompt injection attack. By
identifying and neutralizing task-triggering neu-
rons in the key-value (KV) cache, our approach
enforces the model treat the input context as solely
supportive data. Experimental results demonstrate
that CachePrune significantly reduces the ASR
without compromising output quality.

Note: The goal of our paper is to develop safer
and more trustworthy AI systems that are resilient
to indirect prompt injection attacks.

References

2025. gemin-cc. http://ai.google.dev/
gemini-api/docs/caching?lang=
python.

2025. openai-cc. https://openai.com/
index/api-prompt-caching/.

2025. Owasp. https://genai.owasp.
org/.

Sahar Abdelnabi, Aideen Fay, Giovanni Cheru-
bin, Ahmed Salem, Mario Fritz, and Andrew
Paverd. 2024. Are you still on track!? catching
llm task drift with activations. arXiv preprint
arXiv:2406.00799.

Josh Achiam, Steven Adler, Sandhini Agar-
wal, Lama Ahmad, Ilge Akkaya, Floren-
cia Leoni Aleman, Diogo Almeida, Janko Al-
tenschmidt, Sam Altman, Shyamal Anadkat,
et al. 2023. Gpt-4 technical report. arXiv
preprint arXiv:2303.08774.

Jonas Becker, Jan Philip Wahle, Bela Gipp, and
Terry Ruas. 2024. Text generation: A system-
atic literature review of tasks, evaluation, and
challenges. arXiv preprint arXiv:2405.15604.

Sahil Chaudhary. 2023. Code alpaca: An
instruction-following llama model for code
generation. https://github.com/
sahil280114/codealpaca.

Sizhe Chen, Julien Piet, Chawin Sitawarin,
and David Wagner. 2024a. Struq: Defend-
ing against prompt injection with structured
queries. arXiv preprint arXiv:2402.06363.

Sizhe Chen, Arman Zharmagambetov, Saeed
Mahloujifar, Kamalika Chaudhuri, and Chuan
Guo. 2024b. Aligning llms to be robust
against prompt injection. arXiv preprint
arXiv:2410.05451.

Kai Greshake, Sahar Abdelnabi, Shailesh Mishra,
Christoph Endres, Thorsten Holz, and Mario
Fritz. 2023. Not what you’ve signed up for:
Compromising real-world llm-integrated appli-
cations with indirect prompt injection. In Pro-
ceedings of the 16th ACM Workshop on Artifi-
cial Intelligence and Security, pages 79–90.

Keegan Hines, Gary Lopez, Matthew Hall, Fed-
erico Zarfati, Yonatan Zunger, and Emre Kici-
man. 2024. Defending against indirect prompt
injection attacks with spotlighting. arXiv
preprint arXiv:2403.14720.

Chengkai Huang, Kaige Xie, Rui Wang, Tong
Yu, and Lina Yao. 2024. Learn when (not)
to trust language models: A privacy-centric
adaptive model-aware approach. arXiv preprint
arXiv:2404.03514.

Jiaming Ji, Mickel Liu, Josef Dai, Xuehai Pan,
Chi Zhang, Ce Bian, Boyuan Chen, Ruiyang
Sun, Yizhou Wang, and Yaodong Yang. 2023.
Beavertails: Towards improved safety align-
ment of llm via a human-preference dataset.
Advances in Neural Information Processing
Systems, 36:24678–24704.

Feiran Jia, Tong Wu, Xin Qin, and Anna Squic-
ciarini. 2024. The task shield: Enforc-
ing task alignment to defend against indirect
prompt injection in llm agents. arXiv preprint
arXiv:2412.16682.

Albert Q Jiang, Alexandre Sablayrolles, Arthur
Mensch, Chris Bamford, Devendra Singh Chap-
lot, Diego de las Casas, Florian Bressand,
Gianna Lengyel, Guillaume Lample, Lucile
Saulnier, et al. 2023. Mistral 7b. arXiv preprint
arXiv:2310.06825.

Xiaogeng Liu, Zhiyuan Yu, Yizhe Zhang, Ning
Zhang, and Chaowei Xiao. 2024. Auto-
matic and universal prompt injection attacks
against large language models. arXiv preprint
arXiv:2403.04957.

