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Abstract—Privacy in federated learning is crucial, encompass-
ing two key aspects: safeguarding the privacy of clients’ data
and maintaining the privacy of the federator’s objective from
the clients. While the first aspect has been extensively studied,
the second has received much less attention.

We present a novel approach that addresses both concerns si-
multaneously, drawing inspiration from techniques in knowledge
distillation and private information retrieval to provide strong
information-theoretic privacy guarantees.

Traditional private function computation methods could be
used here; however, they are typically limited to linear or poly-
nomial functions. To overcome these constraints, our approach
unfolds in three stages. In stage 0, clients perform the necessary
computations locally. In stage 1, these results are shared among
the clients, and in stage 2, the federator retrieves its desired
objective without compromising the privacy of the clients’ data.
The crux of the method is a carefully designed protocol that
combines secret-sharing-based multi-party computation and a
graph-based private information retrieval scheme. We show that
our method outperforms existing tools from the literature when
properly adapted to this setting.

Index Terms—Federated Learning, Objective-Hiding,
Information-Theoretic Privacy, Private Information Retrieval,
Secure Aggregation.

I. INTRODUCTION

We consider federated learning (FL), a framework where a
federator and a set of clients with private data collaborate to
train a neural network. Due to privacy constraints, the clients’
data cannot be directly shared with the federator or among the
clients. This privacy concern has been extensively studied in
the literature [2]–[6]. There exists a second, often overlooked,
privacy concern: ensuring the privacy of the federator’s objec-
tive used to train the neural network. This aspect has not been
explored in the literature to the same extent.1

We present a novel approach that ensures the privacy of
the clients’ data and simultaneously hides the objective of the
federator through a careful combination of a secure aggrega-
tion method and a tailored private information retrieval (PIR)
scheme. The key challenge of the overall problem arises from
the complexity of the computations required for training the
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1The notion of intention-hiding has only appeared recently in a different
setting in vertical FL [7], where the intention of model training is implemented
using suitable data preprocessing in the form of a private set intersection.

neural network and the inherent heterogeneity of the clients’
data. E.g., training a neural network in a distributed manner
typically requires each client to compute a gradient of a loss
function with respect to the current neural network using their
private data. This is a highly non-linear computation.

We pose a very general research question: How can a
federator use the clients’ private data to accomplish a task,
while hiding their objective and maintaining the privacy of the
clients’ data?

An instantiation of this problem is fine-tuning a large-
language model for one target objective out of many target
objectives known to the clients. We do not impose any
assumptions on the clients’ data; hence, the computed function
might be different for each client. If the task were linear,
the standard technique of secure aggregation [2] could be
employed effectively. However, for non-linear tasks, such as
training a neural network, averaging the final models reached
by the clients fails to produce a meaningful model. Even when
the clients’ data is similar, their resulting models may differ
significantly, and the averaged model may lack meaningful
utility.

The challenge of combining the knowledge of multiple non-
linear models is commonly referred to as (federated) knowl-
edge distillation, particularly in the context of multiple teacher
models and a single student model [8]. In this framework,
pre-trained teacher models—representing the clients’ models,
or function outputs—transfer their knowledge to the student
model, which corresponds to the federator’s model. We draw
inspiration from these concepts to enable arbitrary function
computations within model training processes. Additionally,
the recently introduced concept of auditing for private pre-
diction [9] highlights the importance of exploring privacy-
preserving techniques in this domain.

Our work can be viewed as a generalization of private
function computation, a well-established framework for out-
sourcing complex computations while preserving the privacy
of the function being evaluated (e.g., [10]–[12]). This com-
putation can be performed on datasets stored either centrally
or distributively [13]. A stronger notion than function privacy
is the additional protection of the underlying data used for
computation, as discussed in [11]. This enhanced privacy is
achieved using techniques such as secret sharing. While pri-
vacy guarantees can be categorized into information-theoretic
and computational approaches, this work focuses exclusively
on the former, ensuring privacy even against adversaries with
unlimited computational power.
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The foundational concept underpinning private function
computation is private information retrieval (PIR) [14], [15].
In PIR, a dataset is distributed across one or more servers,
and a client retrieves a specific file or subset of data without
revealing which file is of interest. Numerous studies have
explored PIR from different angles, including single-server
PIR, PIR with replicated data [16], PIR with MDS-coded
data [15], PIR with secretly shared data [17], and PIR using
graph-based replication, also referred to as non-replicated data
storage [18]–[20]. This concept has been further extended
to symmetric privacy, which ensures that the client learns
nothing about the dataset beyond the specific file requested
from the databases [21]. For a comprehensive overview of
recent advancements and open challenges in PIR, we refer
readers to the surveys [22], [23].

Beyond private function computation [10]–[12], [24]–[27],
concepts from PIR have been extended to private function
retrieval [14], [15], [28]–[33], private inner product retrieval
[34], and private linear transformation [35], [36]. While these
frameworks address private computation for linear functions,
polynomial functions, or compositions of linear functions, they
do not provide solutions for computing arbitrary functions.
This limitation introduces new challenges, which we address
in this work. Our approach can be seen as a generalized frame-
work for the computation of arbitrary predictors, extending
beyond the previously studied settings.

We propose an end-to-end solution for federated one-shot
learning that ensures both data and objective privacy. Under
the assumption of a limited number of colluding clients, our
approach prevents the leakage of private data to other clients
or the federator. Specifically targeting federated learning appli-
cations, we introduce a novel method that integrates concepts
from graph-based (symmetric) private information retrieval,
secret sharing, multi-party computation, coded storage, knowl-
edge distillation, and ensemble learning.

Our solution requires a public unlabeled dataset accessible
to all clients and the federator, a common and non-restrictive
assumption in semi-supervised machine learning problems
[37]. In Stage 0, each client is assigned a subset of objectives
chosen from a pool of candidate objectives. For each assigned
objective, the client trains a local model and uses it to label
the shared public dataset. In Stage 1, clients use a carefully
tailored secret sharing scheme to share the labels privately
among each other and aggregate the received shares. Since
secret sharing schemes are linear, the aggregate of the secret
shares consists of shares of the aggregated labels. In Stage
2, the federator uses a symmetric PIR scheme to receive
only the aggregated labels corresponding to their objective of
interest. Thus, enabling the reconstruction of the federator’s
model while leveraging data contributions from all clients and
maintaining client privacy by observing only aggregated la-
bels. Additionally, the federator’s objective of interest remains
hidden from the clients through the use of a PIR scheme.

We focus on one-shot federated learning for several key
reasons: (1) iterative schemes could compromise the privacy
of the objective, (2) iterative methods incur significant com-
munication overhead due to privacy mechanisms, and (3)
collaborative iterative training using a shared public dataset
introduces additional challenges. Further details are provided

in Remark 2.
Our contributions are summarized as follows:
• We formulate the general problem and propose a three-

stage solution comprising the task assignment stage, the
sharing stage and the query stage, with jointly designed
codes to minimize the overall communication cost.

• Building on [19], we leverage tools from the duals of
Reed-Solomon codes to design a flexible task assignment
scheme. Then, we develop a graph-based PIR scheme
tailored for the designed private coded storage used in
the query stage. This approach generalizes the storage
pattern to ramp Secret Sharing (e.g., McEliece-Sarwate
Secret Sharing [38]), enhancing efficiency in generating
and storing shares of the clients’ labels.

• We extend the framework to incorporate data privacy
against the federator, i.e., ensuring no additional informa-
tion beyond the desired function is leaked to the federator.

• We evaluate the rate of our scheme, demonstrating sig-
nificant gains over existing PIR methods for graph-based
coded data when computational resources are constrained.
Additionally, we propose an optimized scheme utilizing
star-product PIR for scenarios where computation is
inexpensive.

Remark 1. In scenarios where client privacy is not a primary
concern, a simple approach is to independently download
all labels from each client and aggregate the results at
the federator. For cryptographic guarantees, symmetric pri-
vacy—protecting the clients’ results beyond the desired ob-
jective—can be achieved through oblivious transfer protocols
for individual queries. Our proposed solution adheres to a
stronger notion of information-theoretic privacy, safeguarding
both individual client data, by only revealing the aggregate of
the labels of the objective of interest, as well as the privacy
of the objective itself.

