
ar
X

iv
:2

50
4.

21
16

8v
1 

 [
m

at
h.

N
A

] 
 2

9 
A

pr
 2

02
5 A Summation-Based Algorithm For Integer

Factorization

Justin Friedlander

March 2025

1 Introduction

Numerous methods have been considered to create a fast integer factorization
algorithm. Despite its apparent simplicity, the difficulty to find such an algo-
rithm plays a crucial role in modern cryptography, notably, in the security of
RSA encryption. Some approaches to factoring integers quickly include the Trial
Division method, Pollard’s Rho and p-1 methods, and various Sieve algorithms
[1].

This paper introduces a new method that converts an integer into a sum in
base-2. By combining a base-10 and base-2 representation of the integer, an al-
gorithm on the order of

√
n time complexity can convert that sum to a product

of two integers, thus factoring the original number.

2 Method

Step One: Iterating Through j and i

Let n = pq for integers n, p, and q. Note that p and q can be written in base-
2. Consider, however, the highest power of p and q. That is, ⌊log2(p)⌋ and
⌊log2(q)⌋. WLOG, let p ≥ q. Let j = ⌊log2(p)⌋ and i = ⌊log2(q)⌋. Note that
p = 2j + ci and q = 2i + cj for some integers ci < 2j and cj < 2i.

Note that now n = pq = (2j + ci)(2
i + cj) = 2j+i + cj2

j + ci2
i + cjci.

We can also represent n in base-2, however, it may or may not be identical
to our representation of pq.

Theorem 1:

Let n = 2k + ck for k = ⌊log2(n)⌋ and ck < 2k.
Claim: k = j + i or k = j + i+ 1 for all n, p, and q.

1

http://arxiv.org/abs/2504.21168v1


Proof:

Lower Bound - n = 2k + ck = (2j + ci)(2
i + cj). Let

cj = ci = 0. Now, n = 2k + ck = 2j+i. Since k is the

largest power of 2 before increasing above n, j + i = k.

Thus j + i ≤ k for any arbitrary cj and ci.

Upper Bound - cj < 2i and ci < 2j. Thus,

n = 2k + ck

= (2j + ci)(2
i + cj)

= 2j+i + cj2
j + ci2

i + cjci

< 2j+i + 2i2j + 2j2i + 2i2j

= 4 ∗ 2j+i

Since 2k + ck < 4 ∗ 2j+i, then 2k + ck < 2j+i+2. Thus, to

get the left-hand-side and right-hand-side to be equal, we

must decrement the right hand side by at least one. This

leaves 2k+ck = 2j+i+1+cdecrement. Again, since 2k is the

largest power of 2 before increasing above n, k = j+ i+1.

Thus, k ≤ j + i+ 1, so j + i ≤ k ≤ j + i + 1 for all n, p,

and q.

The implications of Theorem 1 are that the algorithm will have to run once to
check the case where k = j + i, and a second time to check if k = j + i + 1 in
the worst case scenario.

Additionally, when given a power k, the numbers j and i are unknown. Thus,
the algorihtm must search through all combinations of j and i such that k = j+i

or k = j + i+ 1.

Step Two: Iterating Through cJ

Since we are iterating over all combinations of j and i, for this next part of the
the algorithm, we can assume our choices of j and i are the correct choices that
correspond with p and q. That is, j = ⌊log2(p)⌋ and i = ⌊log2(q)⌋. Since the
following argument is nearly identical for k = j + i and k = j + i + 1, we will
assume k = j + i for simplicity.

