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Abstract—We study the problem of reconstructing tabular data
from aggregate statistics, in which the attacker aims to identify
interesting claims about the sensitive data that can be verified
with 100% certainty given the aggregates. Successful attempts
in prior work have conducted studies in settings where the set
of published statistics is rich enough that entire datasets can be
reconstructed with certainty. In our work, we instead focus on
the regime where many possible datasets match the published
statistics, making it impossible to reconstruct the entire private
dataset perfectly (i.e., when approaches in prior work fail). We
propose the problem of partial data reconstruction, in which
the goal of the adversary is to instead output a subset of rows
and/or columns that are guaranteed to be correct. We introduce
a novel integer programming approach that first generates a
set of claims and then verifies whether each claim holds for
all possible datasets consistent with the published aggregates.
We evaluate our approach on the housing-level microdata from
the U.S. Decennial Census release, demonstrating that privacy
violations can still persist even when information published
about such data is relatively sparse.

1. Introduction

The problem of data privacy lies at the heart of data
stewardship. While many organizations aim to provide data
products that maximize utility for downstream users, this
goal is at direct odds with protecting the privacy of those who
contribute data. In this paper, we study this problem from
the perspective of tabular data reconstruction, in which an
adversary is given access only to a set of aggregate statistics
about the private dataset. Specifically, we are interested in
the setting in which the adversary aims to reconstruct (some
portion of) the private dataset with absolute certainty. In
other words, we answer the question, “What must exist in
the private dataset according to the published statistics?”

The aforementioned problem of data stewardship is at
the forefront of issues faced by the U.S. Census Bureau,
which provides billions of statistics to the public while
needing to fulfill a legal mandate to protect the privacy
of its respondents [1]. As a result, the bureau itself has
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conducted various studies investigating the vulnerability of
the US Decennial Census release to potential reconstruction
attacks. Most recently, for example, Abowd et al. [2] tackle
this problem from the lens of guaranteeing correctness (as
part of a larger set objectives in their work) and find that by
using 34 person-level tables from the 2010 Summary File 1,
one can reconstruct the entire data for 70% of the blocks in
the United States with 100% certainty simply by solving an
integer program.

Such alarming results suggest that reconstruction of
person-level data using the Decennial Census release is far
too easy—the amount of information (statistics) available to
the adversary is so rich that reconstruction becomes trivial
for the majority of blocks. In light of this observation, one
might ask whether releasing less descriptive statistics that
do not admit a unique IP solution would be sufficient to
protect individuals’ information. In this work, we therefore
study to what extent data reconstruction with 100% certainty
can still occur even in more difficult regimes in which the
released statistics are not informative enough (relative to the
size of the data domain) for prior approaches (e.g., Abowd
et al. [2]) to reconstruct entire tabular datasets with absolute
certainty.
Contributions. We summarize our contributions as the
following:

1) We introduce the problem of partial tabular data recon-
struction to help better understand the vulnerability
of data releases like the Decennial Census: rather
than reconstructing the entire dataset with guaranteed
correctness, the adversary aims to output verified claims
about individuals in the data (see, e.g., Figure 1).

2) We consider claims about the number of rows with
specific values in a subset of columns, such as “in
this dataset, there exists exactly one household whose
head of the household is a 32-year old, Black woman."
In particular, inspired by Cohen and Nissim [3], we
focus on reconstructing “singleton claims”, which are
reconstructed attributes that single out exactly one
individual in the dataset.

3) We introduce an integer programming formulation that
departs from the approaches of previous work [2], [4],
[5] and allows us to tackle this problem. Specifically,
given some set of aggregate statistics about the dataset,
our method (1) generates a set of candidate claims and
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TABLE 1: Examples of verified, singleton claims (multiplicity m = 1)

Block, Tract, Reconstructed InformationCounty, State
1008, 010200,
Baldwin, AL

A household with just a single female householder. She owns the home without a mortgage.
The householder is white, of Hispanic or Latino origin, and is between 65 and 75 years
old.

3027, 271801,
Baltimore City,
MD

A renting household of size 2. It is a non-family household, and no one in the household
is under 18 or over 65 years old. The householder is black, not of Hispanic or Latino
origin, and between 25 and 34 years old.

1006, 564502,
Wayne, MI

A household of size 4 with a married couple that owns the home with a mortgage. No
one in the household is over 65 years old, but there is at least one child under 18 years
old. The householder is Black, not of Hispanic or Latino origin, and is between 45 and
54 years old.

1049, 005828,
Clark, NV

A married couple household (of unknown size) that does not own the home but also does
not pay rent. No one in the household is over 65 years old, but there is at least one child
under 18 years old. The householder of Hispanic or Latino origin and between 25 and
34 years old. Their race does not belong to one of the 5 major census race categories.

1087, 940100,
McKenzie, ND

A renting household of size 4. There is a cohabiting couple living with at least one child
under 18 years old. No one in the household is over 65 years old. The householder is
male, American Indian/Alaskan Native, not of Hispanic or Latino origin, and between 15
and 24 years old.

then (2) verifies whether these claims must be true
according to the published statistics.

4) We evaluate our approach and that of previous work
on the household unit-level data and tables from the
Decennial Census release (2010 Summary File 1 (SF1)).
We find that the method proposed in Abowd et al. [2]
for reconstructing entire blocks is ineffective—in our
experiments, not a single block could be reconstructed
uniquely. In contrast, our approach reconstructs many
individual households with 100% certainty, demonstrat-
ing that partial reconstruction is still feasible, even when
full reconstruction is not (Table 1 provides examples of
verified claims).

5) We find that a nontrivial number of households can
be reconstructed using some subset of columns that
uniquely identifies them (i.e., singles them out). Among
the blocks evaluated in our experiments, approximately
40% contain at least one household that can be singled
out by 8 (out of 10 total) columns (Figure 3), averaging
out to one household per block (Table 4). For 6
columns, the percentage of blocks containing singled
out households increases to over 80% (Figure 3).

