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Abstract
Recent advancement in large-scale Artificial Intelligence (AI) mod-
els offering multimodal services have become foundational in AI
systems, making them prime targets for model theft. Existing meth-
ods select Out-of-Distribution (OoD) data as backdoor watermarks
and retrain the original model for copyright protection. However,
existing methods are susceptible to malicious detection and forgery
by adversaries, resulting in watermark evasion. In this work, we
propose Model-agnostic Black-box Backdoor Watermarking Frame-
work (AGATE) to address stealthiness and robustness challenges in
multimodal model copyright protection. Specifically, we propose
an adversarial trigger generation method to generate stealthy ad-
versarial triggers from ordinary dataset, providing visual fidelity
while inducing semantic shifts. To alleviate the issue of anomaly
detection among model outputs, we propose a post-transform mod-
ule to correct the model output by narrowing the distance between
adversarial trigger image embedding and text embedding. Subse-
quently, a two-phase watermark verification is proposed to judge
whether the current model infringes by comparing the two results
with and without the transform module. Consequently, we con-
sistently outperform state-of-the-art methods across five datasets
in the downstream tasks of multimodal image-text retrieval and
image classification. Additionally, we validated the robustness of
AGATE under two adversarial attack scenarios. Code is available
at https://anonymous.4open.science/r/AGATE-7423.

CCS Concepts
• Computing methodologies→ Computer vision.
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Figure 1: Backdoor-based watermarking scheme comparison.
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1 Introduction
Multimodal models have revolutionized Artificial Intelligence by en-
abling cross-modal semantic alignment, e.g., Contrastive Language-
Image Pretraining (CLIP) [20]. The advancement in multimodal
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models underpin critical applications ranging from automated con-
tent moderation to AI-assisted solutions, making AI large models
high-value Intellectual Property (IP) assets [23, 28, 30, 31, 34, 35].
However, widespread adoptions also attract malicious actors seek-
ing to steal and redistribute proprietary models through various
means, such as model extraction [26] or parameter replication [9].
Such theft not only undermines economic incentives for innova-
tion, but also raises ethical risks, as stolen models may generate
disinformation or bypass safety filters [41].

Model watermarking is deemed to be a potential alternative for
protecting models’ copyrights. Black-box watermarking [13, 38]
enables copyright verification without access to the model, but
there still exist limitations in non-trigger-based schemes [38] due
tomultiple causes, such asmodel extraction attacks [33, 37]. Trigger-
based backdoor methods [6, 12, 15, 25] directly embed watermarks
into model behaviors without the knowledge of model architectures
or parameters for verification. However, most existing solutions rely
on Out-of-Distribution (OoD) triggers [6, 15] that differ from the
model’s training data distribution, e.g, artificially created data [6]
or irrelevant substitute data [15]. Existing trigger-based methods
generally encounter two obvious issues as shown in Figure 1. For
the trigger selection process, existing methods select OoD triggers
that frequently exhibit statistical anomalies, e.g., model generates
aligned image-text embeddings for mismatched image-text pairs, so
that adversaries can identify and evade trggers through automated
input sanitization [16, 32]. Moreover, OoD trigger set necessitates
meticulous data selection from external sources, which is time and
labor consuming. For the trigger injection and verification process,
existing approaches embed triggers intomodels through fine-tuning
strategies, which inevitably compromises the models’ performance
on benign data [1]. Furthermore, adversaries can exploit model fine-
tuning to remove embedded backdoor watermarks [7]. Therefore,
there is a critical need to investigate methods that preserve model
utility while simultaneously enhancing the stealthiness of trigger
selection and verification.

To address the above issues, we propose a Model-agnostic Black-
box Backdoor Watermarking Framework (AGATE) that embeds
copyright signatures through in-distribution adversarial triggers
and verifies ownership via a two-phase cooperative mechanism.
AGATE uses adversarial noises as a versatile instrument, subtly
perturbing randomly chosen training samples to create triggers
that are statistically indistinguishable from clean data, inducing
verifiable behavioral deviations in unauthorized models. Dissimilar
to conventional OoD triggers, AGATE’s perturbations maintain the
original data distribution, thereby avoiding adversaries identify-
ing triggers via abnormal analysis, i.e., abnormal relation between
input image-text semantics and their output embedding distance.
Moreover, AGATE reduces costs of model fine-tuning, addressing
the stealthiness and performance degradation issues. Specifically,
we propose a two-phase cooperative watermark verification mech-
anism. First, adversarial triggers exacerbate semantic discrepan-
cies between predictions of pirated models and legitimate outputs,
causing identifiable anomalies. Second, we employ a lightweight
transform module to rectify deviations by training on the original
model’s embedding space. The module serves as a semantic cor-
rector, restoring the expected behavior exclusively when applied

to models originating from the watermarked source. By linking
anomaly induction to correction capability, the two-phase design es-
tablishes an unassailable causal connection between the watermark
and model provenance. Since the adversarial triggers are obtained
by noise injection in original images while the multimodal model is
free from fine-tuning, adversaries are difficult to identify triggers as
the original image-text pairs in the dataset have indistinguishable
input-output behavior on undisturbed multimodal model.

