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ABSTRACT
Early detection of security bug reports (SBRs) is crucial for prevent-

ing vulnerabilities and ensuring system reliability. While machine

learning models have been developed for SBR prediction, their pre-

dictive performance still has room for improvement. In this study,

we conduct a comprehensive comparison between BERT and Ran-

dom Forest (RF), a competitive baseline for predicting SBRs. The

results show that RF outperforms BERT with a 34% higher aver-

age G-measure for within-project predictions. Adding only SBRs

from various projects improves both models’ average performance.

However, including both security and nonsecurity bug reports sig-

nificantly reduces RF’s average performance to 46%, while boosts

BERT to its best average performance of 66%, surpassing RF. In

cross-project SBR prediction, BERT achieves a remarkable 62% G-

measure, which is substantially higher than RF.
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1 INTRODUCTION
Software systems are inherently exposed to security risks—whether

built with emerging technologies like WebAssembly [21], estab-

lished platforms like Android [10], or deployed in mission-critical

environments [24]. AI-assisted development tools have accelerated

code production, but they are also susceptible to generating vulnera-

ble code [3], further amplifying the need for vigilant and consistent

attention to security risks.

Bug reports (BRs) are the primary means to inform development

teams of a problem or defect found in software. Nevertheless, stud-

ies have shown that security bug reports (SBRs) often progress

slowly, with many remaining unresolved for extended periods [4].

Prioritizing SBRs over Non-Security bug reports (NSBRs) is critical

to addressing vulnerabilities promptly and preventing potential
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exploitation. Yet, limited security knowledge among mainstream

developers often leads to SBRs being misclassified as NSBRs during

reporting [9], delaying vulnerability detection and mitigation.

Researchers have built machine learning techniques to classify

SBRs from NSBRs, primarily based on the description field of bug

reports [6, 14, 15, 18, 27].

However, they often perform poorly due to class imbalance and

limited semantic understanding, especially in large, diverse datasets.

Despite efforts to enhance SBR prediction, distinguishing minority

classes remains a challenge [13].

BERT [7], a pre-trained transformer-based model, offers excep-

tional semantic understanding and has achieved state-of-the-art

performance in software issue classification [5, 11, 22, 23]. How-

ever, there is not much evidence on BERT performance for SBR

prediction. Therefore, in this paper, we extensively compare the

performance of BERT in predicting SBRs to Random Forest (RF), a

strong baseline [27]. We assess their performance for within and

across projects SBRs prediction, assess the models in scenarios

where project-specific data is unavailable, and examine how addi-

tional bug reports impact their prediction capabilities. In particular,

we answer the following research questions:

RQ1: How effectively can BERT predict SBRs compared to the

state-of-the-art RF?

Based on the data sets used by Wu et al. [27], we evaluate the

effectiveness of BERT and RF in predicting SBRs. Using a within-

project prediction (WPP) approach, in which models are trained

and tested on data from the same software project, we train models

on historical bug reports to predict future, unseen ones. Our find-

ings show that RF outperforms BERT, with a 34% higher average

G-measure. However, in the largest dataset where both models

demonstrate their best performance, BERT achieves a G-measure

of 83%, which is higher than RF’s 75%.

RQ2: What is the impact of augmenting data on the performance

of security bug report predictors?

We evaluate the performance of BERT and RF in predicting SBRs

by incorporating additional data from diverse real-world projects.

We train our model using historical BRs from one selected project

combined with data from other projects. We initially incorporate

SBRs and later extend the training data to include NSBRs as well.

We evaluate the performance of models on the most recent BRs

from the chosen project to determine the impact of data increase.

Incorporating SBRs from other projects enhances the average

G-measures of both models, i.e., 70% and 59% for RF and BERT,

respectively. We note that adding SBRs improves BERT more than

RF. Nonetheless, when we add both SBRs and NSBRs from other

projects, the average G-measure for RF drops significantly to 46%,
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whereas it increases to 66% for BERT, unleashing its best perfor-

mance. In comparison with the initial WPP (ie., RQ1), the addition

of BRs results in 43.48% improvement for BERT.

RQ3: How do BERT and RF models compare for cross-project

prediction?

We assess the ability of BERT and RF to predict SBRs in a target

project with limited or no BRs using knowledge from other projects,

known as cross-project prediction (CPP). We start with a single

project and progressively include BRs from additional projects,

evaluating each model’s ability to predict SBRs on the target project.

Results show that building a model based on one project may not

effectively predict SBRs in another project. However, using multiple

projects for training, BERT achieves an average G-measure of 62%,

which is substantially higher than that of RF’s 38%.

In summary, this study presents the first comprehensive compari-

son of BERT versus the state-of-the-art RF model for SBR prediction.

For WPP, RF outperforms BERT with an average G-measure that is

34% higher. Nevertheless, we find that adding more data enhances

BERT’s performance, whereas RF performs better with only SBRs

and experiences a performance drop when all BRs are included.

Notably, BERT achieves an average G-measure of 62% for cross-

project SBR prediction, which is significantly superior to that of RF.

To support future research, we have publicly shared our replication

package.
1

The paper is structured as follows. Section 2 presents related

work. Section 3 describes the methodology used. Section 4 explains

the experimental setup, and Section 5 details the results for each

research question. We discuss the threats to the validity of our study

in Section 6. Finally, Section 7 concludes our findings.

2 RELATEDWORK
Researchers have proposed text-basedmachine learning approaches

to improve the classification of bug reports as either SBRs or NSBRs

in bug-tracking systems [2, 25]. However, the scarcity of SBRs leads

to a significant class imbalance, resulting in sparse feature repre-

sentations that degrade the performance of traditional machine

learning models. To address this issue, researchers suggest pre-

processing datasets before applying machine learning algorithms

[12, 18, 20]. This preprocessing may involve filtering out NSBRs

that contain security-related keywords [18], using content-based

filtering to minimize the risk of misclassifying NSBRs as SBRs [12],

utilizing the Synthetic Minority Oversampling Technique (SMOTE)

and its variant, SMOTUNED [20], or applying a k-means clustering

approach. The k-means method maintains diversity among NSBRs

by grouping data based on structure and selecting the samples

nearest to each cluster’s centroid [1].