1.1. Additional Related Work

Real-world examples of privacy risks resulting from
aggregate statistical releases have long been well-documented
[1], [5], [6], [7], [8]. As a result, a long line of research,
beginning with the seminal work of Dinur and Nissim [9],
have both studied reconstruction attacks using public statisti-
cal information [10], [11], [12], [13] and developed notions
for privacy guarantees—namely, Differential Privacy [14].

Mitigating such privacy risks [1], [2], [5], [8], [15], [16]
remains at the center of issues facing the U.S. Census
Bureau, which has addressed such privacy concerns by
incorporating Differential Privacy into the 2020 Decennial
Census release [17]. Our work, in part, extends such findings,
further demonstrating the risks that individuals face when
aggregate statistics derived from them are released freely.
While Abowd et al. [2] show that at the person-level, the
majority of blocks can be completely reconstructed, their
method relies on the Decennial Census release being rich
enough so that there can only exist one possible set of
individuals that correspond to the released statistics. At the
household-level, in which there are far more columns but
relatively the same number of statistics, this condition is no
longer met—we find that for any given block, there exists
many possible solutions (groups of households) that would
produce the same set of released statistics. Nevertheless, we
devise a method that can partially reconstruct a block with
absolute certainty.

Lastly, the notion of singleton claims, which later works
like Cohen and Nissim [3] expand upon, can be traced back
to as early as Sweeney [6], which exposed the susceptibility
of uniquely identified individuals to linkage attacks. As a
by-product of reconstructing entire datasets (e.g., Abowd et
al. [2]), one can single out individuals by identifying the
rows that are unique in the reconstruction. We, however,
make the observation that complete reconstruction is not
strictly necessary for the purpose of singling out. Focusing on
partial reconstruction, our work demonstrates that individual
records can still be reconstructed with certainty and that
some individuals can be singled out even by just a subset
of the columns in the data domain.



2. Preliminaries

In this setting, we have some dataset D that is comprised
of a multiset of N records from a discrete domain X . Let Q
be some set of n queries corresponding to the data domain
X , and let Q(D) ∈ Rn be a vector of aggregate statistics on
dataset D where each element is a statistic corresponding
to a query in Q. Then, in its most general form, tabular
data reconstruction can be set up as a simple constraint
satisfaction problem (i.e., find any dataset D′ that matches
the statistics Q),

Find D′ s.t. Q(D) = Q(D′) (1)

In our work, we consider statistics in the form of counting
queries

qϕ(D) =
∑
x∈D

ϕ(x), (2)

where ϕ(x) denotes the condition that indicates whether
a row x satisfies some property. Thus, qϕ(D) counts the
number of rows x ∈ D that satisfy that property. Our work
focuses on k-way marginal queries1, where the ϕ indicates
whether a set k columns matches some set of values (e.g.,
SEX = Male and AGE ∈ {10, 20}). Table 2 provides an
example of a set of queries tabulated in the U.S. Decennial
Census Release.

2.1. Record-level reconstruction.

In our work, we focus on record-level reconstruction,
where the goal is to output claims about sets of rows x ∈ X .
Suppose there exists k columns in X such that we rewrite
X = X1 × X2 × . . . × Xk. Let X ′

i = Xi ∪ {⊥}, where ⊥
indicates that column i can take on any value in X . A vector
a in X ′ = X ′

1 × . . .×X ′
k specifies a partial assignment to

the attributes, and we say x matches a if they agree in all
coordinates where ai ̸= ⊥.

Using this notation, we define R(a,m) to be the (recon-
struction) claim that there exist exactly m ∈ {0, 1, . . . , N}
rows (e.g., m = 2 in Figure1; claim 1) that match a ∈ X ′

(e.g., a describes a 35-year old, Black householder in Figure1;
claim 1). We can then define a singleton claim as some claim
R(a,m) where m = 1.

Let COUNT(a,D) : X ′×XN → N∪{0} be the number
of rows in D that match a. Then we say a claim R(a,m)
is correct for some dataset D if COUNT(a,D) = m.

Finally, we define verified claims as the following:
Definition 1 (Verified Claim). Given some set of summary

statistics Q(D), we say that a claim R(a,m) is verified
with respect to Q(D) if and only if

COUNT(a,D′) = m

for all datasets D′ such that Q(D) = Q(D′).

1. In the typical formulation of k-way marginals, ϕ checks whether a
column is equal to one specific value (e.g., AGE = 10). Our work considers
a more general definition, where the column can take on a set of values
(e.g., AGE ∈ {10, 20}).

In other words, a claim is verified (i.e., guaranteed to be
correct) if it must be correct for any dataset D′ where
Q(D) = Q(D′).

2.2. Guaranteeing the correctness of claims.

At a high level, to verify the correctness of any claim
R(a,m), one can ask the question: is it possible to construct
a synthetic dataset D′ that matches the published statistics,
even when the multiplicity of number of rows with attributes
a does not equal m? If such a dataset D′ does not exist, then
R(a,m) must be correct. Concretely then, we check claims
by again solving Problem 1 but with the added constraint
that COUNT(a,D) ̸= m:

Find D′ s.t. Q(D) = Q(D′) and COUNT(a,D) ̸= m.
(3)

Note that in this formulation, we can make use of all statistics
(queries Q defined over all columns in X ) available to us,
even when verifying claims that are defined over only some
subset of columns in X (attributes a where ai = ⊥ for some
columns i).

2.3. Generate-then-Verify

At a high level, our approach can be broken down into
two integer programming steps:

1) Generate: We generate a list of claims R(a,m) that
we then verify in step 2. Specifically, we solve Problem
1 K = 100 times.2 For each generated synthetic dataset
D′, we identify all claims R(a,m) (i.e., all possible
combinations of attributes a and the corresponding
multiplicities m in D′). We then take the intersection
of the K sets of claims to use as our final list.3

2) Verify: For each claim R(a,m), we check if Problem
3 is feasible via integer programming. If no solutions
can be found, then we conclude that R(a,m) must be
correct.

We defer to Section 5.1 the details of how we encode the
input for the integer programming solver.