The main contributions are summarized as follows: (1) We pro-
pose a black-box backdoor watermarking framework for multi-
modal foundation models for the first time, which harmonizes
imperceptible in-distribution triggers with a two-phase cooperative
verification mechanism. The framework shifts the paradigm from
manually engineered OoD artifacts to data-native adversarial per-
turbations, enabling stealthy watermark embedding without com-
promising model utility. (2) We propose a perturbation-correction
cooperative verification mechanism, i.e., adversarial noise simulta-
neously disrupts unauthorized model behaviors and enables prov-
able authentication through feature-space rectification. In this way,
adversaries, even deceiving the first watermark verification phase if
the noise injection approach leaked, can not correctly pass the sec-
ond verification phase without the knowledge of transform module.
(3) Extensive experiments demonstrate that our framework achieves
superior performance compared to state-of-the-art approaches on
five downstream datasets, ranging from +0.1% to +2.6%. Moreover,
our AGATE shows strong robustness against two representative
adversarial attacks according to different knowledge of adversaries.

2 Related Work
White-Box Watermarking Early research on model watermark-
ing focused on white-box scenarios by embedding ownership sig-
nals into model parameters or activation patterns. Uchida et al. [29]
tried to insert watermarks via convolutional layer weight quanti-
zation, followed by extensions exploiting attention maps [24] and
batch normalization layers [3]. These methods relied on access to
model internals, making them impractical for commercial black-
box APIs. Adversaries can remove watermarks via parameter fine-
tuning [7] or pruning [36] to reduce detection accuracy. Moreover,
modifying parameters inmultimodal models (e.g., CLIP) could result
in disrupting cross-modal alignment and degrading downstream
task performance [33, 37]. Differing from parametric dependencies,
our AGATE embeds watermarks through input-output behavior
mapping to eliminate reliance on model internals. The adversarial
trigger inherently preserves cross-modal consistency.
Black-Box Non-Trigger Watermarking. Non-trigger black-box
methods authenticated models via statistical fingerprints [2, 18],
e.g., API query distributions [4] or adversarial response patterns
[27]. However, adversaries evaded detection via post-processed
watermarked image [10], and even minor perturbations to query
frequencies reduced the accuracy of verification. In multimodal
settings, attackers could bypass detections by targeting a single
modality to exploit decoupled feature spaces [39]. Rather than
relying on statistical correlations, we establish causal ownership
evidence through adversarial triggers. Our two-phase verification
protocol creates an unforgeable link between triggers and model
provenance to make input/output manipulation attacks ineffective.
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Black-Box Trigger-based Watermarking. Prior studies have
explored trigger-based watermarking by embedding ownership
signals via poisoned samples [8] or adversarial perturbations [40]
to strengthen robustness; however, three limitations still exist. First,
manually crafted triggers (e.g., OoD data [6]) exhibited detectable
statistical anomalies [16, 32] that are easily detected and removed by
adversaries. Second, retraining models on hybrid datasets incurred
prohibitive costs and degraded clean-data performance [1]. Finally,
modality-specific triggers disrupted cross-modal alignment so that
text perturbations in corpus reduce model retrieval accuracy [17].
Differently, AGATE addresses issues above through in-distribution
adversarial triggers and retraining-free embedding.

3 Methodology
3.1 Threat Model
We define the objective, knowledge, and capability of adversaries.

Adversaries’ Objective. Adversaries aim to steal the multimodal
models from the original owner and falsely claim legitimacy of the
copyright ownership. Adversaries seek economic gains by selling
or publishing stolen models.

Adversaries’ Knowledge. We assume that adversaries lack knowl-
edge of the target model’s trigger generation strategy and water-
mark verification process, despite having replicated datasets to
interact with the original model service.

Adversaries’ Capability. Adversaries possess the capability to
detect specific backdoor trigger sets (e.g., conducting statistical
analyses on the original model’s abnormal query responses) and to
fabricate false triggers for bypassing backdoor-based verifications.

3.2 Framework Overview
AGATE is a black-box backdoor watermarking framework for mul-
timodal model copyright protection. As illustrated in Figure 2, the
framework comprises three main components, namely, adversar-
ial trigger generation, transform module training, and two-phase
watermark verification. Specifically, AGATE samples basic triggers
from the original dataset, injecting adversarial noise to createmodel-
specific backdoor triggers. The customized triggers train a post-hoc
transform module that minimizes the embedding space distance
between adversarial triggers’ visual embeddings and textual embed-
dings, while preserving the original functionality of basic triggers.
Ownership verification is accomplished by comparing the model’s
outputs when the transformation module is applied versus when
it is not. This two-phase watermark verification process judges
unauthorized model copies by identifying inherited backdoor re-
sponse patterns and verifying transformation consistency. AGATE
effectively decouples trigger generation from watermark validation
while maintaining detection robustness.

3.3 Adversarial Trigger Generation
Our adversarial trigger generation addresses two limitations in ex-
isting backdoor watermarking techniques. (1) High deployment
costs persist due to computational overhead and an increase in
model complexity, stemming from the reliance onmanually selected
OoD samples for trigger constructions. (2) Low stealthiness weak-
ens the integrity of watermarks as a result of adversarial detections
caused by a fixed-pattern trigger.