To exemplify, Peters et al. [18] introduced FARSEC, a framework

designed to improve SBR prediction by filtering out misleading

NSBRs. The framework identifies the top 100 terms relevant to

SBRs and scores NSBRs based on the frequency and significance

of these terms. NSBRs with scores above a specific threshold (e.g.,

0.75) are filtered out as likely misclassifications. To implement this,

seven distinct filters were developed and applied to the training

set, creating seven new training sets for independent model fitting.

1
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Subsequently, five machine learning algorithms, including RF, were

used to predict the probability of a bug report being security-related.

Wu et al. [27] built upon the work of Peters et al. [18] to improve

label accuracy across the same five datasets. They employed various

classification methods, including the FARSEC approach with the

farsectwo filter, which involves applying the Graham version by

multiplying the frequency by two, achieving 80% of the best results

reported by Peters et al. Their experiments demonstrated that using

the same prediction models as Peters et al. [18], simple text clas-

sification methods outperformed both the hyperparameter-tuned

models and the data preprocessing techniques applied by Shu et al.

[20]. Notably, RF exhibited the best overall performance, both with

and without the use of FARSEC, highlighting its effectiveness for

this task. However, previous methods had some limitations.

Researchers have also investigated cross-project learning for

SBR prediction. Gegick et al. [9] highlighted that models trained

on one dataset may not generalize well to systems with differing

SBRs, whereas Scandariato et al. [19] suggested that certain single-

application models can effectively predict vulnerabilities across

different applications. Peters et al. [18] found that CPP models

often outperform WPP models, especially when SBRs are scarce,

demonstrating their value for projects with limited labeled data.

To sum up, unlike previous studies, our work primarily focuses

on BERT, which exhibits exceptional semantic understanding in

text classification. We provide a comprehensive comparison be-

tween BERT and RF, a strong baseline for SBR prediction. Our

evaluation spans both WPP and CPP scenarios and investigates

the impact of augmenting training data from multiple sources on

model performance.

3 METHODOLOGY
SBR prediction automates manual classification, reducing time, ef-

fort, and cost. Recent advancements in hardware, particularly the

accessibility of GPUs, have enabled transformer-based Large Lan-

guage Models (LLMs) [22] to drive significant progress in Natural

Language Processing (NLP). These models leverage self-attention

mechanisms to process input sequences more effectively, capturing

long-range dependencies between tokens. A key factor in their suc-

cess is the pre-training phase, where they learn language structures

from vast amounts of unlabeled data, leading to state-of-the-art

performance across various NLP tasks. Based on the transformer

architecture defined by Pan et al. [16], BERT is an encoder-only

model, particularly well-suited for sentence-level tasks.

In this study, we first compare the performance of BERT and

RF in SBRs prediction using the BRs of the same software project.

We then expand our research by evaluating their predictive perfor-

mance by augmenting additional data from other projects with a

twofold augmentation strategy: (1) increasing SBR instances and (2)

adding BRs to maintain diversity. Additionally, we evaluate model

generalizability by training on specific projects and testing on an

external project.

3.1 Model selection
Among encoder-only models, BERT [7] is trained using two key

objectives: masked language modeling (MLM) and next-sentence

prediction (NSP). In MLM, certain tokens in the input sequence

https://doi.org/10.5281/zenodo.15240582
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Table 1: Dataset-related information, where SBRs (%) indicates the proportion of security bug reports

Project Description BRs SBRs NSBRs SBRs (%)

Chromium Web browser called Chrome 41,940 808 41,132 1.92

Derby A relational database management system 1,000 179 821 17.9

Camel A rule-based routing and mediation engine 1,000 74 926 7.4

Ambari Hadoop management web UI backed by its RESTful APIs 1,000 56 944 5.6

Wicket Component-based web application framework for Java programming 1,000 47 953 4.7

are masked and predicted based on the surrounding context, while

NSP determines whether two sentences appear consecutively in

the original text. Fine-tuning BERT involves adding a simple clas-

sification layer to the pre-trained model, allowing all parameters

to be adjusted for specific tasks. This transfer learning approach

makes BERT highly adaptable to domain-specific datasets and has

demonstrated state-of-the-art performance in software issue classi-

fication, effectively distinguishing bugs from improvements, new

features, and questions [5, 23].

We use the BertForSequenceClassification model from Hugging

Face [26], a standard BERT model with an additional layer for doc-

ument classification. To prepare our dataset for the pre-trained

BERT, we tokenize our bug reports’ descriptions using the BertTok-
enizer from Hugging Face, specifically the “bert-base-uncased” case-
insensitive version, treating words like “issue” and “Issue” as iden-

tical. The tokenized text is converted into smaller tokens mapped

to vocabulary indices. Padding is dynamically applied to sequences

within each batch using DataCollatorWithPadding, and attention

masks are generated to distinguish real tokens from padding, al-

lowing the model to focus only on meaningful inputs. Finally, the

token IDs and attention masks are used to create a TensorDataset,

which is fed into a DataLoader configured with random sampling

and a batch size of 32 for training and evaluation [8].

For comparison, we adopt RF, which Wu et al. [27] identified as

the best baseline method for SBR prediction. To generalize their

approach, we also follow their methodology for building prediction

models using the FARSEC datasets and evaluate how FARSEC per-

forms with BERT. We replicated the FARSEC approach using the

replication package from Peters et al. However, due to some miss-

ing parameters, we had to implement fixes in the code to make it

functional. We used the same parameters as outlined in the detailed

study by Wu et al., including a count of security-related keywords

set at 100, the parameter tuning ranges, and the farsectwo filtering
method. Throughout our study, we refer to this method simply as

FARSEC, in line with the terminology used in the literature.Wu et al.

utilized the sklearn package for implementing RF, which has since

been deprecated. In our implementation, we used the scikit-learn
library, specifically its RandomForestClassifier, for model training

and predictions. To enhance model performance, we employed a

differential evolution strategy for hyperparameter tuning, allowing

for optimized selection of hyperparameters such as the number of

trees, maximum tree depth, minimum samples per split, minimum

samples per leaf, and the maximum number of features considered

at each split.

