
Bipartite Randomized Response Mechanism for
Local Differential Privacy*

Abstract—With the increasing importance of data privacy,
Local Differential Privacy (LDP) has recently become a strong
measure of privacy for protecting each user’s privacy from data
analysts without relying on a trusted third party. In many cases,
both data providers and data analysts hope to maximize the
utility of released data. In this paper, we study the fundamental
trade-off formulated as a constrained optimization problem:
maximizing data utility subject to the constraint of LDP budgets.
In particular, the Generalized Randomized Response (GRR)
treats all discrete data equally except for the true data. For
this, we introduce an adaptive LDP mechanism called Bipartite
Randomized Response (BRR), which solves the above privacy-
utility maximization problem from the global standpoint. We
prove that for any utility function and any privacy level, solving
the maximization problem is equivalent to confirming how many
high-utility data to be treated equally as the true data on release
probability, the outcome of which gives the optimal randomized
response. Further, solving this linear program can be compu-
tationally cheap in theory. Several examples of utility functions
defined by distance metrics and applications in decision trees and
deep learning are presented. The results of various experiments
show that our BRR significantly outperforms the state-of-the-art
LDP mechanisms of both continuous and distributed types.

Index Terms—local differential privacy, randomized response,
data utility

I. INTRODUCTION

In recent years, as concerns over data privacy have intensi-
fied, differential privacy (DP) has emerged as a vital approach
for protecting individual information [1]. DP, first introduced
by Dwork in 2006 [2], addresses the issue of privacy leakage
caused by minor changes in the data source. By employing
rigorous mathematical proofs, DP ensures that the output
information remains influenced by any single record only
within a specified threshold, thus preventing third parties from
inferring sensitive information based on output variations. In
DP, users provide real data to a central server, which acts
as a trusted entity to safeguard privacy. In contrast, Local
Differential Privacy (LDP) allows users to send data with
added noise directly to the central server. Both the true data of
users and the perturbed data they upload belong to the same
answer domain, ensuring that individual privacy is protected.

One foundational mechanism that inspired research in local
privacy-preserving techniques, including differential privacy,
is the Randomized Response (RR) mechanism introduced
by Warner [3]. RR was specifically designed to protect the
privacy of survey respondents by introducing uncertainty into
their answers. Respondents answer sensitive Boolean questions
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Fig. 1. Operational Process of the BRR Mechanism: assigning publishing
probabilities based on similarity to true values

by following a predefined probabilistic procedure. Instead of
always answering truthfully, respondents flip a biased coin:
they provide their truthful answer with a fixed probability p
and respond wrongly with probability 1-p. This obfuscation
ensures that an individual’s true response remains hidden while
enabling accurate aggregate statistics to be computed across a
population.

While RR is effective for protecting binary data, its ap-
plicability is limited to scenarios where the answer domain
consists of only two values. To overcome this limitation, the
Generalized Randomized Response (GRR) mechanism was
proposed. GRR extends the RR mechanism to accommodate
larger answer domains with N possible values. Under GRR,
the data publisher selects and reports the true value with a
fixed probability p, while assigning an equal probability to
each of the remaining N-1 values with probability 1−p

N−1 . This
extension retains the privacy-preserving properties of RR while
broadening its applicability to use cases involving multi-valued
categorical data, such as user preferences, survey responses,
or demographic attributes.

However, it is important to note that in most scenarios, the
data within the answer domain often exhibit a certain degree of
similarity, which is not accounted for by the GRR mechanism.
To address this limitation, the Bipartite Randomized Response
(BRR) mechanism, proposed in this paper, incorporates the
similarity between the true value and other values in the
answer domain. Building on the GRR framework, BRR adjusts
the probabilities assigned to each possible value based on their
similarity to the true value, rather than adhering strictly to

ar
X

iv
:2

50
4.