3. Empirical Evaluation

3.1. Setup

3.1.1. Dataset. In our experiments, we use the 2010 Privacy-
Protected Microdata File, a synthetic dataset, statistically
similar to the private 2010 Decennial Census microdata, that
is generated and released by the U.S. Census Bureau. As
the private 2010 Census microdata are not public, we treat

2. In Gurobi, we can simply set the solver to output up to K solutions
that satisfy the constraints.

3. The intersection contains all claims that are plausible based on the
aggregate statistics Q(D). If a claim does not belong in the intersection,
then there exists some feasible reconstruction D′ consistent with Q(D)
that refutes the claim, meaning that we cannot be certain that the claim is
correct for D. We explain this filtering logic further in 5.4.2.



Figure 1: We provide a visual diagram of example claims studied in our work. On the left-hand side is the private dataset,
where the colored boxes denote various claims R(a,m) that are then enumerated in the table on the right-hand side.

TABLE 2: We provide an example of a table (Summary File 1: P20) released in the Decennial Census, including the text
descriptions of each query contained in the table and the count of households matching that description for some block. In
detail, Condition ϕ denotes what each query checks for (e.g., query 1 checks whether column HHT2 = 1), and indented
rows mean that the corresponding query must satisfy the condition and all parent conditions above them. For example, query
number 10 corresponds to HHT2 = 9, while query number 11 corresponds to HTT2 = 8 AND THHLDRAGE = 7, 8, or 9.
Text Description describes what each value means. For example, HHT2 = 1 means that the household is a married couple
household with their own children under the age of 18.

Query No. Condition ϕ (Column = Value) Text Description Count

Married couple household:
1 HHT2 = 1 With own children under 18 6
2 HHT2 = 2 No own children under 18 1

Cohabiting couple household:
3 HHT2 = 3 With own children under 18 0
4 HHT2 = 4 No own children under 18 0

Female householder, no spouse or partner present:
5 HHT2 = 5 Living alone 0
6 THHLDRAGE = 7, 8, or 9 65 years and over 0
7 HHT2 = 6 With own children under 18 1
8 HHT2 = 7 With relatives, no own children under 18 0
9 HHT2 = 8 No relatives present 0

Male householder, no spouse or partner present:
10 HHT2 = 9 Living alone 1
11 THHLDRAGE = 7, 8, or 9 65 years and over 0
12 HHT2 = 10 With own children under 18 0
13 HHT2 = 11 With relatives, no own children under 18 1
14 HHT2 = 12 No relatives present 0

the Privacy-Protected Microdata as the ground truth during
evaluation. The PPMF (and Summary File 1, from which
the PPMF is derived from) contains data for every housing
unit in the United States. Each row of the PPMF represents
one synthetic household response from the 2010 Decennial
Census. There are 10 columns in total described by block-
level tables (listed in Appendix A), in contrast to the simpler,
person-level data studied in prior work [2], [15] that only
contains 4 columns.

From each U.S. state (50 in total), we select blocks in
the following ways:

• For each state, we calculate the median block size
(Figure 2) and randomly select 5 blocks of that size.

• We calculate the median block size (N = 10) of the

country and select 5 blocks of that size from each state.
Crucially, unlike for the census release of the person-level
data studied in Abowd et al. [2], no blocks we evaluate on
can be fully reconstructed with 100% certainty—when
solving Problem 1, we found at least 2 different solutions
D′ for every block, meaning each block D is not uniquely
identifiable by the released statistics Q.

3.1.2. Statistics. In addition to the Privacy-Protected Mi-
crodata File, the U.S. Census Bureau releases aggregate
statistics of features listed above, calculated from their private
microdata, in the form of data tables called Summary File
1 (SF1). Each of these tables are released for every block
and includes counts for the number of people corresponding



Figure 2: We plot the distribution of block sizes for blocks
whose size equals the median block size in the state. The
minimum block size is 2 and the maximum is 20.

to certain feature values defined by the table. As noted
previously, these statistics correspond to k-way marginal
queries, where k ≤ 4 columns4 for SF1. In total, we have
24 partial sets of k-way marginals (see Table 3).

k 1 2 3 4 total

# k-way marginal sets 4 10 8 2 24

TABLE 3: Number of sets of k-way marginals per value k.

We provide an example of a table from this release
in Table 2. Here, query number 11 counts the number of
households owned by a female householder who is over the
age of 65 and lives alone. As suggested by Table 2, the
statistics released by the Census Bureau only partial cover
the k-way histogram for any set of k attributes. For example,
Table 2 bins together the values 7, 8, and 9 for column
THHLDRAGE and does not tabulate over instances where
THHLDRAGE takes on values 1-6.

Utilizing all tables (listed in Appendix A) tabulated at
the block-level, we have |Q| = 621 queries as inputs to our
integer programming approach.

3.2. Baseline reconstruction rates

While we contend that finding any records that can be
reconstructed with 100% confidence is already interesting,
we would like to further provide context for our results
by providing some baseline measure for how likely a
block corroborates some claim. To do so, we calculate the
probability of each verified claim being correct in a block
of size N that is randomly sampled from the tract or state
that the block is located in.

Let us assume that records in a block are drawn from
some prior distribution P . Then the multiplicity m of some

4. Using the notation presented in Section 5.1, k ≤ 4 is equivalent to
saying that rmax = 4.

candidate record x appearing in a block D of size N follows
the binomial distribution,

P (COUNT(x,D) = m) =

(
N

m

)
pm(1− p)N−m, (4)

where p = P (x) is the probability of a single record x being
drawn from the prior P .

In typical settings in which an adversary has no prior
information about the block of interest, p is simply the
uniform distribution (i.e., P (x) =

∏k
j=1

1
|X | =

∏k
j=1

1
|x(j)| ,

where x is the one-hot encoded representation of x with
columns {cj}kj=1). However, this comparison is uninteresting
since P (COUNT(x,D) = m) is close to 0 in such cases.

In our evaluation, we instead construct a setting in which
we assume that the prior distribution of the tract and state
that some block D belongs to is known (similar to baselines
considered in Dick et al. [15]). Let Dtract and Dstate be the
set of records in the tract and state. Then, we can express p
as

P (x) =
COUNT(x, D̃)

|D̃|

for D̃ = Dtract and D̃ = Dstate, respectively, and use Equation
4 to calculate the baseline probability for any given candidate
claim x.