3.2 Data Augmentation
We explore two distinct evaluations for predicting future unseen

SBRs: WPP and CPP.

3.2.1 Within-Project Prediction (WPP). Prediction models can be

trained and tested using data from the same project, known as

WPP. In WPP, training and testing prediction models are applied

in a single system using cross-validation techniques [20]; or in

several releases of a system, building prediction models from earlier

versions of a system and applying them to later versions of the same

system [12, 18, 27]. This approach is particularly effective when

a substantial amount of historical data is available for a project.

However, it is still difficult for engineers to use past information to

accurately predict future bugs because, in reality, the proportion of

SBRs in BRs is deficient, and future BRs may differ from those used

for training.

Using the WPP method, we first utilize historical bug reports

from each project to build predictionmodels and test them on future

bug reports from the same project. To investigate the impact of data

augmentation on predictor performance, we expand the training

dataset with additional SBRs to assess how this increase affects

prediction accuracy. Next, we incorporate NSBRs from external

datasets to evaluate their effect on SBR predictions. Our approach

explores whether enriching the training dataset with both historical

bug reports from the project and data from external projects can

improve the model’s accuracy and efficiency in predicting potential

future SBRs. The final training dataset combines the WPP data with

information from other projects.

3.2.2 Cross-Project Prediction (CPP). When a project lacks BRs for

model training, CPP can provide a solution by leveraging relevant

data from other projects. CPP utilizes labeled BRs from external

projects to predict unlabeled future BRs for a target project. We aim

to explore how information from other projects can enhance the

prediction of SBRs in the target project by leveraging knowledge

from these external sources. Additionally, we seek to evaluate the

extent to which this integration influences the model’s ability to

predict future SBRs from the excluded dataset. During the training

phase, we gradually integrate additional bug reports from other

datasets, utilizing their complete training and testing splits. The

latter half of one specific dataset is designated solely for testing.

Using the testing splits from external projects ensures the avail-

ability of future bug reports, allowing us to assess how effectively

the models can utilize this knowledge to predict future SBRs in the

target project.
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4 EXPERIMENTAL SETUP
This section describes the datasets used in this study, followed by

three distinct evaluations of the model’s performance in predicting

future unseen SBRs. Finally, it introduces the performance metrics

employed to assess the model’s effectiveness.

4.1 Dataset Setting
Previous studies [1, 12, 15, 18, 27] have extensively relied on five

datasets, namely Chromium, Ambari, Wicket, Derby, and Camel, for

security bug prediction. We use the refined version of these datasets

[27], listed in Table 1. Each row corresponds to a bug report, with

columns showing its features. We collected the essential features

of issue ID, description, summary, and security. We combined the

description and summary features to consolidate information into

a single text field.

4.2 Within-Project Prediction (WPP)
InWPP, models are trained and tested on a single dataset. As shown

in Figure 1, each dataset is ordered chronologically and then split

into two halves (50% each). The first half contains historical bug

reports, representing earlier BRs used to train, while the second

half consists of unlabeled future BRs, used to evaluate the model’s

performance.

Figure 1: Sequential Dataset Partitioning for WPP

TimeFirst Half

Second Half

Historical BRs

Unlabeled
(Future) BRsO

rd
er

ed
 D

at
as

et

Table 2: Bug Report Distribution in WPP

Target Dataset
Train Set Test Set

SBR (%) NSBR (%) SBR (%) NSBR (%)

Chromium 371 (46%) 20599 (50%) 437 (54%) 20533 (50%)

Derby 82 (46%) 418 (51%) 97 (54%) 403 (49%)

Camel 28 (38%) 472 (51%) 46 (62%) 454 (49%)

Ambari 40 (72%) 460 (49%) 16 (28%) 484 (51%)

Wicket 24 (52%) 476 (50%) 23 (48%) 477 (50%)

The distribution of SBRs and NSBRs for the chronologically

ordered datasets is shown in Table 2. During the training process,

the training subset is further divided into 10% for validation and

90% training for parameter tuning. After completing the training,

we assess the model’s performance on the testing subset.

Initially, we train BERT and RF models on five datasets. Sub-

sequently, we apply the FARSEC filtering method to each dataset,

effectively removing misleading NSBRs and generating new, refined

Table 3: Bug Report Distribution in WPP using FARSEC

Target Dataset
Train Set Test Set

SBR (%) NSBR (%) SBR (%) NSBR (%)

Chromium 371 (45.9%) 20493 (49.9%) 437 (54.1%) 20533 (50.1%)

Derby 82 (45.8%) 46 (10.2%) 97 (54.2%) 403 (89.8%)

Camel 28 (37.8%) 214 (32%) 46 (62.2%) 454 (68%)

Ambari 40 (71.4%) 229 (32.1%) 16 (28.6%) 484 (67.9%)

Wicket 24 (51.1%) 207 (30.3%) 23 (48.9%) 477 (69.7%)

datasets. In WPP, we develop a total of 20 prediction models: 10

models incorporate the FARSEC, and 10 use only BERT and RF.

Upon applying the “farsectwo” filtering method to the resulting

datasets, the proportion of SBRs and NSBRs is presented in Table 3.

In this Table, the count of NSBRs in the training datasets generally

decreases across all target datasets compared to Table 2.

4.2.1 Augmenting Data. Given the low proportion of SBRs in a

project, filtering NSBRs results in information loss. To address this,

we explore the impact of incorporating data from other projects

on SBR prediction performance while preserving all BRs. In this

analysis, the training set comprises 50% historical BRs from a spe-

cific project, enriched with data from other projects. The training

dataset builds upon the WPP training set used in the WPP analysis,

combined with parts of other datasets.