II. RELATED WORK

We review the following fundamental ingredients upon
which our scheme is based on: graph-based PIR, secure
aggregation in FL, private function computation, symmetric
PIR and knowledge distillation.

a) PIR: While there has been an abundance of works, we
specifically mention those closest to our interest: PIR for MDS
coded data was studied, e.g., in [17]. Joint message encoding
for PIR was studied in [39], and [40] studied the trade-off
storage and download cost in PIR. Although the latter two are
conceptually different, the ideas are loosely related. We focus
in the following on graph-based PIR, whose methodology is
most related to parts of our contribution.

b) Graph-Based PIR: The problem of PIR on graph-
based data storage was first introduced in [18], in which
the replication of files is modeled by (hyper-)graphs, where
vertices correspond to storage nodes and (hyper-)edges corre-
spond to files and connect nodes storing the same file. The pro-
posed scheme is proved to be uncritical in regard to collusions
as long as the graph exhibits non-cyclic structures. However,
privacy of the stored data is not considered. A similar concept
has arisen concurrently and termed PIR for non-replicated
databases [20], later extended to optimal message sizes [41].
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Many follow-up works have considered PIR on different graph
structures, e.g., [42] where bounds on the capacity of PIR
were derived for specific graphs, in particular for the star-
graph (with one universal node storing all the messages), and
the complete graph. A linear programming-based bound was
given for general graphs. Follow-up works studies the capacity
for a K = 4 star graph [43]. Privacy of the data through secret
sharing was studied in [44] by means of Shamir Secret Sharing
for X-secure and T -private PIR in a non-graph setting. Cross-
space interference alignment is used to improve the rate of
the PIR scheme by efficiently returning multiple information
symbols of interest per query. This has later been extended
to graph-based PIR for messages encoded by a Shamir Secret
Sharing [19], which can be seen as the extension of [11] to
X-security. The dual code of a Generalized Reed Solomon
is used together with cross-subspace alignment for inference
cancellation. Private function computation in the graph-based
setting has recently been studied in [31] for X-security and
T -privacy. A generalization of cross-subspace alignment using
algebraic geometry codes [45] with secret sharing [46] was
recently proposed. Those works are concerned with Shamir
Secret Sharing, and hence not suitable for this problem. Graph-
based secret sharing was independently studied in [47].

Semantic PIR in which the length of the messages may be
different was considered in [48]. In [10], the authors studied
PIR for replicated data and general functions such that the
query space is a vector-space. Theorem 2 in [12] and a result
in [49] appear to consider a general set of functions from non-
colluding replicated databases. In [13], the authors consider a
setting where the user decides how to store the messages on
the non-colluding databases. There is no privacy of the data
from the servers.

c) Secure Aggregation in FL: Secure aggregation for FL
was first introduced in [2]. Follow-up works are concerned
with the communication overhead of such methods, e.g., [50]–
[54]. Alternative models are considered in, e.g., [55]–[57].

d) Private Function Computation and Distributed Com-
puting: Private function computation was extensively studied
in the literature for linear and polynomial functions, cf. [10]–
[12], [24]–[27]. Tools from PIR were further applied to
distributed computing. In [22], a review and survey on this
topic is provided. For instance, polynomial computation from
distributed data was studied in [58], and distributed matrix
multiplication from MDS coded storage was studied in [59].
Tools from PIR have further been used in FL for private
submodel learning termed private read update write [60].

e) Symmetric PIR: The capacity of symmetric PIR
(SPIR) where the messages and the randomness are encoded
with codes with different parameters are considered in [61].
Symmetric PIR from MDS coded data with potentially col-
luding databases was considered in [21]. SPIR with user-side
common randomness was considered in [62], [63]. Random
SPIR was introduced in [63], where the user is interested
in a random message rather than a specific one. Closer to
our work, symmetric private polynomial computation was
studied in [24], where the authors also consider a finite set of
candidate polynomial functions. Related to symmetric privacy
with multiple servers, the combinations of multiple oblivious
transfer protocols was recently studied in [64].

f) Knowledge Distillation in FL: Throughout this work,
we make use of ensemble learning methods, which have been
extensively studied, e.g., in [65]–[67], and for heterogeneous
classifiers in [68]. The concept is also related to the student-
teacher model in the setting of multiple teachers [8]. We refer
interested readers to the survey in [69] for an extensive review
of knowledge distillation in FL.

III. PRELIMINARIES AND SYSTEM MODEL

Notation. We denote finite fields of cardinality q by Fq .
For a natural number a we define the following set notation
[a] ≜ {1, · · · a}. For a random variable X, we refer to the
entropy as H(X), and for two random variables X and Y,
we denote the mutual information as I (X;Y). Similarly, we
denote the conditional entropy and the conditional mutual
information conditioned on a random variable Z as H(X | Z)
and I (X;Y | Z), respectively.

Private Function Computation. Each client i ∈ [n] holds
a private dataset Di. In some cases, these datasets consist of
distinct samples drawn from the same underlying distribution,
referred to as the homogeneous case. In other cases, the
datasets are drawn from different distributions, referred to as
the heterogeneous case.

Let F = {ht}Tt=1 denote the pool of T candidate functions
(or objectives), public, and hence, known to all parties. Among
these, the federator is interested in a specific function hj ,
where the index j is unknown to the clients. Specifically,
the federator aims to compute hj

(⋃
i∈[n] Di

)
, leveraging the

combined data from all clients,
⋃

i∈[n] Di. Our solution is
designed for scenarios where hj is additively separable, i.e.,
hj

(⋃
i∈[n] Di

)
=
∑

i∈[n] hj(Di).

This property is naturally satisfied by linear models, and as
we will demonstrate in the next section, it can also be extended
to certain non-linear models, including neural networks.

Non-linear Training Processes. We now expand on the
previous paragraph and discuss how standard tools from
knowledge distillation can ensure additive separability even in
cases where highly non-linear training processes are involved.
The core idea is that the clients train models to label a public
unlabeled dataset for each objective. The function ht is then
the composition of the local model training and the local model
applied to the public data.

More precisely, let wi,t be the local model trained at client
i for objective t. Let Dpub denote the public dataset consisting
of s samples {xℓ}ℓ∈[s]. Define ht(Di) = wi,t(Dpub), where
wi,t(Dpub) ≜ {wi,t(xℓ)}ℓ∈[s] = {y(t)i,ℓ }ℓ∈[s]. Here, y(t)i,ℓ , ℓ ∈ [s],
refers to the label of client i and objective t for data sample
ℓ in Dpub. Note that y(t)i,ℓ is of dimension c, and each entry is
quantized to at most ⌊q/n+1⌋ levels. In summary, in this case,
ht is a function that takes as input a training dataset, trains a
model, and outputs the labels for a fixed public dataset, i.e.,
ht : D 7→ {y(t)ℓ }ℓ∈[s].

Task Assignment. Although the best performance can be
reached if all clients compute a function (or train a model) for
each objective, training a model for all T objectives might be
expensive. Hence, for each t, we assign the task of computing
ht to only a subset of the clients. We model this assignment
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of tasks by a hypergraph G(V, E) with clients [n] represented
by vertices, and objectives represented by hyperedges E . The
binary incident matrix I ∈ [0, 1]n×T has its (i, t) entry equal
to 1 if client i computes the model for objective t, and 0
otherwise. We assume a symmetric setup, where the column
weight of I is constant and equal to ρ, i.e., exactly ρ clients
compute a model for each objective t. We denote by I(et) the
set of clients incident with hyperedge et. Hence, all clients
i ∈ I(et) compute a model for the objective t. Further, let
I(i) denote the set of all edges incident with client i.

Privacy Guarantees. During the execution of the protocol,
clients share messages amongst each other and with the
federator. Let Mi be the set of all messages received by
client i, and for a set T ⊆ [n], let MT be the set of all
messages received by all clients in T , i.e., MT ≜ {Mi}i∈T .
Let Q(t)

T be the set of all queries received from the federator
by clients i ∈ T for objective t. After the sharing stage is
complete, let Si be the data stored by client i, and ST be the
data stored by all clients i ∈ T and let Y

(t)
i,ℓ be the random

variable representing the prediction of the public sample xℓ

using objective t. We consider information-theoretic privacy
notions, defined formally in the sequel, assuming at most
zs colluding clients that target compromising other clients’
individual data privacy and at most zq clients trying to infer the
federator’s objective. The multifold privacy guarantees for the
clients’ data and the federator’s objective are formally stated
in Definitions 1 to 3.

Definition 1 (Data Privacy from Clients). No client’s data is
leaked to any other set of at most zs colluding clients, i.e., for
all i ∈ [n] and any client collusion set Ts ⊂ [n]\{i}, |Ts| ≤ zs,

I
(
{ht(Di)}t∈I(i),i∈[n];MTs

| {ht(Di)}t∈I(i),i∈Ts

)
= 0.

where {ht(Di)}t∈I(i) = {Y(t)
i,ℓ}t∈I(i),ℓ∈[s] for the special case

of one-shot FL.

Since the clients’ training data might be correlated, the con-
ditioning ensures that nothing further is leaked beyond what is
known to the colluding clients from their own computations.

Definition 2 (Objective-Hiding). The identity j of the function
of interest to the federator is private from any zq colluding
clients, i.e., for each Tq ⊂ [n], |Tq| ≤ zq , it holds that

I
(
{Q(t)

Ts
}t∈[T ],,STq ,MTq ; j

)
= 0.

