
CodeBC: A More Secure Large Language Model for Smart Contract
Code Generation in Blockchain
Lingxiang Wanga,b,c, Hainan Zhanga,b,c,∗, Qinnan Zhangb,c, Ziwei Wanga,b,c, Hongwei Zhengc,d,
Jin Dongc,d,∗ and Zhiming Zhenga,b,c

aState Key Laboratory of Complex & Critical Software Environment, Beihang University, Beijing, 100190, China
bSchool of Artificial Intelligence, Beihang University, Beijing, 100190, China
cBeijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beijing, 100190, China
dBeijing Academy of Blockchain and Edge Computing, BABEC, Beijing, 100086, China

A R T I C L E I N F O
Keywords:
Code generation
Blockchain
Large language model
Smart contract
CodeLlama

A B S T R A C T
Large language models (LLMs) excel at generating code from natural language instructions, yet they
often lack an understanding of security vulnerabilities. This limitation makes it difficult for LLMs
to avoid security risks in generated code, particularly in high-security programming tasks such as
smart contract development for blockchain. Researchers have attempted to enhance the vulnerability
awareness of these models by training them to differentiate between vulnerable and fixed code
snippets. However, this approach relies heavily on manually labeled vulnerability data, which is
only available for popular languages like Python and C++. For low-resource languages like Solidity,
used in smart contracts, large-scale annotated datasets are scarce and difficult to obtain. To address
this challenge, We introduce CodeBC, a code generation model specifically designed for generating
secure smart contracts in blockchain. CodeBC employs a three-stage fine-tuning approach based on
CodeLlama, distinguishing itself from previous methods by not relying on pairwise vulnerability
location annotations. Instead, it leverages vulnerability and security tags to teach the model the
differences between vulnerable and secure code. During the inference phase, the model leverages
security tags to generate secure and robust code. Experimental results demonstrate that CodeBC
outperforms baseline models in terms of BLEU, CodeBLEU, and compilation pass rates, while
significantly reducing vulnerability rates. These findings validate the effectiveness and cost-efficiency
of our three-stage fine-tuning strategy, making CodeBC a promising solution for generating secure
smart contract code.

1. INTRODUCTION
Large language models have excelled in instruction-

based code generation tasks. As show in the upper part of
Figure 1, LLMs can effectively understand user instructions
and generate code that meets these requirements [1]. This
advancement marks a major breakthrough in software engi-
neering. It can streamline the software development process
and reduce human error. However, most research focuses on
enhancing the functional completeness of code generation.
Little attention is given to the security of generated code.
This includes identifying potential vulnerabilities or assess-
ing whether the code could cause harm, such as information
leaks or financial losses. This oversight limits their appli-
cation in vulnerability-sensitive domains. Blockchain is one
such domain, where code security is essential for users and
communities. Blockchain is a decentralized and distributed

This work was funded by the National Natural Science Foundation
of China (NSFC) under Grants No. 62406013, the Beijing Advanced
Innovation Center for Future Blockchain and Privacy Computing, the State
Key Laboratory of Complex & Critical Software Environment and the
Fundamental Research Funds for the Central Universities.

∗Corresponding author
wanglingxiang@buaa.edu.cn (L. Wang); zhanghainan@buaa.edu.cn (H.

Zhang); zhangqn@buaa.edu.cn (Q. Zhang); wangziwei26@buaa.edu.cn (Z.
Wang); zhenghongwei2024@163.com (H. Zheng); dongjin@baec.org.cn (J.
Dong); zzheng@pku.edu.cn (Z. Zheng)

ORCID(s): 0009-0001-0160-5701 (L. Wang)

pragma solidity ^0.8.3; //solidity version

contract EtherStore {

 function withdraw() public {

 uint bal = balances[msg.sender];require(bal > 0);

 (bool sent,) = msg.sender.call{value: bal}("");

 require(sent, "Failed to send Ether");

 balances[msg.sender] = 0;

 }……}

contract Attack {

 fallback() external payable {

 if (address(etherStore).balance >= 1 ether) {

 etherStore.withdraw();

 }

 }

 function attack() external payable {

 require(msg.value >= 1 ether);

 etherStore.deposit{value: 1 ether}();

 etherStore.withdraw();

 }……}

(a)

(b)

13

2

Generate a piece of smart contract code for a digital wallet

Okay, here's the code that meets your needs

The contract vulnerability can be exploited by using the attack code above

Figure 1: An example of generative code with smart contract
reentrancy attack. The process of reentrancy attack by con-
tract(b) on contract(a): 1○ The attacker initiates a withdrawal
request; 2○ EtherStore responds and automatically calls the
fallback() function. 3○ The attacker re-initiates the withdrawal
request. Since the account balance has not been cleared, the
loop can continue.

ledger database. It records transactions across multiple com-
puters in a secure, transparent, and tamper-resistant manner.
To ensure transaction security and transparency, developers
must pre-define transaction rules using smart contract code.

L. Wang et al.: Preprint submitted to Elsevier Page 1 of 13

ar
X

iv
:2

50
4.

21
04

3v
2

 [
cs

.C
R

]
 7

 M
ay

 2
02

5

CodeBC: A More Secure Large Language Model for Smart Contract Code Generation in Blockchain

The code should execute automatically without intermedi-
aries when invoked. The security of smart contract code is
critical. If the code contains vulnerabilities, malicious actors
might exploit them. This could result in significant financial
losses for users. The lower part of Figure 1 illustrates an
example of code generated by LLMs with a reentry attack1.
The example shown in the figure is intended solely for
illustrative purposes and may appear overly simplistic2 More
comprehensive prompts, including more detailed examples
of generating code with vulnerabilities, can be found in our
open-source Blockchain-Humaneval dataset3. The experi-
ments carried out by Hammond Pearce et al. also emphasize
that the code generated by certain large language models
exhibits security deficiencies [2]. If high-quality code can be
generated by LLMs for blockchain, it can not only enhance
developer efficiency but also reduce security risk and prevent
economic losses. Therefore, how to reduce vulnerabilities of
code generated by LLMs has become a key issue in applying
them to the blockchain smart contract.

Researchers [3] have attempted to enhance the vulner-
ability detection capabilities of code generation models.
They train the models to differentiate between vulnera-
ble code and its corresponding fixed code. This approach
controls code generation through prefix-tuning and applies
contrastive learning between the original vulnerable code
and its manually fixed version. However, this method is
limited to popular programming languages like Python and
C++, which have abundant annotated pairwise vulnerability
datasets. In contrast, low-resource languages, such as So-
lidity in smart contracts, face a different situation. While
large-scale open-source datasets are available for vulnera-
bility detection, they only indicate whether a contract con-
tains vulnerabilities, without providing details on how to
fix them. Since LLMs require substantial data to perform
well, a lower-cost and more effective method is needed.
This method should inject vulnerability knowledge of smart
contracts into LLMs to enhance the security of generated
code in the blockchain domain.

To achieve this goal, we propose CodeBC, a more se-
cure code generation model for blockchain. It employs a
customized three-stage fine-tuning approach to enhance the
model’s understanding of smart contract code, vulnerabil-
ity knowledge, and human instructions.Specifically, in the
first stage, we employ code infilling task to strengthen the
model’s comprehension of smart contract code, which ran-
domly mask some lines of code as inputs and use the masked
code segments as outputs. In the second stage, we inject vul-
nerability knowledge into the model through a vulnerability
detection task. This stage extracts code from open-source

1A typical withdrawal operation should clear the account balance be-
fore processing the withdrawal. However, the withdrawal function defined
in contract(a) does the opposite. So, when an attacker’s contract(b) con-
tinuously calls contract(a), it results in erroneous behavior of continuously
sending virtual currency.

2Consequently, when using the prompt shown in the figure to generate
smart contract code with current popular models, the reentrancy attack
vulnerability illustrated in the figure will not arise.

3https://github.com/wanglingxiang1298/CodeBC/tree/master/dataset
/result_dataset/solidity/BlockChain-Humaneval

vulnerability detection datasets and security repositories as
input, with vulnerability and security tags as outputs. In the
third stage, we apply a tag-guided instruction fine-tuning
method to improve the model’s ability to follow human
instructions. We concatenate human instructions with the
security or vulnerability tags from the second stage as input,
and use the corresponding code as output. During inference,
we concatenate human instructions and security tag to con-
trol the model to generate more secure code.

To better evaluate whether the generated code meets
human instruction requirements, we construct a dataset
called Blockchain-HumanEval. This dataset is based on the
widely used open-source repository OpenZeppelin, with
manual instruction annotations according to its functionali-
ties. The experimental results show that, compared to base-
line models, our model achieves significant improvements
in BLEU, CodeBLEU scores, compilation pass rate, and
vulnerability-free rate. Compared to the baseline SVEN,
which requires pairwise vulnerability annotations, our ap-
proach delivers comparable performance for Python and
C/C++. This demonstrates that our low-cost method is both
simple and effective. We will publish models and datasets
when this paper is accepted4.