Algorithm 1 depicts our data augmentation approach by lever-

aging data from other projects. We iteratively select each dataset

as a primary source, splitting it for training and testing. For every

primary dataset, the training data is then augmented in two ways:

(1) Gradually adding SBRs from other datasets at a time

(2) Gradually adding all BRs from other datasets at a time

Performance metrics such as recall, precision, F1-score, and G-

measure are calculated to assess the impact of data augmentation,

and results are collected for analysis.

Algorithm 1 Data Augmentation

Require: Datasets[]
Ensure: PerformanceMetrics
1: Initialization: Results[]← []
2: for type in [AllBRs, SBRs ] do
3: for i in Datasets do
4: Primary← sortChron(Datasets[i])
5: Split Primary into Train and Test
6: AugmentedTrain← Train
7: for j in Datasets - i do
8: BRs← Datasets[j]type
9: AugmentedTrain← augmentDataset(AugmentedTrain, BRs)
10: end for
11: Model← trainModel(AugmentedTrain)
12: Metrics← evaluateModel(Model, Test)
13: Results.append(Modeltype, Metrics)
14: end for
15: end for
16: return Results

Table 4 shows the distribution of augmented datasets, including

all BRs from additional datasets. For instance, in the first row, the

training set includes the Chromium WPP training set augmented

with all BRs from Derby, Camel, Wicket, and Ambari. The test set
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consists of the Chromium test set with 437 SBRs and 20,533 NSBRs,

identical to the test set used in the WPP analysis.

Table 4: Bug Report Distribution with Augmented SBRs and
NSBRs

Target Dataset
Train Set Test Set

SBR (%) NSBR (%) SBR (%) NSBR (%)

Chromium 727 (62%) 24243 (54%) 437 (38%) 20533 (46%)

Derby 1067 (92%) 44373 (99%) 97 (8%) 403 (1%)

Camel 1118 (96%) 44322 (99%) 46 (4%) 454 (1%)

Ambari 1148 (99%) 44292 (99%) 16 (1%) 484 (1%)

Wicket 1141 (98%) 44299 (99%) 23 (2%) 477 (1%)

Table 5 presents the distribution of augmented datasets, incor-

porating all SBRs from additional datasets. For instance, in the

first row, the training set includes the Chromium WPP training set

with all SBRs from Derby, Camel, Wicket, and Ambari. The test set

consists of the Chromium test set identical to the WPP analysis.

Table 5: Bug Report Distribution with Augmented SBRs

Target Dataset
Train Set Test Set

SBR (%) NSBR (%) SBR (%) NSBR (%)

Chromium 727 (62%) 20599 (50%) 437 (38%) 20533 (50%)

Derby 1067 (92%) 418 (51%) 97 (8%) 403 (49%)

Camel 1118 (96%) 472 (51%) 46 (4%) 454 (49%)

Ambari 1148 (99%) 460 (49%) 16 (1%) 484 (51%)

Wicket 1165 (98%) 476 (50%) 23 (2%) 477 (50%)

Due to space constraints, we focus on the results of adding all

BRs and SBRs, with full data available in our replication package.

We will discuss the outcomes of incrementally adding information

(SBRs and BRs) further in our discussion. Using five datasets and

two learning approaches, we can create a total of 150 models for

BERT and RF using additional BRs. Adding one dataset results in

5 × 4 × 2𝑙𝑒𝑎𝑟𝑛𝑒𝑟𝑠 = 40 models. Adding two extra datasets results

in 5 ×
(
4

2

)
× 2𝑙𝑒𝑎𝑟𝑛𝑒𝑟𝑠 = 60 models. Adding three extra datasets

leads to 5 ×
(
4

3

)
× 2𝑙𝑒𝑎𝑟𝑛𝑒𝑟𝑠 = 40 models, and finally, there are 10

models when including all four additional datasets. In total, this

sums to 40 + 60 + 40 + 10 = 150 possible models. This approach is

consistently applied for both BRs and SBRs, yielding 2×150=300

models.

4.3 Cross-Project Prediction (CPP)
CPP leverages labeled BRs from one or more projects to predict

unlabeled future bug reports for a target project. We incrementally

include additional BRs from other datasets during the training

phase, utilizing their full training and testing splits. The latter half

of one specific dataset is used exclusively for testing.

In CPP, we follow the same method of incrementally adding

datasets. First, we select one dataset as the target, using only its test

set for evaluation. Next, we select a single external dataset, utilizing

all its BRs for training, and then iteratively incorporate additional

datasets into the training set. At each step, we calculate performance

metrics to assess the impact of this method. The difference between

CPP and augmentation lies in how the BRs of the target dataset are

utilized. In augmentation, the historical BRs from the training set

are used for training purposes. In contrast, in CPP, the training set

is excluded from the training, and the test set is solely employed

for prediction.

Table 6 presents the distribution of BRs in the CPP datasets

when incorporating all four datasets for training. As an example,

the first analysis of this table includes complete datasets fromDerby,

Camel, Ambari, and Wicket, totaling 356 SBRs and 3,644 NSBRs

while excluding the Chromium dataset from training. The second

half of the ordered Chromium dataset, containing 437 SBRs and

20,533 NSBRs, is used as the testing set. Due to space constraints,

we do not detail the bug distribution in CPP at every step, as can

be inferred from Table 1.

We constructed a total of

(
5

1

)
× 2 +

(
5

2

)
× 2 +

(
5

3

)
× 2 +

(
5

1

)
× 2= (10

+ 20 + 20 + 10) = 60 prediction models by utilizing five datasets and

two learning algorithms.

Table 6: Bug Report Distribution for CPP Using All Datasets

Target Dataset
Train Set Test Set

SBR (%) NSBR (%) SBR (%) NSBR (%)

Chromium 356 (45%) 3644 (15%) 437 (55%) 20533 (85%)

Derby 985 (91%) 43955 (99%) 97 (9%) 403 (1%)

Camel 1090 (96%) 43850 (99%) 46 (4%) 454 (1%)

Ambari 1108 (99%) 43832 (99%) 16 (1%) 484 (1%)

Wicket 1117 (98%) 43823 (99%) 23 (2%) 477 (1%)

4.4 Performance Metrics
For each bug report, the prediction result can yield four possible out-

comes, as detailed in Table 7, from which the performance metrics

are derived.