Going beyond the above privacy measures, we further
require that no information beyond the aggregate clients’
function results is revealed to the federator. With Ai being the
answer received by the federator from client i, and A[n] the
set of answers from all clients i ∈ [n], we have the following
definition of data privacy against the federator.

Definition 3 (Data Privacy from Federator). The federator’s
knowledge about the clients data is limited to the quantity∑n

i=1 hj(Di) of interest, i.e.,

I

A[n], {Q(t)
[n]}t∈[T ]; {ht(Di)}t∈I(i),i∈[n] |

∑
i∈I(ej)

hj(Di)

 = 0,

where for FL we have ht(Di) = {Y(t)
i,ℓ}ℓ∈[s], and∑

i∈I(ej) hj(Di) = {
∑

i∈I(ej) Y
(j)
i,ℓ }ℓ∈[s].

In PIR, Definition 2 corresponds to the user privacy, i.e.,
hiding the identity of the queried file, and Definition 3 is
referred to as the symmetric privacy guarantee. The communi-
cation cost is formally determined as the size of all transmitted
messages, i.e., H

(
M[n],A[n]

)
. The task assignment stage

incurs no communication overhead. Therefore, we will analyze
Rshare and RPIR, the rates of the sharing and query (PIR)
stages of our scheme, which are formally defined next.

Rshare=
H
(∑

i∈I(ej)hj(Di)
)

∑n
i=1 H(Mi)

, RPIR=
H
(∑

i∈I(ej)hj(Di)
)

∑n
i=1 H(Ai)

IV. PROBLEM ILLUSTRATION THROUGH THE LENS OF
FINE-TUNING LARGE-LANGUAGE MODELS

To illustrate the problem and the principle idea of our
solution, we take the example of fine-tuning large language
models (LLMs), which recently gained significant attention
through the progress and capabilities of generative models
such as GPT-4, Llama 3 and Mistral 7B. Imagine a pre-
trained and generic LLM suitable for a variety of tasks. The
federator is interested in fine-tuning the model according to
a specific objective j, for instance, sentiment analysis [70],
article classification [71] or question classification [72]. Note
that both functions (models) and datasets can differ across
objectives. While the clients have suitable labeled data at hand
that can be used for supervised learning, their data should be
kept private. Knowing the different objectives (or functions),
each client i can individually fine-tune the LLM with respect
to every possible objective t ∈ [T ], including the objective
j of interest. Thereby, each client obtains a model wi,t for
each objective of interest. Since the average of clients’ models
for the same objective trained on their individual data is not
meaningful, we make use of a public and unlabelled dataset
Dpub, consisting of s samples xℓ, ℓ ∈ [s], to transfer the
knowledge from clients to the federator. Each client i labels
the public samples xℓ for each objective t, i.e., each trained
LLM wi,t, thereby obtaining s labels y

(t)
i,ℓ for each t ∈ [T ].

Since the individual labels contain sensitive information
about the clients’ data [73], their privacy is as important as that
of the fine-tuned LLM models. For the federator, it is beneficial
to receive the average of the predictions in order to reconstruct
a suitable model [74]. In fact, such averaged predictions for all
samples of the public dataset might improve the performance
due to the diversity of the clients’ data, leading to better
generalization results [74]. To make the federator obtain the
sum of all predictions without revealing any information about
individual labels to the federator or to other clients, we borrow
ideas from multi-party computation [75]. Here, each client
stores a message, and they collaboratively want to compute the
sum of the messages without leaking individual ones to any
subset of zs clients trying to compromise privacy. In FL, such
concepts are well-known as the secure aggregation of local
models (or gradients) at each iteration [2], [54]. Such secure
aggregation techniques lead to high computational overheads,
especially when using basic versions of secret sharing such as
Shamir Secret Sharing [76].
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Stage 0
Task Assignment

Stage 1
Sharing

Stage 2
Query

Objective assignment
to clients

Secret sharing
of MDS-coded labels

Private retrieval
of target objective

Fig. 1. High-level description of a three-stage protocol that first establishes in
two stages (assignment and sharing) an MDS-coded data storage pattern based
on secret sharing that encodes the aggregated clients computation results for
all objectives, and then queries the result for the objective of interest.

Example 1. To illustrate the challenges, we explain and
contrast two approaches to solve this motivating example.
Assume for simplicity unbounded compute power of the clients,
i.e., each client computes the function result for all objectives,
and let ρ = n = 5 and zs = zq = z = 1. The two approaches
are: (i) designing a scheme for our framework using known
techniques from knowledge distillation, secure aggregation,
and methods from the PIR literature [19]; and (ii) rethinking
the co-design of secure aggregation and PIR in this setting,
through a new coding technique we introduce to lower the
communication costs.

We will see that the first approach, while solving the
problem, incurs a high communication cost in the sharing
phase. The second approach reduces this cost, yet requires
the assumption of unbounded computation, i.e., ρ = n. Since
the method of Approach 2 does not directly generalize to
the case where ρ < n, we construct a scheme in Section V
that build on the concepts from Approach 2 and design a
method for arbitrary incident matrices I with ρ ≤ T that
alleviate the interferences resulting from an arbitrary choice
of I by leveraging dual properties of Reed-Solomon codes
and a careful choice of the evaluation points. Fig. 1 shows the
three-stage concept on a high level, and Fig. 2 summarizes the
functionality of the sharing and the query stage.

Approach 1 (Simplified Solution for Shamir Secret Sharing).
The task assignment stage is trivial as all clients compute the
output of all objectives. In the sharing stage, each client i
constructs for each sample ℓ and each objective t a secret
sharing

f
(t)
i,ℓ (x) = y

(t)
i,ℓ + xr

(t)
i,ℓ ,

encoding the private label y
(t)
i,ℓ ∈ Fc

q (encoded by a one-hot
encoding into a vector of length c, the number of classes) using
z = 1 term r

(t)
i,ℓ of the size of the label, chosen independently

and uniformly at random from Fc
q . Each client i1 then sends

the evaluation (share) f
(t)
i1,ℓ

(αi2) to client i2 and receives the
share f

(t)
i2,ℓ

(αi1) for all i2 ∈ [n] for each label ℓ and objective
t. Aggregating the received shares, client i1 obtains a share
F

(t)
ℓ (αi1) of the sum-secret sharing F

(t)
ℓ (x) =

∑n
i=1 f

(t)
i,ℓ (x),

which can be viewed as a codeword of a Generalized Reed
Solomon (GRS) code C with dimension kC = 2 and length n.

In the query stage, to privately retrieve the labels of interest
(i.e., the y

(t)
i,ℓ ’s for objective t = j), we design the queries by

the following polynomial:

q
(t,j)
ℓ (x) = δ

(t,j)
ℓ + xk

(t)
ℓ ,

Client 1

D1

Client i

Di

Client n

Dn

1) Sharing Stage

f t
1(αi) f t

2(αn)

f t
1(αn)

F t(α1) F t(α2) F t(αn)

2) Query Stage
∑

i∈I(ej) hj(Di)

q1 qi qnA1 Ai An

Fig. 2. Illustration of the sharing and query phase of our protocol. The
objective of interest is hidden from the curious clients. The clients do not
learn about the other clients’ results. The federator only learns the aggregate
clients’ results for the objective of interest.

where δ
(t,j)
ℓ =

{
1 if t = j

0 otherwise ,
and k

(t)
ℓ ∈ Fc

q are cho-

sen independently and uniformly at random. Each client i
receives the query polynomial evaluated at αi, and returns
Ai

ℓ =
∑T

t=1 F
(t)
ℓ (αi)q

(t,j)
ℓ (αi), which is an evaluation of the

degree-2 polynomial

F
(t)
ℓ (x)q

(t,j)
ℓ (x)=

n∑
i=1

y
(j)
i,ℓ + x

(
n∑

i=1

r
(j)
i,ℓ +

T∑
t=1

k
(t)
ℓ

n∑
i=1

y
(t)
i,ℓ

)

+ x2

(
T∑

t=1

k
(t)
ℓ

n∑
i=1

r
(t)
i,ℓ

)
,

where vector-products are element-wise. Interpolating this
polynomial from any subset of the answers {Ai

ℓ}ni=1 of size
3 reveals the desired aggregate of the labels

∑n
i=1 y

(j)
i,ℓ . The

communication cost of this scheme is Tsn(n−1)+3s symbols
in Fc

q since the queries and answers are sent for each of the s
labels. Note that we used the same collusion parameter z for
storage and query codes, which need not hold true in general.