Yupei Liu, Yuqi Jia, Runpeng Geng, Jinyuan Jia,
and Neil Zhenqiang Gong. 2023. Prompt injec-
tion attacks and defenses in llm-integrated ap-
plications. arXiv preprint arXiv:2310.12815.

Fábio Perez and Ian Ribeiro. 2022. Ignore pre-
vious prompt: Attack techniques for language
models. arXiv preprint arXiv:2211.09527.

Julien Piet, Maha Alrashed, Chawin Sitawarin,
Sizhe Chen, Zeming Wei, Elizabeth Sun, Basel
Alomair, and David Wagner. 2024. Jatmo:
Prompt injection defense by task-specific fine-
tuning. In European Symposium on Research
in Computer Security, pages 105–124. Springer
Nature Switzerland Cham.

http://ai.google.dev/gemini-api/docs/caching?lang=python
http://ai.google.dev/gemini-api/docs/caching?lang=python
http://ai.google.dev/gemini-api/docs/caching?lang=python
https://openai.com/index/api-prompt-caching/
https://openai.com/index/api-prompt-caching/
https://genai.owasp.org/
https://genai.owasp.org/
https://github.com/sahil280114/codealpaca
https://github.com/sahil280114/codealpaca

Rafael Rafailov, Archit Sharma, Eric Mitchell,
Christopher D Manning, Stefano Ermon, and
Chelsea Finn. 2024. Direct preference opti-
mization: Your language model is secretly a re-
ward model. Advances in Neural Information
Processing Systems, 36.

P Rajpurkar. 2016. Squad: 100,000+ questions for
machine comprehension of text. arXiv preprint
arXiv:1606.05250.

Avanti Shrikumar, Peyton Greenside, and Anshul
Kundaje. 2017. Learning important features
through propagating activation differences. In
International conference on machine learning,
pages 3145–3153. PMlR.

Hugo Touvron, Thibaut Lavril, Gautier Izacard,
Xavier Martinet, Marie-Anne Lachaux, Timo-
thée Lacroix, Baptiste Rozière, Naman Goyal,
Eric Hambro, Faisal Azhar, et al. 2023. Llama:
Open and efficient foundation language models.
arXiv preprint arXiv:2302.13971.

Prashant Upadhyay, Rishabh Agarwal, Sumeet
Dhiman, Abhinav Sarkar, and Saumya
Chaturvedi. 2024. A comprehensive survey on
answer generation methods using nlp. Natural
Language Processing Journal, 8:100088.

Jiongxiao Wang, Fangzhou Wu, Wendi Li, Jin-
sheng Pan, Edward Suh, Z Morley Mao,
Muhao Chen, and Chaowei Xiao. 2024. Fath:
Authentication-based test-time defense against
indirect prompt injection attacks. arXiv
preprint arXiv:2410.21492.

A Waswani, N Shazeer, N Parmar, J Uszkoreit,
L Jones, A Gomez, L Kaiser, and I Polosukhin.
2017. Attention is all you need. In NIPS.

Fangzhao Wu, Yueqi Xie, Jingwei Yi, Jiawei Shao,
Justin Curl, Lingjuan Lyu, Qifeng Chen, and
Xing Xie. 2023. Defending chatgpt against jail-
break attack via self-reminder.

Fangzhou Wu, Shutong Wu, Yulong Cao, and
Chaowei Xiao. 2024. Wipi: A new web threat
for llm-driven web agents. arXiv preprint
arXiv:2402.16965.

Nakyeong Yang, Yunah Jang, Hwanhee Lee, Seo-
hyeong Jung, and Kyomin Jung. 2022. Task-
specific compression for multi-task language
models using attribution-based pruning. arXiv
preprint arXiv:2205.04157.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua
Bengio, William W Cohen, Ruslan Salakhut-
dinov, and Christopher D Manning. 2018.
Hotpotqa: A dataset for diverse, explainable
multi-hop question answering. arXiv preprint
arXiv:1809.09600.

Jingwei Yi, Yueqi Xie, Bin Zhu, Emre Kiciman,
Guangzhong Sun, Xing Xie, and Fangzhao
Wu. 2023. Benchmarking and defend-
ing against indirect prompt injection attacks
on large language models. arXiv preprint
arXiv:2312.14197.

Jiahao Yu, Yuhang Wu, Dong Shu, Mingyu Jin,
and Xinyu Xing. 2023. Assessing prompt injec-
tion risks in 200+ custom gpts. arXiv preprint
arXiv:2311.11538.

