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Abstract

Transient execution vulnerabilities have emerged as a critical
threat to modern processors. Hardware fuzzing testing tech-
niques have recently shown promising results in discovering
transient execution bugs in large-scale out-of-order proces-
sor designs. However, their poor microarchitectural control-
lability and observability prevent them from effectively and
efficiently detecting transient execution vulnerabilities.

This paper proposes DejaVuzz, a novel pre-silicon stage
processor transient execution bug fuzzer. DejaVuzz utilizes
two innovative operating primitives: dynamic swappable
memory and differential information flow tracking, enabling
more effective and efficient transient execution vulnerabil-
ity detection. The dynamic swappable memory enables the
isolation of different instruction streams within the same
address space. Leveraging this capability, DejaVuzz gener-
ates targeted training for arbitrary transient windows and
eliminates ineffective training, enabling efficient triggering
of diverse transient windows. The differential information
flow tracking aids in observing the propagation of sensitive
data across the microarchitecture. Based on taints, DejaVuzz
designs the taint coverage matrix to guide mutation and
uses taint liveness annotations to identify exploitable leak-
ages. Our evaluation shows that DejaVuzz outperforms the
state-of-the-art fuzzer SPECDOCTOR, triggering more com-
prehensive transient windows with lower training overhead
and achieving a 4.7X coverage improvement. And DejaVuzz
also mitigates control flow over-tainting with acceptable
overhead and identifies 5 previously undiscovered transient
execution vulnerabilities (with 6 CVEs assigned) on BOOM
and XiangShan.
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1 Introduction

The recent discovery of transient execution vulnerabilities
has unveiled a significant threat to modern processors. These
vulnerabilities, such as Spectre [21] and Meltdown [25], ex-
ploit speculative execution, a key performance optimization
feature, to leak sensitive data through side channels. The
ongoing battle between attackers and defenders resembles
a continuous cat-and-mouse game. For example, Spectre-
V2 [21] promoted the privilege-isolated branch prediction
deployment, but follow-up research soon discovered bugs [3,
44,50] in other speculation components. Similarly, after Fore-
shadow [45] was patched, Microarchitectural Data Sampling
(MDS) [4, 46] attacks emerged. This arms race not only chal-
lenges the efficacy of existing defense mechanisms but also
underscores the necessity of a proactive approach to auto-
mated transient execution bug detection.

Some efforts [27, 28, 51] have been applied to commodity
processors. However, due to the black-box nature of off-the-
shelf processors, these approaches rely heavily on template-
based generation and fixed side channels, which makes it
difficult for them to uncover new vulnerabilities. On the
contrary, detection approaches at the pre-silicon stage have
yet to be extensively studied. Detecting these vulnerabilities
during the Register Transfer Level (RTL) development phase
is crucial, as hardware bugs are usually difficult to fix once
the design is manufactured. Early detection allows for timely
remediation, preventing these bugs from being integrated
into production hardware. Therefore, proactive testing and
verification at the pre-silicon stage is imperative for ensuring
processor microarchitecture security.



Formal verification and fuzzing are commonly used meth-
ods for existing processor RTL transient execution bug detec-
tion. Although formal approaches can prove security prop-
erties exhaustively, limited by the state explosion problem,
existing methods [9, 39, 43, 55] solve the scalability prob-
lem by modeling processor transient execution behavior at
a higher level of abstraction. However, given the complex-
ity of the out-of-order processor design, the microarchitec-
ture implementation details ignored by the model are highly
error-prone [18, 53]. Furthermore, the complicated design
pre-knowledge and heavy manual efforts required for hard-
ware modeling and security property definition also impede
applying formal methods to complex designs.

Recently, processor fuzzing has demonstrated promising
results in verifying large-scale complex processor designs [5,
19, 20, 36, 53], and researchers also have begun applying
fuzzing to detect transient execution vulnerabilities [11, 12,
18]. INTROSPECTRE [12] and TEESEcC [11] use gadget tem-
plates to generate Meltdown-type transient execution vulner-
abilities and identify leakage by searching for secret values
in the microarchitecture logs. SPEcCDocTOR [18], on the other
hand, employs a multi-phase random instruction generation
process and utilizes differential testing to detect sensitive
data leakage. However, due to the complexity of the transient
execution vulnerabilities, current fuzzing methods are either
too limited [11, 12], only capable of identifying specific leak-
age patterns, or too inefficient [18], taking days to complete
the detection, thereby limiting their practical adoption. To
effectively and efficiently fuzz transient execution bugs, the
following two challenges need to be addressed.

First, only transiently executed instructions are considered
effective fuzzing payloads, so the fuzzer needs to efficiently
trigger diverse transient windows for fuzzing. However, trig-
gering these transient windows requires deliberate microar-
chitecture training. Due to significant differences in training
patterns among various microarchitecture components, ex-
isting approaches generate limited transient windows with
high training overhead (§6.2). The inability to generate vari-
ous transient windows means the microarchitecture cannot
be fully explored. Additionally, ineffective training instruc-
tions waste simulation time, increasing training overhead
and reducing the fuzzing throughput.

Second, the fuzzer needs to perceive the propagation of
sensitive data during transient execution to guide mutation
and detect leakages. Information flow tracking is a promising
solution, but it suffers from the control flow over-tainting
problem in complex designs [37]. Due to the lack of effective
methods to trace sensitive data, existing fuzzers cannot mea-
sure coverage or identify exploitable leakages (§6.3). Lacking
coverage metrics means that the quality of stimuli cannot
be assessed, leading to inefficient input mutation. Passing
unexploitable leakages to subsequent stages not only results
in false positives but also makes later phases futile, further
misguiding the fuzzing process.

To address the challenges mentioned, we propose De-
jaVuzz, an effective and efficient pre-silicon processor fuzzer
for transient execution vulnerabilities, powered by two novel
operating primitives: dynamic swappable memory and dif-
ferential information flow tracking. Dynamic swappable
memory serves as an isolation primitive, responsible for
transparently switching instruction sequences to control the
microarchitecture to trigger desired transient execution be-
haviors. This primitive resolves conflicts between instruction
sequences by time-sharing the address space. To increase
the diversity of triggered transient windows, DejaVuzz iso-
lates training and transient instruction sequences to generate
arbitrary transient windows, and uses the training deriva-
tion strategy to derive targeted training based on transient
execution information. To reduce the training overhead, De-
jaVuzz isolates each training instruction sequence to explore
different training effects, and eliminates ineffective training
through the training reduction strategy. Differential informa-
tion flow tracking acts as the tracing primitive that is respon-
sible for observing microarchitecture state changes caused
by sensitive data. This primitive eliminates the control flow
over-tainting problem by comparing whether different se-
crets can produce different selections on the same control
signal. With the help of taints, DejaVuzz designs a taint cover-
age matrix to evaluate how sensitive data propagates during
the transient execution, effectively guiding exploration. Fur-
thermore, DejaVuzz introduces taint liveness annotations
to bind state registers to related taint registers. By using
annotated state registers as liveness signals, DejaVuzz filters
out unexploitable taints to reduce false positives.

Overall, this paper makes the following contributions:

o We summarize the challenges of transient execution bug
fuzzing in terms of microarchitectural controllability and
microarchitectural observability and propose two novel
operating primitives: a dynamic swappable memory model
to resolve address space conflicts for better microarchitec-
tural control, and a differential information flow tracking
technique to mitigate control flow over-tainting for im-
proved microarchitectural observation.

o Utilizing these two operating primitives, we develop a new
processor fuzzing framework named DejaVuzz, which ef-
fectively and efficiently detects transient execution bugs.
DejaVuzz designs training derivation and training reduc-
tion strategies atop dynamically swappable memory to
efficiently trigger diverse transient windows, and utilizes
taints generated by differential information flow tracking
to guide fuzzing and identify leakage.

o We evaluate DejaVuzz on two well-known RISC-V out-of-
order processors [54, 57]. Compared to the SOTA fuzzer
SpecDocTor [18], DejaVuzz achieves a 4.7X improvement
in coverage with more comprehensive transient windows
and lower training overhead. DejaVuzz mitigates control
flow over-tainting with acceptable overhead and identifies
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Figure 1. Training and transient execution sections of
Spectre-V1, Spectre-V2 and Spectre-RSB. The secret decod-
ing step (@ is omitted.

5 previously unknown transient execution vulnerabilities,
all of which are assigned CVE numbers.

To facilitate the community and future research, we pub-
lish the source code and experiments of DejaVuzz at https:
//github.com/sycuricon/DejaVuzz.

2 Background
2.1 Transient Execution Vulnerabilities

As shown in Figure 1, the process of exploiting a transient
execution bug can be divided into the following 4 attack
steps: (D training the target microarchitecture, 2) triggering
a transient window through the trained state, (3) accessing
sensitive data and encoding it into a side channel, and
subsequently decoding the secret from the side channel.

However, different types of transient windows exhibit
highly varied training patterns. For Spectre-V1, the train-
ing section (blue stripe) and the transient execution section
(yellow stripe) are independent, which means these two sec-
tions can be generated independently as long as the branch
instructions have the same address offset. However, this is
not always true for other transient execution bugs such as
Spectre-V2 and Spectre-RSB [22, 26]. The Spectre-V2 attack
requires different arguments (a0) to switch between train-
ing and exploiting the Branch Target Buffer (BTB) with the
same code. And the Spectre-RSB attack requires tempting
the processor to speculatively return to a corrupt address
by training the Return Stack Buffer (RSB). As seen in the
last two types, complex transient windows are mixed with
the training section. Triggering such complex transient win-
dows is challenging, as the stimulus generator must carefully
handle the semantics of training and transient execution to
ensure the window section is executed transiently as expected.
Otherwise, non-speculative execution of the window section
during training could lead to false positives.