20
92

6v
1 

 [
cs

.C
R

] 
 2

9 
A

pr
 2

02
5



GRR BRR

y1

yixi

yN

yi1

yim

yN

...

y1

ii
mm min

 :),(minarg ki QLossm
k

i 

......
......*kP  Prob.   withpoints k

......
......

xi mNme
epm 

 


*(                         )(                  )1


Ne

ep 



Fig. 2. Probability assignment in the BRR mechanism compared to GRR

the binary relationship between p and 1-p. This concept is
illustrated in Figure 1.

For instance, when querying the highest score in a class’s
final assessment, the GRR mechanism would publish the actual
highest score x (e.g., 99) with a probability p, while assigning
an equal probability q to all other scores in the class. This
approach, however, introduces bias because scores close to
the highest score (e.g., 98, 97, 96) are treated the same as
scores significantly lower than the highest (e.g., 50 or 40).
The BRR mechanism resolves this issue by redistributing the
probabilities. In BRR, scores such as 98, 97, and 96, which
are close to the true value, are assigned a modified probability
p*, while all other scores are assigned a new probability q*.
Notably, p* and q* satisfy the relationships p*<p, q*<q, and
p*>q*.

This redistribution ensures that the probabilities for the
true value and values significantly different from the true
value are reduced, while the probabilities for values close
to the true value are increased. When the privacy budget
and the answer threshold d remain constant, this adjustment
strengthens privacy protection while potentially enhancing the
efficiency of data queries. Consequently, BRR offers a more
refined probability allocation that theoretically improves query
performance under stricter privacy guarantees.

Figure 2 illustrates the operational process of the BRR
mechanism. Let X denote the space of true values and Y
the space of published values, where Y has the same response
domain as X . When perturbing a specific xi, BRR assigns
higher publishing probabilities to the m values most similar
to xi, based on the degree of similarity to other values. It
is important to note that this similarity is not necessarily
reciprocal. For instance, when xi is the true value, it has a
set of similar answers Ym, and suppose yi belongs to this
set. However, when yi is the true value, it also has a set of
similar answers based on yi, but xi may not belong to that set.
By adjusting the publishing probabilities, BRR increases the
likelihood of publishing data that is closer to the true value
while decreasing the likelihood for data that is farther from the
true value. This reallocation mechanism renders the publishing
probabilities more rational.

The main contributions of this article are summarized be-
low:

• This paper takes into account data utility to allocate
publication probabilities for the first time. We introduce
an adaptive LDP mechanism called Bipartite Randomized
Response (BRR) that builds upon the GRR mechanism by
incorporating the notion of data similarity. It reallocates
the release probabilities of the data in the answer domain
based on the true value, thereby avoiding the issue where
values close to the true value are assigned the same
release probability as vastly different values.

• The BRR mechanism enhances data query utility. This
optimization theoretically improves the utility of data
queries under the same privacy budget and answer do-
main conditions, providing more useful data release out-
comes.

• Under the framework of differential privacy, the BRR
mechanism achieves stronger privacy protection by op-
timizing the allocation of release probabilities. The intro-
duction of p* and q* ensures that the release probabilities
of the true value and values close to it are higher, while
reducing the probabilities for erroneous values. This
balance enhances privacy protection while simultaneously
improving data utility.

Roadmap. The second section introduces the related work.
In the third section, requisite foundational knowledge is elu-
cidated. The fourth section expounds in detail on the BRR
mechanism proposed herein. The fifth section presents some
comparative experiments between BRR and other response
mechanisms. The sixth section offers a comprehensive con-
clusion of this paper.

II. RELATED WORK

A. Advancements in LDP Mechanisms

Warner’s RR method pioneered privacy protection and laid
the groundwork for the later development of local differ-
ential privacy (LDP) theory. (2006) [2] were the first to
systematically introduce the concept of differential privacy,
theorizing the noise-adding mechanism based on sensitivity.
Holohan et al. (2017) [4] provided an optimal mechanism for
Warner’s original RR technique, achieving the best application
of differential privacy in randomized response surveys. Dwork
et al. These foundational theories set the stage for subsequent
advancements in both LDP mechanisms and applications.