While the rate of the PIR scheme in Approach 1 can be
made optimal by using tools from cross-subspace alignment
using multiple Shamir secret sharing schemes, the communi-
cation cost in the sharing stage is considerably large for the
scheme when n − z ≫ 2 and amplified by the number of
objectives T , which gets clear from the above example. Next,
we illustrate how we further reduce communication costs by
using ramp secret sharing and an adapted PIR scheme.

Approach 2 (Simplified Solution for McEliece Sarwate Secret
Sharing). Each client i constructs for each pair of two labels2

y
(t)
i,ℓ , y

(t)
i,ℓ+1 ∈ Fc

q, ℓ ∈ {1, 3, 5, · · · , s − 1} and for each
objective t a secret sharing

f
(t)
i,ℓ (x) = y

(t)
i,ℓ + xy

(t)
i,ℓ+1 + x2r

(t)
i,ℓ .

Each client i1 then sends the evaluation f
(t)
i1,ℓ

(αi2) to client i2
and receives a share f

(t)
i2,ℓ

(αi1) from each client i2 ∈ [n] for

2Assuming for simplicity an even number of labels s. This idea can be
generalized to jointly encoding an arbitrary number of labels.
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each label and each objective t. Each client obtains a share
F

(t)
ℓ (αi1) of the sum-secret sharing F

(t)
ℓ (x) =

∑n
i=1 f

(t)
i,ℓ (x).

To privately retrieve the labels of interest, we design the
following query polynomial:

q
(t,j)
ℓ (x) = δ

(t,j)
ℓ + x2k

(t)
ℓ ,

where δ
(t,j)
ℓ =

{
1 if t = j

0 otherwise ,
and k

(t)
ℓ ∈ Fc

q are cho-

sen independently and uniformly at random. Each client i
receives the query polynomial evaluated at αi, and returns
Ai

ℓ =
∑T

t=1 F
(t)
ℓ (αi)q

(t,j)
ℓ (αi), which is an evaluation of the

degree-4 polynomial

F
(t)
ℓ (x)q

(t,j)
ℓ (x) =

n∑
i=1

y
(j)
i,ℓ + x

n∑
i=1

y
(j)
i,ℓ+1

+ x2

(
n∑

i=1

r
(j)
i,ℓ +

T∑
t=1

k
(t)
ℓ

n∑
i=1

y
(t)
i,ℓ

)

+ x3
T∑

t=1

k
(t)
ℓ

n∑
i=1

y
(t)
i,ℓ+1 + x4

T∑
t=1

k
(t)
ℓ

n∑
i=1

r
(t)
i,ℓ .

Interpolating this polynomial from the set of any 5 answers
in {Ai

ℓ}ni=1 reveals
∑n

i=1 y
(j)
i,ℓ and

∑n
i=1 y

(j)
i,ℓ+1. Hence, the

communication cost is T s
2n(n− 1) + 5s

2 symbols in Fc
q .

Approach 2 does not suffer from the drawback of high
communication costs in the sharing stage. However, it cannot
be directly applied to the graph-based setting. A careful design
of a suitable PIR scheme for arbitrary incident matrices I
will be needed. Requiring each client to compute the label
for all samples and all objective functions exhibits a good
utility of the resulting model at the federator, but incurs large
computation costs. Hence, a trade-off between the computation
complexity and the utility arises in this setting. To leverage
this trade-off, we seek solutions that allow reduced computa-
tion and simultaneously balance the communication costs in
the sharing and the query phase, requiring the design of a
specifically tailored graph-based PIR scheme to generalize the
scheme in Approach 2.

Remark 2. We resort to ideas from federated knowledge dis-
tillation due to the difficulty in hiding the objective in classical
FL settings. Classical FL [77] is an iterative process where at
each iteration, the clients compute a gradient based on their
individual data and the current global model. They report the
result to the federator, who aggregates the received gradients
and updates the global model accordingly. After synchronizing
the clients with the latest model, the process repeats. While
gradient computation can be seen as an arbitrary non-linear
function computation, hiding the objective of the federator
in an iterative scheme is difficult. Even if the objective is
completely hidden from the clients at the time of computing
the gradients, the clients are potentially able to infer the
federator’s objective by simply observing consecutive global
model updates. The idea is similar to that of model inversion
attacks, which allows the federator to obtain information about
the clients’ private data after seeing their model updates
(gradients). Further, incorporating our framework into an
iterative process would incur extensive communication cost.

V. GENERAL SCHEME

We present the end-to-end one-shot FL scheme that pre-
serves the privacy of the federator’s objective of interest and
the clients’ data, made of three stages: the task allocation,
the sharing and the query stage. We present the scheme for
the case that the function results are the labels of a public
dataset. Nonetheless, our solution applies for any function that
is additively separable.

a) Task Assignment Stage: The task assignment stage
requires each client i to compute a set of objectives denoted
by I(i), i.e., the client computes a function ht(Di), or trains
a model wt,i, for each objective t ∈ I(i). For each model,
the client creates (predicts) a label out of c possible classes
for each sample of the public unlabeled dataset, obtaining s

labels y
(t)
i,ℓ , ℓ ∈ [s] for each objective t ∈ I(i). The labels of

the public dataset can contain either hard or soft information,
i.e., a one-hot encoded vector of the class labels or a vector
encoding the class probabilities with finite precision. The
precision will affect the finite field size q required to store all
information necessary without creating finite field overflows in
the aggregation process of the clients, i.e., with γ quantization
steps, we require q ≥ (γ − 1)n. Having quantized the labels
y
(t)
i,ℓ into vectors from Fc

q enables information-theoretic privacy
guarantees through secret sharing.

b) Sharing Stage: We dedicate an evaluation point αi

for each client i ∈ [n], where αi = αi, i ∈ [n] for a generator
element α of the field Fq , q ≥ max{ρ + kC − zs, (γ − 1)n},
where kC =

ρ−zq+zs+1
2 is the dimension of the storage code.

The storage code is constructed by Multi-Party Computation
between the clients. For each objective t ∈ [T ], each client
i ∈ I(et) splits the set of all s labels y(t)i,ℓ ∈ Fc

q into P = s
kC−zs

partitions3 P1, . . . ,PP each of size kC − zs, where the labels
of partition p are referred to by y

(t)
i,p,u for u ∈ [kC − zs]. For

each objective t, each client i ∈ I(et) encodes each partition
p ∈ [P ] into a secret sharing as

f
(t)
i,p (x) =

kC−zs∑
u=1

xu−1y
(t)
i,p,u +

zs∑
τ=1

xkC−zs+τ−1r
(t)
i,p,τ , (1)

where ∀τ ∈ [kC − zs] and p ∈ [P ] the vectors r
(t)
i,p,τ ∈ Fc

n are
uniformly chosen from Fc

q . Each client i sends the evaluation
f
(t)
i,p (αi1) to client i1. Each client i1 aggregates all received

contributions

F (t)
p (αi1)≜

∑
i∈I(et)

f
(t)
i,p (αi1)

=

kC−zs∑
u=1

xu−1
∑

i∈I(et)

y
(t)
i,p,u +

zs∑
τ=1

xkC−zs+τ−1r′(t)p,τ ,

where r
′(t)
p,τ ≜

∑n
i=1 r

(t)
i,p,τ , thus obtains a codeword from an

(n, kC)-GRS. This procedure incurs a total communication
cost of Tsc·ρ(ρ−1)

kC−zs
symbols in Fq given that4 (kC − zs)|sc.

The rate for each secret sharing is kC−zs
ρ(ρ−1) . Since the federator

3Assuming for simplicity that (kC − z)|s.
4This is more general than the description above, where we would require

that (kC − zs)|s instead (kC − zs)|sc, but is achievable by splitting into
fractions of the labels.
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Fig. 3. Communication Cost in sc symbols in Fq compared to our three-
stage protocol paired with GXSTPIR [19] and the Star-Product scheme with
optimized storage code dimension k⋆C according to Lemma 1. The latter is
limited to ρ = n, i.e., to non-graph-based settings. The parameters are chosen
as n = 10, T = 10, and zs = zq = 1.

is interested in only one objective j ∈ [T ], the overall sharing
rate is kC−zs

Tρ(ρ−1) .

c) Query Stage: Having in place a (ρ, kC)-GRS storage
code (in fact, we have TP of such codes where each informa-
tion symbol is of size sc

P (kC−zs)
symbols in Fq , we design an

(S)PIR scheme that allows the federator to retrieve the labels
corresponding to the objective t of interest without revealing
its identity.

Consider for all t ∈ [T ], p ∈ [P ] the following query
polynomial

q(t,j)p (x) = δ(t,j)p +

zq∑
τ=1

xkC−zs+τ−1k(t)p,τ , (2)

where δ
(t,j)
p =

{
1 if t = j

0 otherwise ,
and k

(t)
p,τ ∈ Fc

q are chosen

independently and uniformly at random. For each t ∈ T , client
i ∈ I(et) receives an evaluation q

(t,j)
p (αi) of this polynomial,

which it multiplies (element-wise) by all F (t)
p (αi) for p ∈ [P ],

and additionally by

νt,i ≜

 ∏
i1∈I(et)\{i}

(αi − αi1)

−1

.