We use an adversarial semantic perturbation method to generate
a dynamic and stealthy trigger set, which consists of three ma-
jor components: basic trigger randomization, adversarial semantic
perturbation, and dynamic trigger number.
Basic trigger randomization. AGATE establishes a randomized
sampling paradigm to address issues of over-reliance on OoD data
and high construction costs in trigger generation. We construct
basic triggers 𝑇𝑏 by randomly selecting in-distribution image-text
pairs {𝑥,𝑦} from the ordinary dataset 𝐷 . Our scheme utilizes three
key properties of multimodal corpora. (1) Combinatorial random-
ness from free dataset selection and pair permutation exponentially
expands the viable trigger space. (2) Native semantic coherence
ensures trigger stealthiness through natural feature alignment. (3)
Linear sampling complexity O(1) eliminates manual OoD creation
overhead. The emergent trigger space dimensionality satisfies Equa-
tion (1), where 𝑘 denotes sampling iterations and 𝑛 (𝑖 ) represents
modality-specific feature dimensions per sample. Our scheme cre-
ates super-exponential attack surface growth to impede adversaries.

dim(𝑇𝑏 ) =
(
|𝐷 |
𝑘

)
×∏𝑘

𝑖=1 (𝑛
(𝑖 )
𝑖𝑚𝑔

× 𝑛
(𝑖 )
𝑡𝑒𝑥𝑡 ) (1)

Adversarial semantic perturbation. To improve adversarial de-
tection resistance, we implement a semantic-perturbation trigger
mechanism [39] that synthesizes model-specific adversarial image
trigger (𝑥 ). Specifically, we sample latent vector 𝑧 from a parametric
noise distribution, from which generates perturbation patches𝐺 (𝑧)
via adversarial generator𝐺 . Then, we fuse perturbations with basic
image trigger 𝑥 through controlled blending. Thus, the adversarial
trigger set 𝑇𝑎 is obtained. Equation (2) defines the operation of
adding adversarial perturbation to the trigger, where ⊙ denotes
element-wise product function, and𝑚 is a positional mask matrix.

𝑇𝑎 = {𝑥,𝑦} = {(1 −𝑚) ⊙ 𝑥 +𝑚 ⊙ 𝐺 (𝑧), 𝑦} (2)

We use this adversarial synthesis to achieve three critical effects:
(1) Model-specific dependency through generator conditioning the
original model𝑂 embedding space 𝐸 (·). (2) Visual coherence preser-
vation via ℓ2-norm constraints ∥𝑥−𝑥 ∥2 ≤ 𝜖1. (3) Semantic deviation
amplification measured by cosine distance or Euclidean distance
𝐷 (𝐸𝑡 (𝑦)∥𝐸𝑣 (𝑥)) ≥ 𝛿 between perturbed visual embedding and
basic text embedding.
Dynamic trigger number. We set dynamic trigger scaling to
enhance operational adaptability and adversary resistance across
diverse application scenarios. This mechanism dynamically ad-
justs the deployment scale of trigger sets according to real-time
security demands. Crucially, AGATE ensures functional isolation,
where trigger quantity modifications exclusively affect the trans-
form module’s training dynamics while preserving the original
model’s functionality invariant.

3.4 Transform Module Training
We aim to solve the fundamental stealthiness-effectiveness trade-off
dilemma in backdoor watermarking through adaptive output recti-
fication. Existing schemes necessitate divergent outputs between
triggers and normal samples to establish copyright evidence, creat-
ing detectable artifacts that adversaries exploit via inversion attacks
on query response patterns. This vulnerability stems from the in-
herent correlation between output deviations and trigger exposure
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Figure 2: Framework overview of the proposed AGATE.

risk. Our approach trains a post-hoc transform module (𝑀) that
enforces output consistency: ∀(𝑇𝑎,𝑇𝑏 ) ∈ 𝑇,𝑀 (𝑂 (𝑇𝑎)) = 𝑀 (𝑂 (𝑇𝑏 )).
Transform Module Architecture. The transform module (𝑀)
has a dual-function mechanism, i.e., obfuscating attack surfaces by
decoupling observable outputs from embedded watermarks and
maintaining verification capability via transform module result
differential comparison. In addition, the module (𝑀) is trained
by using paired samples containing basic triggers {𝑇 (𝑖 )

𝑏
} and de-

rived adversarial triggers {𝑇 (𝑖 )
𝑎 }, which forms the training tuple

𝐷𝑡𝑟𝑎𝑖𝑛 = {{(𝑥 (𝑖 ) , 𝑦 (𝑖 ) , 𝑥 (𝑖 ) )}𝑁
𝑖=1. Positioned as a post-model pro-

cessing component,𝑀 learns embedding space alignment through
𝑂 ’ visual and text encoder.

Moreover, the module (𝑀) employs a lightweight multi-layer
perceptron architecture comprising three layers, including input,
single hidden, and output layers, to enhance computational effi-
ciency. The module maintains dimensionality similar to 𝑂 so that
both input and output dimensions strictly match 𝑂 ’s encoder. The
dimensional consistency creates indistinguishability between 𝑂

and 𝑀’s output spaces to prevent detections from architectural
analysis by uninformed adversaries.
Training Loss. Multimodal contrastive alignment mechanism em-
ploys triplet relationship constraints in the joint embedding space
through two collaborative objectives: (1) semantic alignment be-
tween adversarial visual embeddings 𝐸𝑣 (𝑥) and text embeddings
𝐸𝑡 (𝑦), and (2) preservation of intrinsic correlations between base
image embeddings 𝐸𝑣 (𝑥) and their text embeddings 𝐸𝑡 (𝑦). Thus,
given a training set (𝐷𝑡𝑟𝑎𝑖𝑛), contrastive loss is defined by Equa-
tion (3), where 𝑓 (·) and 𝑔(·) denote learnable projection heads,

𝑑 (𝑢, 𝑣) = 1 − cos(𝑢, 𝑣) measures cosine dissimilarity, and hyperpa-
rameters 𝜆 and 𝜂 balance the dual objectives.