With advances in technology, Kairouz et al. (2016) [5]
proposed the k-ary randomized response (k-RR, also known
as GRR or CRR, and referred to as GRR in this paper), which
extended traditional binary response to satisfy differential
privacy in multi-value data environments. This mechanism
achieved the optimal balance of privacy and utility under
convex utility functions, forming the theoretical basis for the
BRR mechanism in this study. Building on GRR, Arcolezi et
al. (2024) [6] introduced a series of enhanced LDP protocols,
such as L-GRR, OUE (Optimized Unary Encoding), and SUE
(Symmetric Unary Encoding), further improving the appli-
cability of privacy protection in longitudinal data collection.
Makhlouf et al. (2024) [7] discussed the fairness issues of LDP
under multiple sensitive attributes, highlighting the potential of
the GRR mechanism in ensuring fairness.

Duchi et al. (2013) [8] studied the privacy-accuracy trade-
offs in data tasks such as mean estimation, establishing a theo-
retical foundation for the application of differential privacy. Li
et al. (2017) [9] reviewed the ϵ-differential privacy framework
and its applications, while Chen et al. (2016) [10] delved into
the utility and complexity of personalized local differential
privacy (PLDP), expanding the applicability of personalized
privacy protection. Song et al. (2020) [11] further proposed
the personalized randomized response (PRR) mechanism, en-
abling LDP to adapt more flexibly to individual differences by
setting different privacy requirements for distinct data values.
Wang et al. (2017) [12] proposed a generalizable aggregation
framework to optimize protocol parameters through a sim-
plified aggregation algorithm, improving the utility of data
collection. Zhang et al. (2018) [13] developed the CALM
method, which selectively collects subset attributes to reduce
noise impact, significantly enhancing the accuracy of marginal
statistics in high-dimensional data.

B. Federated Learning with LDP

In the field of federated learning (FL), Truex et al. (2020)
[14] proposed the LDP-Fed system, which combines LDP with
FL for privacy protection in distributed data, particularly suited
for high-dimensional data scenarios. Zhao et al. (2020) [15]
developed the LDP-FedSGD algorithm, which protects model
privacy by adding noise during gradient upload, addressing
some shortcomings of traditional differential privacy in fed-
erated learning. LDP-FedSGD not only protects the privacy
of individual gradients but also maintains high utility in the
trained models, making it a versatile solution for privacy-
preserving federated learning.

Meanwhile, Wei et al.(2021) [16] proposed the UDP model
for mobile scenarios. The UDP model enables users to dynam-
ically adjust their privacy budget based on individual privacy
preferences or application requirements, allowing for a more
personalized trade-off between privacy and model accuracy.
This adaptability is particularly valuable in scenarios where
user devices have varying computational capacities and privacy
needs, making the UDP model a practical solution for real-
world federated learning applications.

C. Applications and Challenges in Data Mining and Machine
Learning

In data mining, Bai et al. (2017) [17] and Fletcher, Islam
et al. (2019) [18] combined differential privacy with deci-
sion tree models, proposing a multilayer DP model based
on Markov Chain Monte Carlo to effectively balance pri-
vacy protection and model performance. To optimize LDP’s
frequency estimation performance, Fang et al. (2023) [19]
proposed a convolution-based frequency estimation method
that reduces LDP noise through deconvolution, significantly
enhancing frequency statistics accuracy. Yang et al. (2024) [20]
highlighted the importance and feasibility of LDP in protecting
user privacy.