4. Results

We now present our empirical results for verified sin-
gleton claims.5 For conciseness, we report results only for
claims that cover k ≥ 6 columns since the claims containing
more attributes are relatively more interesting.

We also note that there exist claims that can be “read”
directly off the tables themselves. For example, a table
reporting 2 households with White householders already
tells us that the claim R(Race=White, 2) must be correct.
As mentioned in Section 3, however, the marginal statistics
capture at most, k = 4 columns. Thus, none of the claims
reported in this section (i.e., with k ≥ 6) are among this set
of “trivial” claims.

4.1. Main findings

We present our main results in Figure 3 and Table 4. In
both the figure and table, we split the 500 blocks into two
sets: one for blocks whose size equals the national median
and one for those whose size equals the respective state
median. Interestingly, the results do not differ much across
the two sets, suggesting that reconstruction rates do not
depend heavily on the size of the blocks we evaluated on.

In Figure 3a and 3d, we report the number of blocks
(y-axis) for which we can reconstruct some set of k columns
(x-axis) for at least one household. We find that while
reconstruction (with 100% certainty) of all 10 columns is

5. Figures and tables for all claims, regardless of multiplicity, can be
found in Appendix B.



(a) ≥ 1 Verified Singleton Claims (b) Tract-Level Distribution (c) State-Level Distribution

(d) ≥ 1 Verified Singleton Claims (e) Tract-Level Distribution (f) State-Level Distribution

Figure 3: We present results for verified singleton claims collected from experiments on 5 blocks selected from each state
(250 total on each row). Top row: 5 blocks whose size are equal the median block size of the respective state are selected.
Bottom row: 5 blocks whose size are equal the median block size of the country (i.e., 10 households). a & d: The number
of blocks (out of 50) for which we can reconstruct at least one singleton claim about k columns (x-axis). b & e and c & f::
Box and whisker plots of the probabilities that each verified claim would also be true in a set of N households randomly
sampled from the (b, e) tract and (c, f) state-level distributions. The orange line within each box indicates the median
probability. The ends of the box indicate the first and third quartiles, and the whiskers end at the furthest point within
1.5 times the interquartile range. All points beyond the whiskers are outliers. Lower probabilities denote more “surprising”
claims.

TABLE 4: For each number of columns, we report total and average number of households that are represented among the
verified singleton claims. We tabulate the verified claims over 500 total blocks: (top two rows) 5 blocks from each state
whose size is equal to the median block size in the state and (bottom two rows) 5 blocks from each state whose size is equal
the country median block size (i.e., 10 households). n is the total and average number of households over all 250 blocks.

# of households identified by
verified claims w/ k columns

# households k=6 7 8 9 10

State Median Total 2500 659 471 254 97 7
Avg. per block 10.00 2.64 1.88 1.02 0.39 0.03

Country Median Total 2430 669 437 230 71 6
Avg. per block 9.72 2.88 1.88 0.99 0.31 0.03

often not possible, we can still partially reconstruct singletons
from most blocks. For example, we verify at least one
singleton claim with k = 8 columns in approximately 40%
of the blocks and for k = 6, we can verify at least one claim
in 80% of them.

In Figures 3b, 3c, 3e, and 3f, we evaluate the baseline
probabilities (Section 3.2; Equation 4) for all claims verified
by our approach to understand how “surprising” they are,
given some prior information about the state and tract de-
mographics. Interestingly, the distribution of probabilities is
similar for both tract and state-level priors, suggesting using

the tract-level prior is no more informative than the state-
level one. We find that in general, these baseline probabilities
are quite low. In almost cases (except verified claims with
k = 10; Figures 3e and 3f), the median probability is under
2% (and often is very close to 0%). The 75th and 90th
percentiles are under 10% and 25% respectively, and even
among outliers, the maximum baseline probability never
exceeds 50%. As stated previously, we argue that verifying
any claim with 100% certainty is already interesting and
significant. However, these results help demonstrate that if
someone were to make guesses about households based on



prior information about the tract or state, it is highly unlikely
that these guesses would include the claims that our approach
outputs.

Finally, in Table 4 we report the number of unique
households that we reconstruct, given some number of
columns k. Here, instead of counting the total number of
verified claims, we total up the number of unique households
covered by the claims.6 Again, despite the difficulty of
reconstructing all k = 10 columns of households, we find
that a non-trivial fraction (over 10%) of households are
uniquely identifiable by some claim that describes k = 8
columns. This proportion increases to over a quarter when
considering claims that describe k = 6 columns.

4.2. Ablation: removing single count queries

TABLE 5: We report how the total number of households
that are represented among the verified singleton claims
changes when different sets of queries are removed as input
to our approach. For example, the second row corresponds to
removing queries that evaluate to 1 (q(D) = 1). We evaluate
on blocks (250 in total) whose size is equal to the country
median (i.e., N = 10 for all blocks).

# of households identified by
% queries verified claims w/ k columns

input queries removed k=6 7 8 9 10

Q 0% 669 437 230 71 6
Q \ {q(D) = 1} 3.40% 249 132 59 18 0
Q \ {q(D) = 0} 90.88% 460 246 85 7 0
Q \ {q(D) = 0, 1} 94.28% 47 20 9 0 0

In Section 4.1, we present results for verified singleton
claims that cannot be read directly off the input tables (i.e.,
number of columns k > 4). We note however that in some
cases, it might be possible for humans to manually find
additional claims without too much difficulty by combining
single count queries (queries q(D) = 1). To give a toy
example, suppose we have the following statistics:

1)
∑

I{A = 0, B = 0} = 1
2)

∑
I{B = 0, C = 0} = 1

3)
∑

I{B = 0} = 1

Queries 1 and 2 tell us that there is exactly one row with
columns A = 0 and B = 0 and one row with B = 0 and
C = 0. Because query 3 tells us that there exactly one row
with B = 0, we know that query 1 and 2 are describing
the same row. Thus, one can look at this set of queries and
deduce an additional claim that there is a singleton with the
attributes A = 0, B = 0, and C = 0.