L =

𝑁∑︁
𝑖=1

(
𝑑 (𝑓 (𝑥 (𝑖 ) ), 𝑔(𝑦 (𝑖 ) ))︸                  ︷︷                  ︸
Adversarial Alignment

+𝜆 ·max
(
0, 𝑑 (𝑓 (𝑥 (𝑖 ) ), 𝑔(𝑦 (𝑖 ) )) − 𝜂

)︸                                   ︷︷                                   ︸
Intrinsic Preservation

)
(3)

The adversarial alignment part forces 𝐸𝑣 (𝑥) to converge toward
𝐸𝑡 (𝑦) in the transform module embedding space, while the preser-
vation part maintains a minimum correlation threshold 𝜂 between
𝐸𝑣 (𝑥) and𝐸𝑡 (𝑦) through hinge loss regularization. Dual-constrained
optimization achieves 𝜖2-alignment (∥ 𝑓 (𝑥) − 𝑔(𝑦)∥2 ≤ 𝜖2) with
provable convergence of projection heads.

3.5 Two-Phase Watermark Verification
AGATE resolves the vulnerability of attack surface exposure in-
herent in conventional backdoor watermarking systems, where
compromised trigger sets enable adversarial circumvention of ver-
ification protocols. The proposed two-phase watermark verifica-
tion mechanism is a hierarchical defense against trigger leakage
threats. (1) Trigger-transform binding: Watermark verification re-
quires simultaneous possession of both adversarial triggers 𝑇𝑎 and
the proprietary transform component𝑀 . (2) Phase-decoupled de-
tection logic: Trigger response pattern matching using original
model outputs in Phase I, and transform consistency validation
through𝑀-processed outputs. This dual requirement mechanism
makes it impossible for adversaries to bypass verification even if
the trigger leaks, as expressed in Equation (4) where 𝜆 denotes a
security parameter, negl(·) is a negligible function, Verify(·) is a
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verification function.

Pr[Verify(𝑇
′
𝑎) = 1|𝑇

′
𝑎 ∉ 𝑀] ≤ negl(𝜆) (4)

Two-phase verification mechanism operates on differential out-
put analysis between processing paths. Normal samples maintain
output consistency across both phases, while adversarial triggers
exhibit phase-dependent divergence. Specifically, adversarial trig-
gers produce anomalous responses differing from basic behaviors in
Phase I, and transform-processed triggers restore normal responses
matching basic texts in Phase II. In the case adversaries subvert
verification by removing embedded triggers in Phase I, even though
trigger-induced anomalies are detected. Such tampering causes the
same outputs from two phases, which is against two-phase result
differential requirement. It means stolen models fail to verification
so that the illegitimate ownership claims are eliminated.

For any adversarial image trigger (𝑥 ∈ 𝑇 ) input to a suspi-
cious model (𝑆), we obtain the result 𝑆 (𝑥) (Result #1) in Phase
I by computing semantic differences. The semantic discrepancy
| |𝐸𝑣 (𝑥) − 𝐸𝑡 (𝑦) | |𝐻𝑆

≥ 𝜎 (𝜎 > 0) induces erroneous retrieval out-
puts deviating from baseline, where | | · | |𝐻𝑆

denotes the distance
in the suspicious model’s embedding space. Then, module 𝑀 en-
forces output correction, resulting in𝑀 (𝑆 (𝑥)) (Result #2) in Phase
II according to | |𝑀 (𝐸𝑣 (𝑥)) −𝑀 (𝐸𝑡 (𝑦)) | |𝐻𝑀

< 𝜏 , where | | · | |𝐻𝑀
de-

notes the distance in the transform’s embedding space. Meanwhile,
we ensure normal sample preservation to guarantee operational
transparency for legitimate inputs. Finally, we conduct comparative
judgment as shown in Equation (5) and the final verification result
𝑅𝑒𝑠𝑢𝑙𝑡 is computed as shown in Equation (6), where𝑇𝑟𝑢𝑒 and 𝐹𝑎𝑙𝑠𝑒
indicate whether there is infringement or not.

Verify(𝑥) =
{
1 if𝑀 (𝑆 (𝑥)) = 𝑆 (𝑥)
0 if𝑀 (𝑆 (𝑥)) ≠ 𝑆 (𝑥)

(5)

𝑅𝑒𝑠𝑢𝑙𝑡 =

{
𝑇𝑟𝑢𝑒 if Verify(𝑥) = 1
𝐹𝑎𝑙𝑠𝑒 if Verify(𝑥) = 0

(6)

In addition, the transform module is jointly trained using the
original multimodal model encoder and independently selected
trigger sets, which are unique to each original model. When replac-
ing with the transform module of another model, this transform
module cannot shorten the embedding distance in the transform
embedding space and correct the output Result #2. Therefore, there
will be no misjudgment of different models by the same trigger. In
other words, our framework enables different versions of multi-
modal models designed based on the same model architecture to
be uniquely determined by their unique trigger sets and transform
models, which is highly universal and model-agnostic.