The innovations of this paper are as follows:
• We introduce an instruction-based code generation

model into blockchain field, which can enhance devel-
oper efficiency but also reduce security risk, fostering
interdisciplinary research.

• We propose a customized three-stage fine-tuning strat-
egy: code infilling to enhance adaptability to blockchain
domain, vulnerability detection to inject the vul-
nerability knowledge, and tags-guided approach to
improve comprehension of human instructions.

• We construct the first human evaluation dataset for
instruction-based smart contract code generation task,
and experimental results demonstrate the effective-
ness and low-cost of our method.

The paper is organized as follows. In Section 2, we
review some essential background. Section 3 introduces
the design of CodeBC, including the details of three-stage
fine-tuning strategy. Section 4 introduces some empiri-
cal settings. Experiment results and ablation results on
BlockChian-HumanEval datasets are demonstrated in Sec-
tion 5. In Section 6, we evaluate the effectiveness of three-
stage fine-tuning on various tasks. Finally, Section 7 com-
pares our approach against some related work, before Sec-
tion 8 concludes.

2. BACKGROUND
2.1. Vulnerability Types of Smart Contract

Here are some typical types of smart contract vulnera-
bilities 5.

4https://github.com/wanglingxiang1298/CodeBC/tree/master
5https://huggingface.co/datasets/mwritescode/slither-audited-smart-

contracts

L. Wang et al.: Preprint submitted to Elsevier Page 2 of 13

CodeBC: A More Secure Large Language Model for Smart Contract Code Generation in Blockchain

Reentrancy(RE): Smart contracts can interact with ex-
ternal contracts or accounts. However, improper design may
introduce reentrancy vulnerabilities. These vulnerabilities
allow attackers to repeatedly call a function during its ex-
ecution, enabling malicious actions. A well-known example
is “The DAO" attack, which resulted in nearly $50 million
in losses.

Access Control(AC): Smart contracts rely on permis-
sion controls and condition checks to restrict access to func-
tions and data. Weak access controls may allow attackers to
gain unauthorized privileges, resulting in data leaks, finan-
cial losses, or contract disruptions. On the other hand, overly
strict controls can lock assets and cause economic losses.
A notable example is the 2017 Parity wallet attack, where
attackers bypassed access controls and stole approximately
$30 million.

Arithmetic(AR): Integer overflow and underflow are
critical vulnerabilities in smart contracts due to the frequent
use of unsigned integers and simple types. Overflow can
transform benign contracts into tools for theft or denial-of-
service attacks. A well-known example is the 2018 BEC
attack. In this case, attackers flooded the exchange with
tokens, causing the BEC price to drop to zero and resulting
in significant economic losses.

Unchecked Low Level Calls(ULLC): Solidity’s low-
level functions, such as call(), delegatecall(), and static-
call(), return a boolean value of false on failure instead
of propagating or reverting errors. If not properly checked,
these functions may allow attackers to execute unauthorized
operations, manipulate contract states, or steal funds.

Denial of Service(DoS): DoS attacks pose a major threat
to blockchain systems, including Ethereum. These attacks
involve irreversible malicious operations or excessive re-
source consumption. In Ethereum, each request consumes
gas, and execution stops once the gas limit is reached. DoS
attacks can disrupt contract execution and lead to substantial
token and gas consumption.

Bad Randomness(BR): BR is a challenge in modern
computing systems, particularly in open blockchain net-
works like Ethereum. Generating random numbers in smart
contracts is difficult because on-chain data is publicly ac-
cessible. If not carefully managed, this can be exploited for
cheating.

Front Running(FR): In Ethereum, transactions are con-
firmed based on the fees paid to miners. If an attacker obtains
transaction information in advance, they can outbid the
original user by increasing the fee, completing the operation
first and causing losses to the user.

Time Manipulation(TM): In Solidity, using timestamp
can introduce vulnerabilities because it is controlled by min-
ers. Attackers, typically miners, can manipulate the times-
tamp to alter the outcome of contracts that depend on it,
achieving their desired results.
2.2. Language Models

The rapid development of language models, particularly
with the introduction of the transformer architecture [4],

1x 2x ……
3x 4x 1nx − nx

1h 2h ……
3h 4h 1nh − nh

Contextual Encoder

Task-Specific Model

Input Language

Output Result

Non-contextual

Embeddings

Contextual

Embeddings

Figure 2: General architecture of a language model

has significantly improved language representations and the
use of contextual information. Numerous pre-trained mod-
els for general language representation, such as BERT [5],
GPT [6], and Llama [7], have since been proposed. These
models have shown excellent performance in various natu-
ral language processing tasks, including programming and
question answering. Figure 2 illustrates the general architec-
ture of a language model. The input is processed through
Non-contextual embeddings and Contextual embeddings to
obtain the encoded state, which is then provided to a task-
specific model to yield the output result. In Non-contextual
embeddings, discrete linguistic symbols are mapped into a
distributed embedding space. For a word i in the vocabulary
 , it is mapped to a vector 𝐱𝑖 ∈ ℝ𝐷𝑒 in the lookup table
𝐄 ∈ ℝ𝐷𝑒×||, where 𝐷𝑒 is the dimension of the embedding.
Subsequently, to further understand contextual information,
a neural encoder is used to encode the word embedding
into a context-based word embedding. Specifically, given a
sequence of word embeddings [𝑥1, 𝑥2,… , 𝑥𝑛] where 𝑥𝑖 is
a token after word embedding and 𝑥𝑖 ∈  , the contextual
representation of 𝑥𝑖 depends on the entire text segment.

[𝐡1,𝐡2,… ,𝐡𝑇] = 𝑓enc
(

𝑥1, 𝑥2,… , 𝑥𝑇
)

, (1)
where 𝑓enc(⋅) represents the neural encoder, and ℎ𝑖 is the
context-based embedding for the token 𝑥𝑖. The purpose of
encoding language is to establish a conditional distribu-
tion that continuously predicts the next token based on the
known sequence of tokens. Given a text sequence 𝑥1∶𝑁 =
[𝑥1, 𝑥2,… , 𝑥𝑛], its joint probability 𝑝 (𝑥1∶𝑁

) can be factored
as follows:

𝑝
(

𝑥1∶𝑁
)

=
𝑦
∏

𝑖=1
𝑝
(

𝑥𝑖 ∣ 𝑥0∶𝑖−1
)

, (2)

where 𝑥0 is a special token representing the start of the
sequence. The conditional probability 𝑝

(

𝑥𝑖 ∣ 𝑥0∶𝑖−1
) can be

modeled to predict the probability distribution of a word
given the language context 𝑥0∶𝑖−1. The context 𝑥0∶𝑖−1 can
be modeled through the neural encoder 𝑓enc(⋅), and thus the
conditional probability can be expressed:

𝑝
(

𝑥𝑖|𝑥0∶𝑖−1
)

= 𝑔LM
(

𝑓enc
(

𝑥0∶𝑖−1
))

, (3)
where 𝑔LM represents the prediction layer. Hence, this pa-
per constructs structured information based on vulnerability

L. Wang et al.: Preprint submitted to Elsevier Page 3 of 13

CodeBC: A More Secure Large Language Model for Smart Contract Code Generation in Blockchain

CodeLlama

CodeLlama

Fine-tuning

Fine-tuning

CodeBC

pragma solidity ^0.8.0;

contract simple_example {……}
Tag:correct or bug

Code data with tagPrompt

……whether this smart
contract Code is a
correct solution：

Ground-truth tag:Ground-truth tag:Ground-truth tag:

pragma solidity ^0.8.0; // solidity version

contract simple_example {……}//function for ……
Tag:correct or bug

Code data with tag and annotations

Split by element

Ground-truth tag:Ground-truth tag:Ground-truth tag: Code:Code:Code:
iCInstruction:Instruction:Instruction: iS

G

Instruction:Instruction:Instruction: iS Guidance tag:Guidance tag:Guidance tag:

inference

D

giT

ple_exam
…… L

PSM SPM

CodeLlama

pragma solidity ^0.8.0;

contract simple_example {……}

Code data (length = N)

pragma …
… sim

Snippet1
len=N/5

Snippet2
len=N/5

i
 …… n

Snippet3
len=N/5

 k
 …… e

Snippet4
len=N/5

 d
 ……}

Snippet5
len=N/5

isometric splitting

Random truncation
position

 Input: Input: Input: Target: Target: Target:

Fine-tuning

(,)i iPre Suf iMid

iPre iMid iSuf

 Input: Input: Input: iC

 Input: Input: Input: Target: Target: Target:
iC

pCI

iT

,i iS T

securityT

Figure 3: An illustration of the CodeBC model. (1) First fine-tuned the base pre-trained language model on smart contract code.
(2) Continued to train the model with the goal of vulnerability detection task on the model with the first smart contract code
generation capability. (3) Finally, Tags-guided Instruction Fine-tuning was performed on the models, aligning the vulnerability
detection tags in stages (2).

tags, which better serves as a reference for model inference
by incorporating vulnerability information.