Table 7: Confusion Matrix

Predict

SBRs NSBRs

Actual

SBRs True Positive (TP) False Negative (FN)

NSBRs False Positive (FP) True Negative (TN)

The evaluation metrics used in this study are as follows: Precision
measures the fraction of actual SBRs among the predicted SBRs, re-

flecting the accuracy of positive predictions as defined in Equation

1. Recall assesses the proportion of correctly classified SBRs among

all verified SBRs, indicating the probability of detection, as shown

in Equation 2. The F1-score is the harmonic mean of Precision and

Recall, providing a balance between these two metrics to evalu-

ate overall performance, as detailed in Equation 3. The Probability
of False Alarm (FPR) quantifies the fraction of NSBRs mistakenly
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identified as SBRs, representing the false positive rate, as expressed

in Equation 4. Finally, the G-measure combines Recall with the

complement of FPR, offering a balanced evaluation of a model’s per-

formance by capturing its effectiveness in identifying true positives

while minimizing false alarms, as indicated in Equation 5.

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 (1)

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 (2)

F1-score =
2 × Recall × Precision

Recall + Precision (3)

𝑝𝑓 = 𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 +𝑇𝑁 (4)

G-measure =
2 × Recall × (1 − 𝑝𝑓 )
Recall + (1 − 𝑝𝑓 ) (5)

All these metrics range from 0 to 1. Among the five performance

metrics, Recall, Precision, F1-score, and G-measure are preferred to

be higher, indicating better performance, while the FPR is preferred

to be lower.

5 EXPERIMENT RESULTS
In the WPP section, we will address RQ1 and RQ2 in the initial part,

while RQ3 will be covered in the CPP section. Finally, in the last

section, we will compare the results of the WPP and CPP analyses.

5.1 Within Project Results

RQ1: How effectively can BERT predict SBRs compared

to the state-of-the-art RF?

Table 8: BERT versus RF in WPP

Dataset

Recall Precision F1-score FPR G-Measure

BERT RF BERT RF BERT RF BERT RF BERT RF

Chromium 0.70 0.61 0.90 0.96 0.79 0.74 0.00 0.00 0.83 0.75

Derby 0.40 0.45 0.68 0.94 0.51 0.61 0.04 0.01 0.57 0.62

Camel 0.20 0.33 0.60 0.94 0.30 0.48 0.01 0.00 0.33 0.49

Ambari 0.25 0.44 0.31 0.37 0.28 0.40 0.02 0.02 0.40 0.60

Wicket 0.13 0.52 0.43 0.80 0.20 0.63 0.01 0.01 0.23 0.68

Average 0.34 0.47 0.58 0.80 0.41 0.57 0.02 0.01 0.47 0.63

Table 8 presents the performance of BERT and RF in predicting

SBRs within the same datasets. The results demonstrate that RF

outperforms BERT in all metrics on average of the five datasets.

RF achieves higher performance than BERT in recall, precision,

F1-score, and G-measure, while showing a lower FPR. Note that a

lower FPR is preferable.

In a real application scenario where software vendors monitor

emerging bug reports related to their products, recall is crucial,

as missing threats could result in significant losses [17, 28]. We

prioritize the G-measure, which combines recall and the FPR, as a

key evaluation metric. This allows us to assess the efficacy of our

models in predicting SBRs while minimizing unnecessary actions

caused by misclassification of NSBRs as SBRs.

The results show that RF outperforms BERT with a 34%

higher average G-measure for predicting SBRs in WPP.

A comparison of BERT and RF for each dataset reveals that

Wicket showed the most improvement in G-Measure, followed by

Ambari and Camel, while Derby showed the least improvement.

In contrast, when trained on Chromium, BERT outperforms RF

in G-Measure, with a similar trend observed in recall. However,

RF exhibits slightly better precision, leading to a more balanced

F1-score.

Table 2 outlines the percentage distribution of SBRs and NSBRs,

highlighting security vulnerabilities and non-security bugs across

systems. Chromium and Derby maintain a balanced distribution

between training and testing datasets. For instance, Chromium had

371 SBRs and 20,599 NSBRs for training, and 437 SBRs and 20,533

NSBRs for testing. In contrast, Camel, Ambari, and Wicket exhibit

imbalances. For example, Ambari had 40 SBRs for training and only

16 SBRs for testing. This variation impacts BERT’s performance. In

contrast, this disparity appears less influential for RF, as the recall

values across all five datasets remain within a consistent range.

While RF outperforms BERT in average G-measure in WPP,

their effectiveness varies across different datasets.

Table 9: BERT versus RF in WPP using FARSEC

Dataset

Recall Precision F1-score FPR G-Measure

BERT RF BERT RF BERT RF BERT RF BERT RF

Chromium 0.71 0.61 0.92 0.94 0.80 0.74 0.00 0.00 0.83 0.76

Derby 0.85 0.76 0.24 0.27 0.38 0.40 0.63 0.49 0.52 0.61

Camel 0.24 0.39 0.21 0.90 0.22 0.55 0.09 0.00 0.38 0.56

Ambari 0.50 0.69 0.10 0.44 0.16 0.54 0.16 0.03 0.63 0.81

Wicket 0.22 0.60 0.23 0.60 0.22 0.60 0.04 0.01 0.35 0.75

Average 0.50 0.61 0.34 0.63 0.36 0.57 0.18 0.11 0.54 0.70

By applying the FARSEC algorithm to compute TF-IDF values for

terms in SBRs, we identified the top 100 terms as security-related

keywords. Filtering NSBRs using these keywords created new train-

ing datasets based on FARSEC. Table 9 presents the performance

results of BERT and RF evaluated in these datasets. The comparison

of BERT and RF performance metrics for predicting SBRs using FAR-

SEC reveals patterns similar to those observed in the WPP analysis,

indicating that RF outperforms BERT with an average G-measure of

0.70, compared to BERT’s 0.54. Across datasets, Wicket shows the

most improvement, while Derby shows the least. However, in the
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Chromium dataset, BERT outperforms RF, achieving a G-measure

of 0.83 versus RF’s 0.76.