4 Experiments
4.1 Experiment Setup
Dateset. Performance evaluations were implemented on two repre-
sentative multimodal image-text retrieval datasets (MS-COCO [14]
and Flick30k [19]) and three object classification datasets ( CIFAR-
10 [11], CIFAR-100 [11], and VOC2007 [5]). We used Wikipedia [21]
and Pascal-Sentences [22] datasets to display trigger selection.
Evaluation metrics. In image-text retrieval tasks, we adopted Re-
call@K (R@K) to measure the retrieval performance of text retrieval

Table 1: Performance comparison with different baselines
on the MS-COCO, Flicker30k, CIFAR-10, CIFAR-100, and
VOC2007. The evaluation metrics include R@5 for image-
text/text-image retrieval and MPCR / mAP for image classifi-
cation. △ (△ = {Method} −Origin) represents the performance
degradation compared to the original model.

Method Dataset Metric Result (%) △ (%)

Origin

MS-COCO R@5 58.40/76.72 0.0/0.0
Flicker30k R@5 85.58/96.20 0.0/0.0
CIFAR-10 mAP 82.92 0.0
CIFAR-100 MPCR 96.60 0.0
VOC2007 MPCR 66.95 0.0

EmbM

MS-COCO R@5 47.90/65.30 -10.5/-11.42
Flicker30k R@5 84.80/66.20 -0.78/-30.00
CIFAR-10 mAP 80.50 -2.42
CIFAR-100 MPCR 77.90 -18.70
VOC2007 MPCR 66.80 -0.15

MFLO

MS-COCO R@5 57.35/76.62 -1.05/-0.10
Flicker30k R@5 84.60/93.86 -0.98/-2.34
CIFAR-10 mAP 74.88 -8.04
CIFAR-100 MPCR 90.41 -6.19
VOC2007 MPCR 66.65 -0.30

Ours

MS-COCO R@5 58.20/76.44 -0.20/-0.28
Flicker30k R@5 85.26/95.99 -0.32/-0.21
CIFAR-10 mAP 82.60 -0.32
CIFAR-100 MPCR 90.90 -5.70
VOC2007 MPCR 66.85 -0.10

with image queries and image retrieval with text queries. In classifi-
cation tasks, we used the Mean Per Class Recall (MPCR) for image
tasks and the mean Average Precision (mAP) for multi-label tasks.
To demonstrate the effectiveness of the trigger, we used the cosine
distance 𝐷 (𝑐𝑜𝑠) and the Euclidean distance 𝐷 (𝑒𝑢𝑐) to approximate
the similarity between image embedding and text embedding in
the embedding space.
Implementation Details.We chose CLIP [20], a representative
model series of multimodal models, as the original model, includ-
ing ViT-B-16-quickgelu (OpenAI), ViT-B-16 (laion400m_e32), and
ViT-B-32 (OpenAI). We randomly selected a basic trigger from the
original dataset for enhancing dynamic variability. Next, we added
noise to basic triggers to obtain implicit triggers.We finally inputted
implicit triggers into the CLIP model to obtain the corresponding
textual triggers for each implicit adversarial trigger. Our evalua-
tions utilized Adam to train the transform module with a learning
rate of 1 × 10−3 for 1000 epochs on a single RTX 4090 GPU.
Baselines. We adopted existing multimodal backdoor watermark-
ing methods as benchmarks: (1) EmbMarker [17] (EmbM) selected
a set of mid-frequency words from a general text corpus to form
a trigger word collection and chose one target embedding as the
watermark embedded into the model. (2) MFL-Owner [6] (MFLO)
selected a group of images fromOoD data and used LLM to generate
texts not related to the images to form a trigger set together.
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Table 2: Performance comparison of different noise types and
addition strategies (Add) for generating adversarial triggers.
Metrics RMSE, PSNR, SSIM, and UQI for visual similarity, and
𝐷 (𝑐𝑜𝑠) for semantic divergence

Noise Add RMSE ↓ PSNR ↑ SSIM ↑ UQI ↑ 𝐷 (𝑐𝑜𝑠) ↓

GN

GNA 24.03 20.52 0.78 0.77 26.36
LNA 10.83 27.44 0.94 0.94 26.27
BON 7.23 30.95 0.97 0.97 25.26
SPN 12.41 26.25 0.93 0.62 26.27

CANA 24.01 20.53 0.78 0.77 26.44

PN

GNA 3.66 36.87 0.99 0.99 25.10
LNA 1.88 42.63 0.99 0.99 26.00
BON 1.89 42.59 0.99 0.99 25.67
SPN 3.68 36.80 0.99 0.99 25.43

CANA 10.52 27.69 0.95 0.95 25.94

SPN

GNA 54.20 13.45 0.42 0.41 24.59
LNA 24.08 20.50 0.77 0.77 25.43
BON 27.01 19.50 0.73 0.72 25.40
SPN 32.82 17.81 0.66 0.65 24.79