3. CODEBC MODEL
3.1. Task Definition

The objective of the instruction-based smart contract
code generation task is to produce smart contract code that
meets the user’s requirements. For the task of secure contract
code generation, the goal is to ensure the model generates
contract code that meets the user’s requirements and avoids
vulnerabilities. To achieve this goal, the model needs to
have a sufficient reserve of smart contract code knowledge,
understand contract vulnerabilities, and then be able to avoid
the generation of vulnerabilities based on its perception of
smart contract vulnerabilities.

The dataset of instruction-based smart contract code
generation task is 𝔻 = {(𝑆1, 𝑇1, 𝐶1),… , (𝑆𝑁 , 𝑇𝑁 , 𝐶𝑁)},
where 𝑆𝑖 is a natural language instruction, 𝑇𝑖 is a guid-
ing tag and 𝐶𝑖 is a smart contract code. Given a natu-
ral language instruction 𝑆𝑖 = {𝑠1,… , 𝑠

|𝑆𝑖|
}, where 𝑠𝑖is a instruction token of 𝑆𝑖, and a guiding tag 𝑇𝑖 ∈

{𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦, 𝑣𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑙𝑒}, the goal of CodeBC model is to
generate code 𝐶𝑖 = {𝑐1,… , 𝑐

|𝐶𝑖|
} based on the generative

probability 𝑃 (𝐶𝑖|𝑆𝑖, 𝑇𝑖) by restricting tag 𝑇𝑖 and instruction
𝑆𝑖, where 𝑐𝑖 is the code token. The 𝑃 (𝐶𝑖|𝑆𝑖, 𝑇𝑖) can be
represented as:

𝑃 (𝐶𝑖|𝑆𝑖, 𝑇𝑖) =
𝑃 (𝐶𝑖)𝑃 (𝑇𝑖|𝐶𝑖)𝑃 (𝑆𝑖|𝑇𝑖, 𝐶𝑖)

𝑃 (𝑆𝑖, 𝑇𝑖)
. (4)

The overall structure of the CodeBC model consists of
three stages, as shown in Figure 3. The first stage is the
code infilling task to optimize 𝑃 (𝐶𝑖) and the second stage is
the vulnerability detection task to optimize 𝑃 (𝑇𝑖|𝐶𝑖). From

a probabilistic decomposition perspective, this can theoret-
ically improve the generative probability 𝑃 (𝐶𝑖|𝑆𝑖, 𝑇𝑖). The
third stage tags-guided instruction fine-tuning directly opti-
mizes 𝑃 (𝐶𝑖|𝑆𝑖, 𝑇𝑖) based on different 𝑇𝑖, namely “security"
and “vulnerable", which can help the model generate more
secure code in the inference process when 𝑇𝑖 = 𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦.
3.2. Code Infilling

Current LLMs can generate smart contract code based
on human instructions. However, most of this code fails to
compile, showing that these models have poor programming
capabilities for Solidity in smart contracts. To equip the
model with the ability to write contracts, we set code infilling
as the primary training objective.

We adopt the efficient training method from CodeL-
lama [8], which splits the text into three parts: prefix, midfix,
and suffix. However, smart contracts are often short and
typically begin with the version number of the Solidity
compiler. Randomly dividing the contract code into three
parts, as done in CodeLlama, may prevent the model from
effectively learning contextual information. To address this,
we adjust the positions of each part, allowing the model
to fully utilize contextual information when predicting the
midfix code.

As shown on the left side of Figure 3, at this stage, we
only use smart contract code as the training data. Taking
a smart contract 𝐶𝑖 = [𝑐1,… , 𝑐𝑛] as an example, we first
divide it into five segments of equal length. Random trunca-
tion points 𝑗 and 𝑘 are then selected within the second and
fourth segments, respectively, to form 𝑃𝑟𝑒𝑖 = [𝑐1,… , 𝑐𝑗−1],
𝑀𝑖𝑑𝑖 = [𝑐𝑗 ,… , 𝑐𝑘−1], and 𝑆𝑢𝑓𝑖 = [𝑐𝑘,… , 𝑐𝑛]. Subse-
quently, the data is randomly organized using either the PSM
(Pre-Mid-Suf) or SPM (Suf-Pre-Mid) arrangement, aligning
with the work of the OpenAI team on efficiently enhancing
the infilling capability of language models [9].

L. Wang et al.: Preprint submitted to Elsevier Page 4 of 13

CodeBC: A More Secure Large Language Model for Smart Contract Code Generation in Blockchain

Input:

<s>[INST]The given contract is named "EtherStore" and it is

written in Solidity

version 0.8.3. Implemented a simple function for storing virtual
currencies,please

determine whether this smart contract Code is a correct solution:

pragma solidity ^0.8.3;

contract EtherStore {

 function withdraw() public {

 uint bal = balances[msg.sender];require(bal > 0);

 (bool sent,) = msg.sender.call{value: bal}("");

 require(sent, "Failed to send Ether");

 balances[msg.sender] = 0;

 }……}[/INST]

Output:

[Tag]<vulnerable>[/Tag]</s>
(a)

Input:

<s>[INST]The given contract is named "EtherStore" and it is

written in Solidity

version 0.8.3. Implemented a simple function for storing virtual
currencies,please

determine whether this smart contract Code is a correct solution:

pragma solidity ^0.8.3;

contract EtherStore {

 function withdraw() public {

 uint bal = balances[msg.sender];require(bal > 0);

 (bool sent,) = msg.sender.call{value: bal}("");

 require(sent, "Failed to send Ether");

 balances[msg.sender] = 0;

 }……}[/INST]

Output:

[Tag]<vulnerable>[/Tag]</s>
(a)

Input:

<s>[INST]The given contract is named "EtherStore" and it is

written in Solidity

version 0.8.3. Implemented a simple function for storing virtual
currencies,please

determine whether this smart contract Code is a correct solution:

pragma solidity ^0.8.3;

contract EtherStore {

 function withdraw() public {

 uint bal = balances[msg.sender];require(bal > 0);

 balances[msg.sender] = 0;

 (bool sent,) = msg.sender.call{value: bal}("");

 require(sent, "Failed to send Ether");

 }……}[/INST]

Output:

[Tag]<security>[/Tag]</s>
(b)

Input:

<s>[INST]The given contract is named "EtherStore" and it is

written in Solidity

version 0.8.3. Implemented a simple function for storing virtual
currencies,please

determine whether this smart contract Code is a correct solution:

pragma solidity ^0.8.3;

contract EtherStore {

 function withdraw() public {

 uint bal = balances[msg.sender];require(bal > 0);

 balances[msg.sender] = 0;

 (bool sent,) = msg.sender.call{value: bal}("");

 require(sent, "Failed to send Ether");

 }……}[/INST]

Output:

[Tag]<security>[/Tag]</s>
(b)

iC

giT

iC

giT

Figure 4: Schematic structure of the training data in the
vulnerability detection task. (a) shows the case where the
contract code is vulnerable, (b) shows the case where the
contract code is not vulnerable

The three tokens <PRE>, <MID>, and <SUF>are used
to denote the beginning of each part. PSM denotes the
combination of prefix, suffix, and midfix,

<PRE>𝑃𝑟𝑒𝑖<SUF>𝑆𝑢𝑓𝑖<MID>𝑀𝑖𝑑𝑖 (5)
SPM denotes the combination of suffix, prefix, and midfix,

<PRE><SUF>𝑆𝑢𝑓𝑖<MID>𝑃𝑟𝑒𝑖𝑀𝑖𝑑𝑖 (6)
During the training phase, the 𝑀𝑖𝑑𝑖 in Equations (5) and (6)
serves as the target output of the model, while its preceding
part as the input. Then we randomly select the combination
method among PSM and SPM with probability 0.5.

Given the 𝑖𝑡ℎ example 𝐶𝑖 = (𝑃𝑟𝑒𝑖,𝑀𝑖𝑑𝑖, 𝑆𝑢𝑓𝑖) ∈ 𝔻, we
minimize the negative log-likelihood of the target 𝑀𝑖𝑑𝑖:

I = −
|𝔻|
∑

𝑖=1

|𝑀𝑖𝑑𝑖|
∑

𝑡=1
logP(𝑚𝑡|𝑚1...𝑚𝑡−1, 𝑃 𝑟𝑒𝑖, 𝑆𝑢𝑓𝑖; 𝜃), (7)

where 𝑚𝑡 denotes the token of 𝑀𝑖𝑑𝑖, and 𝜃 denotes the
parameters of CodeLlama.
3.3. Vulnerability Detection

Using a small amount of contract code with vulnera-
bilities is an efficient and sustainable way to enhance the
model’s knowledge of contract code security (see experi-
ments in Section 5.2). As shown in Figure 4, we construct
training data by tagging code from open-source vulnerability

detection datasets with a “vulnerable" label and code from
smart contract security repositories with a “security" label.
In the second stage, focused on the vulnerability detection
task, the model learns to distinguish between contract code
with and without vulnerabilities. The primary goal of the
vulnerability detection task is to improve the model’s ability
to detect security vulnerabilities in smart contracts. This task
also provides alignment guidance for the subsequent Tags-
guided Instruction Fine-Tuning stage.