The choice of νt,i is justified by the duals of GRS codes and
will allow for arbitrary task assignment patterns. The federator
receives the answers Ai = {Ai

1(αi), · · · , Ai
P (αi)}, where

Ai
p(αi) are evaluations of the following answer polynomial

Ai
p(x) =

∑
t∈I(i)

νt,iF
(t)
p (x)q(t,j)p (x)

= νj,i

kC−zs∑
u=1

xu−1
∑

i∈I(ej)

y
(j)
i,p,u +

∑
t∈I(i)

νt,i

kC+zq−1∑
τ=1

xkC−zs+τ−1a
(t)
p,τ,i,

and ∀τ ∈ [kC + zq − 1], a
(t)
p,τ,i are interference terms be-

ing potentially different for each client. The multiplication
F

(t)
p (x)q

(t,j)
p (x) is done element-wise.
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Fig. 4. Communication Cost in sc symbols in Fq compared to our three-
stage protocol paired with GXSTPIR [19] and the Star-Product scheme with
optimized storage code dimension k⋆C according to Lemma 1. The latter is
limited to ρ = n, i.e., to non-graph-based settings. The parameters are chosen
as n = 100, T = 20, and zs = zq = 5.

d) Reconstruction Stage: For ϑ ∈ [kC−zs], the federator
sums over all clients’ answers to obtain

A(ϑ) ≜
n∑

i=1

α−ϑ
i Ai

p(αi)

=

kC−zs∑
u=1

 ∑
i∈I(ej)

y
(j)
i,p,u

 ∑
i∈I(ej)

νj,iα
u−ϑ−1
i .

Let ȳp,u ≜
∑

i∈I(ej) y
(j)
i,p,u. By computing A(ϑ) for all ϑ ∈

[kC − zs], the federator can obtain the desired information as(
ȳp,1, ȳp,2, · · · , ȳp,kC−zs

)T
= P−1

(
A(1), A(2), · · · , A(kC−zs)

)T
,

where P is the following invertible matrix

P =
∑

i∈I(ej)


νj,iα

−1
i 0 · · · 0 0

νj,iα
−2
i νj,iα

−1
i 0 · · · 0

...
. . . . . . . . . 0

νj,iα
−kC+zs
i · · · · · · · · · νj,iα

−1
i

 .

Having obtained all aggregated labels for the objective j of
interest, the federator retrains a suitable model leveraging the
public dataset and the heterogeneity of the clients’ data.

e) Properties of the Scheme: We state in the following
the most important properties of our proposed scheme, which
is the sharing rate, the PIR rate, and the privacy guarantee.

Proposition 1 (Sharing Rate). The rate of the proposed
sharing scheme is

Rshare =
ρ− zs − zq + 1

2Tρ(ρ− 1)
.

Proof. We assume in the worst case that all clients’ function
results are independent and uniformly distributed. By the
above choice of kC , for each objective the number of labels
contained in each secret sharing according to (1) is ρ−zs−zq+1

2 ,
and the number of shares (of the same size) transmitted is
given by ρ(ρ − 1). Since the federator is only interested in
one out of all T objectives, the rate deteriorates by T .

Theorem 1 (PIR Rate). The rate of the proposed PIR scheme
is

RPIR =
ρ− zq − zs + 1

2n

(⋆)
=

ρ− kC − zq + 1

n
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TABLE I
COMPARISON OF SECRET SHARING AND PIR RATES, AND COMMUNICATION COSTS. THE PARAMETER k⋆C IS GIVEN BY LEMMA 1.

Method Sharing Rate PIR Rate Total Communication Cost in Fq

Ours ρ−zs−zq+1

2Tρ(ρ−1)

ρ−zq−zs+1

2n
2Tsc·ρ(ρ−1)
ρ−zs−zq+1

+ 2sc·n
ρ−zq−zs+1

GXSPIR [19] 1
Tρ(ρ−1)

ρ−zq−zs
n

Tsc · ρ(ρ− 1) + sc·n
ρ−zs−zq

ρ = n (modified [17]) k⋆
C−zs

Tn(n−1)

(k⋆
C−z)(n−k⋆

C−zq+1)

nk⋆
C

Tsc·n(n−1)
k⋆
C−zs

+ sc
k⋆
C−zs

k⋆
Cn

n−k⋆
C−zq+1

where (⋆) holds for ρ ≤ 2kC+zq−1 and zs = 2kC−ρ+zq−1.

Proof. The rate of the PIR scheme for each et ∈ E is
kC−zs

2kC+zq−zs−1 . Setting ρ = 2kC + zq − zs − 1, we obtain for

ρ ≤ 2kC + zq − 1 a per-objective rate of ρ−kC−zq+1
ρ , where

zs = 2kC − ρ + zq − 1. Since we also need to query clients
i ∈ [n] \ I(ej) for reasons of privacy, the overall rate of the
PIR scheme is ρ−kC−zq+1

n .

The communication cost is, hence, n
ρ−kC−zq+1 . Let the

set of all messages received by client i1 be Mi ≜
{f (t)

i,p (αi1)}i∈I(et)\{i1},t∈I(i1). Further, let the set of all mes-
sages received by all clients in T ⊂ [n] be MT ≜ {Mi}i∈T .

Theorem 2 (Privacy from Clients and Objective-Hiding). The
clients’ computation results are private against any set of zs
clients (cf. Definition 1). The objective j is private against
any set of zq clients (cf. Definition 2), i.e., for any two sets of
clients Ts, Tq ⊂ [n] \ {i}, |Ts| ≤ zs, |Tq| ≤ zq , we have

I
(
{Y(t)

i,ℓ}t∈I(i),ℓ∈[s];MTs|{Y
(t)
i,ℓ}t∈I(i),i∈Ts,ℓ∈[s]

)
= 0,∀i∈ [n],

I
(
{Q(t)

p,Tq
},STq ; j

)
= 0.

Theorem 3 (Correctness). The sum of labels of interest∑
i∈I(ej) y

(j)
i,ℓ , ℓ ∈ [s], is decodable from the answers, i.e.,

H

{ ∑
i∈I(ej)

Y
(j)
i,p,u

}
p∈[P ],u∈[kC−zs]

| {Ai
p(αi)}p∈[P ],i∈I(ej)

 = 0.

We compare the communication cost of our scheme in
Figs. 3 and 4 to the application of two PIR schemes from
the literature for n = 10 and n = 100, respectively, and
provide the corresponding rates in Table I. The details of the
comparison are deferred to Section VII.

VI. EXTENSION TO PRIVACY FROM THE FEDERATOR

While the above scheme complies with the privacy notion
according to Definition 1, privacy from the federator as in
Definition 3 is not ensured. Therefore, recall the answer poly-
nomial Ai

p(x) above. The crucial aspect is that the interference
terms a

(t)
p,τ,i contain sensitive information about y

(t)
i,p,u for

u ∈ [kC − zs] and t ̸= j, i.e., they depend on the function
results of the clients, thereby leaking potential information
about clients’ results beyond the objective j of interest. To
ensure user-side privacy, where the federator does not learn
anything about the clients models beyond the objective of
interest, we assume the existence of shared randomness among

all clients unknown to the federator. Leveraging this shared
randomness, the clients construct a randomized polynomial

Rp(x) =

kC+zq−1∑
τ=1

xkC−zs+τ−1sp,τ ,

where {sp,τ}τ∈[kC+zq−1] is known to all clients, but unknown
to the federator. For each partition p ∈ [P ], each client i replies
to the queries q

(t,j)
p (x), t ∈ I(i) with the answer

A′
p(αi) =

T∑
t=1

νt,iF
(t)
p (αi)q

(t,j)
p (αi) +Rp(αi),

which is an evaluation of the re-randomized polynomial

A′
p(x) = νj,i

kC−zs∑
u=1

xu−1
∑

i∈I(ej)

y
(j)
i,p,u

+

kC+zq−1∑
τ=1

xkC−zs+τ−1

(
sp,τ +

∑
t∈I(i)

νt,ia
(t)
p,τ,i

)
,

which is, by the one-time pad, guarantees the privacy of the
a
(t)
p,τ,i that contain potentially sensitive information about the

clients’ computation beyond the objective of interest. The
recovery process as in Section V remains unchanged. Let the
answer Ai received from client i be Ai ≜ {A′

p(αi)}p∈[P ],
then we have the following privacy statement.