Therefore, to further eliminate the possibility of including
“easy” claims in our results, we simulate a setting where
queries that evaluate to 1 are removed from our integer
programming approach. Evaluating only on the country

6. For example, in Figure 1, the total multiplicity of claims 2 and 4 is
two. However, only one household is represented among these claims (row
3 on the left-hand table). Thus, Table 4 groups the verified claims by the
number of columns (in a) and reports the number of households (in the
left-hand table) that are represented in the claims.

median-sized blocks so the block size in our ablation
study is fixed, we report in Table 5 how the number of
households that can be uniquely identified changes when the
single count queries are removed. We find that although the
number of singled out households decreases significantly,7 a
nontrivial number are still uniquely identifiable. For example,
approximately 10% (249 out of 2500) households can still
be singled out by k = 6 columns.

To stress test our approach, we also report in Table 5
the number of uniquely identifiable households when we
remove queries that (a) evaluate to 0 and (b) evaluate to 0
or 1. Unsurprisingly, many of the households are no longer
identifiable, especially in the case where queries that evaluate
to 0 or 1 are removed. Still, we show that some privacy
risks persist, given that a nonzero number of households are
singled out by k = 6 to 8 columns.

4.3. Analysis of reconstructed columns

Finally, in Figure 4 and Table 6, we take a closer look at
what columns make up the verified claims outputted by our
approach. As shown in Figure 4, there generally is an even
distribution of columns represented in the verified claims.
However, the column HHT2 (detailed household type) is
most often omitted, followed by TP65 (presence of someone
over 65 years). Examining the most common combinations
of k columns reconstructed by approach, we observe similar
patterns in Table 6. For example, for each number of columns
k, the most common set of columns does not include HHT2.
In fact, HHT2 does not appear at all among the top five
most common combinations for k ≤ 8. Similarly, TP65 does
not appear in the top for k ≤ 7.

5. Integer Programming Details

In this section, we describe the exact details of our integer
programming approach, including how we set up and solve
Problems 1 and 3.

5.1. Setup

5.1.1. One-hot encoded records. Unlike prior work [2],
[4], [5] which represents datasets as histograms over X , our
proposed integer programming optimization problem relies
on one-hot encoded representations of X . Specifically, let
k be the number of columns, which we denote as columns
{cj}kj=1, in the domain. Given that all columns in X are
discrete, we represent records in X as one-hot encoded
vectors x = (x(1) . . .x(k)), where each x(j) encodes the
column cj . Thus, we have rows x ∈ {0, 1}d where d =∑k

j=1 |x(j)| and k =
∑d

i=1 xi. Finally, we let the matrix
X ∈ {0, 1}N×d denote a one-hot encoded dataset with N
rows.

7. On average, 3.4% of queries are removed for each block. However,
because 90.88% of queries evaluate to 0, the single count queries account
for almost 37.28% of nonzero queries counts. As a result, it is unsurprising
that the number of verified singleton claims decreases by such a large
amount.



Figure 4: For each number of columns k, we plot the proportion of verified singleton claims that contain each column.

TABLE 6: For each number of columns k, we list the 5 most common combinations of columns among the verified claims.
In addition, we report what percentage of claims with k columns each combination makes up. A checkmark (3) indicates
that the column is included. For example, 44.54% of claims comprised of k = 9 columns omit the column HTT2, while
16.59% omit the column TP65.

# columns TEN VACS HHSIZE HHT HHT2 THHSPAN THHLDRAGE THHRACE TP18 TP65 %

10 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 100%

9

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 44.54%
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 16.59%
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 6.11%

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 6.11%
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 4.8%

8

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 12.61%
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 8.01%
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 7.58%
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 7.03%
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 6.82%

7

✓ ✓ ✓ ✓ ✓ ✓ ✓ 4.68%
✓ ✓ ✓ ✓ ✓ ✓ ✓ 4.37%
✓ ✓ ✓ ✓ ✓ ✓ ✓ 3.81%
✓ ✓ ✓ ✓ ✓ ✓ ✓ 3.13%

✓ ✓ ✓ ✓ ✓ ✓ ✓ 3.07%

6

✓ ✓ ✓ ✓ ✓ ✓ 3.21%
✓ ✓ ✓ ✓ ✓ ✓ 2.31%
✓ ✓ ✓ ✓ ✓ ✓ 2.03%
✓ ✓ ✓ ✓ ✓ ✓ 1.9%

✓ ✓ ✓ ✓ ✓ ✓ 1.83%

5.1.2. Query functions. In this setting, we consider statis-
tical queries (Equation 2) in the form of marginal queries
where the predicate function ϕ is an indicator function for
whether some set of columns takes on some set of values
(note that ϕ is equivalent to what we call attributes a in
Section 2). For example, one can ask the marginal query
about the columns SEX and RACE: “How many people are
(1) FEMALE and (2) WHITE or BLACK?" We note that one
can break down any predicate ϕ into a set of sub-predicates,
where each sub-predicate corresponds to one unique column
pertaining to ϕ. Concretely, given some column c and target
values V , we denote the sub-predicate function as

ϕc,V (x) = I{xc ∈ V },

where xc is the value that x takes on for column c. Then, any
predicate can be rewritten as the product of its sub-predicates
(e.g. in the above example, ϕ can be written as the product
of ϕSEX,{FEMALE} and ϕRACE,{WHITE, BLACK}).

Given the one-hot encoded representation x, ϕc,V can
also be rewritten as a vector q ∈ {0, 1}d that takes on the
value 1 for indices in x corresponding column c and values
v ∈ V (and 0 otherwise). In this case, we can then rewrite
the sub-predicate function as xqT . Likewise, any predicate
with r sub-predicates q1,q2, . . . ,qr can be rewritten as a
matrix Q =

(
q1 q2 . . . qr

)T ∈ {0, 1}r×d. Then ϕ can
be written as I{xQT = 1r} where 1r is a row vector of
ones with length r. Finally, a statistical query qϕ can be



written as

qϕ(x) =

N∑
j=1

I{(XQT )j = 1r}. (5)

In other words, we check whether each row in X evaluates
to 1r.8

5.1.3. Evaluating multiple queries. In our setting, the set
of queries Q contain queries that can differ in the number of
sub-predicates (i.e., columns that are being asked about). For
instance, using the above example data domain, one query
may ask about the column SEX while another may ask about
both SEX and RACE. To handle such cases, given some
set of queries Q, we let rmax be the maximum number of
sub-predicates for queries in Q. Then, in cases where some
query predicate is comprised of r < rmax sub-predicates, we
can pad its matrix representation Q with rows corresponding
to dummy sub-predicates qpad = 1d. In this way, Equation
5 still holds (with 1r being replaced by 1rmax ).