2.2 Hardware Dynamic Information Flow Tracking

Information Flow Tracking (IFT) has been widely deployed
at all levels of hardware abstraction to understand how in-
formation flows through a system [15, 24, 41, 48]. Hardware

dynamic IFT, known as taint tracking, can dynamically ver-
ify information flow properties during the runtime. This is
achieved by marking sensitive state elements with taints
at the circuit level and propagating the taints based on the
operations on sensitive data. There are three instrumenta-
tion levels for the hardware dynamic IFT mechanism: gate
level [42], RTL level [2], and cell level [37]. Figure 2 shows
how hardware dynamic IFT is implemented in hardware.
The dynamic IFT instrumentation generates a shadow cir-
cuit based on the original circuit, all registers in the original
circuit are copied to store taints, and the combinational logic
gates are replaced with the corresponding taint propagation
policy implementation. The taint propagation policies are
a set of rules that are responsible for tainting outputs that
are affected by tainted inputs. Policies 1 and 2 are the state-
of-the-art taint propagation policies [2, 37] for the AND and
MUX cells, respectively. By using shadow circuits, dynamic
IFT provides the ability to observe the information flow of
the design without affecting the original functionality.
O’ np = (A&B")|(B&A")|(A' &BY) 1)
Olwx = (S?B":A")[(S'?(A"B)|(A?|B):0) ()
Taints generated by the direct computation of input taints
and signals, like in Policy 1, are referred to as data taints.
In Policy 2, in addition to selecting data taints via the selec-
tion signal S, the underlined component produces control
taints due to the conditional selection semantics of the mul-
tiplexer. Unlike data taints, which are only impacted by the
actually executed code, control taints also consider changes
occurring on unselected branches (i.e., the A"B term). Thus,
once taints propagate to the control flow, it can easily lead to
over-tainting [35, 37]. Since taint propagation policies only
generate taints without eliminating them, more registers be-
come tainted as the circuit executes, making it increasingly
difficult to identify target information flows precisely.
According to our evaluation (§6.3), the state-of-the-art
hardware dynamic IFT mechanism CELLIFT [37] suffers from
the control flow over-tainting problem. Next, we use the Re-
order Buffer (RoB) module of BOOM [57] in Figure 2 as
an example to explain how the taint explosion occurs dur-
ing the RoB rollback. The third RoB entry updates its op-
code field register rob_3_uopc with the new opcode eng_uopc
when a valid micro-operation is enqueued (enq_valid is high)
and the tail pointer points to the third entry (rob_tail_idx
is equal to 3). Before the RoB rollback, instructions using
tainted sensitive data as operands in step (3) write back
and taint the RoB state register. When the RoB rolls back,
the movement of the tail pointer causes rob_tail_idx to be
tainted. Since the frontend also uses the RoB index to main-
tain state, enq_valid is tainted. According to Policy 1, both
inputs are tainted (the comparison result of the Equal cell
is also tainted due to the tainted rob_tail_idx), causing the
MUX selection signals to be marked as tainted. Furthermore,
based on Policy 2, the register rob_3_uopc is also marked as
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Figure 2. Hardware dynamic information flow tracking in-
strumentation. a) is the example circuit from the BOOM RoB
module, b) is the corresponding IFT shadow circuit.

tainted due to the different input data. All 736 RoB entry
field registers have a similar update logic. Therefore, they
are all suddenly tainted when the RoB rolls back.

2.3 Processor Fuzzing for Transient Execution Bugs

Processor fuzzing has been employed to detect various bugs,
including functional bugs [19, 20, 36, 53], transient execu-
tion bugs [11, 12, 18], and side-channel bugs [33]. Although
bugs are characterized differently, existing fuzzers generally
follow a similar workflow consisting of three main steps.

First, the input generator generates instruction sequences
as stimuli either based on constraints [36, 53] or through
random generation [19, 20, 33]. As discussed in §2.1, a tran-
sient execution attack involves multiple steps. Thus, exist-
ing fuzzers strategically divide the generation into multiple
phases. For instance, INTROSPECTRE and TEESEcC comple-
ment the main gadget with the preceding helper gadgets de-
pending on whether the target memory access paths are met
in the software execution model. SPECDOCTOR sequentially
progresses through the transient-trigger, secret-transmit,
and secret-receive phases to generate a complete stimulus.
During each phase, additional instructions are randomly
appended to those generated in the previous phase until spe-
cific goals are met. The goals of each phase are to trigger a
RoB rollback, generate differences in microarchitecture, and
cause differences in execution cycles.

Second, the fuzzer uses an RTL simulator to convert the De-
sign Under Test (DUT) into a software model and then uses
the model to execute the generated instruction sequences.
During simulation, the fuzzer leverages instrumentation to
measure coverage to guide mutations. Existing fuzzers define
several coverage metrics to reflect the general processor be-
havior, such as mux toggle coverage [23], control register cov-
erage [19, 53], or hardware behavior coverage [20]. However,
transient execution vulnerabilities focus more on propagat-
ing sensitive data within the microarchitecture. Therefore,
existing general processor behavior coverage metrics are
unsuitable for transient execution vulnerabilities.
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Figure 3. Assuming the branch instruction at 0x1010 can
trigger transient windows at different addresses by using
different branch targets L?, only transient windows that do
not conflict with training instructions can be exploited.

Third, the fuzzer analyzes the microarchitecture to deter-
mine if any bug exists. Unlike the functional bugs that can
be detected using co-simulation [19, 53], transient execution
vulnerabilities require detailed microarchitecture analysis.
For example, INTROSPECTRE and TEESEC dump the microar-
chitecture at each cycle and then assess whether leakage has
occurred based on the presence of the secret values in the
log. SPECDOCTOR observes execution behavior by hashing
the final state of the timing components after transient exe-
cution and evaluates leakage by comparing the consistency
of the hash values between different variants.

3 Operating Primitives

In this section, we first analyze the challenges of transient
execution fuzzing based on the key capabilities required by
a fuzzer and identify their root causes. Next, we present
the design of two novel operating primitives and explain
how they address the root causes. For the challenges, we use
designs based on the primitives to address them in §4.

3.1 Challenges and Root Causes

The task of a transient execution bug fuzzer is to generate
instruction sequences that trigger transient windows and en-
code secrets into the microarchitecture, and then determine
whether the encoded states can leak the secrets. To achieve
this, a competent fuzzer must possess two key capabilities.
First, it must effectively train the microarchitecture to trigger
diverse transient windows, since we are only interested in
transiently executed behaviors. Second, it must accurately
track the propagation of sensitive data, as we only focus on
microarchitecture changes caused by secrets. Based on this
observation, we define these two capabilities as microarchi-
tectural controllability and observability, respectively.
Microarchitectural Controllability [8, 30, 49] refers
to the ability of a fuzzer to efficiently manipulate microar-
chitecture to trigger desired transient execution behaviors.
Existing fuzzers generate transient windows using template-
based [11, 12] or random-based [18] methods. While they can



successfully trigger transient windows, they fail to address
the following two challenges.

C1-1. Limited Transient Window. Template-based meth-
ods are limited to specific transient window templates, while
random-based methods also fail to generate arbitrary tran-
sient windows. As shown by W3 in Figure 3, SPEcCDoCTOR
randomly generates training instructions and replaces the
RoB squashed instructions with the secret encoding instruc-
tions to exploit. However, when the RoB squashed instruc-
tions are mixed with the training instructions (i.e., complex
transient windows in §2.1), replacing them may invalidate
transient execution. For example, replacing branch training
can prevent the predictor from reaching the desired pre-
diction state (W1), while replacing the assignment to the
condition comparison register x21 could change the branch
outcome (W2). For this reason, SPECDocTOR discards all
transient windows containing backward jumps. As a result,
existing fuzzers are limited to exploring only a restricted
subset of transient windows.

C1-2.Inefficient Training. Making the fuzzer recognize the
microarchitecture changes caused by randomly generated
instructions and subsequently exploit them is exceptionally
challenging. INTROSPECTRE and TEESEC use a manual soft-
ware execution model to assist in setting up the required
microarchitecture but cannot train states beyond the model.
SpecDocToRr also has difficulty assembling matched training-
exploitation instruction pairs because meaningless random
training instructions often occupy the required addresses.
Unutilized microarchitecture training instructions not only
reduce the fuzzing throughput but also diminish the training
effectiveness due to potential conflicts.

The root cause of the above challenges is the address space
conflict. Since the fuzzer cannot predict training effective-
ness or transient window locations, instructions are hardly
placed at the desired address. For example, training instruc-
tions may occupy addresses needed for transient windows,
and different training instructions cannot be tested at the
same address. This makes it difficult for existing fuzzers to
arrange instructions linearly to trigger the desired transient
execution behaviors.

Microarchitectural Observability [14, 29, 56] concerns
the ability of a fuzzer to monitor and measure the effects
of sensitive data on the microarchitecture. Despite having
complete access to processor internal states, existing fuzzers
fail to track how sensitive data propagates through the mi-
croarchitecture, leading to two challenges.

C2-1. Feedback Gap. Prior work ignores the coverage ma-
trix and thus fails to provide feedback for input mutation,
leading to blind and random input mutation. This problem
is caused by the lack of ability to track the propagation pro-
cess of sensitive data. INTROSPECTRE and TEESEcC cannot
capture secrets after arithmetic operations due to the use of
value matching. SPEcCDocTOR only computes the hash of the
final state, and the compressed execution process prevents

capturing the different propagation paths during execution.
The missing coverage matrix leaves a gap between input
mutation and execution, making it difficult for the fuzzer to
explore all possible transient behaviors efficiently.