Theorem 4 (Symmetric Privacy). In addition to the privacy
satisfied according to Theorem 2, the federator learns noth-
ing beyond the aggregation of ρ clients’ predictions for the
objective j of interest. Formally,

I

A[n], {Q(t)
p,[n]}; {Y

(t)
i,ℓ} |

{ ∑
i∈I(ej)

Y
(j)
i,ℓ

}
ℓ∈[s]

 = 0.

where for clarity we define {Q(t)
p,[n]} ≜ {Q(t)

p,[n]}t∈[T ],p∈[P ] and

{Y(t)
i,ℓ} ≜ {Y(t)

i,ℓ}t∈I(i),i∈[n],ℓ∈[s].

Proof. By the one-time pad, all interference terms∑
t∈I(i) νt,ia

(t)
p,τ,i containing sensitive information are

perfectly hidden from the federator, and hence, all
labels {Y(t)

i,ℓ}i∈[n],t∈I(i),ℓ∈[s] with the exception of
{
∑

i∈I(ej) Y
(j)
i,ℓ }ℓ∈[s] are statistically independent from

the answers A[n]. Further, the queries {Q(t)
p,[n]}t∈[T ],p∈[P ]

are independent of the labels. This holds even if all
clients’ polynomials could be exactly reconstructed by the
federator.
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Fig. 5. Secret Sharing rates compared to GXSTPIR [19] and the Star-Product
scheme with optimized storage code dimension k⋆C according to Lemma 1. The
latter is limited to ρ = n, i.e., to non-graph-based settings. The parameters
are chosen as n = 10, T = 10, and zs = zq = 1.

VII. COMPARISON TO CROSS-SUBSPACE-ALIGNMENT
AND STAR-PRODUCT CODES

Our scheme encapsulates a secret sharing stage and a new
PIR scheme for graph-based MDS coded storage patterns
specifically tailored to generalized secret sharing schemes.
When restricting to the suboptimal Shamir Secret Sharing in
the sharing stage, the method of [19] can be used instead
of our PIR scheme. In a non-graph-based setting (when
ρ = n), known methods from PIR over MDS coded data
apply for generalized secret sharing schemes due to their MDS
structure. However, for optimal overall communication costs,
we formulate and solve an optimization problem that trades
the sharing rate against the PIR rate and finds the optimal
operating point. We elaborate on the two extreme cases in the
following, and provide a comparison to our scheme.

a) Star-Product PIR [17]: Considering non-graph-based
settings (i.e., ρ = n), since secret sharing is a Reed-Solomon
code, known results from private information retrieval over
MDS-coded data such as those in [17] can be applied in our
framework. Applying such results yields an interesting trade-
off between the design of the storage code and the query
code. This trade-off is not present in our scheme due to our
construction being tailored to this setting. Star-product-based
PIR schemes consist of a storage cost C and a query code D.
On a high level, each client (or server) returns codewords from
the star-product code C ⋆D, and the messages of interest are
encoded as erasures in the code. The rate of this PIR scheme
is (dC⋆D − 1)/n, while being private against zq = dD⊥ − 1
colluders, where dD⊥ is the minimum distance of the dual
code of D. Given a desired zq , the dual of D must satisfy
dD⊥ = zq + 1 and have dimension kD⊥ = n − zq . Hence,
D is an (n, zq)-GRS code. If we choose the same code
locators for both codes, then the star product C ⋆ D is an
(n,min{kC + zq − 1, n})-GRS code with minimum distance
dC⋆D = n − kC − zq + 2 given that kC + zq − 1 ≤ n. The
PIR scheme achieves a rate of dC⋆D−1

n =
n−kC−zq+1

n [17].
Fixing zq , it is desirable to choose a storage code with a small
parameter kC . However, in this case the randomness of the
storage code is recovered as a by-product, and hence, the rate
comes with an additional factor of kC−zs

kC
. The rate results as

n−kC−zq+1
n

kC−zs
kC

. The download cost of the PIR scheme is
given by sc

kC−zs
kCn

n−kC−zq+1 symbols in Fq . However, each of
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Fig. 6. Private information retrieval rates compared to GXSTPIR [19] and the
Star-Product scheme with optimized storage code dimension k⋆C according to
Lemma 1. The latter is limited to ρ = n, i.e., to non-graph-based settings.
The parameters are chosen as n = 10, T = 10, and zs = zq = 1.

the clients is required to train T models for each potential
function.

Lemma 1. The lowest communication cost is given by

Tsc · n(n− 1)

k⋆C − zs
+

sc

k⋆C − zs

k⋆Cn

n− k⋆C − zq + 1

symbols in Fq , where k⋆C is chosen from {⌊k′C⌋, ⌈k′C⌉} as given
below to minimize the above cost. Defining c1 ≜ (n− zq +1)
and c2 ≜ Tn(n− 1), we have

k′C =
1

c2 − n

(
c1c2 −

√
c21c

2
2 − (c2 − n)(c21c2 + nc1zs)

)
.

Approach 3. Consider the setting of Example 1. We have
n = 5 clients i ∈ [5] and s labels, split into P = s/2 partitions
of size two. We assume no collusions between clients, i.e.,
zs = zq = z = 1. Let for some choice of T the optimal code
dimension be k⋆C = 3. For each p ∈ [P ], each client i creates
shares of the form

f
(t)
i,p (x) = y

(t)
i,p,1 + x · y(t)i,p,2 + x2 · r(t)i,p,1,

and sends to each client i1 ̸= i a share f
(t)
i,p (αi1), keeping the

share f
(t)
i,p (αi) to itself. Summing the shares of all incoming

clients, each client i obtains ∀p ∈ [P ] a share F
(t)
p (αi) of

the polynomial F
(t)
p (x), corresponding to a codeword of an

(n, 3)-GRS(α,1n) code C, where α = (α1, · · · , αn) are the
evaluators and 1n the column multipliers. The communication
cost in the sharing stage is T s

2n(n− 1) symbols in Fc
q .

For privacy against zq = 1, we choose a query code D
whose dual has dimension kD⊥ = n−z = 4, hence an (n, n−
kD⊥)-GRS(α,1n). The star product code C ⋆ D then is an
(n, 3)-GRS(α,1n) code, with minimum distance dC⋆D = 3.
The overall rate of the PIR scheme is dC⋆D−1

n = 2
5 . The overall

communication cost of the scheme is T s
2n(n−1)+ 5

2s symbols
in Fc

q , which is the same as for Approach 2. However, this
method does not apply to graph-based settings with arbitrary
task assignments due to the interplay of storage and query
code, but can yield better results for ρ = n as shown in Fig. 3.

b) Graph-based PIR with Cross-Subspace Alignment:
When restricting to Shamir Secret Sharing schemes, the
clients would construct a secret sharing for each prediction
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individually. If all secret sharing instances follow the same
construction, cross-subspace alignment can improve the rate
of the PIR scheme. In fact, the rate of GXSTPIR was shown
to be ρ−zs−zq

n [19]. For XSTPIR (non-graph based), let ρ = n.
Then we have a rate of ρ−zs−zq

ρ [44], where Shamir Secret
Sharing schemes are shown to be capacity-achieving through
cross-subspace alignment. However, being restricted to Shamir
Secret Sharing is undesirable in our case since the rate of the
sharing stage is kC−zs

ρ(ρ−1) for ρ ≤ kC , which is the worst for
kC−zs = 1, where the rate is 1

ρ(ρ−1) . The optimal rate results
when ρ is maximal, which yields ρ−zs

ρ(ρ−1) . In comparison, with
our proposed PIR scheme for arbitrary kC − zs ≤ ρ− zs, we
obtain a PIR rate of kC−zs

2kC+zq−zs−1 for ρ ≥ 2kC + zq − zs − 1,
which shows that for non-fixed ρ, large kC − zs are desirable.
Equivalently, we can write ρ−kC−zq+1

ρ =
ρ−zq−zs+1

2ρ , hence,
asymptotically in ρ, the rate goes to 1

2 .

Remark 3 (Cross-Subspace Alignment in our Scheme). The
authors of [19] use cross-subspace alignment by a careful
choice of evaluation points for different Shamir Secret Sharing
instances to construct capacity-achieving PIR schemes. On
the contrary, we jointly design the storage and query code
to reduce the overall communication cost dominated by the
sharing stage. This leads to occupying all dimensions of the
answers with only one secret sharing. If the communication
cost in the sharing stage was of lower importance, ideas
from cross-subspace alignment could be incorporated into our
framework by a deliberate choice of the evaluation points for
different McEliece-Sarwate secret sharing instances.