Given the code 𝐶𝑖, if 𝐶𝑖 has no vulnerabilities, the
ground-truth output is 𝑇𝑔𝑖 = {[Tag]<security>[/Tag]},
otherwise 𝑇𝑔𝑖 = {[Tag]<vulnerable>[/Tag]}, where [Tag],
[/Tag] respectively denote the beginning and the end of the
code security detection result. The model performs vulner-
ability detection task under a simple prompt “whether this
smart contract Code is a correct solution:" and the negative
log-likelihood of the target sentence 𝑇𝑔𝑖 is:

D = −
|𝔻|
∑

𝑖=1

|𝑇𝑔𝑖 |
∑

𝑗=1
logP(𝑡𝑗|𝑡1...𝑡𝑗−1, 𝐶𝑖; 𝜃𝐼), (8)

where 𝑡𝑗 represents the token of 𝑇𝑔𝑖 , and 𝜃𝐼 denotes the
parameters of equation 7.
3.4. Tags-guided Instruction Fine-tuning

The training data, built using vulnerability and security
tags, helps the language model learn code features more
effectively. It also supports the smart contract code genera-
tion task by providing tag-based guidance. To align with the
vulnerability detection task in the second phase, we design
the training data structure for the instruction fine-tuning task,
as shown in Figure 5. The goal of tags-guided instruction
fine-tuning is to use tags to help the model better distinguish
between secure and vulnerable code.

In the training process, as shown in the right-bottom
of Figure 3, given a human instruction 𝑆𝑖 = [𝑠1,… , 𝑠

|𝑆𝑖|
]

and the tag information 𝑇𝑖 ∈ {𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦, 𝑣𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑙𝑒}, the
objective of code generation model is to produce the ground-
truth code 𝐶𝑖 = [𝑐1,… , 𝑐

|𝐶𝑖|
], where 𝑇𝑖 indicates whether

the code 𝐶𝑖 is security or vulnerable. We minimize the
negative log-likelihood of the target code:

G = −
|𝔻|
∑

𝑖=1

|𝐶𝑖|
∑

𝑡=1
logP(𝑐𝑡|𝑐1...𝑐𝑡−1, 𝑆𝑖,PROMPT, 𝑇𝑖; 𝜃𝐷), (9)

where 𝑐𝑡 represents the 𝑡𝑡ℎ token of 𝐶𝑖, and 𝜃𝐷 denotes the
parameters of equation 8.

In the inference process, as shown in the right-top of
Figure 3, given a human instruction 𝑆𝑖 and tag information
𝑇𝑖 = 𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦, the model will generate safer code 𝐶𝑝 with
the help of 𝑇𝑖 = 𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦.

4. EXPERIMENTAL SETUP
We first introduce some empirical settings, including

datasets, evaluation metrics, baselines and parameter set-
tings for CodeBC.

L. Wang et al.: Preprint submitted to Elsevier Page 5 of 13

CodeBC: A More Secure Large Language Model for Smart Contract Code Generation in Blockchain

Input:

<s>[INST]Generate smart contract code that meets the following
requirements:

Programming with solidity ^ version number 0.8.3

Implement a contract named EtherStore for storing virtual
currencies.

The following functions need to be implemented, with the

following names and functions:

……

withdraw(): ……

……

Please give the contract code[/INST]

[Tag]<security>[/Tag]

Output:

pragma solidity ^0.8.3;

contract EtherStore {

 function withdraw() public {

 uint bal = balances[msg.sender];require(bal > 0);

balances[msg.sender] = 0;

 (bool sent,) = msg.sender.call{value: bal}("");

 require(sent, "Failed to send Ether");

 }……}

[Tag]<security>[/Tag]</s>

iS

securityT

pC

Figure 5: Schematic structure of the training data in the tags-
guided instruction fine-tuning

Table 1
The statistics of datasets for smart contract code generation
task. Num_Security and Num_Insecurity are the number of
security and insecurity smart contracts, respectively.

Dataset Total Num_Security Num_Insecurity

SASCsmall 10,571 2,693 7,878

SASCsmall-F 7,567 1,782 5,785

SASCsmall-F for CI 1,782 1,782 0

4.1. Dataset
Training Dataset: SASCsmall-F

The training dataset for the smart contract code genera-
tion task is primarily based on the “Slither Audited Smart
Contracts small-multilabel" (SASCsmall) dataset6, which
is widely used for vulnerability detection tasks in smart
contracts [10, 11, 12]. They utilize Slither [13] to analyze
each smart contract and map the detected vulnerability types
to 8 classes based on the most threatening smart contract
vulnerabilities provided by the Decentralized Application
Security Project (DASP) 7. Table 1 summarizes the dataset
composition. It contains 10,571 smart contracts, where 25%
are secure and 75% are insecure. To ensure that all smart
contracts involved in model training can be deployed in
practical application scenarios, we conducted a selection
process for smart contracts. We exclude code that encapsu-
lated multiple smart contracts to form complete and com-
plex functionalities from SASCsmall, and finally obtain our
dataset SASCsmall-F.

Based on SASCsmall-F dataset, we construct different
datasets for three fine-tuning stages, and randomly split them

6https://huggingface.co/datasets/mwritescode/slither-audited-smart-
contracts

7It is worth noting that our method is not limited to the eight basic
vulnerability types of SASCsmall; with appropriate annotated datasets, it
can be quickly and efficiently adapted to other types of vulnerabilities.

into training, validation and test in an 8:1:1 ratio. It is worth
noting that the test dataset here is only used in the model
analysis experiments to compare whether CodeBC achieves
good results on the corresponding tasks. The statistics of
these datasets are shown in Table 1:

• Code Infilling dataset(SASCsmall-F for CI): To max-
imize the model’s performance in generating secure
code, we only use 1782 secure contract code from
the SASCsmall-F for code infilling task. Taking the
contract code [𝑐1,… , 𝑐𝑛] as an example, we randomly
mask a code segment 𝑀𝑖𝑑𝑖 = [𝑐𝑗 ,… , 𝑐𝑘 − 1], the
prefix 𝑃𝑟𝑒𝑖 = [𝑐1,… , 𝑐𝑗−1], and the suffix 𝑆𝑢𝑓𝑖 =
[𝑐𝑘,… , 𝑐𝑛]. For the SPM task, LLM use “< 𝑃𝑅𝐸 ><
𝑆𝑈𝐹 > 𝑆𝑢𝑓𝑖 < 𝑀𝐼𝐷 > 𝑃𝑟𝑒𝑖” as input, and “𝑀𝑖𝑑𝑖”as output. For the PSM task, LLM use “< 𝑃𝑅𝐸 >
𝑃𝑟𝑒𝑖 < 𝑆𝑈𝐹 > 𝑆𝑢𝑓𝑖 < 𝑀𝐼𝐷 >” as input and
“𝑀𝑖𝑑𝑖” as output. Additionally, each smart contract
involved in training is randomly split five times and
completely shuffled.

• Vulnerability Detection dataset: We use all smart con-
tract codes with analysis report results (as security /
vulnerability label) from SASCsmall-F dataset for the
vulnerability detection task. Taking the contract code
[𝑐1,… , 𝑐𝑛] and the target labels {𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦, 𝑣𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑙𝑒}
as examples, the fine-tuning task involved using [𝑐1,… , 𝑐𝑛]as the input. If the contract has no vulnerabilities
in analysis reports, the output would be “< 𝑇𝑎𝑔 >
𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦 < ∕𝑇 𝑎𝑔 >”, otherwise, the the output would
be “< 𝑇𝑎𝑔 > 𝑣𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑙𝑒 < ∕𝑇 𝑎𝑔 >”.

• Tags-guided Instruction dataset: We use all smart
contract code, code comments(as human instructions)
and analysis report results(as security/vulnerability
tags) from SASCsmall-F dataset for the tags-guided
instruction task. Taking the contract code 𝐶𝑖, its com-
ments𝑆𝑖 and the vulnerability labels {𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦, 𝑣𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑙𝑒}
as examples, we design a PROMPT to generate smart
contracts:“Please give the contract code”. As shown
in Figure 5, when the code has no vulnerabilities, the
input is “𝑆𝑖+PROMPT+[Tag]<security>[/Tag]” and
the output is𝐶𝑖. When the code has vulnerabilities, the
input is “𝑆𝑖 + PROMPT+ [Tag]<vulnerable>[/Tag]”
and the output is 𝐶𝑖.

Evaluation Dataset: Blockchain-HumanEval

We construct the Blockchain-HumanEval dataset using the
open-source smart contract code repository OpenZeppelin8.
This dataset is designed to evaluate whether the generated
code meets the requirements of human instructions. The
advantages of Openzeppelin are as follows:

• As the most popular and verified contract code repos-
itory, the code can be considered as correct smart
contract code without security vulnerabilities.

8https://github.com/OpenZeppelin/openzeppelin-contracts

L. Wang et al.: Preprint submitted to Elsevier Page 6 of 13

CodeBC: A More Secure Large Language Model for Smart Contract Code Generation in Blockchain

• As a code repository that provides security guarantees
for smart contracts, it imposes higher requirements
on its security which will place high demands on the
security of the model-generated code.