C2-2. Imprecise Oracle. Buffers are extensively used in
processor microarchitecture to improve performance and
typically include state registers to indicate the validity of the
current data. For example, the Line Fill Buffer (LFB) in BOOM
is managed by the Miss Status Holding Register (MSHR).
Once the cache line refill is completed, MSHR switches its
state register to invalid to indicate that the data in the LFB
is outdated instead of clearing the LFB. Existing work has
incorrectly considered this scenario as vulnerable, as IN-
TROSPECTRE and TEESEc would match the sensitive data
remaining in the LFB. It would also cause SPECDOCTOR to
generate different hashes. Due to the imprecise oracles, ex-
isting fuzzers pass these false positives to subsequent steps,
resulting in meaningless execution.

The root cause of the above challenges is the lack of a
mechanism to track state changes caused by sensitive data.
Without the ability to observe the information flow of sen-
sitive data, existing fuzzers are unable to measure coverage
based on the distribution of encoded sensitive data or query
state registers to identify exploitable leakages.

3.2 Dynamic Swappable Memory

Instead of using scalability-limited templates to solve the
address space conflict, the core insight of DejaVuzz is that
address space can be time-shared by different semantics. Fig-
ure 4 shows how scheduling instruction sequences within
the same address space enables triggering complex transient
windows that could not be generated in Figure 3. During
simulation, we first load training instruction sequence (1)
or (2) into memory to train the predictor. After training, we
flush the memory and load transient instruction sequence (3)
to trigger the backward transient window at @x1010. For the
training instruction sequence, since the full address space is
available, we do not need to use similar addresses like 0x0010
to train the predictor. Instead, we can directly place a branch
training instruction at 0x1010. Additionally, we can explore
different training effects, such as using sequence (1) to train
the prediction as untaken or sequence (2) to train it as taken.
For the transient instruction sequence, since training instruc-
tions are not in this sequence, W1 type conflicts are avoided,
and conflicted register assignments can be moved to other
available addresses (e.g., 0x0) to resolve W2 type conflicts.
As shown in sequence (3), after setting up the registers, DUT
can directly jump to 0x1010 to trigger the transient window
without any conflicts. Besides generating arbitrary transient
windows, we can also identify effective training by trying dif-
ferent training instruction sequences. For example, by trying
combinations (1)(3) and (2)(3), we can find that only (2) con-
tributes to triggering the transient window. Thus, switching
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Figure 4. Using swapMem to trigger transient execution.

instruction sequences on demand at different stages effec-
tively resolves address space conflicts, allowing the fuzzer to
effectively control the microarchitecture to trigger desired
transient execution behaviors.

However, implementing the above switching process with
assembly instructions can pollute memory-related training
states. To address this, we propose the dynamic swappable
memory (swapMem), enabling transparent instruction se-
quence switching. Since side channel bugs require multiple
DUT instances with different secrets to detect behavioral
differences, the swapMem is specifically designed for this
scenario. As shown at the bottom of Figure 4, the swapMem
consists of three regions. The shared region is shared across
multiple DUT instances and contains the essential execution
environment, including state initialization, trap handling,
and runtime instruction sequence scheduling. To facilitate
modifying secrets, each DUT has a dedicated region for stor-
ing sensitive data and mutable operands. The swappable
region is used to hold instruction sequences with different
semantics. Each DUT can load the required instruction se-
quence into the swappable region at runtime according to the
swap schedule. Typically, DejaVuzz first executes all training
instruction sequences on the DUT, then updates sensitive
data permissions, and finally executes the transient instruc-
tion sequence. Once a sequence is completed, an exception
is triggered, and then the trap handler flushes the instruc-
tion cache and loads the next sequence into the swappable
region. After swapping the new sequence, the DUT jumps
to its entry and continues execution.

The swapMem enhances microarchitectural controllability
as the isolation primitive, resolving address space conflicts.
In §4.1, we will discuss how to design instruction sequence
generation strategies based on swapMem to trigger diverse
windows and optimize training overhead.

Table 1. The control taint propagation policies of diffIFT.
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3.3 Differential Information Flow Tracking

DejaVuzz intends to employ the information flow tracking
technique to identify state changes caused by secrets. How-
ever, as discussed in §2.2, the control flow over-tainting prob-
lem makes it impossible to identify the propagation of sen-
sitive data. Thus, we propose differential information flow
tracking (diffIFT) to mitigate the over-tainting problem.

When fuzzing transient execution vulnerabilities, we can
assume that leakage occurs when executing a given instruc-
tion sequence using different secrets produces different be-
haviors. However, Policy 2 considers arbitrary input differ-
ences rather than differences caused by secrets. Therefore,
a core insight of DejaVuzz is that if no secret can influence
the value of a control signal, then even if it is tainted, it
should be ignored, as it cannot select an alternative path.
However, it is extremely expensive to precisely compute all
potential values of each control signal in the out-of-order pro-
cessor for all input secrets at each cycle [16]. Inspired by the
multi-variant execution [7, 31, 34], DejaVuzz approximates
the solution with concrete values from multiple variants.
To be specific, DejaVuzz creates a differential testing test-
bench to determine if sensitive data can produce different
values of a control signal by executing the same instruc-
tions on two identical DUTs with different secrets. Table 1
lists the updated control taint propagation rules for all sup-
ported control flow cells. The overall policies are similar
to CELLIFT, except the control taints only propagate when
cross-instance comparison signals are high. The highlighted
signals with the diff subscript represent cross-instance com-
parison signals. Take the multiplexer as an example, when
diffIFT encounters a multiplexer whose selection signal S
is tainted, diffI[FT checks whether the selection signals are
consistent between the variants (i.e., Suiy = SpuT, "SpuT,)-
If there is a difference, it indicates that sensitive data can
generate different selections, and diffIFT, therefore, performs
control taint propagation. Otherwise, diffIFT only considers
data taint propagation. We instrument the DUT at the RTL
IR level and thus support word-level cells and non-flattened
memories. Additionally, the data taint propagation policies
for data flow cells in diffIFT are consistent with CELLIFT.

It is worth noting that diffIFT is an underapproximation of
information flow since it uses concrete values. If a secret pair
happens to produce the same value on a secret-dependent



control signal, a false negative will occur. When this hap-
pens, data taints still propagate accurately, but control taints
are suppressed due to identical control signals. Therefore,
DejaVuzz generates secrets for the variant DUT by flipping
each bit of the original secret to avoid using identical values.
Besides, by leveraging the dedicated region in swapMem,
DejaVuzz can directly load different secret pairs to mitigate
false negatives without regenerating the input.

The diffIFT serves as the tracing primitive to enhance
microarchitectural observability. With the help of taints, De-
jaVuzz is able to observe sensitive data and its derived values
across the microarchitecture. In §4.2 and §4.3, we will explain
how to use taint to compute coverage and identify leakages.

4 The DejaVuzz Framework

In this section, we demonstrate how DejaVuzz builds on op-
erating primitives to address the challenges in §3.1, enabling
effective and efficient transient execution bug fuzzing.
Overview. As shown in Figure 5, the workflow of DejaVuzz
consists of three phases. The first two phases focus on trig-
gering and exploring transient execution, while the final
phase is responsible for detecting leakage. DejaVuzz lever-
ages swapMem to isolate different instruction sequences
within the same address space. In Phase 1, DejaVuzz derives
targeted training for diverse transient windows and evalu-
ates each training to eliminate ineffective training. In Phase
2, DejaVuzz completes the transient window and attempts
to encode sensitive data into the microarchitecture. During
simulation, DejaVuzz uses diffIFT to track sensitive data
propagation and collects taint as coverage to guide explo-
ration. In Phase 3, DejaVuzz first checks transient window
constant time execution violations. If no timing differences
are detected, it further uses taint liveness annotations to
check whether secrets encoded into the microarchitecture
can be exploited. Finally, DejaVuzz reports test cases that
violate transient window constant time execution or contain
exploitable taints as potential bugs.

4.1 Phase 1: Transient Window Triggering

Phase 1 focuses on triggering diverse transient windows
with minimal overhead. For challenge C1-1, DejaVuzz uses
swapMem to isolate transient execution from training to gen-
erate arbitrary transient windows, and employs the training
derivation strategy (§4.1.1) to generate targeted training. For
challenge C1-2, DejaVuzz further isolates each training and
applies the training reduction strategy (§4.1.2) to identify
and eliminate ineffective training.

4.1.1 Step 1.1: Trigger Generation. While swapMem re-
solves address space conflicts, allowing DejaVuzz to gen-
erate arbitrary transient windows, effective training is still
required to trigger them. To train the required microarchitec-
ture components for triggering transient windows, DejaVuzz
employs the training derivation strategy. It first randomly

generates a transient window and then derives targeted train-
ing based on the expected transient window.