We compare in Fig. 3 the overall communication cost of
our proposed three-stage protocol for the proposed tailored
PIR scheme to the usage of prior work from the PIR literature
as a substitute for our PIR scheme, as a function of ρ ≤ n for
the case when n = 10, T = 10, and zs = zq = 1. In Table I,
we provide a summary of the sharing and PIR rates and the
communication costs for the three schemes as a function of
the system parameters. We plot the separate sharing and PIR
rates for the same parameters above in Figs. 5 and 6, which
exhibit contrasting behavior as a function of ρ. Hence, the
computation cost and, consequently, the utility determined by
ρ incur a trade-off between the sharing and the PIR rates.
One can further find that our proposed solution in combination
with the newly designed PIR scheme outperforms the usage
of existing graph-based PIR schemes in the query stage of
our method. When ρ = n, we show that the usage of a star-
product-based PIR scheme in the query stage with parameters
specifically optimized for MDS coded data in form of secret
sharing gives the smallest communication cost. We depict
the communication cost for n = 100 clients, T = 20, and
zs = zq = 5 in Fig. 4, and find that our scheme uniformly out-
performs the application of existing graph-based PIR schemes.
For ρ = n = 100, using the tailored star-product-based PIR
scheme is beneficial. According to Definitions 1 to 3, no
privacy leakage is incurred by our scheme.

VIII. CONCLUSION

In this work, we introduced a new notion of objective-
hiding for federated one-shot learning complemented by data

privacy for the clients’ data. We use tools from multi-party
computation, knowledge distillation and (S)PIR, and propose
a new three-stage protocol that achieves information-theoretic
privacy of the federator’s objective and the clients’ data
under a limited collusion assumption. To minimize the joint
communication cost in the sharing and query stages of our
framework, we proposed a novel graph-based PIR scheme for
flexible task assignments specifically tailored to the setting at
hand and leveraging the properties of dual GRS codes.

Going further, the problems of mitigating the effect of strag-
glers and dropouts among clients, considering the presence of
malicious clients deliberately trying to corrupt the process,
and considering different privacy notions such as differential
privacy [78] and subset privacy [79] remain open in this
setting.

APPENDIX

A. Proof of Theorem 2

We first prove the clients’ data privacy from any other set Ts
of at most zs colluding clients. Note that each client i1 ∈ Ts
receives the following set of messages from all other clients:
Mi1 ≜ {f (t)

i,p (αi1)}i∈I(et),t∈I(i1)\{i1},p∈[P ], i.e., for each ob-
jective t ∈ I(i1) one share from each client that was assigned
the same objective t, per partition p ∈ [P ]. Hence, for each
objective t ∈ [T ] and each partition p ∈ [P ] and set of clients
in Ts receive at most zs shares. Since, by design, at most zs
secret shares of any two objectives t, t′ ∈ [T ] and two parti-
tions p, p′ are pair-wise independent of each other, it suffices
to prove that for all clients i ∈ [n] any for any pair of t, p, we
have I

(
{Y(t)

i,p,u}u∈[kC−zs];MTs
| {Y(t)

i,ℓ}t∈I(i),i∈Ts,ℓ∈[s]

)
=

0, where Y
(t)
i,p,u is the random variable corresponding to y

(t)
i,p,u

as defined in Section V. The set of critical messages is then
given by {f (t)

i,p (αi1)}i1∈Ts
. Hence, we need to prove that

I
(
{Y(t)

i,p,u}u∈[kC−zs]; {f
(t)
i,p (αi1)}i1∈Ts

| {Y(t)
i,ℓ}t∈I(i),i∈Ts,ℓ∈[s]

)
H
(
{Y(t)

i,p,u}u∈[kC−zs] | {Y
(t)
i,ℓ}t∈I(i),i∈Ts,ℓ∈[s]

)
−H

(
{Y(t)

i,p,u}u∈[kC−zs]|{Y
(t)
i,ℓ}t∈I(i),i∈Ts,ℓ∈[s],{f

(t)
i,p (αi1)}i1∈Ts

)
H
(
{Y(t)

i,p,u}u∈[kC−zs] | {Y
(t)
i,ℓ}t∈I(i),i∈Ts,ℓ∈[s]

)
−H

(
{Y(t)

i,p,u}u∈[kC−zs] | {Y
(t)
i,ℓ}t∈I(i),i∈Ts,ℓ∈[s]

)
= 0,

which holds since any zs shares do not reveal anything about
the privacy labels {Y(t)

i,p,u}u∈[kC−zs] beyond the correlation
with the colluders’ information.

We now prove the privacy of the objective j of interest in
the following, in particular, the queries or shares observed and
held by any set of zq clients does not leak any information
about j. When clear from the context, we omit the subscripts
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from the set notation for readability.

I
(
{Q(t)

p,Tq
},MTq

,STq
; j
)

(a)
= I

(
{Q(t)

p,Tq
},MTq

, {Y(t)
i,ℓ}i∈Tq

; j
)

(b)
= I

(
{Q(t)

p,Tq
}; j
)
+ I
(
MTq , {Y

(t)
i,ℓ}i∈Tq ; j | {Q

(t)
p,Tq

}
)

= I
(
{Q(t)

p,Tq
}; j
)
+H

(
MTq

, {Y(t)
i,ℓ}i∈Tq

| {Q(t)
p,Tq

}
)

−H
(
MTq

, {Y(t)
i,ℓ}i∈Tq

| {Q(t)
p,Tq

}, j
)

(c)
= I

(
{Q(t)

p,Tq
};j
)
+H

(
MTq

,{Y(t)
i,ℓ}i∈Tq

)
−H

(
MTq

,{Y(t)
i,ℓ}i∈Tq

)
where (a) is by the definition of STq , (b) follows from the
chain rule of mutual information, (c) from the definition
of conditional mutual information and by independence of
{Q(t)

p,Tq
}, j of MTq , {Y

(t)
i,ℓ}i∈Tq .

Assuming w.l.o.g. that j = 1, then

I
(
{Q(t)

p,Tq
},STq

; j
)
=

T∑
t=1

I
(
{Q(t)

p,Tq
}; j | {Q(t′)

p,Tq
}t′<t

)
(d)
=

T∑
t=1

I
(
{Q(t)

p,Tq
}; j
) (e)

≤
T∑

t=1

I
(
{Q(t)

p,Tq
}; δ(t,j)p

)
= 0,

where (d) is because any set of at most zq shares Q
(t)
p,Tq

encoding the query for objective t is independent of another
set of secret shares Q

(t)
p,Tq

encoding the query for objective
t′ by the properties of secret sharing. (e) holds by the data
processing inequality, and the last equality holds since (2) is a
secret sharing according to McEliece-Sarwate [38] where any
set of at most zq shares are statistically independent of the
private message δ

(t,j)
p . This concludes the proof.

B. Proof of Theorem 3
Proof. The federator receives the answers Ai =
{Ai

1(αi), · · · , Ai
P (αi)}, where Ai

p(αi) are evaluations
of the following answer polynomial

Ai
p(x) =

∑
t∈I(i)

νt,iF
(t)
p (x)q(t,j)p (x)

=
∑

t∈I(i)

νt,i

kC−zs∑
u=1

xu−1
∑

i∈I(et)

y
(t)
i,p,u +

zs∑
τ=1

xkC−zs+τ−1r′(t)p,τ


(
δ(t,j)p +

zq∑
τ=1

xkC−zs+τ−1k(t)p,τ

)

=
∑

t∈I(i)

νt,i

kC−zs∑
u=1

xu−1
∑

i∈I(et)

y
(t)
i,p,u

 δ(t,j)p

+
∑

t∈I(i)

νt,i

kC−zs∑
u=1

xu−1
∑

i∈I(et)

y
(t)
i,p,u

( zq∑
τ=1

xkC−zs+τ−1k(t)p,τ

)

+
∑

t∈I(i)

νt,i

(
zs∑
τ=1

xkC−zs+τ−1r′(t)p,τ

)
δ(t,j)p

+
∑

t∈I(i)

νt,i

(
zs∑

τ ′=1

xkC−zs+τ ′−1r′(t)p,τ

)(
zq∑
τ=1

xkC−zs+τ−1k(t)p,τ

)

= νj,i

kC−zs∑
u=1

xu−1
∑

i∈I(ej)

y
(j)
i,p,u + νj,i

zs∑
τ=1

xkC−zs+τ−1r′(j)p,τ

+

kC−zs∑
u=1

zq∑
τ=1

xkC−zs+u+τ−2
∑

t∈I(i)

νt,i

k(t)p,τ

∑
i∈I(et)

y
(t)
i,p,u


+

zs∑
τ ′=1

zq∑
τ=1

x2kC−2zs+τ ′+τ−2
∑

t∈I(i)

νt,ir
′(t)
p,τ ′k

(t)
p,τ ,

For ϑ ∈ [kC − zs], summing over all clients, we have

n∑
i=1

α−ϑ
i Ai

p(αi) =

n∑
i=1

∑
t∈I(i)

α−ϑ
i νt,iF

(t)
p (αi)q

(t,j)
p (αi)