The Blockchain-HumanEval dataset selects smart con-
tract code from the OpenZeppelin repository, focusing on
code without internal references as the target. To annotate
each piece of OpenZeppelin code with human instructions,
five blockchain engineers are invited to independently write
detailed descriptions. These descriptions include the re-
quired Solidity version, names of functions, events, and
errors, as well as internal parameters and their respective
functionalities. Afterward, a sixth engineer selects the best
instruction from the five submissions. In total, the dataset
includes 41 tasks, as detailed in 9. Notably, although the
LLM may have been exposed to some OpenZeppelin code
during training, it has not encountered the human-annotated
instructions. This ensures that when evaluating the LLM’s
code generation ability, the Blockchain-HumanEval dataset
eliminates the risk of data leakage.
4.2. Baselines and Parameter Settings

We compare our CodeBC model with three baselines,
including CodeLlama(7B-Instruct) [8],
CodeGen25(7B-Instruct) [14], and DeepSeek-Coder(6.7b-
Instruct) [15]. These models are all popular open-source
models that possess the capability for instruction-based code
generation.

In the model training phase, all three stages of training
are performed using Low-Rank Adaptation(LoRA) [16] on
the A100 GPU, which has been shown to reduce training
time significantly while ensuring good results. The model
training process can be viewed as updating the model param-
eters using the loss values obtained as shown in equations
7 to 9, thereby minimizing the loss. Assuming the original
model parameters are 𝑊0 and the training uses a learning
rate 𝜂, the parameters are updated as follows:

Δ𝑊 = 𝑊0 − 𝜂 𝜕𝐿
𝜕𝑊0

, (10)

𝑊0 = 𝑊0 + Δ𝑊 . (11)
Therefore, the objective of model training can be seen as
finding the Δ𝑊 that minimizes the loss, which for large-
scale language pre-trained models with a vast number of
parameters, requires significant computational resources. To
address this, LoRA employs a low-rank decomposition to
represent parameter updates, that is:

𝑊0 + Δ𝑊 = 𝑊0 + 𝐵𝐴, (12)
where, 𝐵 ∈ ℝ𝑑×𝑟𝑎𝑛𝑑𝐴 ∈ ℝ𝑟×𝑘 are two low-rank decompo-
sition matrices, where the low-rank 𝑟 used for decomposition
satisfies 𝑟 ≪ 𝑚𝑖𝑛(𝑑, 𝑘). By employing this method, we

9https://github.com/wanglingxiang1298/CodeBC/tree/master

can significantly reduce the consumption of computational
resources while achieving fine-tuning of the model. The rank
of the update matrix (lora-r) is set to 4, the LoRA scaling
factor (lora-alpha) is set to 32, and all parts of the attention
block are used as target modules. The learning rate is set to
1e-4, and ten rounds are trained on the Code Infilling and
Vulnerability Detection tasks, respectively, and one round
is trained on the Tags-guided Instruction task. In the model
inference stage, we run all models using a temperature value
of 0.2 and a nucleus sampling method with a parameter value
of 0.95.
4.3. Metrics

Each model generates five samples for each natural lan-
guage instruction from the Blockchain-HumanEval dataset.
We evaluate the models based on two aspects: code genera-
tion quality and security. The specific evaluation metrics are
as follows:

The instruction-based code generation task can also be
regarded as a special kind of translation task from nat-
ural language to code, therefore, BLEU [17] and Code-
BLEU [18] are employed to evaluate the quality of smart
contract code in meeting the requirements of human instruc-
tions [19]. We calculate the average BLEU(AvgBLEU), the
best BLEU(BestBLEU), the average CodeBLEU(AvgCB)
and the best CodeBLEU(BestCB) for evaluation. We do
not use the metric pass@k because of the nature of smart
contracts that can only be called passively. To better assess
the quality of the generated code, we removed all comments
and code description sections from the target code and the
generated samples, and calculate the metrics only on the
code.

The performance of security is evaluated using the re-
view results of the Slither inspection tool [13], which is the
most popular review tool in the Blockchain community and
is officially recommended by Ethernet. 10 The tool returns
the compilation results of the code and returns vulnerability
analysis results for the compilable contract code. We use
the compilation pass rate(ComPass) and the vulnerability
rate(VulRate) of the generated code to visualize the perfor-
mance of the generated results in terms of security, and the
safe-availability rate(SafeAval) refers to the proportion of
smart contract code that is compilable and free of security
vulnerabilities to further reflect the model’s ability in terms
of security.

5. EXPERIMENTAL RESULTS
In this section, we demonstrate our experiment results

and ablation results on BlockChian-HumanEval datasets.
5.1. Metric-based Evaluation

The metric-based evaluation results are shown in Ta-
ble 2. The results indicate that CodeGen25 and DeepSeek-
Coder perform similarly in generation quality. Both are
slightly worse than CodeLlama. Their scores on AvgBLEU,

10https://ethereum.org/zh/developers/docs/smart-contracts/testing

L. Wang et al.: Preprint submitted to Elsevier Page 7 of 13

CodeBC: A More Secure Large Language Model for Smart Contract Code Generation in Blockchain

Table 2
The metric-based evaluation results on the Blockchain-HumanEval dataset.

Models AvgBLEU BestBLEU AvgCB BestCB ComPass(%) VulRate(%) SafeAval(%)

CodeGen25 0.4298 0.5614 0.4411 0.5111 24.87 79.02 22.43

DeepSeek-coder 0.4251 0.5650 0.4371 0.5084 24.39 78.04 21.95

GPT-3.5-turbo 0.4323 0.5160 0.6197 0.6667 82.93 39.02 60.98

+ COT 0.4507 0.5350 0.6186 0.6763 84.88 38.05 61.95

GPT-4 0.4149 0.4851 0.6207 0.6685 84.88 34.63 65.37

+ COT 0.4040 0.4660 0.6173 0.6667 82.44 36.10 63.90

CodeLlama 0.5099 0.5985 0.5317 0.5816 43.90 61.95 40.48

CodeBC(our) 0.6753 0.7288 0.6452 0.6674 86.82 26.34 78.56

Table 3
Ablation results of every stage of CodeBC on the Blockchain-HumanEval dataset.

Models AvgBLEU BestBLEU AvgCB BestCB ComPass(%) VulRate(%) SafeAval(%)

CodeLlama 0.5099 0.5985 0.5317 0.5816 43.90 61.95 40.48

CodeBC 0.6753 0.7288 0.6452 0.6674 86.82 26.34 78.56

CodeBC-CI 0.5279 0.6271 0.5739 0.6247 51.70 57.07 47.80

CodeBC-VD 0.5759 0.6735 0.5254 0.5633 52.68 53.66 65.33

CodeBC-TI 0.5698 0.6298 0.6001 0.6345 77.06 44.87 68.78

Table 4
The test results of CodeLlama and CodeBC-CI model for code
infilling task on SASCsmall-F for CI test data.

Models AvgBLEU BestBLEU AvgCB BestCB

CodeLlama 0.1842 0.1843 0.5225 0.5231

CodeBC-CI 0.4771 0.4829 0.8032 0.8042

BestBLEU, AvgCB, and BestCB are lower than CodeLlama
by approximately 15.69%, 6.67%, 16.98%, and 12.07%, re-
spectively. In terms of security, CodeGen25 and DeepSeek-
Coder also perform roughly the same, and are significantly
worse than the CodeLlama model. Specifically, they have a
45.45% lower compilation pass rate, a 27.42% higher vulner-
ability rate, and 46.34% fewer contract codes that are safe to
use. These results demonstrate that CodeLlama outperforms
both baselines in generation quality and security.

Our CodeBC model performs excellently across all met-
rics compared to the baselines. In code generation quality,
it achieves scores above 0.64 in AvgBLEU, BestBLEU,
AvgCB, and BestCB. Compared to the best-performing
CodeLlama model, CodeBC shows improvements of ap-
proximately 32.43%, 21.77%, 21.35%, and 14.75% in these
metrics, respectively. In terms of security, CodeBC also
outperforms CodeLlama. The compilation pass rate in-
creased from 43.90% to 86.82%, an increase of 97.77%.
The vulnerability rate decreased from 61.95% to 26.34%, a
57.48% reduction. The percentage of contract code that can
be used safely increased from 40.48% to 78.56%, a 94.07%

improvement. In conclusion, the improvements of CodeBC
over the baseline models demonstrate the effectiveness of
our three-stage fine-tuning strategy. Furthermore, compara-
tive testing with closed-source GPT-series models reveals
that while these models demonstrate excellence in code
security, CodeBC maintains a performance advantage in
benchmark evaluations. This superiority persists even when
GPT models are enhanced with explicit chain-of-thought
prompting ("Let’s think step by step" instructions).
5.2. Ablation Experiments

To verify the actual effect of model training in each
stage, we conducted ablation experiments on Blockchain-
HumanEval, and the results of each stage are shown in Table
3. CodeBC-CI denotes the model fine-tuned only through
the code infilling task. CodeBC-VD denotes the model fine-
tuned only for the vulnerability detection task. CodeBC-TI
denotes the model fine-tuned only after tag-guided instruc-
tion task.