Given that now the matrix representation for all queries
in Q have the same shape, we can represent Q as a single
3-dimensional tensor Q(n) ∈ {0, 1}n×rmax×d. Then, we can
calculate the statistics for all queries in Q by evaluating
the product Z = Q(n)XT ∈ {0, 1}n×rmax×N , where the i-th
query answer is

Q(X)i =

N∑
k=1

I{Z[i, :, k] = 1rmax}. (6)

Note that we can interpret the vector Z[i, :, k] as a boolean
vector that checks whether record k satisfies each of the
rmax sub-predicates for query i. For ease of notation, we will
assume going forward that r refers to rmax.

5.2. Generating Synthetic Data Using Aggregate
Statistics (Problem 1)

We first describe how we set up the integer programming
optimization problem for Problem 1—namely, how we
represent the constraint Q(D) = Q(D′). Using the notation
in Section 5.1, we wish to find some synthetic dataset X
(whose one-hot representation we denote as X) such that
Q(D) = Q(X).

As suggested above, we first evaluate whether each record
Xk satisfies all r sub-predicates for each query qi (i.e.,
Z[i, :, k] = 1r). To do so, we want to add a helper binary
variable W ∈ {0, 1}n×N such that

W[i, k] = I{Z[i, :, k] = 1r}.
To enforce this relationship, we add the following constraints,

W[i, k] ≤Z[i, j, k], ∀j ∈ {1, 2, . . . , r} (7)

W[i, k] ≥
r∑

j=1

Z[i, j, k]− (r − 1), (8)

8. We note that a simpler alternative to checking (QXT )j = 1r is to
check whether the row product is equal to 1 (i.e.

∏
k(QXT )jk = 1).

However, our integer programming solver (Gurobi) does not support this
operation.

so that W[i, k] evaluates query qi for record Xk. Then, we
add the constraints

Q(D)i =

N∑
k=1

W[i, k], ∀i ∈ {1, 2, . . . ,m} (9)

to ensure that the aggregate count corresponding to query i
on the private dataset D match that on X.

Explanation. Suppose W[i, k] = 1. Given that Z is
binary, Equation 7 is true if and only if Z[i, j, k] = 1 for
all j, thereby giving us I{Z[i, :, k] = 1r} = 1. Moreover,
Equation 8 is not violated since we have that

1 ≥
r∑

j=1

Z[i, j, k]− (r − 1)

≥ r − (r − 1) (Z is binary)
= 1

Similarly, if W[i, k] = 0, then by Equation 8,

0 ≥
r∑

j=1

Z[i, j, k]− (r − 1)

=⇒ r − 1 ≥
r∑

j=1

Z[i, j, k],

which, because Z is binary, can hold if and only if there
exists some j such that Z[i, j, k] = 0, meaning that I{Z[i, :
, k] = 1r} = 0. In this case, Equation 7 is not violated since
0 ≤ Z[i, j, k] (again, because Z can only take on the values
0 and 1).

5.3. Verifying Claims (Problem 3)

We now discuss the constraints for Problem 3: verifying
whether some claim must be correct in the private dataset
D according to the released statistics Q(D).

In this setting, we have a claim R(a,m) that is composed
of attributes and claimed multiplicity of that record, m.
Suppose attributes a are defined over some subset of columns
indexed by the set A (i.e, the columns {cj}j∈A). Then we
can define attributes a as a vector a = (a(1) . . .a(k)), where
a(j) is a one hot encoded representation of the attribute for
column j if all zeros otherwise.

In order to check whether R(a,m) is verifiable according
to Q(D), we stipulate in the optimization problem that the
number of times a appears in X cannot equal m. If a feasible
solution does not exist, then we can conclude that R(a′,m)
must be correct.

5.3.1. Constraints (part 1). We first define a constant M ≫
N (used for ensuring other constraints are held) and let
Aoh correspond to the list of indices that columns {cj}j∈A

correspond to in a.
Next, let us introduce the binary variable T ∈ {0, 1}N×d,

where

Tij =

{
1{Xij = aj}, if j ∈ Aoh

1, otherwise.



In other words, it indicates whether each column in X
matches the corresponding column value in a. In addition,
we introduce U ∈ {0, 1}N×d, which is a helper variable
used to set T properly in the constraints.

Now, we add constraints with T and U. Let v = |A(oh)|
be the number of (one-hot) indices we need to check. For
each index j ∈ A(oh), we add the constraints,

Xi,j − v ≤M(1−Ti,j) (10)
v −Xi,j ≤M(1−Ti,j) (11)
Xi,j − v ≥1−MTi,j −M(1−Ti,j)Ui,j (12)
v −Xi,j ≥1−MTi,j −M(1−Ti,j)(1−Ui,j). (13)

Explanation. Consider the case when Ti,j = 1. From
constraints 10 and 11, we have:

Xi,j ≤ v and Xi,j ≥ v ⇒ Xi,j = v.

Thus, the indicator for the feature value in the one-hot
encoding of the candidate is equal to its corresponding value
in row i of X.

From constraints 12 and 13, we also have:

Xi,j − v ≥ 1−M and Xi,j − v ≤ M − 1.

Given that M is a large constant and that v and Xi,j are
both in the domain {0, 1}, these constraints are also met.

Now consider the case when Ti,j = 0. From con-
straints 10 and 11, we have:

Xi,j − v ≤ M and Xi,j − v ≥ −M

Given that M is large, these constraints are always satisfied.
From constraints 12 and 13, we obtain:

Xi,j − v ≥ 1−MUi,j ,

v −Xi,j ≥ 1−M(1−Ui,j).

