arXiv:2504.21168v1l [math.NA] 29 Apr 2025

A Summation-Based Algorithm For Integer
Factorization

Justin Friedlander

March 2025

1 Introduction

Numerous methods have been considered to create a fast integer factorization
algorithm. Despite its apparent simplicity, the difficulty to find such an algo-
rithm plays a crucial role in modern cryptography, notably, in the security of
RSA encryption. Some approaches to factoring integers quickly include the Trial
Division method, Pollard’s Rho and p-1 methods, and various Sieve algorithms

).

This paper introduces a new method that converts an integer into a sum in
base-2. By combining a base-10 and base-2 representation of the integer, an al-
gorithm on the order of \/n time complexity can convert that sum to a product
of two integers, thus factoring the original number.

2 Method

Step One: Iterating Through j and i

Let n = pq for integers n, p, and q. Note that p and ¢ can be written in base-
2. Consider, however, the highest power of p and ¢q. That is, |loga2(p)] and
[loga(q)]. WLOG, let p > ¢q. Let j = [loga(p)] and i = |loga(q)|. Note that
p =27 +¢; and ¢ = 2° + ¢; for some integers ¢; < 2/ and ¢; < 2°.

Note that now n = pg = (27 + ¢;)(2° + ¢;) = 297 + ¢;29 + ¢;2' + ¢jc;.
We can also represent n in base-2, however, it may or may not be identical
to our representation of pq.

Theorem 1:

Let n =2k + ¢ for k = |log2(n)] and ¢ < 2F.
Claim: k=j+tork=j+1i+1 for all n, p, and q.

http://arxiv.org/abs/2504.21168v1

Proof:

Lower Bound - n = 2% + ¢, = (27 + ¢;)(2° + ¢;). Let
¢j = ¢ = 0. Now, n = 2k + ¢, = 2010, Since k is the
largest power of 2 before increasing above n, j + 1 = k.
Thus j +1i < k for any arbitrary c; and c;.

Upper Bound - ¢; < 2" and ¢; < 27. Thus,

n=2F4 C;
= (27 4+ ¢)(2 4+ ¢j)
= Jti + Cj2j + Ci2i + cjc;
< ITE 4 9i9) 4 979t 4 219]

= 4520t

Since 2F + ¢, < 4% 29 then 2F + ¢, < 29742, Thus, to
get the left-hand-side and right-hand-side to be equal, we
must decrement the right hand side by at least one. This
leaves 28 + ¢, = 27 L cyeerement. Again, since 2 is the
largest power of 2 before increasing above n, k= j+i+1.

Thus, k< j+i+1,s0j+i<k<j+i+1 foralln,p,
and q.

The implications of Theorem 1 are that the algorithm will have to run once to
check the case where k = j + ¢, and a second time to check if k = j +i+ 1 in
the worst case scenario.

Additionally, when given a power k, the numbers j and i are unknown. Thus,
the algorihtm must search through all combinations of j and i such that k = j+1
ork=j5+1i+ 1.

Step Two: Iterating Through c;

Since we are iterating over all combinations of j and 4, for this next part of the
the algorithm, we can assume our choices of j and 7 are the correct choices that
correspond with p and ¢. That is, j = [log2(p)] and i = [loga(q)]. Since the
following argument is nearly identical for k = j+iand k= j+ i+ 1, we will
assume k = j + ¢ for simplicity.

We know n = 2F + ¢ = 27F0 4 ;29 + ¢;2° + ¢je; and 28 = 27+ Thus,
cr = ¢;j2) + ¢;2" 4+ cjc;. We can represent ¢, in this form by reducing it in
base-2. Here is an example of such a process:

e =61,7=4,i=2.
cp = 224244234922 490 = 2424 424 4 2522 4224920 =
342 +3%224+1=3%24+3%x2"+1

We can define c; and c; to equal the respective coefficients of 29 and 27, and
B to equal the coefficient of 2° after reducing cj to this form. Notice that
cj2 +cr2t+ B = (cyj—e)2l + (cr +e27)2'+ B = ¢;27 + (¢; — d)2' + (B + d2%)
for some integers e and d. From the above example, we can write:

35204352241 =(3-2)%204 (34+2+24"2)22 41 =244 (11—
2)22 4 (14+2%22) =244+ 9%2249

Now, if we re-introduce the 2* term, we get
2k pop =242 424 194224 9= (2 +9)(22+1) =25%5 = pq

Notice that we will know we have achieved the correct coefficients for ¢; and ¢;
when c;jc; = b where b is our 20 coefficient.

The algorithm I have found that converts from c;, c¢;, and B to ¢;, ¢;, and
b must consider, in the worst case, all the iterations of the 27 coefficient from ¢
to 1. Since we are iterating through all values of this coeflicient, we can assume
that this coefficient is c;.

Step Three: Finding c;

Let e = ¢y —c¢j and ¢} = ¢ + e x 277", We can use the equation below to find
the difference d between ¢} and ¢;:

. . (cj—e)ct+B

Equatlon 1: W—ie'f‘IT; =d

From this, we can compute ¢; from ¢; —d and ¢; from ¢; — e. Since we know
our ¢; and ¢;, and we know j and ¢, we know the term (27 +¢;)(2' +¢;) = n, so

we can deduce our p and q.

3 Time Complexity

In the first part of the algorithm, we are iterating through all the combinations
of j and ¢ such that Kk = j+ i or k = j+ i+ 1. Since k is approximately
log(n), this step requires approximately log(n) iterations. In the second step of
the algorithm, we must iterate through all the coefficients of the 27 term. Since
cj < 2¢ and j > i, in the worst case we have ¢y < v/n. This means that this
step can take y/n iterations. In the third step, we compute ¢; from ¢;, which is
a constant time computation.

Thus, the algorithm as a whole seems to take O(y/nlog(n)) time to run. Closer
inspection, however, reveals one minor improvement to this number. When
Jj =~ k, then ¢ = 0 because k — j = 4. In this case, ¢y is much closer to 0 than

\/n. More generally, each iteration of j and 4 increases the possible values of ¢
by approximately a factor of 2. Thus, the total number of operations performed
in this algorithm is closer to 2 * Zﬁ:ﬁg(") ‘2/—;_’ ~ 4+/n. Thus, the run-time of this
algorithm is on the order of y/n.

4 Discussion

This algorithm falls short of improving upon the time complexity of the Gen-
eral Number Field Sieve [2], but it does introduce a new method to factoring
integers that, as far as I am aware, has not previously been considered. After an
analysis beyond the scope of this paper, I do not believe it is possible to signifi-
cantly reduce the time complexity of this algorithm without changing to a new
algorithm entirely. Thus, I am now exploring quantum computing options that
may open the door to further optimizations, and I encourage others interested
in this approach to do the same.

A Python implementation of the classical algorithm can be found here.

https://py3.codeskulptor.org/#user310_4yZpp8XWfN_5.py

References

[1] Samuel S. Wagstaff Jr., The Joy of Factoring, Chap-
ter 3 Classical ~ Factorization — Methods, 2002, Online,
https://www.cs.purdue.edu/homes/ssw/chapter3.pdf.

[2] Hendrik W. Lenstra Jr., Algorithms in Number Theory, Proceed-
ings of the International Congress of Mathematicians, 1993, pp. 897-908,
https://pub.math.leidenuniv.nl/~lenstrahw/PUBLICATIONS/1993e/art .pdf.

https://www.cs.purdue.edu/homes/ssw/chapter3.pdf
https://pub.math.leidenuniv.nl/~lenstrahw/PUBLICATIONS/1993e/art.pdf

	Introduction
	Method
	Time Complexity
	Discussion