The results show that the training methods in each
stage improve the scores of AvgBLEU, BestBLEU, AvgCB,
and BestCB. A comparison of CodeLlama, CodeBC-CI,
CodeBC-VD, CodeBC-TI, and CodeBC reveals that training
across all three stages (CodeBC) contributes to the final
model’s performance. This suggests that exposing the model
to more smart contract code data during training enhances
its code generation capability.

In terms of security, the training methods at each stage
improved the model’s security performance. However, a

L. Wang et al.: Preprint submitted to Elsevier Page 8 of 13

CodeBC: A More Secure Large Language Model for Smart Contract Code Generation in Blockchain

Table 5
The test results of CodeBC w.o.TI and CodeBC model for vulnerability detection task on SmartBugs dataset.

Models Accuracy

RE AC AR ULLC DoS BR FR TM other all

CodeBC w.o.TI 0.90 0.33 0.0 0.40 0.50 1.0 0.25 0.80 0.67 0.52

CodeBC 0.90 0.17 0.0 0.42 0.67 1.0 0.50 1.0 0.67 0.52

78.9
83.6

99.2 100

62.4

54.8

0

25

50

75

100

CWE-125 0-c CWE-125 1-c

66.0

95.8 100 100

2.5 0.0
0.0

25.0

50.0

75.0

100.0

CWE-089 0-py CWE-089 1-py

21.7

8.1

100
93.6

1.3
7.7

0.0

25.0

50.0

75.0

100.0

CWE-078 0-py CWE-078 1-py

0.0

29.3

47.8

92.9

0.0
3.8

0.0

25.0

50.0

75.0

100.0

CWE-476 0-c CWE-476 2-c

91.4

65.3

100
90.0

27.8

11.8

0.0

25.0

50.0

75.0

100.0

CWE-022 0-py CWE-022 1-py

33.7

99.6

78.7

100

37.8

100

0.0

25.0

50.0

75.0

100.0

CWE-787 0-c CWE-787 1-c

27.6

13.6

100 98.4

0.0 0
0.0

25.0

50.0

75.0

100.0

CWE-079 0-py CWE-079 1-py

100

57.9

100

80.4

100

72.6

0

25

50

75

100

CWE-190 0-c CWE-190 1-c

100 100 100

0

25

50

75

100

CWE-416 0-c

91.8

80.5 79.9

0

25

50

75

100

CWE-416 1-c

CodeGen-2.7B SVENsec SVENvul

Figure 6: Results of security rate on individual scenarios reported in paper of the SVEN model [3]. CodeGen-2.7B represents the
base model. SVENsec represents the model that maintains secure prefixes, which are expected to guide the model in generating
secure code. SVENvul represents the model that maintains vulnerable prefixes, which are expected to guide the model in generating
vulnerable code.

comparison of CodeBC-CI with other stages shows lim-
ited security improvement. Although this stage used only
secure contract code for training, the lack of vulnerability
knowledge injection limited its impact. This validates the
importance of learning vulnerability knowledge. On the
other hand, through vulnerability detection task and tag-
guided instruction task, CodeBC-VD and CodeBC-TI signif-
icantly improved the security of the generated code, as these
two tasks helped the model enhance its ability to identify
vulnerabilities. The experimental results in Table 3 demon-
strate that leveraging a small amount of contract code with
vulnerabilities is efficient and effective for enhancing the
model’s knowledge of security vulnerabilities. For instance,
training on 7,567 contract vulnerability detection data points
(1,782 labeled as secure) reduced the vulnerability rate from
53.66% to 26.34%, along with notable improvements in other
metrics.

The experimental results show that the efficient code-
infilling fine-tuning task enables the model to learn smart
contract programming effectively. This significantly en-
hances CodeBC’s ability to generate smart contracts. Mean-
while, the vulnerability detection task and the tags-guided
instruction fine-tuning focus on improving the security of
model-generated code. These tasks enhance the model’s
ability to detect vulnerabilities and guide it to generate more
secure smart contract code using guiding tags.

6. DISCUSSIONS
In this section, we primarily focus on evaluating the

effectiveness of three-stage fine-tuning on various tasks. We
test the performance of the CodeBC model on the code infill-
ing task, the vulnerability detection task and other language
transferability, respectively, to analyze the reasons for the
performance improvement of CodeBC.
6.1. Code Infilling

We evaluate the code-infilling capabilities of CodeLlama
and CodeBC-CI on the SASCsmall-F for CI test dataset.
Table 4 presents the results. The CodeBC-CI model achieves
better performance than CodeLlama in completing contract
code infilling tasks. It shows an improvement of approx-
imately 0.3 in both BLEU and CodeBLEU metrics. This
suggests that fine-tuning through code-infilling tasks helps
the model learn structural information in smart contract
code. It also improves its understanding of code context.
As a result, the model enhances its ability to generate smart
contracts.
6.2. Vulnerability Detection

To verify whether the tag-guided instruction fine-tuning
affects the performance of vulnerability detection tasks,
handwritten smart contract code from the open-source project
SmartBugs [20] is used. This dataset contains 141 smart

L. Wang et al.: Preprint submitted to Elsevier Page 9 of 13

CodeBC: A More Secure Large Language Model for Smart Contract Code Generation in Blockchain

CodeLlama TAG_s TAG_v

84.0

19.0

92.0

60.0

80.0

32.0

0.0

25.0

50.0

75.0

100.0

CWE-078 0-py CWE-078 1-py

60.0

96.0

80.0

96.0

36.0

92.0

0.0

25.0

50.0

75.0

100.0

CWE-089 0-py CWE-089 1-py

60.0

100

80.0

100

36.0

100

0.0

25.0

50.0

75.0

100.0

CWE-787 1-c Other Scenarios

Figure 7: Results of security rate on individual scenarios under method of vulnerability detection. TAG_s denotes the addition of
a < security > tag to the original prompt. TAG_v denotes the addition of a < vulnerable > tag to the original prompt.

contract codes with various types of security vulnerabil-
ities. Descriptions of each vulnerability type are avail-
able on DASP 11. We calculate the accuracy of binary
classification for vulnerability detection between CodeBC
and CodeBC without tag-guided instruction (referred to as
CodeBC w.o.TI). Table 5 shows the results. The model
detects 52% of the vulnerabilities. Training with tag-guided
instruction does not significantly reduce this detection ca-
pability. The model demonstrates strong performance in
identifying vulnerabilities like Reentrancy (RE) and Bad
Randomness (BR). These vulnerabilities often lead to eco-
nomic losses. In conclusion, the experiments confirm that
our approach can effectively enhance the model’s ability to
generate secure smart contract codes. We believe the key
to improving this capability lies in efficiently incorporating
vulnerability-related knowledge without compromising the
quality of the generated code. This enables the model
to distinguish between secure and insecure code, thereby
avoiding vulnerabilities during the code generation process
according to the instructions.
6.3. Transferability Analysis

In rich-resource programming languages like Python and
C/C++, He et al. [3] proposed the SVEN model for con-
trolled code generation. By comparing vulnerable code with
its corresponding fixed code, the SVEN model identifies
vulnerability locations more accurately. This improves its
vulnerability awareness. Figure 6 shows the results. The
green bar (secure controller) is consistently higher, and the
red bar (vulnerable controller) is consistently lower than the
gray bar (base model). This demonstrates that the SVEN
model significantly enhances the ability to distinguish code
security and vulnerabilities. It can generate code that either
avoids or includes vulnerabilities based on provided prefixes.
However, this method requires precise pairwise vulnerability
annotations, which are expensive for low-resource program-
ming languages like Solidity. To evaluate the transferability
of our three-stage fine-tuning method in other languages, we
compare the SVEN model with the CodeBC model. Unlike

11https://dasp.co/

SVEN, CodeBC only uses vulnerability classification tags.
We conduct experiments on Python and C/C++ datasets [3].
Using CodeLlama as the base model, we train it on the
SVEN training set with our three-stage fine-tuning method
and test it on 18 samples provided by the SVEN model.

Specifically, each sample in the original dataset includes
vulnerable code and its corresponding fixed code, with de-
tailed annotations of the fixed locations. We discard the fix
location information. Instead, we use pre-fix code snippets
as vulnerable negative samples and post-fix code snippets
as secure positive samples. These samples are used for
multi-stage fine-tuning. The training and testing sample data,
along with the experimental results, will be made publicly
available 12.

The experimental results are shown in Figure 7. The
CodeLlama model itself exhibits exceptional capability in
avoiding vulnerabilities during the code generation pro-
cess. The experimental results in Table 2 further confirms
that CodeLlama outperforms CodeGen in security perfor-
mance during code generation. This indicates that the origi-
nal model performs well in controlled code generation tasks.
Our approach successfully maintains this high level of per-
formance as well. Nevertheless, there are certain situations
where CodeLlama does not effectively avoid vulnerabilities.
In these situations, the model trained with our method per-
forms similarly to the SVEN model. Specifically, it can gen-
erate code that either avoids vulnerabilities or deliberately
includes them based on the user’s specific requirements. This
demonstrates that our method can achieve outcomes compa-
rable to those obtained with extensively annotated datasets,
but at a substantially lower cost. This finding validates the
transferability and cost-effectiveness of our method.