=

T∑
t=1

∑
i∈I(et)

α−ϑ
i νt,iF

(t)
p (αi)q

(t,j)
p (αi)

=

kC−zs∑
u=1

∑
i∈I(ej)

νj,iα
u−ϑ−1
i

∑
i∈I(ej)

y
(j)
i,p,u


+

zs∑
τ=1

r′(j)p,τ

∑
i∈I(ej)

νj,iα
kC−zs+τ−ϑ−1
i

+

T∑
t=1

kC−zs∑
u=1

zq∑
τ=1

k(t)p,τ

∑
i∈I(et)

y
(t)
i,p,u

 ∑
i∈I(et)

νt,iα
kC−zs+u+τ−ϑ−2
i

+

T∑
t=1

zs∑
τ ′=1

zq∑
τ=1

r
′(t)
p,τ ′k

(t)
p,τ

∑
i∈I(et)

νt,iα
2kC−2zs+τ ′+τ−ϑ−2
i

=

kC−zs∑
u=1

 ∑
i∈I(ej)

y
(j)
i,p,u

 ∑
i∈I(ej)

νj,iα
u−ϑ−1
i

where the latter step holds because
∑

i∈I(et) νt,iα
ζ
i = 0 for

all 0 ≤ ζ ≤ ρ − 2. It is ensured that kC − zs ≤ ρ−zs−zq+1
2 .

Consequently, we have 1) that 0 ≤ τ − 1 ≤ kC − zs + τ −
ϑ − 1 ≤ kC − zs + τ − 2 ≤ kC − zs − 3, 2) that 2 ≤ u +
τ ≤ kC − zs + u + τ − ϑ − 2 ≤ kC − zs + u + τ − 3 ≤
2(kC − zs) + zq − 3 ≤ ρ − zs − 2 ≤ ρ − 2, and 3) that
kC−zs ≤ kC−zs+τ ′+τ −2 ≤ 2kC−2zs+τ ′+τ −ϑ−2 ≤
2kC − 2zs + τ ′ + τ − 3 ≤ 2kC − 2zs + zs + zq − 3 ≤ ρ− 2.
Hence, in all cases, ζ is between 0 and ρ − 2, which is why
all terms except the first vanish.

Similarly, all terms corresponding to αu−ϑ−1
i vanish when

ϑ < u, and hence we obtain from αi ∈ [kC−zs] the following
linear system of equations. For notational convenience, we let
ȳp,u ≜

∑
i∈I(ej) y

(j)
i,p,u. Further, let A(ϑ) ≜

∑n
i=1 α

−ϑ
i Ai

p(αi).
Without loss of generality, let clients i ∈ [ρ] store the logits
for objective j. We have for

P =
∑

i∈I(ej)


νj,iα

−1
i 0 · · · 0 0

νj,iα
−2
i νj,iα

−1
i 0 · · · 0

...
. . . . . . . . . 0

νj,iα
−kC+zs
i · · · · · · · · · νj,iα

−1
i


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that 
A(1)

A(2)

· · ·
A(kC−zs)

 = P


ȳp,1
ȳp,2
· · ·

ȳp,kC−zs


from which the desired values ȳp,1, ȳp,2, · · · , ȳp,kC−zs can be
obtained. Using the triangular shape of the matrix and applying
Lemma 2 proves that P is invertible when q > ρ + kC −
zs − 1, and αi, i ∈ [n], are chosen as αi = αi, i ∈ [n] for a
generator α of the field Fq . We state and prove the lemma in
the following. This also concludes the proof of the theorem.

Lemma 2. For q > ρ + kC − zs − 1, and αi = αi, i ∈
[n], for any generator element α of the field Fq , we have∑

i∈I(ej) νj,iα
−ϑ
i ̸= 0 for all ϑ ∈ [kC − zs].

Proof. Assuming without loss of generality that I(ej) = [ρ],
we write

∑
i∈I(ej) νj,iα

−ϑ
i as the inner product of two code-

words:∑
i∈I(ej)

νj,iα
−ϑ
i = (νj,1, · · · , νj,ρ)(α−ϑ

1 , · · · , α−ϑ
ρ )T

Let (νj,1, · · · , νj,ρ) ∈ C, where C is a generalized
Reed-Solomon code with dimension 1 and length ρ.
If and only if (α−ϑ

1 , · · · , α−ϑ
ρ ) ∈ C⊥, it holds that

(νj,1, · · · , νj,ρ)(α−ϑ
1 , · · · , α−ϑ

ρ )T = 0. We need to show that
(α−ϑ

1 , · · · , α−ϑ
ρ ) /∈ C⊥. By the definition of generalized Reed-

Solomon codes and their dual, the generator matrix GC⊥ of
C⊥ is given by

GC⊥ =


1 1 · · · 1
α1 α2 · · · αρ

...
...

. . .
...

αρ−2
1 αρ−2

2 · · · αρ−2
ρ

 (3)

Hence, (νj,1, · · · , νj,ρ)(α−ϑ
1 , · · · , α−ϑ

ρ )T = 0 for all 2− ρ ≤
ϑ ≤ 0 (which we used above). Since we have αq−1

i = 1, we
can write∑
i∈I(ej)

νj,iα
−ϑ
i = (νj,1, · · · , νj,ρ)(α−ϑ

1 , · · · , α−ϑ
ρ )T

= (νj,1, · · · , νj,ρ)(αq−ϑ−1
1 , · · · , αq−ϑ−1

ρ )T

If q − ϑ − 1 ≤ ρ − 2, then from (3), it can be seen that the
above inner product is 0. If q−ϑ− 1 > ρ− 2, we must show
that the matrix

1 1 · · · 1
α1 α2 · · · αρ

...
...

. . .
...

αρ−2
1 αρ−2

2 · · · αρ−2
ρ

αq−ϑ−1
1 αq−ϑ−1

2 · · · αq−ϑ−1
ρ


is full rank for every ϑ ∈ [1, kC − zs]. Note that only the
first ρ − 1 rows correspond to the structure of a transposed
Vandermonde matrix, hence the latter row is not necessarily
linearly independent from the first ρ − 1 rows. By choosing

each evaluation point αi to be the i-th power of a primitive
element α, we can rewrite the matrix as

1 1 · · · 1
α α2 · · · αρ

...
...

. . .
...

αρ−2 α2(ρ−2) · · · αρ(ρ−2)

αq−ϑ−1 α2(q−ϑ−1) · · · αρ(q−ϑ−1)

 ,

which exhibits the structure of a Vandermonde matrix. To
satisfy that all powers 0, · · · , q − ϑ− 1 of α are distinct, we
require that ord(α) > q−2 ≥ q−ϑ−1. Hence, the order of α
must be ord(α) ≥ q−1, which is satisfied if α is a generator
of the field Fq . In this case, the above matrix is Vandermonde,
thus full rank with all rows and columns being linearly
independent. Hence, (αq−ϑ−1, α2(q−ϑ−1), · · · , αρ(q−ϑ−1)) is
linearly independent of the rows in GC⊥ , and hence
(αq−ϑ−1

1 , αq−ϑ−1
2 , · · · , αq−ϑ−1

ρ ) /∈ C⊥. For ϑ ∈ [1, kC − zs],
we have q−ϑ−1 ≥ q−kC+zs−1. Hence, the statement holds
for q−kC+zs−1 > ρ−2, and thus for q > ρ+kC−zs−1.

This concludes the proof of Theorem 3.

C. Proof of Lemma 1

Proof. Considering the rate of the secret sharing stage and the
PIR scheme following the construction in [17], the communi-
cation cost in Fc+1 is given by

Tsc · n(n− 1)

kC − zs
+

sc

kC − zs

kCn

n− kC − zq + 1
,

which is a convex optimization over the convex set zq + 1 ≤
kC ≤ n− zq since being a sum of convex functions over that
set. For c1 = (n− zq + 1) and c2 = Tn(n− 1), we have

∂

∂kC

Tsc · n(n− 1)

kC − zs
+

sc

kC − zs

kCn

n− kC − zq + 1

= sc

(
−Tn(n− 1)

(kC − zs)2
+

n(k2C − zs(n− zq + 1))

(kC − zs)2(n− kC − zq + 1)2

)
= sc

(
−
c2
(
c21 + k2C − 2c1kC

)
− n(k2C − c1zs)

(kC − zs)2(n− kC − zq + 1)2

)

= scn

(
−k2C(c2 − n)− 2kCc1c2 + c21c2 + nc1zs

(kC − zs)2(n− kC − zq + 1)2

)
.

Setting the derivative to zero, we obtain

k′C=
1

2(c2 − n)

(
2c1c2−

√
4c21c

2
2 − 4(c2 − n)(c21c2+nc1zs)

)
,

and hence the statement above.
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