Qiusi Zhan, Zhixiang Liang, Zifan Ying, and
Daniel Kang. 2024. Injecagent: Benchmark-
ing indirect prompt injections in tool-integrated
large language model agents. arXiv preprint
arXiv:2403.02691.

Wenting Zhao, Xiang Ren, Jack Hessel, Claire
Cardie, Yejin Choi, and Yuntian Deng. 2024.
Wildchat: 1m chatgpt interaction logs in the
wild. arXiv preprint arXiv:2405.01470.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng,
Siyuan Zhuang, Zhanghao Wu, Yonghao
Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric
Xing, et al. 2024. Judging llm-as-a-judge with
mt-bench and chatbot arena. Advances in Neu-
ral Information Processing Systems, 36.

Egor Zverev, Sahar Abdelnabi, Soroush Tabesh,
Mario Fritz, and Christoph H Lampert. 2024.
Can llms separate instructions from data? and
what do we even mean by that? arXiv preprint
arXiv:2403.06833.

A Proof of Theorem 1

Theorem 1. Given the input prompt x ∼ X , let
yc ∼ Yc

x and yp ∼ Yp
x denotes the clean and poi-

soned responses to x, respectively. (x, yc, yp) ∼
D = (X,Y c

x , Y
p
x) is the dataset of perference op-

timization. pθ(·|x) is the output probability with
an LLM parameterzed by θ. The preference op-
timization with LDPO can be upperbounded by
Lu
DPO, s.t.,

Lu
DPO = Ex∼X (log

pθ(y ∈ |Yp
x| |x)

pθ(y ∈ |Yc
x| |x)

+H(Yc
x|x)−H(Yp

x|x)) + Cref,D
(16)

where |·| is the support of a distribution. Cref,D is a
constant to θ that is functioned by D and the DPO
reference model ref . H(Yc

x|x) and H(Yp
x|x), re-

spectively, are the entropy of clean and poisoned
responses given x. pθ(y ∈ |Yp

x| |x) is the prob-
ability of generating poisoned responses from x,
and similar to pθ(y ∈ |Yc

x| |x).

Proof. In the context of defending against the
prompt injection attack with (x, yc, yp) ∼ D, the
DPO objective LDPO can be defined as,

LDPO = E(x,yc,yp)∼D[log σ(β log
pθ(y

p|x)
pref (yp|x)

− β log
pθ(y

c|x)
pref (yc|x)

)].

(17)

where σ(·) is the sigmoid function and β > 0 is
a regularization parameter. The reference model
ref serves as an anchor in a way that the mini-
mization of LDPO is also minimizing the follow-
ing KL divergence,

DKL[pθ(y|x) || pref (y|x)]. (18)

ref is chosen before training. In this proof, we
choose ref to be a model that is more immune to
the indirect prompt injection attack compared to
the LLM with θ, i.e.,

pref (y
c|x) > pθ(y

c|x) (19)

pref (y
p|x) > pθ(y

c|x) (20)

This choice of ref is reasonable since it makes
LDPO a strong object in defending against prompt
injection attack due to (18).

With (19) and (19), we can observe that,

S = log
pθ(yp|x)
pref (yp|x)

− log
pθ(yc|x)
pref (yc|x)

) > 0 (21)

This follows that the log σ(·) in (17) should be
concave since,

• log(·) is a concave function, and the σ(·) in
(17) is also concave given that its inputs S
and β are both positive.

• Both log(·) and σ(·) are monotonically in-
creasing.

Then, we can upperbound LDPO following the
Jensen’s Inequality,

LDPO = E(x,yc,yp)∼D[log σ(β · S)] (22)

≤ log σ(β · E(x,yc,yp)∼DS). (23)

Since (23) only relies on the expectation term
within σ(·), we define our upperbound objective
as,

Lu
DPO := E(x,yc,yp)∼D S (24)

We rewrite Lu
DPO as,

Lu
DPO = E(x,yc,yp)∼D(log

pθ(y
p|x)

pref (yp|x)

− log
pθ(y

c|x)
pref (yc|x)

) (25)

= E(x,yc,yp)∼D(log pθ(y
p|x)

− log pθ(y
c|x)) + Cref,D, (26)

where,

Cref,D = E(x,yc,yp)∼D log
pref (y

c|x)
pref (yp|x)

, (27)

is a constant to θ that only depends on dataset D
and the choice of ref .