7. RELATED WORK
7.1. Instruction-based Code Generation

With the development of LLMs, the usability of code
generation models has increased significantly, especially
after the successful commercial application of CodeX [21].

12https://github.com/wanglingxiang1298/CodeBC/tree/master

L. Wang et al.: Preprint submitted to Elsevier Page 10 of 13

CodeBC: A More Secure Large Language Model for Smart Contract Code Generation in Blockchain

More and more researchers [22, 23, 24] focus on instruction-
based code generation tasks. AlphaCode [1] significantly
improved the code generation model’s ability to understand
complex instructions and implement complex codes by gen-
erating a large number of code samples and effectively filter-
ing them. However, the expensive execution computation of
AlphaCode poses challenges for its real-world application.
Nijkamp et al. [25] propose CodeGen, which understands
complex instructions by splitting them while controlling
model computation costs. Incode [26] and CodeGeex [27]
attempt to enhance the alignment between model-generated
code and instructions in different ways. To improve the
usability of generated code, Wang et al. [28] utilize re-
inforcement learning to increase the compilation rate of
generated code. Zhang et al. [29] patch generated code
through error reports and runtime execution results to en-
hance the correct execution rate of generated code. Yin
et al. [30] propose vertical-domain code generation models
for interactive data processing tasks. However, these works
only focus on instruction following, code compilability and
execution results, neglecting code vulnerabilities’ impact on
application stability.

For code completion tasks(different from our instruction-
based code generation task), some researchers [31, 3] pro-
pose training code generation models using datasets anno-
tated with vulnerability locations to enhance their ability to
perceive code vulnerabilities. Storhaug et al. [31] insert a
special token < VUL CLASS > into the dataset to indicate
vulnerability positions and fine-tuned the model on this
dataset for code completion task. During inference, when
the prediction involves this special token < VUL CLASS >,
the output of this token is forcibly altered to prevent the
generation of potentially vulnerable code. However, as noted
in their limitations [31], this strict intervention disrupts code
fluency and executability, rendering much of the gener-
ated code unusable. He and Vechev [3] suggest contrastive
learning between the original vulnerable code positions
and manually corrected code positions to control the code
generation through prefix-tuning for code completion task.
However, both these methods are only applicable to pop-
ular programming languages with annotated vulnerability
position datasets, which cannot be directly applied to the
instruction-based smart contract code generation task for
blockchain. Therefore, a simpler and more effective method
for injecting vulnerability knowledge of smart contracts
should be designed to enhance the security of code gener-
ation models in the blockchain domain.
7.2. Vulnerability Detection

The task of vulnerability detection is highly crucial in
blockchain smart contracts [32, 33]. Oyeente [34] is the
first smart contract vulnerability detection technique, which
detects vulnerabilities by constructing a contract control
flow graph, executing symbolic states, and comparing them
with properties defined based on vulnerabilities. Subse-
quently, researchers [35, 36, 37] proposed smart contract
vulnerability detection techniques based on fuzz testing,

taint analysis, and formal verification. However, these tra-
ditional methods have the problems of low coverage and
low efficiency. Recently, Tann et al. [38] used smart contract
data to train a binary classifier based on LSTM. Liu et al.
[39] propose S-gram to identify irregular subsequences as
candidate vulnerabilities by training a language model and
scanning the token sequences of the target contract for
auditing. He et al. [40] propose ILF to use the symbolic
execution results as the training dataset for neural networks,
and generate input sequences for the test program utilizing
neural networks. Gao et al. [41] propose SmartEmbed to
characterize the stream of contract symbols extracted from
AST based on word embedding and vector space techniques,
and detect vulnerabilities by comparing the similarity with
the vulnerable contracts. However, current detections rely
solely on simple classification models and may not fully
comprehend the complex logic of code. In this paper, we
design various strategies to enhance vulnerability detection
capabilities, thereby preventing the model from generating
vulnerable code.

8. CONCLUSION
In this paper, we propose CodeBC, an instruction-based

smart contract code generation model for blockchain. We
propose a three-stage fine-tuning strategy to address the
security needs of smart contracts. To validate the perfor-
mance of CodeBC on the smart contract generation task,
we propose the Blockchain-HumanEval dataset. Through
experiments, we show that our model improves by nearly
32% in BLEU, 22% in CodeBLEU, 98% in compilability
rate, 57% in vulnerability rate, and the percentage of contract
code that is safe to use increased from 40% to 78%. In the
future, we will leverage the control flow graph of smart
contracts to design more stringent security policies to ensure
that the model can generate secure and usable code.

References
[1] Y. Li, D. Choi, J. Chung, N. Kushman, J. Schrittwieser, R. Leblond,

T. Eccles, J. Keeling, F. Gimeno, A. Dal Lago, et al., Competition-
level code generation with alphacode, Science 378 (2022) 1092–1097.

[2] H. Pearce, B. Ahmad, B. Tan, B. Dolan-Gavitt, R. Karri, Asleep
at the keyboard? assessing the security of github copilot’s code
contributions, Communications of the ACM 68 (2025) 96–105.

[3] J. He, M. Vechev, Large language models for code: Security hardening
and adversarial testing, in: Proceedings of the 2023 ACM SIGSAC
Conference on Computer and Communications Security, 2023, pp.
1865–1879.

[4] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, I. Polosukhin, Attention is all you need, Advances
in neural information processing systems 30 (2017).

[5] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, Bert: Pre-training
of deep bidirectional transformers for language understanding, in:
Proceedings of the 2019 conference of the North American chapter
of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), 2019, pp. 4171–4186.

[6] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, Language models are
few-shot learners advances, in: Proceedings of the 34th International
Conference on Neural Information Processing Systems, 2020, p. 33.

L. Wang et al.: Preprint submitted to Elsevier Page 11 of 13

CodeBC: A More Secure Large Language Model for Smart Contract Code Generation in Blockchain

[7] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux,
T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar, et al., Llama:
Open and efficient foundation language models, arXiv preprint
arXiv:2302.13971 (2023).

[8] B. Roziere, J. Gehring, F. Gloeckle, S. Sootla, I. Gat, X. E. Tan, Y. Adi,
J. Liu, R. Sauvestre, T. Remez, et al., Code llama: Open foundation
models for code, arXiv preprint arXiv:2308.12950 (2023).

[9] M. Bavarian, H. Jun, N. Tezak, J. Schulman, C. McLeavey, J. Tworek,
M. Chen, Efficient training of language models to fill in the middle,
arXiv preprint arXiv:2207.14255 (2022).

[10] X. Tang, Y. Du, A. Lai, Z. Zhang, L. Shi, Deep learning-based solu-
tion for smart contract vulnerabilities detection, Scientific Reports 13
(2023) 20106.

[11] R. M. Bani-Hani, A. S. Shatnawi, L. Al-Yahya, Vulnerability de-
tection and classification of ethereum smart contracts using deep
learning., Future Internet 16 (2024).

[12] L. Prifti, B. Cico, D. Karras, Smart contract vulnerability detection
using deep learning algorithms on evm bytecode, in: 2024 13th
Mediterranean Conference on Embedded Computing (MECO), IEEE,
2024, pp. 1–7.

[13] J. Feist, G. Grieco, A. Groce, Slither: a static analysis framework for
smart contracts, in: 2019 IEEE/ACM 2nd International Workshop
on Emerging Trends in Software Engineering for Blockchain (WET-
SEB), IEEE, 2019, pp. 8–15.

[14] E. Nijkamp, H. Hayashi, C. Xiong, S. Savarese, Y. Zhou, Codegen2:
Lessons for training llms on programming and natural languages,
arXiv preprint arXiv:2305.02309 (2023).

[15] D. Guo, Q. Zhu, D. Yang, Z. Xie, K. Dong, W. Zhang, G. Chen, X. Bi,
Y. Wu, Y. Li, et al., Deepseek-coder: When the large language model
meets programming–the rise of code intelligence, arXiv preprint
arXiv:2401.14196 (2024).

[16] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang,
W. Chen, et al., Lora: Low-rank adaptation of large language models.,
ICLR 1 (2022) 3.

[17] K. Papineni, S. Roukos, T. Ward, W.-J. Zhu, Bleu: a method for
automatic evaluation of machine translation, in: Proceedings of the
40th annual meeting of the Association for Computational Linguis-
tics, 2002, pp. 311–318.

[18] S. Ren, D. Guo, S. Lu, L. Zhou, S. Liu, D. Tang, N. Sundaresan,
M. Zhou, A. Blanco, S. Ma, Codebleu: a method for automatic eval-
uation of code synthesis, arXiv preprint arXiv:2009.10297 (2020).