Trigger Instruction Generation. In this step, DejaVuzz
only generates the trigger section of the transient packet
(@). The transient packet refers to the instruction sequence
that triggers a transient window and transiently accesses and
encodes sensitive data (i.e., transient instruction sequence
(3) in Figure 4). DejaVuzz first randomly generates trigger
instructions based on the trigger type from the seed. The
trigger instructions supported by DejaVuzz cover the entire
basic instruction set, including sequential execution instruc-
tions (e.g., integer or floating-point arithmetic operations,
valid memory accesses), control transfer instructions (e.g.,
branches, indirect jumps, and returns), and instructions that
may trigger architectural exceptions (e.g., illegal instructions,
memory access violations). In the example shown in Figure 5,
suppose DejaVuzz plans to trigger a transient window caused
by a return address misprediction. Next, DejaVuzz gener-
ates a dummy transient window filled with nop instructions
(@). For sequential execution instructions and exceptions,
the transient window is placed immediately after the trig-
ger instruction by default. For control transfer instructions,
DejaVuzz randomly selects whether to place the transient
window after the trigger instruction. Finally, DejaVuzz uses
an ISA simulator to compute the operands required to trig-
ger the transient window and generate the related register
initialization instructions. Therefore, DejaVuzz covers tran-
sient windows triggered by all instruction types, effectively
enhancing transient window diversity.

Trigger Training Derivation. DejaVuzz uses the transient
execution information in transient packets to randomly gen-
erate multiple trigger training packets (@). The trigger train-
ing packet refers to the instruction sequence used for train-
ing microarchitecture to trigger the transient window (i.e.,
training instruction sequences (1) and (2) in Figure 4). For
each trigger training packet, DejaVuzz first generates a ran-
dom training instruction, and then inserts nop instructions
to align it with the trigger instruction in the transient packet.
In the example, we generate three trigger training packets,
with the training instructions all placed at the same address
(i.e., 0x4) as the trigger instruction ret. Next, DejaVuzz fur-
ther adjusts the control flow of the training instruction if
the training instruction is a control transfer instruction. To
be specific, DejaVuzz adjusts the control flow of the train-
ing instruction to match the control flow of the generated
transient window, enhancing the training effectiveness for
control flow prediction. For example, DejaVuzz adjusts the
caller address in packet trigger_train_o to ensure that the
return address matches the start address of the transient win-
dow (i.e., 0x8). By deriving training from transient execution
information, DejaVuzz not only generates diverse transient
windows but also produces targeted training, ensuring the
fuzzer can more effectively control the microarchitecture to
trigger desired transient execution behaviors.
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Figure 5. DejaVuzz fuzzing workflow for finding transient execution vulnerabilities, taking Spectre-RSB for example.

4.1.2 Step 1.2: Trigger Optimization. After generating
the trigger training packets, DejaVuzz evaluates which pack-
ets are helpful in triggering transient windows. Leveraging
swapMem, DejaVuzz employs the training reduction strategy
that identifies and discards ineffective trigger training pack-
ets without affecting transient window triggering, thereby
reducing training overhead.

Transient Execution Evaluation. DejaVuzz packages these
packets together with a swap schedule, which schedules
them in the order of trigger training packets first and then
the transient packet. After the RTL simulation, DejaVuzz an-
alyzes the RoB IO events from the trace log. If the number of
enqueued instructions within the transient window exceeds
the number of its committed instructions, it indicates that
the transient window has been successfully triggered.
Training Reduction. Although trigger training packets
are derived from the transient packet for targeted training,
not all training contributes to triggering the transient win-
dow. Fortunately, since each training instruction is isolated
in its packet, DejaVuzz can identify ineffective packets by
removing one at a time and re-simulating the remaining
packets to see if the transient window still triggers (@). If
removing a trigger training packet does not affect transient
window triggering, it will be permanently discarded from
the swap schedule. Otherwise, the packet is necessary, and
DejaVuzz will keep it in the swap schedule. DejaVuzz eval-
uates each trigger training packet in the order of the swap
schedule. This process repeats until only necessary trigger
training packets remain or none are available. It is obvious
that integer arithmetic operations do not contribute to re-
turn address prediction. Therefore, in the example, DejaVuzz
finds that discarding trigger_train_1 and trigger_train_2
does not affect the triggering of the transient window, and
finally removes them. By discarding ineffective trigger train-
ing packets, DejaVuzz is able to trigger transient windows
with minimal training overhead.

4.2 Phase 2: Transient Execution Exploration

DejaVuzz explores which microarchitectures can be used
to encode secrets during this phase. DejaVuzz uses taints
as the coverage to guide the exploration (§4.2.2), effectively
addressing challenge C2-1.

4.2.1 Step 2.1: Window Completion. DejaVuzz replaces
the dummy transient window with real payloads and gener-
ates a complete test case.

Transient Window Completion. DejaVuzz generates two
blocks in the window section (@): (i) the secret access block
and (ii) the secret encoding block. In the secret access block,
besides fixed instructions to access sensitive data, it also ran-
domly masks the high-order bits of the address to attempt to
cover MDS-type bugs. In the secret encoding block, DejaVuzz
randomly generates instructions that depend on secrets in
order to propagate secrets across the microarchitecture.
Window Training Derivation. Similar to trigger training
packets, DejaVuzz also derives window training packets for
the secret access block (@). The window training packet
is the training instruction sequence used to train memory-
related states used by the transient window. In the example,
DejaVuzz attempts to warm up sensitive data into the proces-
sor’s internal buffers in advance, such as data cache and load
buffer. The generated window training packets are scheduled
before the trigger training packets in the swap schedule to
avoid invalidating the transient window.

4.2.2 Step 2.2: Coverage Measurement. DejaVuzz per-
forms RTL simulation using the diffIFT instrumented DUTs
and measures coverage from the taint log to guide subse-
quent stimulus generation.

Taint Coverage. DejaVuzz introduces the first secret sensi-
tive coverage matrix designed for transient execution vulner-
ability fuzzing. The taint coverage treats the total number of
taints within a local range as an independent coverage point.
To be specific, DejaVuzz inserts a new register array bitmap



into each RTL module. During each clock cycle, DejaVuzz
uses the number of tainted registers within the module as the
index and writes 1 to the corresponding slot in the bitmap.
After the transient execution, DejaVuzz checks the value
of each slot in the bitmap. If a slot’s value is 1, it indicates
that the corresponding number of taints has been explored
within the module, and DejaVuzz records the index of such a
slot and its module name as a tuple. Finally, DejaVuzz evalu-
ates input exploration based on the total number of collected
(module, index) tuples.

The taint coverage has two key properties. The first is lo-
cality, as coverage is measured at the module level, reflecting
the propagation of sensitive data across different hierarchies.
The second is position-insensitive, which helps filter out
redundant encoding. For example, when sensitive data is en-
coded in different slots of the cache data array, the coverage
points generated by the cache module are the same.
Coverage Feedback. Once all packets are ready, DejaVuzz
packages them into two swappable stimuli with different se-
crets for diffIFT. After simulation, DejaVuzz first determines
the cycle range of the transient window by analyzing RoB IO
events from the trace log, then checks taint changes in the
transient window from the taint log. If taints increase, it in-
dicates that sensitive data has been successfully propagated,
and DejaVuzz further measures the taint coverage from the
taint log. If the coverage increase is less than the average in-
crease or sensitive data is not propagated, DejaVuzz mutates
the seed to regenerate the window section. If the results after
multiple attempts still show low coverage growth, DejaVuzz
will discard the seed and return to Phase 1.

4.3 Phase 3: Transient Leakage Analysis

In this phase, DejaVuzz analyzes whether the final state can
leak sensitive data. For challenge C2-2, DejaVuzz uses taint
liveness annotations to filter out unexploitable taints in the
final analysis phase (§4.3.2).

4.3.1 Step 3.1: Constant Time Execution Analysis. For
test cases that successfully access and propagate sensitive
data, DejaVuzz further analyzes whether leakage occurred.
It first compares the execution time of the transient window
between DUTs. If inconsistent, it indicates that sensitive
data may have caused timing side channels, such as port
contention, during the transient window. DejaVuzz directly
reports these test cases as potential vulnerabilities.

Encode Sanitization. Although test cases with transient
window constant time execution cannot directly leak secrets
through the timing side channel, the encoded sensitive data
may still be leaked via other side channels. Since accessing
sensitive data during training also generates taints, we need
to distinguish the taints caused by the secret encoding block
before further analyzing whether the encoded sensitive data
can be exploited. Therefore, DejaVuzz replaces the secret
encoding block in the transient packet with nop instructions
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(@) and re-runs the simulation. By comparing the sanitized
taint log with the original taint log, DejaVuzz can identify
the taints generated by the secret encoding block.

4.3.2 Step 3.2: Tainted Sink Liveness Analysis. The
taints produced by diffIFT only indicate reachability. As the
LFB example in §3.1, not all encoded secrets are exploitable.
Therefore, DejaVuzz further analyzes taint liveness to deter-
mine whether the tainted sinks can be exploited.

Taint Liveness Annotation. Inspired by selective data pro-
tection [1, 32, 52], DejaVuzz uses annotations to bind taint
registers to their corresponding state registers. Developers
can annotate the registers with the liveness_mask custom
attribute [6, 40] to declare their state registers. Taking LFB as
an example, the mshr_valid_vec signal comes from the state
register in MSHR, and the 1b register is the data buffer in
LFB. Line 4 shows the annotation. During diffIFT instrumen-
tation, DejaVuzz automatically connects the liveness signal
mshr_valid_vec to the taint register of 1b.

wire mshrs_0_valid, mshrs_1_valid;
wire [15:0] mshr_valid_vec =
{8{mshrs_1_valid}, 8{mshrs_0_valid}};
(* liveness_mask = "mshr_valid_vec" %)
reg [63:0] 1b [15:0];

BoomMSHR mshrs_@ (.io_mshr_valid(mshrs_0_valid));
BoomMSHR mshrs_1 (.io_mshr_valid(mshrs_1_valid));

However, since the implementation of the state registers
is coupled with the microarchitecture, developers may be
unable to reference them directly. To accommodate various
implementation, we design the liveness signal interface as
a generic vector, with each bit representing whether the
corresponding slot in the taint register array is valid. For
example, the lower 8 entries of 1b are managed by mshrs_o,
while the upper 8 entries are managed by mshrs_1. We can
construct the liveness signal as shown in lines 2-3. DejaVuzz
currently requires developers to manually convert state reg-
isters into liveness signal vectors. Table 2 shows the manual
effort required for annotation and patching. By default, De-
jaVuzz treats all register arrays (including those registers
generated by Vec in Chisel) as potential sinks, and developers
can customize sinks as needed. Finally, DejaVuzz identifies
the target sinks from the encoded secrets obtained in the
previous step and reports tainted sinks with valid liveness
signals as potential vulnerabilities.