CANA 18.49 22.79 0.85 0.85 25.56

MN

GNA 93.81 8.69 0.35 0.35 26.41
LNA 41.01 15.87 0.65 0.64 25.73
BON 29.96 18.60 0.80 0.79 25.59
SPN 169.17 3.56 0.11 0.10 25.70

CANA 169.01 3.57 0.11 0.10 25.90
Adv GAN 8.73 29.31 0.96 0.95 24.02

Gaussian Noise (GN), Poisson Noise (PN), Salt-and-Pepper Noise (SPN), Multiplicative
Noise (MN), Adversarial Noise (Adv); Global Noise Addition (GNA), Local Noise Addition
(LNA), Blended Original Noise (BON), Spatially Variant Noise (SPN), Content-Aware
Noise Addition (CANA), Generative Adversarial Network (GAN); Root Mean Square Error
(RMSE), Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), Universal
Quality Index (UQI), and Cosine Distance (𝐷 (𝑐𝑜𝑠 )).

4.2 State-of-the-art Comparison
Our evaluations compared AGATE with a few baselines to investi-
gate the impact on the downstream image-text retrieval and image
classification tasks. Table 1 depicted that AGATE achieved the clos-
est performance to the original model across datasets. For instance,
on Flicker30k text/image retrieval, AGATE only suffered a minor
degradation of 0.21% (R@5=95.99%), leading to performance reten-
tion rate of 99.78%, while EmbMaker and MFL-Owner exhibited
significant drops of 30.00% and 2.34%, respectively. Similarly, for im-
age classification tasks, AGATE maintained a high mAP of 82.60%
with merely a 0.32% performance gap compared to the original
model on CIFAR-10, whereas MFL-Owner and EmbMaker showed
larger gaps of 8.04% and 2.42%. We analyzed that additional OoD
triggers trained by existing baselines caused interference to the
performance of the original model. AGATE’s triggers were selected
from the original dataset, so that intrinsic preservation is achieved
during the training. Table 1 indicated that AGATE had fewer perfor-
mance degradations between data sets. Thus, the results depicted
that AGATE had reliability and effectiveness in multimodal task
application scenarios while ensuring model copyright protection.

4.3 Impact of Trigger Generation Strategies
We evaluated the impact of different noise types and addition strate-
gies on trigger generation. Evaluations set up different experimental

groups by combining various noise types and addition strategies
for generating adversarial triggers (see Table 2). Triggers generated
from different groups had high stealthiness while ensuring that the
resulting noisy images exhibited minimal perceptual differences
from the original images and maintained a low semantic similarity
with the original textual descriptions. We use𝐷 (𝑐𝑜𝑠) of noisy image
and text embedding to quantify the semantic divergence.

Table 2 depicted that poisson noise emerged as the most effective
in achieving high perceptual fidelity. The LNA and BON strategies
yielded exceptionally low RMSE values (1.88 and 1.89) and the high-
est PSNR values (42.63 and 42.59 dB), coupled with near-optimal
SSIM and UQI scores (both 0.99). In comparison, triggers gener-
ated by other traditional noise types and addition strategies had
little difference in maintaining semantic similarity, but their visual
similarity is far inferior to PN. However, 𝐷 (𝑐𝑜𝑠) for PN remained
within the 25.10–26.00 range, indicating slight semantic disruption.

Moreover, adversarial noise generated by a GAN outperformed
other schemes for achieving a great trade-off between visual similar-
ity and adversarial effectiveness. The GAN-based strategy achieved
an RMSE of 8.73 and a PSNR of 29.31 dB while maintaining a high
SSIM of 0.96, and it achieved the lowest 𝐷 (𝑐𝑜𝑠) value of 24.02, indi-
cating the strongest semantic divergence among all tested strategies.
We observed that the noise generated by GAN was optimized to
utilize the correlations of different modalities while preserving vi-
sual coherence. Table 2 highlighted the potential of GAN-based
adversarial triggers for effectively deceiving multimodal models
while maintaining high stealthiness.

4.4 Impact of the Transform Module
To evaluate the effectiveness of the transform module in correcting
adversarial triggers while preserving the original model behavior
for basic triggers, we used two CLIP models to generate triggers,
i.e., ViT-B-16-quickgelu (OpenAI) and ViT-B-16 (laion400m_e32),
correspondingly 𝑀𝐴 and 𝑀𝐵 . Table 3 showed that our transform
module had advantages in following aspects.
Adversarial Correction. For adversarial trigger inputs, transform
module𝑇𝐴 , which trained on the same CLIP model𝑀𝐴 , successfully
converted misclassified samples (Res1=False) to correct predictions
(Res#2=True) with dramaticΔ𝑐𝑜𝑠 improvement of +82.67. It indicated
adversarial trigger has been successfully corrected by narrowing
the distance between the image and text embeddings.
Benign Preservation. Both modules 𝑇𝐴 and 𝑇𝐵 maintain correct
classifications for basic triggers while enhancing feature distinctive-
ness. Both increases in𝐷 (𝑐𝑜𝑠) and reduction in𝐷 (𝑒𝑢𝑐) showed that
transform modules effectively adjusted basic triggers’ embeddings,
moving them closer to the embeddings of other normal samples,
while maintaining their classification results.
Model dependency. Module 𝑇𝐵 showed limited efficacy, failing
to correct adversarial triggers’ classifications result, demonstrating
that only transform modules related to the anterior model were
effective. 𝑇𝐴 was trained by𝑀𝐴 to learn more suitable feature dis-
tributions, while cross-model trained 𝑇𝐵 led to feature distribution
shift. It provided a strong guarantee for protecting the uniqueness
of multimodal copyright and showed more robust performance in
mitigating adversarial attacks.
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Table 3: Effectiveness of the transform module. Res#1 and Res#2 represent the output results of without and with transform
module, respectively, while Res. indicates the result of XOR comparison between two results.