Many studies have proposed different differential privacy
techniques to address the challenges posed by data sensitivity.
Abadi et al. (2016) [21] proposed a method for training deep
neural networks with differential privacy, providing privacy
protection for machine learning on sensitive datasets. Bassily
and Smith (2015) [22] proposed an efficient LDP protocol for
accurately counting high-frequency items. Studies by Smith
et al. (2017) [23] and Wang et al. (2018) [24] focused on
optimizing the interactive rounds and sample complexity of
LDP, proposing methods to reduce computational costs and
improve accuracy. Yan et al. (2023) [25] achieved privacy
protection for location data by optimizing randomized re-
sponse with Hilbert curves, enhancing privacy effectiveness
for geographic data. Wu et al. (2020) [26] investigated noise
injection to protect privacy in distributed machine learning in
multi-data-owner environments. Gutiérrez et al. (2024) [27]
introduced a privacy-preserving framework for fog computing
environments while maintaining model accuracy. Cao et al.
(2021) [28] investigated data poisoning attacks on LDP pro-
tocols and proposed defense methods. Teng et al. (2021) [29]
proposed LDP algorithm capable of providing higher accuracy
for handling numerical and categorical data.

Through an in-depth analysis of existing studies, Wang et
al. (2023) [30] summarized the applications and challenges
of DP in deep learning, including the trade-offs between
where noise is introduced, accuracy, and privacy, and the
types of DP noise added. Gursoy et al. (2019) [31] proposed
the Cohesive Local Differential Privacy (CLDP) mechanism,
which concentrates privacy protection on data collection for
smaller groups, improving applicability in network security
for small-scale data. Niu et al. (2021) [32] introduced the
AdaPDP mechanism, which dynamically adjusts noise distri-
bution based on user privacy needs, enhancing LDP adapt-
ability to diverse privacy demands. In high-dimensional data
and IoT contexts, Arachchige et al. (2020) [33] improved
privacy protection in convolutional neural network training
with the LATENT mechanism, providing an efficient privacy
solution for IoT devices. Arcolezi et al.(2021) [34] studied
multidimensional data frequency estimation under LDP and
proposed a multidimensional LDP scheme to address the
combined privacy budget challenge.

Rachel et al. (2021) [35] conducted a user survey to explore



TABLE I
SUMMARY OF NOTATIONS

Symbol Definition

X the space of true valuest
Y the space of published values, identical to the space of X
N the publish domain, N = |Y |
Ym the set of m terms most similar to a specific true value
ϵ privacy budget
p probability of publishing the true item in RR or GRR
q probability of publishing non-true item in RR or GRR
m the unified count of high-weighted terms
p∗ probability of publishing the true and close item in BRR
q∗ probability of publishing non-true and non-close item in BRR
i index of the current item in the utility sequence
j index used to traverse all terms
k index of the real term currently being processed
λi similarity value of the i-th item with respect to the real item
λ
(k)
i similarity of the i-th item in the k-th event

si similarity weight of the i-th item, initialized as s1 = eϵ

s
(k)
i similarity weight of the i-th item in the k-th event
wi normalized probability weight for the i-th item, Σiwi = 1

w
(k)
i normalized weight of the i-th item in the k-th event

Q the total utility function defined as Q = Σiλiwi

π(k) the prior probability distribution of the k-th occurrence
Q(k) the utility function of the k-th local event, Q(k) = Σiλ

(k)
i w

(k)
i

Qg the global utility function, defined as Qg =
∑

k

∑
i λ

(k)
i si∑
j sj

users’ perceptions and expectations of differential privacy,
pointing out the importance of improving data utility while
protecting privacy. Kairouz, Bonawitz, and Ramage (2016)
[36] presented new mechanisms, including hashed kRR, which
outperform existing mechanisms in utility across all privacy
levels. Wang et al. (2019) [37] proposed the PEM protocol,
optimizing utility and computational complexity by grouping
users and reporting value prefixes. Gutiérrez et al. Murakami
and Kawamoto (2019) [38] introduced Utility-optimized LDP
(ULDP), specifically designed to improve utility in contexts
containing large amounts of non-sensitive data.

D. Direction

LDP demonstrates remarkable diversity and adaptability
across various application scenarios, including federated learn-
ing and data mining, with extensive exploration into the appli-
cation and optimization of LDP under privacy protection. Al-
though significant strides have been made, ongoing challenges
remain in refining privacy-utility trade-offs and enhancing
the adaptability of protocols for complex data environments,
pointing to future areas for research and improvement. Based
on GRR, this article proposes a new mechanism to improve
the utility of data while protecting privacy.