5 Implementation

The implementation consists of 1) a testharness generator
responsible for instrumenting RTL source code and integrat-
ing two DUTs into a testbench containing swapMem, and 2)
the fuzzing pipeline illustrated in Figure 5.

Testharness Generator. We implement the swapMem atop
the Starship SoC generator [38], with ~300 LoC Python for



Table 2. Summary of the cores used for evaluation.

Feature BOOM XiangShan
Configuration SmallBOOM MinimalConfig
ISA RV64GC RV64GC
Verilog LoC 171K 893K
Annotation LoC 212 592

swapMem RTL model generation and ~500 LoC DPI-C for
swapMem runtime. The diffIFT instrumentation adds new
passes in the Yosys synthesizer to insert taint cells for taint
propagation, involving ~1KLoC C++. The taint cell library of
diffIFT is implemented in Verilog, which also uses ~1KLoC.
Fuzzing Pipeline. The fuzzing pipeline consists of ~6500
LoC Python and ~180 LoC RISC-V assemble, which includes
stimulus generation and fuzzing management. DejaVuzz uses
seeds to generate stimuli, which contain configurations for
trigger instructions and transient windows, as well as en-
tropy for the random instruction generator. The generator
supports the RV64GC instruction set and covers common
transient window types. The fuzzing manager employs a
multi-threaded design, allowing multiple RTL simulation
instances to run in parallel.

6 Evaluation
We evaluate DejaVuzz by answering the following questions:

¢ RQ 1. How effective and efficient is DejaVuzz in triggering
diverse transient windows? (§6.2)

e RQ 2. How well does DejaVuzz trace sensitive data, im-
prove coverage, and identify leakages? (§6.3)

e ROQ 3. Can DejaVuzz uncover previously unknown tran-
sient execution bugs in real-world processors? (§6.4)

6.1 Experimental Setup

All experiments are conducted on a machine with dual AMD
EPYC 9334 processors featuring 64 cores and 512GB of RAM.
We use the industry-standard RTL simulator Synopsys VCS
for RTL simulation. Limited by the number of licenses, we
only used a maximum of 16 threads in the experiments.

We evaluate DejaVuzz on BOOM [57] and XiangShan [54],
two well-known out-of-order processors that are actively
maintained in the RISC-V community. BOOM is the third gen-
eration of the Berkeley out-of-order machine and is widely
evaluated in related academic work [9, 11, 12, 18, 37, 39].
XiangShan is currently the most high-performance open-
source RISC-V core and thus has a more complex architecture.
Their configurations are summarized in Table 2.

Since INTROSPECTRE and TEESEC only focus on Meltdown-
type vulnerabilities and their released artifacts do not include
a complete fuzzing framework, we only compare DejaVuzz
with SpEcDocTOR. Due to the complex manual patching of
the DUT required by SpEcDocTOR, we only compare the
BOOM supported by both.
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6.2 Microarchitectural Controllability Evaluation

We collect 2,500 transient windows separately and summa-
rize their types and training overhead in Table 3. The Train-
ing Overhead (TO) refers to the number of training instruc-
tions generated to trigger transient windows. Since DejaVuzz
uses nop instructions to align training instructions with trig-
ger instructions, we also compute the Effective Training
Overhead (ETO) by excluding the padding nop instructions.
For misprediction-type transient windows, since predictors
have default prediction states, we exclude transient windows
that require no training to trigger.

The results show that SPECDOCTOR can only cover 4 types
of transient windows on BOOM and requires about 125 in-
structions for training. Instead, DejaVuzz can trigger all
types of transient windows with minimal overhead. No-
tably, the training reduction strategy successfully identi-
fies the necessary training packets for triggering the tran-
sient window. Therefore, DejaVuzz can trigger exception-
type transient windows with zero overhead and use a few
training instructions (excluding nop instructions) to trigger
misprediction-type windows. To show the effectiveness of
the training derivation strategy, we introduce the DejaVuzz”*
variant. DejaVuzz” still uses swapMem, but its training pack-
ets consist of random instructions instead of deriving from
transient execution information. Due to the training reduc-
tion strategy, both DejaVuzz* and DejaVuzz have zero train-
ing overhead for exception-type transient windows. How-
ever, since random training fails to align trigger instruc-
tions and match transient execution flows, DejaVuzz* can-
not trigger indirect jump misprediction on XiangShan. For
the other misprediction-type transient window, DejaVuzz*
incurs higher training overhead due to the lack of targeted
training. These results demonstrate that DejaVuzz can effec-
tively and efficiently trigger more diverse transient windows.

6.3 Microarchitectural Observability Evaluation

Micro-benchmark. We first evaluate the overhead of diffIFT
instrumentation at compile and runtime, using the state-of-
the-art information flow tracking technique CeLLIFT as a
reference. The compilation duration includes Chisel elabora-
tion, Yosys instrumentation, and VCS synthesis. For runtime
overhead, we manually implement a benchmark covering
common transient execution vulnerability test cases and
record simulation times. Table 4 shows the results, indicating
that the overhead of diffIFT is acceptable compared to CEL-
LIFT. Since CELLIFT instruments at the cell level, it requires
flattening all memory, resulting in a significantly increased
compilation time. In contrast, diffIFT instruments at the RTL
IR level, achieving faster instrumentation. Figure 6 further
shows the changes in the taint sum over cycles when ex-
ecuting the benchmark on BOOM. The result proves that
CELLIFT does suffer from taint explosion. Once all registers
are tainted, CELLIFT loses the ability to track secrets, and



Table 3. Training overhead for different types of transient windows.

Load/Store | Load/Store | Load/Store Tllegal Memory Branch Indirect Jump | Return Address
Processor Fuzzer Access Fault | Page Fault | Misalign | Instruction | Disambiguation | Misprediction | Misprediction | Misprediction
TO (ETO) | TO (ETO) | TO (ETO) | TO (ETO) TO (ETO) TO (ETO) TO (ETO) TO (ETO)
DejaVuzz 0.0 (0.0) 0.0(0.0) | 0.0(0.0) x 0.0 (0.0) 86.4 (3.8) 85.7 (2.8) 85.6 (2.7)
BOOM  DejaVuzz* 13 0.1 1.6 x 0.2 102.2 169.5 89.5
SPECDOCTOR x 126.6 x x 1135 1255 122.5 x
. DejaVuzz 0.1 (0.0) 0.0(00) | 0.0(0.0) 0.0 (0.0) 0.0 (0.0) 83.9 (2.8) 90.1 (2.9) 88.7 (2.9)
XiangShan o Vg 0.0 0.0 0.0 0.0 0.4 101.0 x 97.0
X indicates that the corresponding type of transient window failed to trigger.
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Figure 6. Taints during executing each test case. The dotted
vertical line represents the start of the transient execution.

the simulation speed is severely degraded. By eliminating
control taints caused by identical control signals, diffIFT ef-
fectively mitigates control flow over-tainting. Even with two
DUTs instantiated in the testbench, the runtime overhead of
DejaVuzz is still acceptable.

And to understand the impact of false negatives, we also
introduce the difffFT™ variant in Figure 6. In the diffTFT™N
variant, the two DUT instances in the testbench use the same
secret to ensure all control signals are identical, representing
the worst-case scenario of false negatives. After the transient
window is triggered, the taint gradually increases as the
secret is loaded into registers. However, since all control
signals are the same, diffIFT™N fails to propagate control
taints during the process of encoding sensitive data, causing
the taints to stop increasing. Finally, the remaining taints are
data taints carried by residual secrets in multiple caches and
buffers. Therefore, when false negatives occur, data taints
still propagate accurately, but control taints are suppressed
due to identical control signals.
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our environment to obtain comparable results and use the
number of iterations as the x-axis. The y-axis represents
the number of taint coverage points defined in §4.2.2. Due
to the lack of feedback on the sensitive data propagation
process, SPECDOCTOR only performs random mutations on
test cases that can produce different state hashes, limiting its
ability to effectively guide fuzzing. With the help of taints,
DejaVuzz can guide mutation more effectively, ultimately
exploring 4.7x more coverage than SPECDOCTOR. Moreover,
DejaVuzz achieves the same saturation coverage as SPEcDoc-
TOR in just 118 iterations. DejaVuzz™~ is used to demonstrate
the effectiveness of using diffIFT as coverage. Instead of
using taint coverage, it randomly updates the secret encod-
ing block or regenerates a new transient window for each
round. The result shows that DejaVuzz achieves a 22% cov-
erage improvement over DejaVuzz™ and achieves the same
coverage in 7,200 iterations that DejaVuzz™ requires 20,000
iterations to reach. The coverage difference between them
demonstrates that using taints as coverage enables more
efficient microarchitecture exploration.