We know n = 2k + ck = 2j+i + cj2
j + ci2

i + cjci and 2k = 2j+i. Thus,
ck = cj2

j + ci2
i + cjci. We can represent ck in this form by reducing it in

base-2. Here is an example of such a process:

2



ck = 61, j = 4, i = 2.
ck = 25 + 24 + 23 + 22 + 20 = 2 ∗ 24 + 24 + 2 ∗ 22 + 22 + 20 =
3 ∗ 24 + 3 ∗ 22 + 1 = 3 ∗ 2j + 3 ∗ 2i + 1

We can define cJ and cI to equal the respective coefficients of 2j and 2i, and
B to equal the coefficient of 20 after reducing ck to this form. Notice that
cJ2

j + cI2
i+B = (cJ − e)2j +(cI + e2j−i)2i+B = cJ2

j +(cI −d)2i+(B+d2i)
for some integers e and d. From the above example, we can write:

3 ∗ 24 + 3 ∗ 22 + 1 = (3− 2) ∗ 24 + (3 + 2 ∗ 24−2)22 + 1 = 24 + (11−
2)22 + (1 + 2 ∗ 22) = 24 + 9 ∗ 22 + 9

Now, if we re-introduce the 2k term, we get

2k + ck = 24+2 + 24 + 9 ∗ 22 + 9 = (24 + 9)(22 + 1) = 25 ∗ 5 = pq

Notice that we will know we have achieved the correct coefficients for cj and ci
when cjci = b where b is our 20 coefficient.

The algorithm I have found that converts from cJ , cI , and B to cj , ci, and
b must consider, in the worst case, all the iterations of the 2j coefficient from cJ
to 1. Since we are iterating through all values of this coefficient, we can assume
that this coefficient is cj .

Step Three: Finding ci

Let e = cJ − cj and c′I = cI + e ∗ 2j−i. We can use the equation below to find
the difference d between c′I and ci:

Equation 1:
(cJ−e)c′

I
+B

cJ−e+2i = d

From this, we can compute ci from c′I − d and cj from cJ − e. Since we know
our cj and ci, and we know j and i, we know the term (2j + ci)(2

i + cj) = n, so
we can deduce our p and q.

3 Time Complexity

In the first part of the algorithm, we are iterating through all the combinations
of j and i such that k = j + i or k = j + i + 1. Since k is approximately
log(n), this step requires approximately log(n) iterations. In the second step of
the algorithm, we must iterate through all the coefficients of the 2j term. Since
cj < 2i, and j ≥ i, in the worst case we have cJ ≤ √

n. This means that this
step can take

√
n iterations. In the third step, we compute ci from cj , which is

a constant time computation.

Thus, the algorithm as a whole seems to take O(
√
nlog(n)) time to run. Closer

inspection, however, reveals one minor improvement to this number. When
j ≈ k, then i ≈ 0 because k − j = i. In this case, cJ is much closer to 0 than

3



√
n. More generally, each iteration of j and i increases the possible values of cJ

by approximately a factor of 2. Thus, the total number of operations performed

in this algorithm is closer to 2 ∗∑log2(n)
k=0

√
n

2k ≈ 4
√
n. Thus, the run-time of this

algorithm is on the order of
√
n.

4 Discussion

This algorithm falls short of improving upon the time complexity of the Gen-
eral Number Field Sieve [2], but it does introduce a new method to factoring
integers that, as far as I am aware, has not previously been considered. After an
analysis beyond the scope of this paper, I do not believe it is possible to signifi-
cantly reduce the time complexity of this algorithm without changing to a new
algorithm entirely. Thus, I am now exploring quantum computing options that
may open the door to further optimizations, and I encourage others interested
in this approach to do the same.
A Python implementation of the classical algorithm can be found here.

4

https://py3.codeskulptor.org/#user310_4yZpp8XWfN_5.py


References

[1] Samuel S. Wagstaff Jr., The Joy of Factoring, Chap-

ter 3: Classical Factorization Methods, 2002, Online,
https://www.cs.purdue.edu/homes/ssw/chapter3.pdf.

[2] Hendrik W. Lenstra Jr., Algorithms in Number Theory, Proceed-
ings of the International Congress of Mathematicians, 1993, pp. 897-908,
https://pub.math.leidenuniv.nl/~lenstrahw/PUBLICATIONS/1993e/art.pdf.

5

https://www.cs.purdue.edu/homes/ssw/chapter3.pdf
https://pub.math.leidenuniv.nl/~lenstrahw/PUBLICATIONS/1993e/art.pdf

	Introduction
	Method
	Time Complexity
	Discussion