Applying FARSEC both BERT and RF exhibit improved aver-

age G-measure performance, with RF often outperforming

BERT across all datasets.

Comparing Tables 8 and 9, we observed that for the Chromium

dataset, the G-Measure using BERT and RF remains nearly un-

changed. This indicates that the FARSEC filtering approach does

not significantly impact the prediction of SBRs in this dataset with

the largest proportion of BRs. The application of FARSEC decreased

NSBRs in the datasets as expected, as shown in Table 3. Notably,

the Derby dataset experienced a significant reduction in NSBRs,

from 418 to 46, while the number of SBRs remains constant. This

imbalance during training biases the model toward identifying

more SBRs, resulting in a higher rate of false positives, with BERT

reaching 0.63 and RF reaching 0.49.

Aside from the Chromium and Derby datasets, the FARSEC fil-

tering approach generally improves G-measure using RF and BERT.

For instance, in the Ambari dataset, the G-measure achieved inWPP

with BERT and RF are 0.40 and 0.60, respectively. After applying

FARSEC, these measures improve to 0.63 for BERT and 0.81 for RF.

However, in the Chromium and Derby datasets, the changes were

negligible.

In our study, we tested the RFmodel in combinationwith SMOTE,

as explored in Wu et al.’s research. Despite this, the results aver-

aged across all five datasets indicated that the simple RF model

outperformed the upsampled variant. This finding does not entirely

align with the results of Wu et al., which showed that simple text

classification models surpass both FARSEC and its various tuning

methods [27].

Except for the Chromium and Derby datasets, FARSEC im-

proves the G-measure using RF and BERT, differing from

Wu et al., who found simple text classification models out-

performing FARSEC.

RQ2:What is the impact of augmenting data on the per-

formance of security bug report predictors?

In this research, we evaluate BERT and RF’s prediction perfor-

mance by augmenting BRs from other projects. Initially, we added

SBRs from other datasets. Then, we assessed the impact of including

all BRs, such as NSBRs, in the training set, reflecting real-world

scenarios where NSBRs usually outnumber SBRs.

We evaluated our models by comparing them with WPP mod-

els, using consistent testing datasets across all experiments. Given

the time complexity of FARSEC, O(N×W), where W represents

the number of security-related keywords in the feature set and N

denotes the number of BRs in the training data, and the fact that

it removes SBR-like information from NSBRs, we aimed to retain

NSBR information in our analysis. Therefore, we focused on RF

and BERT as baseline classifiers without applying FARSEC to the

training datasets.

Table 10: BERT versus RF using Augmented Datasets

Dataset

Recall Precision F1-score FPR G-Measure

BERT RF BERT RF BERT RF BERT RF BERT RF

Chromium
SBRs

0.72 0.60 0.90 0.95 0.80 0.74 0.00 0.00 0.84 0.75

Chromium
BRs

0.73 0.62 0.88 0.95 0.80 0.75 0.00 0.00 0.84 0.77

Derby
SBRs

0.59 0.46 0.67 0.80 0.63 0.58 0.07 0.03 0.72 0.62

Derby
BRs

0.59 0.18 0.77 0.54 0.67 0.27 0.04 0.03 0.73 0.30

Camel
SBRs

0.28 0.45 0.37 0.60 0.32 0.51 0.05 0.03 0.43 0.61

Camel
BRs

0.41 0.26 0.73 0.92 0.53 0.40 0.01 0.00 0.58 0.41

Ambari
SBRs

0.31 0.68 0.11 0.23 0.17 0.35 0.08 0.07 0.46 0.78

Ambari
BRs

0.19 0.37 0.38 0.37 0.25 0.37 0.01 0.02 0.32 0.54

Wicket
SBRs

0.35 0.56 0.33 0.61 0.34 0.59 0.03 0.02 0.51 0.71

Wicket
BRs

0.70 0.17 0.84 0.67 0.76 0.28 0.01 0.00 0.82 0.29

Average SBRs 0.45 0.55 0.48 0.64 0.45 0.55 0.05 0.03 0.59 0.70

Average BRs 0.52 0.32 0.72 0.69 0.60 0.41 0.02 0.01 0.66 0.46

Table 10 presents the performance of the BERT and RF classifiers

on the augmented datasets. Subscripts SBRs and BRs denote the

augmented data type. As an example, Chromium
SBRs

is Chromium

augmented with SBRs from other projects, while Chromium
BRs

is

augmented with BRs.

The results indicate that using only SBRs from other datasets

often enables RF to outperform BERT in recall, F1-score, and G-

measure of each dataset. However, this is not the case for the

Chromium and Derby datasets, where BERT excels in G-measure

performance.

Augmenting datasets with more SBRs often results in RF

outperforming BERT in terms of G-measure across all

datasets, except Chromium and Derby.

Table 10 shows that in augmented datasets containing all BRs,

BERT outperforms RF in G-measure and F1-score across all datasets

except Ambari, with notable improvements in Wicket, Derby, and

Camel. For example, in the Derby dataset, BERT achieves a G-

measure of 0.73, compared to RF’s 0.30. Ambari, however, exhibits

lower performance for BERT, likely due to having the fewest SBRs

in the test set (only 16), leading to a distribution imbalance that

differs from other datasets, as shown in Table 4.

Comparing the impact of adding SBRs to that of adding BRs, in

the Derby dataset, when augmented with SBRs, BERT and RF have

G-measures of 0.72 and 0.62, respectively. When BRs are included,

BERT achieves a G-measure of 0.73, while RF drops to 0.30. Simi-

larly, in the Wicket dataset, BERT and RF start with G-Measures of

0.51 and 0.71 with SBRs, but with all BRs, BERT improves to 0.82,

whereas RF decreases to 0.29. In the Ambari dataset, both BERT and

RF experience a decline in G-measure. In contrast, in the Chromium

dataset, RF shows a small improvement with bug report augmenta-

tion, while BERT’s performance remains stable. According to this

table, RF achieves a best G-measure of 0.70, surpassing BERT’s 0.66

across all datasets.
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Adding only SBRs enhances the average performance of

both models. However, when both SBRs and NSBRs are

included, RF’s average performance significantly drops to

0.46, while BERT achieves its highest average performance

of 0.66, surpassing RF.