Liveness Evaluation. We also found an interesting phe-
nomenon that SpEcDocTor did not report any vulnerabilities
during the coverage evaluation. According to SPECDOCTOR’s
design, its phase 3 identified a total of 75 test cases that could



encode sensitive data into the timing components and gen-
erate different state hashes. And in its phase 4, SPECDOCTOR
attempts to generate random instructions to decode secrets
from those timing components. Unfortunately, SPECDocTOR
spent nearly a week executing 100,000 iterations without
finding any vulnerabilities. We use taint liveness annotations
to analyze all 75 test cases, and find that only 17 of them are
real leakages, while the rest are false positives. Most false
positives are caused by secrets that fail to be encoded into
the microarchitecture but still remain in the data cache. An
exception is an invalid test case that executes the transient
window during the training. Limited by poor microarchitec-
tural observability, SPECDOCTOR spends a significant amount
of time futilely generating random instructions to decode
unexploitable false positives. To further validate the effec-
tiveness of taint liveness annotations, we re-execute the test
cases using a DejaVuzz variant without taint liveness anno-
tations. Only 21 test cases are correctly identified, while the
remaining 54 cases are misclassified due to residual invalid
taints in physical registers or RoB. This highlights the effec-
tiveness of taint liveness annotations. With the help of the
liveness signals, DejaVuzz can identify exploitable leakages
without resorting to inefficient and nondeterministic random
decode instruction generation.

6.4 Bugs Found in Real-World Processors

Note that the coverage is only used to evaluate exploration,
higher coverage does not guarantee more bugs. Therefore,
we also compared the bugs found during the liveness eval-
uation. Table 5 categorizes all transient execution vulner-
abilities discovered by DejaVuzz based on the attack type,
transient window type, and exploited timing component.
In comparison, SPECDOCTOR can only encode sensitive data
into the dcache or trigger 1su port contention. Regarding first
bug detection time, SPECDOCTOR takes several days, whereas
DejaVuzz detects the first bug in an average of about 10
minutes with 16 threads. Similar to existing work [9, 12, 39],
DejaVuzz can cover all trigger variations of known transient
execution vulnerabilities, such as replacing the transient win-
dow triggered by a page fault in the Meltdown vulnerability
with one triggered by unaligned memory access. Addition-
ally, DejaVuzz discovers 5 previously undiscovered transient
execution vulnerabilities.

B1. MeltDown-Sampling (CVE-2024-44594) is a hybrid
vulnerability of Meltdown and MDS on XiangShan, allow-
ing attackers to sample controllable targets using illegal ad-
dresses within a transient window. DejaVuzz generates il-
legal addresses (e.g., 9x8000. . . 80004000) through the secret
access blocks with masks. Due to inconsistent wire widths,
when the illegal address is sent to the load unit from the
pipeline, the high-bit mask is implicitly truncated. Thus, at-
tackers can sample the secret located at 9x80004000.

B2. Phantom-RSB (CVE-2024-44591) is a vulnerability
on BOOM that allows transiently executed instructions to
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Table 5. Summary of discovered transient execution bugs.

——
Processor Attack Transient Window! Encoded Timing
Type Component
mem-excp i/dcache, (12)tlb, Isu
Meltdown mispred, i/dcache, (12)tlb
mem-disamb
BOOM i/dcache, (fau)btb,
mem-excp ) lsu. f
Spectre ras, loop, Isu, fpu
P mispred, i/dcache, ras,
mem-disamb loop, Isu, fpu
mem-exp,
Meltdown  mispred, illegal, i/dcache
XiangShan mem-disamb
mem-excp, .
Spect . 4. illegal i/dcache,
pectre mispred, illegal, Isu, fpu

mem-disamb

! mem-excp: load/store misalign, load/store access/page fault ex-
ceptions; mispredict: control-flow misprediction; illegal: illegal
instruction exception; mem-disamb: memory disambiguate.

2 1su: load unit contention; fpu: floating-point unit contention;
faubtb: first level branch target buffer; ras: return address stack;
loop: loop branch predictor.

update RSB. As shown in the code below, an attacker can
corrupt the RSB based on sensitive data. Although BOOM im-
plements a mitigation that restores the Top-Of-Stack (TOS)
pointer and the return address in the top entry after mispre-
dictions (line 11), DejaVuzz discovers that BOOM does not
restore entries below the TOS pointer (line 10). After the RSB
is corrupted, the attacker can leak the secret by measuring
the execution time of the ret instruction.

beq a0, a0, foo #
la to, secret #
1d s0, 0o(te)
andi s@, s0, Ox1 #
sub s@, x0, so #
auipc ra, @ #
and ra, ra, so #
12(ra) #
#
#
#

Predicting the branch untaken, now TOS—X
Loading secret

If secret=1, ra=addr of line6, a validy
addr; else ra=0, an illegal addr
Following code requires ra has a validy
addr, illegal addr will be blocked

jalr xo, Return to next, TOS—X-1
jalr x@, 16(ra) Return to next, TOS—X-2
jalr ra, 20(ra) Call to next, overwrite X-1
jalr ra, 24(ra) Call to next, overwrite X

B3. Phantom-BTB (CVE-2024-44590) is a vulnerability
similar to Boombard [18], where BOOM updates the BTB
for exceptions under certain conditions. The following code
illustrates the details. Due to a race condition bug in BOOM,
when an indirect jump misprediction coincides with an ex-
ception commit, BOOM misinterprets the exception as an
indirect jump and uses the prediction correction for the mis-
predicted indirect jump (line 12) to update the BTB entry
(line 1) of the instruction that triggered the exception.

1w to, 1(x0) # Triggering a misalign exception

la to, secret # Loading secret

1d s0, 0(te)

andi s@, s@, Ox1 # If secret=1, ra=addr of line6, a validy,
sub s@, x0, s@ # addr; else ra=0, an illegal addr

auipc ra, @ # Following code requires ra has a validy
and ra, ra, s@ # addr, illegal addr will be blocked

jalr x@, 12(ra)
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nop # Padding nop to make the finaly
# ... # misprediction commit with the,
nop # exception in the same cycle
jalr x@, 12(ra) # Misprediction

B4. Spectre-Refetch (CVE-2024-44592, CVE-2024-44593)
is a variant of Spectre-Rewind [10] discovered on both BOOM
and XiangShan. DejaVuzz found that the instruction address
can also be a resource to cause port contention. Specifically,
placing the secret dependent branch at an address that trig-
gers instruction cache miss causes the processor to preempt
the fetch component during transient execution. This allows
attackers to infer the secret by measuring the execution time
of the first instruction after the transient window.

B5. Spectre-Reload (CVE-2024-44595) is another variant
of Spectre-Rewind on XiangShan. DejaVuzz found that the
load pipeline and load queue contend on the load write-back
port of the memory access component. By replacing the
floating-point division instructions in the secret-dependent
branch of Spectre-Rewind with cache-hitting load instruc-
tions, attackers can detect increased latency in cache-missing
loads before the transient window.

All of the above vulnerabilities can be exploited to leak
sensitive data. B1 can directly leak secrets across privilege
boundaries, while B2-B5 require access permission for sensi-
tive data to trigger. We disclosed identified bugs by sending
bug reports to respective communities in accordance with
the security policies listed for the associated project. Accord-
ing to the maintainers, all vulnerabilities in XiangShan have
been fixed, while bugs in BOOM will be retained for future
research. Therefore, we recommend against using the BOOM
processor in security-critical environments.

7 Discussion and Limitation

Precision Trade-off. Implementing precise IFT is inevitably
expensive since it is an NP-complete problem [17]. Although
diffIFT can mitigate false positives caused by control flow
over-tainting, it also introduces false negatives due to the
inability to exhaustively compare all secrets. In practice, De-
jaVuzz, as a dynamic verification solution, can mitigate false
negatives by repeatedly attempting different secret pairs.
Training Preference. Some predictors may require longer
training patterns. For instance, in the case of branch mis-
predictions triggered by branch instructions, training a loop
predictor to trigger requires a much longer training instruc-
tion sequence compared to training a local branch history
table to trigger. Therefore, due to the training reduction
strategy, DejaVuzz prefers to choose the least costly training
instruction sequence.

Stimulus Migration. The stimuli generated by DejaVuzz
only work on swapMem. Fortunately, developers usually
only need simulation waveform files to pinpoint bugs. If the
stimuli must be migrated to a standard memory model (e.g.,
for writing general-purpose exploitations), careful manual
stitching of the packets is required.
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Manual Annotation. Since the state registers are coupled
to the implementation, they and their bound taints may
reside in different pipeline stages or even across modules.
Limited by the loss of semantic information during the design
synthesis to RTL, DejaVuzz currently relies on manual taint
liveness annotations. We leave the automatic taint liveness
annotation (such as using type-safe hardware description
languages or large language models) for future work.