III. FOUNDATIONAL KNOWLEDGE

In this subsection, we delve into the concept of ϵ-differential
privacy, local differential privacy and associated noise-adding
mechanisms, including Randomized Response (RR), General-
ized Randomized Response (GRR), the Exponential Mecha-
nism, and the Laplace Mechanism. These methods constitute
pivotal techniques for implementing differential privacy, and
each will be elucidated in detail below.

A. ϵ-Differential Privacy and Local Differential Privacy

DP and LDP are both privacy-preserving mechanisms used
to protect sensitive data. While both methods aim to ensure
privacy, they differ in their implementation and application
scenarios.

Differential Privacy is defined as follows. Given a ran-
domized algorithm M that takes a dataset D as input and
produces an output, M satisfies ϵ-differential privacy if for
all neighboring datasets D and D′ (datasets that differ in only
one data point) and for any subset S of the output space, the
following condition holds:

Pr[M(D) ∈ S] ≤ eϵ · Pr[M(D′) ∈ S]. (1)

Here, D and D′ are neighboring datasets, differing by only
one data point. S is a subset of the algorithm’s output space.
ε is the privacy parameter that controls the level of privacy
protection.

Differential Privacy ensures that the presence or absence of
a single data point does not significantly affect the output, thus
safeguarding individual data privacy.

Local Differential Privacy differs from traditional Differen-
tial Privacy in that it does not require a trusted third party to
process the data. Instead, data is privatized at the user level
before it is sent to a central authority. An algorithm M satisfies
ϵ-Local Differential Privacy if, for any two possible inputs x
and x′ and for any output y, the following condition holds:

Pr[M(x) = y] ≤ eε · Pr[M(x′) = y]. (2)

M is the mechanism that adds noise to the data. ε is the
privacy budget, controlling the level of privacy protection. x
and x′ are any two distinct input values. y is the output of the
algorithm.

In LDP, each user adds noise locally before sending the
perturbed data to the central data collector. This ensures that
the data collector only receives the noisy version of the
data and cannot infer the original data, effectively preserving
individual privacy.

B. Exponential Mechanism

The Exponential Mechanism, introduced by McSherry and
Talwar in 2007 [39], is a versatile differential privacy mecha-
nism suitable for arbitrary query ranges. The fundamental prin-
ciple involves selecting outputs from the output space based
on a score function. The score function q(D, r) measures
the quality of output r for the database D. The Exponential
Mechanism is defined as:

Pr[M(D) = r] ∝ exp

(
ϵq(D, r)

2∆q

)
, (3)

where ∆q is the sensitivity of the score function, representing
the maximum change in the score function due to a single-
element change in the database.



C. Laplace Mechanism

The Laplace Mechanism( [40], [41]) is one of the most com-
monly employed methods for achieving differential privacy. It
accomplishes privacy protection by adding noise drawn from
a Laplace distribution to the query results. For a given query
function f , the noisy output is defined as:

M(D) = f(D) + Laplace
(
∆f

ϵ

)
. (4)

Here, Laplace(λ) denotes a Laplace distribution with a mean
of 0 and scale parameter λ, and ∆f is the sensitivity of the
query function f .

D. Randomized Response (RR)

Randomized Response, originally proposed by Warner in
1965 [3], is a technique for anonymized surveys. Its core idea
is that respondents answer sensitive questions according to
a probabilistic mechanism. Respondents use a probabilistic
method (typically involving a coin flip or another random
process) to determine their answers to sensitive questions. This
method ensures that even if researchers know the respondents’
answers, they cannot ascertain whether the respondents are
providing truthful responses, thereby protecting the respon-
dents’ privacy.

E. Generalized Randomized Response (GRR)

Unlike the classical method, which typically deals with
binary responses, GRR is designed to handle multi-category
problems. It introduces various probabilistic noise mechanisms
into the response process to protect privacy. For a question
with N possible answers, a respondent might randomly select
an answer based on a probability distribution. The GRR
method preserves individual privacy while enabling unbiased
estimation of the overall data.