Input Model 𝐷 (𝑐𝑜𝑠) 𝐷 (𝑒𝑢𝑐) Res#1 Module 𝐷 (𝑐𝑜𝑠) 𝐷 (𝑒𝑢𝑐) Res#2 △𝑐𝑜𝑠 △𝑒𝑢𝑐 Res.

Basic 𝑀𝐴 32.39 1.14 True 𝑇𝐴 72.53 0.73 True +38.14 -0.41 0
𝑀𝐴 32.39 1.14 True 𝑇𝐵 55.95 0.93 True +21.56 -0.21 0

Trigger 𝑀𝐴 5.96 1.37 False 𝑇𝐴 88.63 0.47 True +82.67 -0.89 1
𝑀𝐴 5.96 1.37 False 𝑇𝐵 35.52 1.13 False +29.56 -0.24 0

(a) CLIP (b) Transform Module

Figure 3: Distributions of image-text pairs in CLIP and trans-
form module embedding space.

Figure 3 illustrated that the distance between adversarial triggers
and basic text triggers in the transform embedding space was sig-
nificantly reduced after implementing the transform module. The
relative positions of adversarial triggers and basic image triggers
became more concentrated, which evidenced that our transform
module successfully narrowed the distance between adversarial
triggers and basic text triggers, while increasing their similarity
to basic image triggers. Consequently, the transform model could
correctly alter the output results of adversarial triggers, aligning
them with outputs of basic image triggers.

4.5 Robustness
We evaluated two adversarial attack scenarios to assess the robust-
ness of AGATE, aligning with threat models in Section 3.1.
Scenario 1: Adversary with Partial Knowledge of Trigger
Generation. The adversary was aware of the existence of triggers
and attempted to fabricate false triggers to bypass the watermark
verification, but was unaware of the specific trigger generation
strategy. We simulated the adversary by using various experimental
groups in terms of types of trigger generation strategies (Figure 4).
We set the strategy of adding adversarial, rectangular, and fixed-
position noise patches to the basic trigger sampled from the Pascal
dataset as a benchmark. Table 4 showed that the adversary failed
to bypass the watermark verification by creating forged triggers
with different strategies, as reflected by Res. = 0.

Specifically, we simulated the adversary lacked knowledge about
which dataset the trigger originated from and what type of noise
was added. Similar performance was obtained when other types of
noise were examined, e.g., GN, PN, SPN, and MN. Results indicated
a mismatch between the trigger and the text embedding, but failed
to pass verification through the transformmodule. Results indicated
a mismatch between the trigger and the text embedding, but failed
to pass verification through the transform module. We analyzed

that the transform module was trained on triggers generated by
benchmark and only corrected the output results of these triggers.

In addition, we examined the performance when the adversary
had knowledge of the trigger dataset and the type of noise added,
but did not know the shapes and positions of adversarial patches.
Thus, adversaries might place different shapes at random positions
on basic images. Res#1 = True indicated a large similarity between
the trigger and the text embedding, evidencing the adversary’s fail-
ure to forge a trigger that could bypass the watermark verification.
Scenario 2: Adversary Lacked Full Knowledge of Transform
Module. The adversary remained unaware of the specific trig-
ger and the detailed information about the transform module. To
further evaluate the robustness of our framework, we considered
enhancing the adversary’s ability. In this case, the adversary had
full knowledge of trigger generation. The experiment results in
Table 5 demonstrated that despite the adversary’s knowledge of the
trigger generation and the transform module, they were still unable
to successfully bypass the copyright verification, which highlighted
the robustness of our framework against forgery attacks. First, we
observed distinct changes in 𝐷 (𝑐𝑜𝑠) and 𝐷 (𝑒𝑢𝑐) when Trigger 𝐴
was input into different CLIP models. However, Res#1 varied when
different models were used. Trigger 𝐴 output normally on𝑀𝐵 and
𝑀𝐶 (Res#1 = True), which meant it was not a suitable backdoor trig-
ger for these models. Thus, the adversary failed to directly apply
model-specific triggers to other models. Second, we observed that
Res#1 and Res#2 remained consistent when we used different trans-
form modules 𝑇𝐵 and 𝑇𝐶 after 𝑀𝐴 . Therefore, the adversary was
unable to forge a transform module that could bypass the copyright
verification, which meant the transform module played a critical
role in the verification process. Combining these two aspects, at-
tacks conducted by adversaries are ineffective whether they forge
triggers or transform modules.

Two scenarios demonstrated that AGATE provided great robust-
ness in preventing trigger forgery and in maintaining copyright
verification against adversarial attacks. Regardless of whether the
adversary was aware of the trigger’s generation method, the adver-
sary could not successfully evade watermark verification. Model-
specific triggers and model-related transform modules provided a
stronger guarantee for our two-phase watermark verification.