8 Related Work

Processor Fuzzing. Encouraged by the promising results of
processor fuzzing on functional bugs [19, 20, 36, 53], several
approaches have applied processor fuzzing to transient exe-
cution vulnerabilities. INTROSPECTRE [12] and TEESEC [11]
use manually crafted gadgets to generate Meltdown-type
vulnerabilities and detect leakages by analyzing processor
runtime logs. SPECDoOCTOR [18] generates stimuli for tran-
sient execution attacks in multiple phases and determines
bugs by observing the final execution time. However, these
approaches have the following main limitations. First, they
linearly generate transient windows or randomly combine
instructions for training, resulting in limited diversity and
efficiency in triggering transient windows. Second, they can
only analyze shallow information from the microarchitec-
ture, making it impossible to provide feedback on the prop-
agation of sensitive data or identify exploitable leakages.
To solve these limitations, DejaVuzz uses swapMem to gen-
erate and optimize training instructions to trigger diverse
transient windows efficiently, and it employs differential in-
formation flow tracking to trace sensitive data to provide
coverage feedback and detect exploitable leakages.
Black-box Microarchitecture Fuzzing. Commercial pro-
cessors lack interfaces for obtaining fine-grained internal
state information, leading to limited fuzzing exploration
space. Most of the existing black-box fuzzers, such as Speech-
Miner [51] and Transynther [27], rely on domain knowledge
and can only detect vulnerability variants within a limited
template scope. Revizor [28, 29] introduces the model-based
relational testing approach that generates random instruc-
tions to trigger contract violations. However, due to the
limited microarchitectural controllability, they cannot even
cover some known vulnerabilities that require simple train-
ing. Integrating swapMem (e.g., through DMA) can provide
better control over the microarchitecture, facilitating deeper
testing of black-box processors.

Formal Verification. By rigorously defining speculative
contracts [13], ideally, formal verification can catch all tran-
sient execution bugs or prove security. However, in practice,
today’s formal verification tools usually suffer from limited
scalability and cannot be directly applied to complex out-
of-order processors. To bypass this limitation, optimized
verification schemes [9, 39, 43, 47] verify abstract models of
out-of-order processors. However, the efficacy of such formal



checks depends on the precision of the models (e.g., both
B2-B4 escape previous formal analyses on BOOM). DejaVuzz
can be used as a complement to formal verification to verify
implementation details that are ignored by the models.

9 Conclusion

In this paper, we presented DejaVuzz, a novel pre-silicon
processor fuzzer designed to detect transient execution vul-
nerabilities effectively and efficiently. DejaVuzz introduces
two innovative operating primitives to enhance microarchi-
tectural controllability and observability. By leveraging dy-
namic swappable memory and differential information flow
tracking, DejaVuzz efficiently triggers diverse transient win-
dows, effectively guides mutation, and identifies exploitable
leakages. We evaluated DejaVuzz on two well-known RISC-V
out-of-order processors and achieved up to 4.7x improve-
ment in coverage compared to the state-of-the-art fuzzer
SpEcDocTOR. Moreover, DejaVuzz identified 5 new transient
execution vulnerabilities (with 6 CVEs assigned), showing
its effectiveness in detecting previously unknown bugs.

References

[1] Salman Ahmed, Hans Liljestrand, Hani Jamjoom, Matthew Hicks,
N Asokan, and Danfeng Daphne Yao. Not all data are created equal:
Data and pointer prioritization for scalable protection against {Data-
Oriented} attacks. In 32nd USENIX Security Symposium (USENIX
Security 23), pages 1433-1450, 2023.

[2] Armaiti Ardeshiricham, Wei Hu, Joshua Marxen, and Ryan Kastner.
Register transfer level information flow tracking for provably secure
hardware design. In Design, Automation & Test in Europe Conference
& Exhibition (DATE), 2017, pages 1691-1696. IEEE, 2017.

[3] Enrico Barberis, Pietro Frigo, Marius Muench, Herbert Bos, and Cris-
tiano Giuffrida. Branch history injection: On the effectiveness of
hardware mitigations against Cross-Privilege spectre-v2 attacks. In
31st USENIX Security Symposium (USENIX Security 22), pages 971-988,
Boston, MA, August 2022. USENIX Association.

[4] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss, Moritz
Lipp, Marina Minkin, Daniel Moghimi, Frank Piessens, Michael
Schwarz, Berk Sunar, Jo Van Bulck, and Yuval Yarom. Fallout: Leaking
data on meltdown-resistant cpus. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, pages
769-784, 2019.

[5] Chen Chen, Rahul Kande, Nathan Nguyen, Flemming Andersen,
Aakash Tyagi, Ahmad-Reza Sadeghi, and Jeyavijayan Rajendran.
{HyPFuzz}:{Formal-Assisted} processor fuzzing. In 32nd USENIX
Security Symposium (USENIX Security 23), pages 1361-1378, 2023.

[6] Design Automation Standards Committee et al. Ieee standard vhdl
language reference manual. IEEE Std 1076-2008 (Revision of IEEE Std
1076-2002), pages 1-640, 2009.

[7] Benjamin Cox, David Evans, Adrian Filipi, Jonathan Rowanhill, Wei
Hu, Jack Davidson, John Knight, Anh Nguyen-Tuong, and Jason Hiser.
N-variant systems: A secretless framework for security through di-
versity. In USENIX Security Symposium, volume 114, page 114, 2006.

[8] Catherine Easdon, Michael Schwarz, Martin Schwarzl, and Daniel
Gruss. Rapid prototyping for microarchitectural attacks. In 31st
USENIX Security Symposium (USENIX Security 22), pages 3861-3877,
2022.

[9] Mohammad Rahmani Fadiheh, Alex Wezel, Johannes Miiller, Jorg
Bormann, Sayak Ray, Jason M Fung, Subhasish Mitra, Dominik Stoffel,
and Wolfgang Kunz. An exhaustive approach to detecting transient

14

execution side channels in rtl designs of processors. IEEE Transactions

on Computers, 72(1):222-235, 2022.
[10] Jacob Fustos, Michael Bechtel, and Heechul Yun. Spectrerewind: Leak-
ing secrets to past instructions. In Proceedings of the 4th ACM Workshop
on Attacks and Solutions in Hardware Security, pages 117-126, 2020.
Moein Ghaniyoun, Kristin Barber, Yuan Xiao, Yinqian Zhang, and Radu
Teodorescu. Teesec: Pre-silicon vulnerability discovery for trusted ex-
ecution environments. In Proceedings of the 50th Annual International
Symposium on Computer Architecture, pages 1-15, 2023.
Moein Ghaniyoun, Kristin Barber, Yingian Zhang, and Radu Teodor-
escu. Introspectre: A pre-silicon framework for discovery and analysis
of transient execution vulnerabilities. In 2021 ACM/IEEE 48th An-
nual International Symposium on Computer Architecture (ISCA), pages
874-887. IEEE, 2021.
Marco Guarnieri, Boris Kopf, Jan Reineke, and Pepe Vila. Hardware-
software contracts for secure speculation. In 2021 IEEE Symposium on
Security and Privacy (SP), pages 1868-1883. IEEE, 2021.
Jana Hofmann, Emanuele Vannacci, Cédric Fournet, Boris Képf, and
Oleksii Oleksenko. Speculation at fault: Modeling and testing microar-
chitectural leakage of {CPU} exceptions. In 32nd USENIX Security
Symposium (USENIX Security 23), pages 71437160, 2023.
Wei Hu, Armaiti Ardeshiricham, and Ryan Kastner. Hardware infor-
mation flow tracking. ACM Computing Surveys (CSUR), 54(4):1-39,
2021.
Wei Hu, Jason Oberg, Ali Irturk, Mohit Tiwari, Timothy Sherwood,
Dejun Mu, and Ryan Kastner. Theoretical fundamentals of gate level
information flow tracking. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 30(8):1128-1140, 2011.
Wei Hu, Jason Oberg, Ali Irturk, Mohit Tiwari, Timothy Sherwood,
Dejun Mu, and Ryan Kastner. On the complexity of generating gate
level information flow tracking logic. IEEE Transactions on Information
Forensics and Security, 7(3):1067-1080, 2012.
Jaewon Hur, Suhwan Song, Sunwoo Kim, and Byoungyoung Lee. Spec-
doctor: Differential fuzz testing to find transient execution vulnerabil-
ities. In Proceedings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security, pages 1473-1487, 2022.
Jaewon Hur, Suhwan Song, Dongup Kwon, Eunjin Baek, Jangwoo
Kim, and Byoungyoung Lee. Difuzzrtl: Differential fuzz testing to find
cpu bugs. In 2021 IEEE Symposium on Security and Privacy (SP), pages
1286-1303. IEEE, 2021.
Rahul Kande, Addison Crump, Garrett Persyn, Patrick Jauernig,
Ahmad-Reza Sadeghi, Aakash Tyagi, and Jeyavijayan Rajendran.
{TheHuzz}: Instruction fuzzing of processors using {Golden-
Reference} models for finding {Software-Exploitable} vulnerabili-
ties. In 31st USENIX Security Symposium (USENLX Security 22), pages
3219-3236, 2022.
Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, Michael Schwarz, and Yuval Yarom. Spectre attacks: Exploit-
ing speculative execution. Communications of the ACM, 63(7):93-101,
2020.
Esmaeil Mohammadian Koruyeh, Khaled N Khasawneh, Chengyu
Song, and Nael Abu-Ghazaleh. Spectre returns! speculation attacks
using the return stack buffer. In 12th USENIX Workshop on Offensive
Technologies (WOOT 18), 2018.
Kevin Laeufer, Jack Koenig, Donggyu Kim, Jonathan Bachrach, and
Koushik Sen. Rfuzz: Coverage-directed fuzz testing of rtl on fpgas. In
2018 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), pages 1-8. IEEE, 2018.
Xun Li, Mohit Tiwari, Jason K Oberg, Vineeth Kashyap, Frederic T
Chong, Timothy Sherwood, and Ben Hardekopf. Caisson: a hardware
description language for secure information flow. ACM Sigplan Notices,
46(6):109-120, 2011.

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]



[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval
Yarom, Mike Hamburg, and Raoul Strackx. Meltdown: Reading kernel
memory from user space. Communications of the ACM, 63(6):46-56,
2020.

Giorgi Maisuradze and Christian Rossow. ret2spec: Speculative ex-
ecution using return stack buffers. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, pages
2109-2122, 2018.