Comparing tables 10 and 8, adding more SBRs improves the

G-Measure for both BERT and RF in the Camel, Ambari, Derby,

and Wicket datasets. Among these, BERT shows a more significant

improvement than RF in the Wicket and Derby datasets, suggest-

ing that adding SBRs is particularly advantageous. In the Derby

dataset, for instance, BERT achieves a 0.15 increase, while RF re-

mains unchanged. Similarly, in the Wicket dataset, BERT shows a

0.23 increase compared to RF’s 0.03. However, in the Ambari dataset,

BERT experiences a decrease in both F1-score and precision, while

the Wicket dataset sees an increase in F1-score from 0.20 to 0.34. In

contrast, in the Chromium dataset, which initially had more SBRs,

BERT surpasses RF. In Chromium, RF’s G-measure remains con-

stant, while BERT sees a 0.01 increase. This may suggest that, with

an adequate amount of SBRs, further SBRs may not offer additional

benefits.

Comparing Tables 10 and 8, applying BERT to datasets aug-

mented with BRs significantly improves prediction performance

over WPP, boosting G-measure and F1-score in most cases except

for Ambari. The improvement varies by dataset—for instance, in

Wicket, BERT’s G-measure jumps from 0.23 to 0.82, while in Derby,

it increases more modestly from 0.57 to 0.73. Conversely, Ambari

sees a decline, with G-measure dropping from 0.40 to 0.32. RF, how-

ever, generally performs worse with BR-augmented datasets, except

for Chromium, where its G-measure improves slightly from 0.75 to

0.77. The decline is more substantial in Derby andWicket compared

to Camel and Ambari.

5.2 Cross-Project Results

RQ3: How do BERT and RF models compare for cross-

project prediction?

To tackle the challenge of underrepresented SBRs, we assessed

prediction performance by first augmenting SBRs from other projects

and subsequently adding BRs, as outlined in RQ2. This approach

was particularly effective when substantial historical data is avail-

able for a project. However, when BRs are limited or unavail-

able, one potential solution is to leverage external data from other

projects for training. This research question explores whether mod-

els trained on BRs from one or more projects can generalize to

accurately detect SBRs in unseen projects.

To assess whether bug reports from one project can effectively

identify SBRs in another, we trained BERT and RFmodels on the full

bug report set of a single dataset. We then evaluated them on the

test sets of four other datasets. Table 11 presents the performance of

both models across different datasets. The subscripts of the dataset

names indicate the training datasets. For instance, Chromium
Derby

represents the prediction of SBRs in the Chromium test set using a

model trained on all the BRs in the Derby dataset. In this table, the

highest G-measures are bold.

Table 11: BERT versus RF in CPP using a Single External
Dataset

Dataset Recall Precision F1-score FPR G-Measure

BERT RF BERT RF BERT RF BERT RF BERT RF

Chromium
Derby

0.27 0.32 0.06 0.22 0.10 0.26 0.09 0.02 0.42 0.48

Chromium
Camel

0.12 0.02 0.20 0.02 0.15 0.02 0.01 0.02 0.21 0.04

Chromium
Ambari

0.20 0.20 0.06 0.28 0.09 0.23 0.07 0.01 0.33 0.33

Chromium
Wicket

0.44 0.32 0.84 0.36 0.57 0.34 0.00 0.01 0.61 0.48

Derby
Chromium

0.07 0.03 0.44 0.75 0.12 0.05 0.02 0.00 0.13 0.06

Derby
Camel

0.20 0.35 0.68 1.00 0.30 0.51 0.02 0.00 0.33 0.52

Derby
Ambari

0.07 0.10 0.50 0.66 0.13 0.17 0.02 0.01 0.13 0.18

Derby
Wicket

0.32 0.45 0.79 0.72 0.46 0.55 0.02 0.04 0.48 0.61

Camel
Chromium

0.20 0.19 0.82 1.00 0.32 0.32 0.00 0.00 0.33 0.32

Camel
Derby

0.28 0.41 0.65 0.86 0.39 0.55 0.02 0.01 0.44 0.58

Camel
Ambari

0.07 0.04 0.30 0.50 0.11 0.08 0.02 0.00 0.13 0.08

Camel
Wicket

0.26 0.56 0.92 0.89 0.41 0.69 0.00 0.01 0.41 0.72

Ambari
Chromium

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Ambari
Derby

0.06 0.62 0.12 0.43 0.08 0.51 0.01 0.03 0.11 0.76

Ambari
Camel

0.06 0.00 0.14 0.00 0.09 0.00 0.01 0.00 0.11 0.00

Ambari
Wicket

0.06 0.06 0.50 0.33 0.11 0.10 0.00 0.00 0.11 0.11

Wicket
Chromium

0.17 0.13 0.80 1.00 0.29 0.23 0.00 0.00 0.29 0.23

Wicket
Derby

0.57 0.52 0.57 1.00 0.57 0.68 0.02 0.00 0.72 0.68

Wicket
Camel

0.13 0.52 0.43 0.92 0.20 0.66 0.01 0.00 0.23 0.68

Wicket
Ambari

0.09 0.08 0.12 1.00 0.10 0.16 0.03 0.00 0.16 0.15

Average 0.18 0.25 0.45 0.60 0.23 0.31 0.02 0.01 0.29 0.35

Based on the average G-measure of all datasets, RF outperforms

BERT with a G-measure of 0.35 compared to BERT’s 0.29. However,

a closer look at the results for each dataset reveals no clear pref-

erence for either model. In some datasets, BERT performs better,

while in others, RF is superior. For example, BERT outperforms RF

on Chromium and Wicket, while RF is superior on Derby, Camel,

and Ambari. Notably, the results indicate that Ambari exhibits

the weakest predictive performance for both BERT and RF, except

when training with the Derby dataset using RF, which boosts the

G-measure to 0.76. Overall, While there is a superior model, either

RF or BERT, for predicting SBRs in each dataset, a model developed

for one project may not yield effective results in another.