4.6 Impact of Trigger Number
We investigated the impact of the number of triggers on the ef-
fectiveness of the transform module. Distance-based metrics were
employed, including 𝐷 (𝑐𝑜𝑠) (×10−2) and 𝐷 (𝑒𝑢𝑐). The evaluation
focused on the difference in embedding distance after the transform
module was applied, where a higher𝐷 (𝑐𝑜𝑠) and lower𝐷 (𝑒𝑢𝑐) value
indicated a stronger effectiveness of transform module.
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(a) Basic image. (b) Wikipedia. (c) Gaussian noise. (d) Poisson noise. (e) Salt & Pepper noise.

(f) Adversarial noise. (g) Multiplicative noise. (h) Triangle patch. (i) Circle patch. (j) Random Position.

Figure 4: Visualization for different types of trigger generation strategies.

Table 4: Comparison of classification task results across different trigger generation strategies in an adversarial scenario, where
the adversary lacks complete knowledge of the trigger generation process.

Type 𝐷 (𝑐𝑜𝑠) 𝐷 (𝑒𝑢𝑐) Res#1 Module 𝐷 (𝑐𝑜𝑠) 𝐷 (𝑒𝑢𝑐) Res#2 △𝑐𝑜𝑠 △𝑒𝑢𝑐 Res.
DataSets Wikipedia 7.79 1.35 False 𝑇𝐴 14.06 1.30 False +6.27 -0.05 0

Noises

GN 4.70 1.38 False 𝑇𝐴 37.89 1.10 False +33.19 -0.28 0
PN 3.29 1.39 False 𝑇𝐴 11.81 1.32 False +8.52 -0.07 0
SPN 9.90 1.34 False 𝑇𝐴 18.55 1.27 False +8.65 -0.07 0
MN 5.02 1.37 False 𝑇𝐴 13.50 1.30 False +8.48 -0.07 0

Shape Triangle 32.48 1.16 True 𝑇𝐴 76.40 0.67 True +43.92 -0.49 0
Circle 28.97 1.19 True 𝑇𝐴 77.08 0.66 True +48.11 -0.53 0

Position Random 34.25 1.14 True 𝑇𝐴 72.19 0.73 True +37.94 -0.41 0
Pascal, Adv, Rectangle, Fixed 5.96 1.37 False 𝑇𝐴 88.63 0.47 True +82.67 -0.90 1

Table 5: Comparison of classification task results across different triggers, models, and transform modules in an adversarial
scenario, where the adversary lacks knowledge of the specific trigger and transform module details.

Trigger Model 𝐷 (𝑐𝑜𝑠) 𝐷 (𝑒𝑢𝑐) Res#1 Module 𝐷 (𝑐𝑜𝑠) 𝐷 (𝑒𝑢𝑐) Res#2 △𝑐𝑜𝑠 △𝑒𝑢𝑐 Res.

Trigger A

𝑀𝐴 3.11 1.39 False 𝑇𝐴 92.04 0.39 True +88.93 -1.00 1
𝑀𝐴 3.11 1.39 False 𝑇𝐵 37.73 1.11 False +34.62 -0.28 0
𝑀𝐴 3.11 1.39 False 𝑇𝐶 44.53 1.05 False +41.42 -0.34 0
𝑀𝐵 34.09 1.14 True 𝑇𝐴 55.95 0.93 True +21.86 -0.21 0
𝑀𝐶 30.57 1.14 True 𝑇𝐴 51.12 0.98 False +20.55 -0.19 1

Trigger B 𝑀𝐴 34.41 1.14 True 𝑇𝐴 48.62 1.00 False +14.21 -0.14 1
Trigger C 𝑀𝐴 34.33 1.14 True 𝑇𝐴 47.92 1.00 False +13.59 -0.14 1

The results, presented in Figure 5, demonstrated a clear trend.
Increasing the number of triggers consistently reduced the effective-
ness of the transform module. For example, 𝐷 (𝑐𝑜𝑠) reached 92.04
with 16 triggers, showing a significant increase of +88.93 compared
to 3.11 before connecting the module. This indicated that were
forcibly bound by the transform module. As the number of triggers
increased, 𝐷 (𝑒𝑢𝑐) continued to rise, stabilizing at 0.53 when 128
triggers were used. The increase in𝐷 (𝑒𝑢𝑐) implied that reducing the
number of triggers helped ensure that trigger embeddings stayed

close. Results showed that a lower trigger number strengthened
the transform module’s ability to modify the embeddings.

Overall, the findings indicated that reducing the number of trig-
gers enhanced the effectiveness of the transform module. However,
reducing the number of triggersmade it easier for adversaries to find
specific triggers, greatly reducing the security of model copyright
protection. This indicated that there existed a trade-off between
maintaining high security and achieving maximum effectiveness
according to the special requirements of application scenarios.
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Figure 5: Performance under different trigger numbers.

5 Conclusion
In this work, we addressed critical issues about copyright protection
in multimodal AI models by proposing AGATE, a novel black-box
backdoor watermarking framework. AGATE simplified the pro-
cess of trigger selection by generating random adversarial noise,
enhancing trigger security and stealth. Proposed transform mod-
ule ensured accurate copyright verification by correcting outputs
against adversarial attacks. Our work demonstrated that AGATE
could efficiently protect copyrights across various multimodal mod-
els, offering an economical and effective solution.
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