Daniel Moghimi, Moritz Lipp, Berk Sunar, and Michael Schwarz.
Medusa: Microarchitectural data leakage via automated attack synthe-
sis. In 29th USENIX Security Symposium (USENIX Security 20), pages
1427-1444, 2020.

Oleksii Oleksenko, Christof Fetzer, Boris Kopf, and Mark Silberstein.
Revizor: Testing black-box cpus against speculation contracts. In
Proceedings of the 27th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, pages
226-239, 2022.

Oleksii Oleksenko, Marco Guarnieri, Boris Képf, and Mark Silberstein.
Hide and seek with spectres: Efficient discovery of speculative infor-
mation leaks with random testing. In 2023 IEEE Symposium on Security
and Privacy (SP), pages 1737-1752. IEEE, 2023.

Oleksii Oleksenko, Bohdan Trach, Mark Silberstein, and Christof Fet-
zer. {SpecFuzz}: Bringing spectre-type vulnerabilities to the surface.
In 29th USENIX Security Symposium (USENIX Security 20), pages 1481-
1498, 2020.

Sebastian Osterlund, Koen Koning, Pierre Olivier, Antonio Barbalace,
Herbert Bos, and Cristiano Giuffrida. kmvx: Detecting kernel in-
formation leaks with multi-variant execution. In Proceedings of the
Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 559-572, 2019.
Tapti Palit, Jarin Firose Moon, Fabian Monrose, and Michalis Poly-
chronakis. Dynpta: Combining static and dynamic analysis for practi-
cal selective data protection. In 2021 IEEE Symposium on Security and
Privacy (SP), pages 1919-1937. IEEE, 2021.

Chathura Rajapaksha, Leila Delshadtehrani, Manuel Egele, and Ajay
Joshi. Sigfuzz: A framework for discovering microarchitectural timing
side channels. In 2023 Design, Automation & Test in Europe Conference
& Exhibition (DATE), pages 1-6. IEEE, 2023.

Babak Salamat, Todd Jackson, Andreas Gal, and Michael Franz. Or-
chestra: intrusion detection using parallel execution and monitoring
of program variants in user-space. In Proceedings of the 4th ACM
European conference on Computer systems, pages 33-46, 2009.
Edward ] Schwartz, Thanassis Avgerinos, and David Brumley. All
you ever wanted to know about dynamic taint analysis and forward
symbolic execution (but might have been afraid to ask). In 2010 IEEE
symposium on Security and privacy, pages 317-331. IEEE, 2010.
Flavien Solt, Katharina Ceesay-Seitz, and Kaveh Razavi. Cascade: Cpu
fuzzing via intricate program generation. In Proc. 33rd USENIX Secur.
Symp, pages 1-18, 2024.

Flavien Solt, Ben Gras, and Kaveh Razavi. {CellIFT}: Leveraging
cells for scalable and precise dynamic information flow tracking in
{RTL}. In 31st USENIX Security Symposium (USENIX Security 22),
pages 2549-2566, 2022.

Sycuricon. Starship SoC Generator. https://github.com/sycuricon/
starship.

Qinhan Tan, Yuheng Yang, Thomas Bourgeat, Sharad Malik, and
Mengjia Yan. Rtl verification for secure speculation using contract
shadow logic. arXiv preprint arXiv:2407.12232, 2024.

Donald Thomas and Philip Moorby. The Verilog® hardware description
language. Springer Science & Business Media, 2008.

Mohit Tiwari, Jason K Oberg, Xun Li, Jonathan Valamehr, Timothy
Levin, Ben Hardekopf, Ryan Kastner, Frederic T Chong, and Timothy
Sherwood. Crafting a usable microkernel, processor, and i/o system

15

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

with strict and provable information flow security. ACM SIGARCH
Computer Architecture News, 39(3):189-200, 2011.

Mohit Tiwari, Hassan MG Wassel, Bita Mazloom, Shashidhar Mysore,
Frederic T Chong, and Timothy Sherwood. Complete information
flow tracking from the gates up. In Proceedings of the 14th international
conference on Architectural support for programming languages and
operating systems, pages 109-120, 2009.

Caroline Trippel, Daniel Lustig, and Margaret Martonosi. Checkmate:
Automated synthesis of hardware exploits and security litmus tests.
In 2018 51st Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO), pages 947-960. IEEE, 2018.

Daniél Trujillo, Johannes Wikner, and Kaveh Razavi. Inception: Expos-
ing new attack surfaces with training in transient execution. In 32nd
USENIX Security Symposium (USENIX Security 23), pages 7303-7320,
2023.

Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Thomas F. Wenisch, Yu-
val Yarom, and Raoul Strackx. Foreshadow: Extracting the keys to
the Intel SGX kingdom with transient out-of-order execution. In Pro-
ceedings of the 27th USENIX Security Symposium. USENIX Association,
August 2018.

Stephan van Schaik, Alyssa Milburn, Sebastian Osterlund, Pietro Frigo,
Giorgi Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida.
RIDL: Rogue in-flight data load. In S&P, May 2019.

Zilong Wang, Gideon Mohr, Klaus von Gleissenthall, Jan Reineke, and
Marco Guarnieri. Specification and verification of side-channel secu-
rity for open-source processors via leakage contracts. In Proceedings
of the 2023 ACM SIGSAC Conference on Computer and Communications
Security, pages 2128-2142, 2023.

Ofir Weisse, Ian Neal, Kevin Loughlin, Thomas F Wenisch, and Baris
Kasikei. Nda: Preventing speculative execution attacks at their source.
In Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture, pages 572-586, 2019.

Sander Wiebing, Alvise de Faveri Tron, Herbert Bos, and Cristiano
Giuffrida. Inspectre gadget: Inspecting the residual attack surface of
cross-privilege spectre v2. In USENIX Security, 2024.

Johannes Wikner, Daniél Trujillo, and Kaveh Razavi. Phantom: Ex-
ploiting decoder-detectable mispredictions. In Proceedings of the 56th
Annual IEEE/ACM International Symposium on Microarchitecture, pages
49-61, 2023.

Yuan Xiao, Yingian Zhang, and Radu Teodorescu. SPEECHMINER:
A framework for investigating and measuring speculative execution
vulnerabilities. In 27th Annual Network and Distributed System Security
Symposium, 2020.

Jinyan Xu, Haoran Lin, Ziqi Yuan, Wenbo Shen, Yajin Zhou, Rui Chang,
Lei Wu, and Kui Ren. Regvault: hardware assisted selective data
randomization for operating system kernels. In Proceedings of the 59th
ACM/IEEE Design Automation Conference, pages 715-720, 2022.
Jinyan Xu, Yiyuan Liu, Sirui He, Haoran Lin, Yajin Zhou, and Cong
Wang. {MorFuzz}: Fuzzing processor via runtime instruction morph-
ing enhanced synchronizable co-simulation. In 32nd USENIX Security
Symposium (USENIX Security 23), pages 1307-1324, 2023.

Yinan Xu, Zihao Yu, Dan Tang, Guokai Chen, Lu Chen, Lingrui
Gou, Yue Jin, Qianruo Li, Xin Li, Zuojun Li, Jiawei Lin, Tong Liu,
Zhigang Liu, Jiazhan Tan, Huaqiang Wang, Huizhe Wang, Kaifan
Wang, Chuanqi Zhang, Fawang Zhang, Linjuan Zhang, Zifei Zhang,
Yangyang Zhao, Yaoyang Zhou, Yike Zhou, Jiangrui Zou, Ye Cai, Dan-
dan Huan, Zusong Li, Jiye Zhao, Zihao Chen, Wei He, Qiyuan Quan,
Xingwu Liu, Sa Wang, Kan Shi, Ninghui Sun, and Yungang Bao. To-
wards Developing High Performance RISC-V Processors Using Agile
Methodology. In 2022 55th IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 1178-1199, 2022.

Yuheng Yang, Thomas Bourgeat, Stella Lau, and Mengjia Yan. Pensieve:
Microarchitectural modeling for security evaluation. In Proceedings of


https://github.com/sycuricon/starship
https://github.com/sycuricon/starship

Security 23), pages 7267-7284, 2023.
[57] Jerry Zhao, Ben Korpan, Abraham Gonzalez, and Krste Asanovic.
Sonicboom: The 3rd generation berkeley out-of-order machine. May

2020.

the 50th Annual International Symposium on Computer Architecture,
pages 1-15, 2023.

[56] Ruiyi Zhang, Taehyun Kim, Daniel Weber, and Michael Schwarz. ({M)
WAIT} for it: Bridging the gap between microarchitectural and archi-
tectural side channels. In 32nd USENIX Security Symposium (USENLX

16



	Abstract
	1 Introduction
	2 Background
	2.1 Transient Execution Vulnerabilities
	2.2 Hardware Dynamic Information Flow Tracking
	2.3 Processor Fuzzing for Transient Execution Bugs

	3 Operating Primitives
	3.1 Challenges and Root Causes
	3.2 Dynamic Swappable Memory
	3.3 Differential Information Flow Tracking

	4 The DejaVuzz Framework
	4.1 Phase 1: Transient Window Triggering
	4.2 Phase 2: Transient Execution Exploration
	4.3 Phase 3: Transient Leakage Analysis

	5 Implementation
	6 Evaluation
	6.1 Experimental Setup
	6.2 Microarchitectural Controllability Evaluation
	6.3 Microarchitectural Observability Evaluation
	6.4 Bugs Found in Real-World Processors

	7 Discussion and Limitation
	8 Related Work
	9 Conclusion
	References