Building a model based on one project may not effectively

predict SBRs in another.

Table 12 indicates that, in CPP, BERT achieves higher average

F1-score and G-measure values compared to RF when using all the

BRs from other datasets for training.

On average across all datasets, BERT achieves a G-Measure of

0.62, which is approximately 63% higher than RF’s 0.38. In the

Chromium dataset, BERT achieves a G-measure of 0.80, while RF
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Table 12: BERT versus RF in CPP using Multiple External
Datasets

Dataset

Recall Precision F1-score FPR G-Measure

BERT RF BERT RF BERT RF BERT RF BERT RF

Chromium 0.68 0.46 0.32 0.30 0.43 0.36 0.03 0.02 0.80 0.63

Derby 0.44 0.15 0.90 0.54 0.59 0.24 0.01 0.03 0.61 0.27

Camel 0.43 0.28 0.83 0.93 0.57 0.43 0.01 0.00 0.60 0.44

Ambari 0.13 0.06 0.50 0.50 0.20 0.11 0.00 0.00 0.22 0.12

Wicket 0.74 0.30 0.57 0.70 0.22 0.60 0.04 0.01 0.84 0.47

Average 0.48 0.25 0.62 0.59 0.49 0.31 0.02 0.01 0.62 0.38

scores 0.63. Similarly, in the Wicket dataset, BERT attains a G-

measure of 0.84, significantly outperforming RF’s 0.47. These results

indicate that BERT is more effective at predicting SBRs by utilizing

all BRs from other datasets. The CPP analysis further reveals that

Ambari displays the weakest predictive performance.

Utilizing BRs from all other datasets for training, BERT

achieves an average G-measure of 0.62, which is substan-

tially higher than that of RF’s 0.38.

While addressing RQ3, we found that although the average per-

formance metrics indicated that using a single dataset for training

and testing gives RF an advantage over BERT, the results became

approximately equivalent after the addition of a second dataset.

Subsequently, upon consolidating the third dataset, BERT demon-

strated superior performance in predicting SBRs in an external

dataset.

5.3 Cross-Project vs. Within-Project
In terms of the G-measures for each dataset, the WPP model out-

performs the CPP in the Chromium dataset using both models.

However, for datasets with fewer SBRs, such as Camel, Ambari, and

Wicket, the top-performing model in the CPP surpasses the WPP

results. For instance, the best predictor in the WPP for the Camel

and Wicket datasets is RF, achieving G-measures of 0.49 and 0.68,

respectively. In contrast, using BERT, we observed G-measures of

0.60 and 0.84, with the latter being the highest G-measure value

recorded for the Wicket dataset.

Nonetheless, selecting one optimal dataset for training a model

to predict SBRs in another is not feasible, as we cannot determine

which dataset is best suited. As an example, Wicket is most effec-

tive for Chromium, while Derby excels with Ambari and Wicket.

Our investigation suggests that relying solely on single sources for

building SBR predictors is not advisable. This contrasts with Peters

et al. [18], who found that transfer project prediction models can

significantly enhance performance, outperforming WPP, especially

when SBRs are scarce. However, our experiments suggest that train-

ing with bug reports from other available datasets, combined with

BERT as the SBR predictor, could provide a viable solution.

Relying solely on a single project for building SBR predic-

tors for another is not advisable. However, our experiments

indicate that using BRs from various projects with BERT

as the predictor can be a viable solution.

6 THREATS TO VALIDITY
There are several threats to the validity of this study that we explain

in the following.

External validity. Our analysis is limited to the five datasets

Chromium, Derby, Ambari, Camel, and Wicket, which we did not

update to the latest version to ensure a fair comparison with state-

of-the-art studies. This may restrict the applicability of our results

to current trends. We also used the FARSEC approach as a baseline

but modified the existing implementation for functionality, poten-

tially introducing discrepancies affecting result comparability. To

generalize our findings, replication across multiple projects from

different domains with labeled bug reports is required. Furthermore,

while we focused on BERT as an encoder-only pre-trained model,

other BERT variants could potentially offer improved performance.

Internal validity. There is a need to conduct multiple runs

with varying data distributions for training and validation to en-

sure that performance metrics are reliable and not influenced by

favorable or unfavorable data splits. Further experimentation may

lead to improved results. While our study may not achieve optimal

SBR prediction, it highlights the benefits of data augmentation in

addressing data imbalance. However, the question of how many

datasets should be combined to build an effective model remains

open for investigation. We also did not perform an extensive hyper-

parameter search for model fine-tuning, which may lead to an un-

derestimation of their performance. As a result, differences between

the models could vary with different parameters, such as learning

rates. However, since all models share a similar architecture, they

are likely to perform best with comparable hyperparameters for

the same task.

Conclusion validity. Threats can impact the accuracy of our

conclusions. Comparing learning system performance is challeng-

ing due to the variety of available metrics. In this study, we focus

on the G-Measure for comparing automated classifications, as it

combines recall and FPR into a single value.

7 CONCLUSION
We conducted an extensive experimental evaluation of BERT and

Random Forest (RF) for predicting Security Bug Reports (SBRs), fo-

cusing on both “within-project” and “cross-project” scenarios. Our

experiments on five publicly available datasets show that RF outper-

forms BERT with a higher average G-measure for within-project

predictions. Incorporating additional SBRs from various projects

into the training data improves the average performance of both

models. However, including a mix of security and non-security bug

reports significantly reduces RF’s average performance, yet boosts

BERT to its highest average performance, which is much higher

than RF’s. In cross-project SBR prediction, BERT also achieves a

remarkable G-measure, substantially higher than RF.

In future work, we plan to explore decoder-only transformer

models, such as GPT, for SBR prediction.
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