To satisfy ϵ-differential privacy in the GRR context, each
possible answer can be chosen with the following probabili-
ties:

Pr[y|x] =

{
eϵ

eϵ+N−1 if y = x,
1

eϵ+N−1 if y ̸= x.
(5)

Where x is true answer, which is the actual choice of the
respondent. And y represents the reported answer, which
may or may not be the same as the true answer x. This
setup ensures that the mechanism adheres to the ϵ-differential
privacy requirements. By adjusting the probabilities, the GRR
mechanism effectively balances the trade-off between privacy
protection and data accuracy across multiple categories.

IV. DETAILED DESIGN AND IMPLEMENTATION OF BRR

In this section, we first introduce the mathematical expres-
sion of BRR. Then we primarily focus on determining the
number of terms m in the BRR mechanism, dividing the
discussion into the optimal cases for local real terms and
globally prior real occurring terms.

A. Bipartite Randomized Response (BRR)

In the BRR mechanism, a pivotal aspect lies in elevating
the publishing probability of m other values similar to the
true value to match that of the true value itself. When m = 1,
indicating the absence of other values closely resembling the
true value, p = p∗, thereby equating BRR to GRR. Let Ym

denote the set containing the true value and its similar values.
Clearly, Ym ⊆ Y .

Under the premise of satisfying differential privacy, BRR
can be expressed as:

Pr[y|x] =

{
eϵ

meϵ+N−m if y ∈ Ym,
1

meϵ+N−m if y /∈ Ym.
(6)

Through the careful allocation of publishing probabilities p*
and q* , BRR reduces the likelihood of disclosing erroneous
values that deviate significantly from xi. This balance between
data utility and privacy enhancement makes BRR a promising
mechanism in the realm of differential privacy.

B. m in Local Bipartite Randomized Response Mechanism

For local publishing, starting from a determined real term,
let λi denote the similarity of each term to it. The utility
value can be simply defined and directly uses the similarity
(or a functional relationship of the similarity). After sorting,
we have:

λ1 ≥ λ2 ≥ · · · ≥ λN > 0.

The corresponding probability distribution weights si satisfy:

eϵ = s1 ≥ s2 ≥ · · · ≥ sN = 1.

The sum of si is normalized to wi such that Σiwi = 1. The
utility is defined as Q = Σiλiwi, where wi =

si
Σjsj

. Therefore,
Q = Σiλisi

Σjsj
. To further explore the effect of si on Q, we take

the partial derivative of Q with respect to si :

∂Q

∂si
=

λiΣjsj − Σjλjsj
(Σjsj)2

=
Σj(λi − λj)sj

(Σjsj)2
. (7)

It can be observed that the monotonicity of Q with respect
to si is independent of the values of si. Based on this, to
maximize the utility Q, we start by initializing it as the GRR
mechanism, i.e., s1 = eϵ, s2, . . . , sN are uniformly assigned
the minimum value 1. Next, we incrementally increase s2
to the maximum value s1 = eϵ, then successively increase
s3, s4, . . ., until some si satisfies ∂Q

∂si
≤ 0. At this point,

si, . . . , sN remain unchanged and are uniformly assigned the
minimum value 1. The detailed algorithmic process is pre-
sented comprehensively in Algorithm 1. However, for different
given occurrences, the optimal discrete probability distribution
and the corresponding high probability count m can vary,
which violates differential privacy protection.