The first term in (26) can be decomposed by,

E(x,yc,yp)∼D(log pθ(y
p|x)− log pθ(y

c|x))

= Ex∼X (
∑
yp

pθ(Yp
x = yp|x) log pθ(yp|x)︸ ︷︷ ︸

Vp

−
∑
yc

pθ(Yc
x = yc|x) log pθ(yc|x)︸ ︷︷ ︸

Vc

). (28)

Then, we can have,

Vp =
∑
yp

pθ(Yp
x = yp|x) log pθ(yp|x) (29)

=
∑
ypx

pθ(Yp
x = yp|x)·

log(pθ(Yp
x = yp|x) · p(y ∈ |Yp| |x))

(30)

= −H(Yp|x) + log p(y ∈ |Yp| |x) (31)

Similarly, Vc can be expressed as,

Vc = −H(Yc
x|x) + log p(y ∈ |Yc

x| |x) (32)

Combining (26), (31) and (32) together, we can
write Lu

DPO as,

Lu
DPO = Ex∼X (log

pθ(y ∈ |Yp
x| |x)

pθ(y ∈ |Yc
x| |x)

+H(Yc
x|x)−H(Yp

x|x)) + Cref,D
(33)

B Proof of Lemma 1

Lemma 1. Lattr
full that is ranged between [−1, 1] is

closely associated with Lu
DPO by,

lim
Lattr
full→1

Lu
DPO = +∞ (34)

lim
Lattr
full→−1

Lu
DPO = −∞ (35)

Proof: Recall in Section 2.3 that,

Lu
DPO = Ex∼X (log

pθ(y ∈ |Yp
x| |x)

pθ(y ∈ |Yc
x| |x)

+H(Yc
x|x)−H(Yp

x|x)) + Cref,D
(36)

Lattr
full = Ex∼X (pθ(y

p,∗
x |x)− pθ(y

c,∗
x |x)) (37)

Lattr
full → 1: For this case, we can have

pθ(y
p,∗
x |x) → 1 and pθ(y

c,∗
x |x) → 0. Let N c

x

be the number of responses in |Yc
x|. Thought the

number of possible responses grows exponentially
with the response length, N c

x should still be a lim-
ited number, since the LLM has limited context
length.
Then, we can find the limit of the terms in (36),

lim
pθ(y

c,∗
x |x)→0

pθ(y ∈ |Yc
x| |x)

≤ lim
pθ(y

c,∗
x |x)→0

N c
x × pθ(y

c,∗
x |x) = 0

(38)

lim
pθ(y

p,∗
x |x)→1

pθ(y ∈ |Yp
x| |x) = 1 (39)

H(Yc
x|x) > 0 (40)

lim
pθ(y

p,∗
x |x)→1

H(Yp
x|x) = 0 (41)

Therefore, we have limLattr
full→1 Lu

DPO = +∞.

Lattr
full → −1: For this case, we can have

pθ(y
p,∗
x |x) → 0 and pθ(y

c,∗
x |x) → 1. Similar to

above, we can find the limit values of,

lim
pθ(y

c,∗
x |x)→1

pθ(y ∈ |Yc
x| |x) = 1 (42)

Figure 6: An example prompt for question answer-
ing. The testing prompt consists of text message
in black and red. When the greedy sampled re-
sponse is poisoned, we same the clean response
by removing the red message (also no green mes-
sage). When the greedy sampled response is clean,
we sample a poisoned response by adding the blue
message to the text message of black and red.

Figure 7: Examples of the first word of the LLM
response. These words a generally not specific to
the injected or user-specified tasks. However, their
presents ai the beginning of the response can trig-
ger the LLM to switch between executing injected
or user-specified instructions.

lim
pθ(y

p,∗
x |x)→0

pθ(y ∈ |Yp
x| |x) = 0 (43)

H(Yp
x|x) > 0 (44)

lim
pθ(y

c,∗
x |x)→1

H(Yc
x|x) = 0 (45)

Therefore, we have limLattr
full→1 Lu

DPO = −∞.

In summary, the value of Lattr
full is closely related

to the upperbound Lu
DPO in Theorem 1.