Case 1: Ui,j = 0

Xi,j − v ≥ 1,

v −Xi,j ≥ 1−M ⇒ 1 ≤ Xi,j − v ≤ M − 1,

which enforces Xi,j ̸= v (since Xi,j − v ̸= 0).

Case 2: Ui,j = 1

Xi,j − v ≥ 1−M,

v −Xi,j ≥ 1 ⇒ 1 ≤ v −Xi,j ≤ M − 1,

which also enforces Xi,j ̸= v.

5.3.2. Constraints (part 2). Next, we add the binary variable
S ∈ {0, 1}N , which is an indicator that checks whether each
row Xi matches on the attributes a. If an entire row Xi

matches the attributes, then the entire corresponding row
of Ti should be equal to 1. This can be enforced with the
following constraints:

Si ≤Ti,j ∀j ∈ A(oh) (14)

Si ≥
∑

j∈A(oh)

Ti,j − (v − 1) (15)

Explanation. When Si = 1, all values of Ti must be
equal to 1 from constraint 14. When Sr = 0, we have that
at least one of value in row r of T must not be equal to 1
from constraint 15.

5.3.3. Constraints (part 3). With S indicating which rows
X match attributes a, we now check whether the claimed
multiplicity m is correct by summing S and checking if a
there exists some dataset X s.t.

∑N−1
i=0 Si ̸= m. If the solver

is unable to find a solution X under these constraints, then
we conclude that dataset matching the statistics Q(D) cannot
exist without having exactly m rows that match attributes
a.9

Let Y be a scalar binary helper variable. Then we add
the constraints,

N−1∑
i=0

Si −m ≤ MY − 1 (16)

N−1∑
i=0

Si −m ≥ 1−M(Y − 1) (17)

Explanation. Suppose Y = 0. Then we have that
N−1∑
i=0

Si −m ≤ −1 and
N−1∑
i=0

Si −m ≥ 1−M,

which implies that

1 ≤ m−
N−1∑
i=0

Si ≤ M − 1.

Thus, we enforce that m ̸=
∑N−1

i=0 Si.
Similarly, suppose Y = 1. Then
N−1∑
i=0

Si −m ≤ M − 1 and
N−1∑
i=0

Si −m ≥ 1,

which implies that

1 ≤
N−1∑
i=0

Si −m ≤ M − 1

Thus, we again enforce that m ̸=
∑N−1

i=0 Si.

5.4. Additional implementation details

5.4.1. Generating Unique Datasets. As stated previously,
we set the integer programming solver to output up to K
solutions that we then use to generate claims. However, in
the one-hot encoded representation of datasets, two datasets
with the same set of records that are ordered differently will
be considered two unique solutions. To encourage unique

9. While it is not the focus of our work, we would like to point out that
a similar integer programming problem can be set up to confirm that a
candidate at multiplicity m cannot exist by replacing constraints 16 and
17 so that they instead ensure

∑N−1
i=0 Si = m. If the solver cannot find a

solution where exactly m rows match a, then we conclude that candidate
cannot exist at that multiplicity in the dataset.



solutions, we use a (fixed) vector h ∈ Nd of randomly
generated integers as a hash function, where the hash value
for any one-hot encoded record x is hTx. Then, for every
i ∈ {1, 2, . . . , N − 1}, we add the constraint,

hTXi ≥ hTXi−1 (18)

so that any solution X outputted must have its records
ordered by their hash values. While this approach is imperfect
because, theoretically, different records in X may map to the
same hash value, we found it to be, in practice, a simple and
computationally-efficient approach to filtering out duplicate
solutions.

5.4.2. Paring down candidate claims. Suppose our goal
is to find all reconstruction claims R that must exist in D
according to Q(D). Let us denote U(D) as the set of all
claims that are correct with respect to D. Then any claim
R is correct if R ∈ U(D).

Using this notation, our goal of verifying claims to find
all claims R such that ∀D′ ∈ XN s.t. Q(D′) = Q(D), R ∈
U(D′). In other words, the only way we can be absolutely
certain that some claim R is correct according to Q(D) is
for it be correct for all datasets D′ where Q(D′) = Q(D).

To generate candidate claims, one can simply generate
a single synthetic dataset D′ by solving Problem 1 and
taking all unique claims R(a,m) consistent with D′ (i.e.,
COUNT(a,D′) = m). Furthermore, to narrow down the set
of candidates to check, one can generate many synthetic
datasets Xi and take their intersection

⋂K
i U(Xi). If there

exists some R ∈ U(Xi) such that R /∈
⋂K

i−1 U(Xi), then
R violates the above condition that R ∈ U(D′) for any D′

that matches the released statistics Q(D).
Finally, we note that adjusting K (i.e., the number of

synthetic datasets to output in the generate step) allows one
to trade-off computational resources between the two steps.
Generating more synthetic datasets (i.e., decreasing the size
of the intersection) will decrease the number of candidates
that need to be verified.

6. Conclusion

In conclusion, our work introduces the problem of
partial tabular data reconstruction and proposes an integer
programming approach that reconstructs individual records
with guaranteed correctness. Evaluating on the household-
level microdata and tables from the U.S. Decennial Census,
we demonstrate that one can still (partially) reconstruct indi-
vidual households with certainty, even when many possible
blocks may satisfy the published statistics. We note that one
limitation of using integer programming in our approach is
that evaluating on larger datasets (more rows or columns)
or sets of statistics may induce computational costs far
more demanding than those required for our experiments.
Nevertheless, our experiments show that for releases like the
decennial census, in which the average dataset (i.e., block) is
relatively small, reconstruction is very much possible while
being computationally inexpensive. Overall, we contend that

our initial work on partial reconstruction represents just the
tip of the iceberg in terms of communicating the privacy
risks that come with releasing aggregate information. We
hope that our work inspires future research to build upon
such notions of partial reconstruction (e.g., extending our
approach to other data domains or using our approach of
singling out households as part of larger, more systematic
study on the dangers of linkage attacks).
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Appendix

1. Additional experimental details

Dataset. We list and describe the 10 columns described by
the block-level tables below.