[19] W. Ahmad, S. Chakraborty, B. Ray, K.-W. Chang, Summarize and
generate to back-translate: Unsupervised translation of programming
languages, in: Proceedings of the 17th Conference of the European
Chapter of the Association for Computational Linguistics, 2023, pp.
1528–1542.

[20] T. Durieux, J. F. Ferreira, R. Abreu, P. Cruz, Empirical review of
automated analysis tools on 47,587 ethereum smart contracts, in:
Proceedings of the ACM/IEEE 42nd International conference on
software engineering, 2020, pp. 530–541.

[21] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. D. O. Pinto, J. Kaplan,
H. Edwards, Y. Burda, N. Joseph, G. Brockman, et al., Eval-
uating large language models trained on code, arXiv preprint
arXiv:2107.03374 (2021).

[22] F. F. Xu, U. Alon, G. Neubig, V. J. Hellendoorn, A systematic eval-
uation of large language models of code, in: Proceedings of the 6th
ACM SIGPLAN international symposium on machine programming,
2022, pp. 1–10.

[23] D. Zan, B. Chen, F. Zhang, D. Lu, B. Wu, B. Guan, Y. Wang, J.-G.
Lou, Large language models meet nl2code: A survey, arXiv preprint
arXiv:2212.09420 (2022).

[24] S. Lu, N. Duan, H. Han, D. Guo, S.-w. Hwang, A. Svyatkovskiy,
Reacc: A retrieval-augmented code completion framework, arXiv
preprint arXiv:2203.07722 (2022).

[25] E. Nijkamp, B. Pang, H. Hayashi, L. Tu, H. Wang, Y. Zhou,
S. Savarese, C. Xiong, Codegen: An open large language model
for code with multi-turn program synthesis, arXiv preprint
arXiv:2203.13474 (2022).

[26] D. Fried, A. Aghajanyan, J. Lin, S. Wang, E. Wallace, F. Shi,
R. Zhong, W.-t. Yih, L. Zettlemoyer, M. Lewis, Incoder: A gen-
erative model for code infilling and synthesis, arXiv preprint
arXiv:2204.05999 (2022).

[27] Q. Zheng, X. Xia, X. Zou, Y. Dong, S. Wang, Y. Xue, L. Shen,
Z. Wang, A. Wang, Y. Li, et al., Codegeex: A pre-trained model for
code generation with multilingual benchmarking on humaneval-x, in:
Proceedings of the 29th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, 2023, pp. 5673–5684.

[28] X. Wang, Y. Wang, Y. Wan, F. Mi, Y. Li, P. Zhou, J. Liu, H. Wu,
X. Jiang, Q. Liu, Compilable neural code generation with compiler
feedback, in: Findings of the Association for Computational Linguis-
tics: ACL 2022, 2022, pp. 9–19.

[29] K. Zhang, Z. Li, J. Li, G. Li, Z. Jin, Self-edit: Fault-aware code editor
for code generation, in: Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers),
2023, pp. 769–787.

[30] P. Yin, W.-D. Li, K. Xiao, A. Rao, Y. Wen, K. Shi, J. Howland,
P. Bailey, M. Catasta, H. Michalewski, et al., Natural language to
code generation in interactive data science notebooks, in: Proceedings
of the 61st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), 2023, pp. 126–173.

[31] A. Storhaug, J. Li, T. Hu, Efficient avoidance of vulnerabilities in
auto-completed smart contract code using vulnerability-constrained
decoding, in: 2023 IEEE 34th International Symposium on Software
Reliability Engineering (ISSRE), IEEE, 2023, pp. 683–693.

[32] L. Brent, A. Jurisevic, M. Kong, E. Liu, F. Gauthier, V. Gramoli,
R. Holz, B. Scholz, Vandal: A scalable security analysis framework
for smart contracts, arXiv preprint arXiv:1809.03981 (2018).

[33] M. I. Mehar, C. L. Shier, A. Giambattista, E. Gong, G. Fletcher,
R. Sanayhie, H. M. Kim, M. Laskowski, Understanding a revolu-
tionary and flawed grand experiment in blockchain: the dao attack,
Journal of Cases on Information Technology (JCIT) 21 (2019) 19–32.

[34] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, A. Hobor, Making
smart contracts smarter, in: Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security, 2016, pp. 254–
269.

[35] B. Jiang, Y. Liu, W. K. Chan, Contractfuzzer: Fuzzing smart contracts
for vulnerability detection, in: Proceedings of the 33rd ACM/IEEE
international conference on automated software engineering, 2018,
pp. 259–269.

[36] I. Grishchenko, M. Maffei, C. Schneidewind, A semantic framework
for the security analysis of ethereum smart contracts, in: Principles of
Security and Trust: 7th International Conference, POST 2018, Held
As Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018,
Proceedings 7, Springer, 2018, pp. 243–269.

[37] M. Rodler, W. Li, G. O. Karame, L. Davi, Sereum: Protecting
existing smart contracts against re-entrancy attacks, arXiv preprint
arXiv:1812.05934 (2018).

[38] W. J.-W. Tann, X. J. Han, S. S. Gupta, Y.-S. Ong, Towards safer smart
contracts: A sequence learning approach to detecting security threats,
arXiv preprint arXiv:1811.06632 (2018).

[39] H. Liu, C. Liu, W. Zhao, Y. Jiang, J. Sun, S-gram: towards semantic-
aware security auditing for ethereum smart contracts, in: Proceed-
ings of the 33rd ACM/IEEE international conference on automated
software engineering, 2018, pp. 814–819.

[40] J. He, M. Balunović, N. Ambroladze, P. Tsankov, M. Vechev, Learn-
ing to fuzz from symbolic execution with application to smart con-
tracts, in: Proceedings of the 2019 ACM SIGSAC conference on
computer and communications security, 2019, pp. 531–548.

[41] Z. Gao, L. Jiang, X. Xia, D. Lo, J. Grundy, Checking smart contracts
with structural code embedding, IEEE Transactions on Software
Engineering 47 (2020) 2874–2891.

L. Wang et al.: Preprint submitted to Elsevier Page 12 of 13

CodeBC: A More Secure Large Language Model for Smart Contract Code Generation in Blockchain

Lingxiang Wang received the Bachelor’s
degree in Information Security from the
School of Control and Computer Engi-
neering, North China Electric Power Uni-
versity, Beijing, China, in 2022. He is cur-
rently pursuing his Ph.D. in Artificial In-
telligence at the School of Artificial Intel-
ligence, Beihang University. His research

interests include natural language processing, code generation and
language model

Hainan Zhang (Member, IEEE) received
the PhD degree in computer science and
engineering from the Institute of Comput-
ing and Technology, Chinese Academy of
Sciences, in 2019. She is currently a as-
sociate researcher with the School of Ar-
tificial Intelligence, Beihang University.
Her research interests include code gen-

eration, language model and dialogue system. She has published
several papers on ACL, SIGIR, AAAI etc.

Qinnan Zhang (Student Member, IEEE)
received the Ph.D. degree from the Cen-
tral University of Finance and Economics,
Beijing, China, in 2023. She is currently a
Postdoctoral Fellow with the Institute of
Artificial Intelligence, Beijing Advanced
Innovation Center for Future Blockchain
and Privacy Computing, Beihang Univer-

sity, Beijing. Her current research interests include blockchain,
federated learning, incentive mechanism, game theory, and edge
intelligence.

Ziwei Wang received the Ph.D degree
in signal processing from Aerospace
Information Research Institute, Chinese
Academy of Sciences, Beijing, China, in
2016. He is currently an Associate Pro-
fessor with the School of Artificial In-
telligence/ Beijing Advanced Innovation
Center for Future Blockchain and Privacy

Computing, Beihang University. His current research interests in-
clude intelligent signal processing, integrated sensing and commu-
nication systems, and game theory.

Hongwei Zheng received the Doctoral
degree in quantitative economics from
The Ohio State University, Columbus,
OH, USA, in 2010. He is a Senior
Researcher with Beijing Academy of
Blockchain and Edge Computing, Bei-
jing, China. His research interests include
complex networks, blockchain, and artifi-

cial intelligence.

Jin Dong is the General Director of Bei-
jing Academy of Blockchain and Edge
Computing. He is also the General Di-
rector of Beijing Advanced Innovation
Center for Future Blockchain and Pri-
vacy Computing. The team he led devel-
oped “ChainMaker”, the first hardware-
software integrated blockchain system

around the globe. He has been long dedicated in the research
areas such as blockchain, artificial intelligence and low-power chip
design.

Zhiming Zheng received the Ph.D. de-
gree in mathematics from the School of
Mathematical Sciences, Peking Univer-
sity, Beijing, China, in 1987. He is cur-
rently a Professor with the Institute of Ar-
tificial Intelligence, Beihang University,
Beijing, China. He is one of the Initiators
of Blockchain ChainMaker. His research

interests include refined intelligence, blockchain, and privacy com-
puting. Prof. Zheng is a member of Chinese Academy of Sciences.

L. Wang et al.: Preprint submitted to Elsevier Page 13 of 13