Tenure (TEN): One of 4 tenancy statuses: owned with
mortgage, owned free and clear, rented, or occupied
without payment of rent
Vacancy status (VACS): Not vacant, or one of 7
vacancy statuses: for rent, rented but not occupied, for
sale, sold and not occupied, for seasonal or occasional
use, for migrant workers, or other.
Household size (HHSIZE): Size of household: 1, 2, 3,
4, 5, 6, or 7 or more
Household type (HHT): One of 7 types: married couple
household, other family household (with a male/female
householder), nonfamily household (with a male/female
householder, living alone/not living alone).
Household type; detailed (HHT2): One of 12 types:
married couple (with/without children < 18), cohabiting
couple (with/without children < 18), no spouse/partner
present (male/female householder, with own children <
18/with relatives and without own children < 18/only
nonrelatives present/living alone)
Hispanic householder status (THHSPAN): Whether
or not the householder is of Hispanic origin,
Householder age (THHLDRAGE): Age of the house-
holder in one of 7 age buckets: 15-24, 24-35, ..., 75-84,
or 85 years and older.
Householder race (THHRACE): Race of the house-
holder in one of 7 categories: White alone, Black alone,
American Indian or Alaskan Native alone, Asian alone,
Native Hawaiian or Pacific Islander alone, some other
race alone, or two or more races.
Presence of people under 18 years in household
(TP18): Whether or not one or more people younger
than 18 are in the household
Presence of people over 65 years in household (TP65):
Whether or not one or more people 65 years and over
are in the household

Statistics. We list the household-level Summary File 1 tables
names below, along with the descriptors given by the Census
Bureau.

P16: Household type
P16 A-G: Household type (iterated by race)
P16 H: Household type for households with a householder
who is Hispanic or Latino
P16 I-O: Household type for households with a house-
holder who is not Hispanic or Latino (iterated by race)

P16 P-V: Household type for households with a house-
holder who is Hispanic or Latino (iterated by race)
P19: Households by presence of people 65 years and over,
household size, and household type
P20: Households by type and presence of own children
under 18 years
P21: Households by presence of people under 18 years
H1: Housing units (total count)
H3: Occupancy status
H4: Tenure
H4 A-G: Tenure (iterated by race)
H4 H: Tenure of housing units with a householder who
is Hispanic or Latino
H4 I-O: Tenure of housing units with a householder who
is not Hispanic or Latino (iterated by race)
H4 P-V: Tenure of housing units with a householder who
is Hispanic or Latino (iterated by race)
H5: Vacancy status of vacant housing units
H6: Race of householder
H7: Hispanic or Latino origin of householder by race of
householder
H9: Household size
H10: Tenure by race of householder
H11: Tenure by Hispanic or Latino origin of Householder
H12: Tenure by household size
H12 A-G: Tenure by household size (iterated by race)
H12 H: Tenure by household size of households with a
householder who is Hispanic or Latino
H12 I: Tenure by household size of households with a
householder who is White only and not Hispanic or Latino
H13: Tenure by age of householder
H13 A-G: Tenure by age of householder (iterated by race)
H13 H: Tenure by age of householder for housing units
with a householder who is Hispanic or Latino
H13 I: Tenure by age of householder for housing units
with a householder who is White alone and not Hispanic
or Latino
H14: Tenure by household type by age of householder
H15: Tenure by presence of people under 18 years,
excluding householders, spouses, and unmarried partners

IP Solver. We use the Gurobi Optimizer to solve our integer
programming optimization problems. We specify parameters
“feasibility tolerance” and “integer feasibility tolerance” to
their smallest value of 10−9 to enforce constraints as tightly
as possible. We set “pool search mode” to 2 in order to find
as many solutions as possible, up to the some maximum
number defined by “pool solutions”, which is set to K = 100
when generating claims and to 1 when validating claims.
We also set the “timeout” parameter to 3 minutes to control
the total runtime of our experiments for the validation step.
In cases where Gurobi times out, we mark that claim as
unverified.

2. Additional results for verifying all claims

In the main body of our work, we focus on “singling out”
(singleton claims). However, we note that data reconstruction
for multiplicity m > 1 can be equally interesting (or privacy



(a) ≥ 1 Verified Singleton Claims (b) Tract-Level Distribution (c) State-Level Distribution

(d) ≥ 1 Verified Singleton Claims (e) Tract-Level Distribution (f) State-Level Distribution

Figure 5: We present presents results for all verified claims collected from experiments on 5 blocks selected from each
state (250 total on each row). Top row: 5 blocks whose size are equal the median block size of the respective state are
selected. Bottom row: 5 blocks whose size are equal the median block size of the country (i.e., 10 households). a & d: The
number of blocks (out of 50) for which we can reconstruct at least one singleton claim about k columns (x-axis). b & e
and c & f:: Box and whisker plots of the probabilities that each verified claim would also be true in a set of N households
randomly sampled from the (b, e) tract and (c, f) state-level distributions. The orange line within each box indicates the
median probability. The ends of the box indicate the first and third quartiles, and the whiskers end at the furthest point within
1.5 times the interquartile range. All points beyond the whiskers are outliers. Lower probabilities denote more “surprising”
claims.

TABLE 7: For each number of columns, we report total and average number of households that are represented among the
all verified claims. We tabulate the verified claims over 500 total blocks: (top two rows) 5 blocks from each state whose
size is equal to the median block size in the state and (bottom two rows) 5 blocks from each state whose size is equal the
country median block size (i.e., 10 households). n is the total and average number of households over all 250 blocks.

# of households identified by
verified claims w/ k columns

# households k=6 7 8 9 10

State Median Total 2500 1696 1220 642 257 53
Avg. per block 10.00 6.78 4.88 2.57 1.03 0.21

Country Median Total 2430 1809 1262 691 216 35
Avg. per block 9.72 7.80 5.44 2.98 0.93 0.15

violating). Thus, we present in Figure 5 and Table 7 results
for all claims (not just singletons). In general, we make
conclusions similar to those in Section 3. The baseline
probabilities of most claims are still extremely small, and
as expected, more claims (about more households) can be
made. For example, Table 7 shows that now, approximately
a quarter of households are identified by claims of k = 8
columns and 70% by claims of k = 6 columns.
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