Algorithm 1 Local highest-utility response search algorithm
Input: utility sequence λ1 ≥ λ2 ≥ · · · ≥ λN > 0, privacy

budget ϵ
1: Initialize: s1 = eϵ, s2 = · · · = sN = 1, w1 = eϵ

eϵ+N−1 ,
w2 = . . . = wN = 1

eϵ+N−1 , Q = Σiλiwi, m = 1
2: for i = 2 to N do
3: Compute ∂Q

∂si
=

Σj(λi−λj)sj
(Σjsj)2

4: if ∂Q
∂si

> 0 then
5: si = eϵ, m = i
6: else
7: Break
8: end if
9: end for

10: for i = 1 to N do
11: wi =

si
Σjsj

12: end for
Output: (w1, . . . , wN ) and m

C. m in Bipartite Randomized Response Mechanism

For global processing similar to local, considering the real
occurrence k, we first sort the similarity λ

(k)
i and weights s(k)i

as follows:

λ
(k)
1 ≥ λ

(k)
2 ≥ · · · ≥ λ

(k)
N , s

(k)
1 ≥ s

(k)
2 ≥ · · · ≥ s

(k)
N .

The weights s
(k)
i are summed and normalized to generate

w
(k)
i =

s
(k)
i

Σjs
(k)
j

with satisfying Σiw
(k)
i = 1.

For the occurrence item k, the initial weight vector s(k) is
distributed according to the GRR mechanism, where the first
weight is eϵ and the remaining weights are 1. Based on this,
the utility function is defined as Q(k) =

∑
i λ

(k)
i wi.

Starting from the second weight s
(k)
2 , each weight is ad-

justed sequentially. During the adjustment process, the partial
derivative of the utility function Q(k) with respect to s

(k)
i is

calculated to determine whether increasing the current weight
can improve the utility function.

Once the weights of all occurrence items k have been
optimized, the minimum value m = mink m

(k) is selected
as the global final threshold.

To put it simply, we compare the optimal m(k) derived from
each local BRR mechanism and select the minimum value,
This allows us to construct a unified global BRR mechanism.
In this global BRR mechanism:

• For each local occurrence k, m(k) high-weighted items
are assigned a probability of eϵ, while the remaining items
are assigned a probability of 1.

• m is chosen as the smallest m(k) across all occurrences,
ensuring uniformity and efficiency across different local
scenarios.

The core idea of BRR mechanism is to dynamically ad-
just the weight distribution under the constraints of privacy
protection, improving utility and achieving a balance between
utility and privacy. Algorithm 2 outlines the process of creating
a global BRR mechanism by combining several local BRR

Algorithm 2 Bipartite Randomized Response Mechanism
(BRR)

Input: utility matrix {λ(k)
j }N×N with λ

(k)
1 ≥ λ

(k)
2 ≥ · · · ≥

λ
(k)
N > 0, privacy budget ϵ

1: Initialize: s
(k)
1 = eϵ, s(k)2 = · · · = s

(k)
N = 1, m(k) = 1

2: for k = 1 to N do
3: w1 = eϵ

eϵ+N−1 , w2 = . . . = wN = 1
eϵ+N−1 , Q(k) =

Σiλ
(k)
i wi

4: for i = 2 to N do
5: Compute ∂Q(k)

∂s
(k)
i

=
Σj(λ

(k)
i −λ

(k)
j )s

(k)
j

(Σjs
(k)
j )2

6: if ∂Q(k)

∂s
(k)
i

> 0 then

7: s
(k)
i = eϵ, m(k) = i

8: else
9: Break

10: end if
11: end for
12: end for
13: Compute m = mink m

(k)

14: for i = 1 to N do
15: if i ≤ m then
16: wi =

eϵ

meϵ+N−m
17: else
18: wi =

1
meϵ+N−m

19: end if
20: end for
Output: (w1, . . . , wN ) and m

mechanisms. Ensuring that all local occurrences are treated
consistently by using the same number of high-weighted items
across the entire system. By selecting the smallest m, the
global mechanism avoids overestimating the number of high-
weighted items. This unified approach balances the trade-
offs between local variations and global consistency in a
differentially private setting.

D. BRR mechanism for natural number sequence

Let λ represent the distance between two numbers, using
the Euclidean distance as the measure of utility loss, which
is represented by the absolute value of the difference. Start-
ing from any integer point, when the distance between two
numbers is smaller, λ is smaller. After sorting λ, we have
0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λN . For the numbers 1 ∼ N , the
distance array λ[i] for item 1 is [0, 1, 2, 3, · · · , N − 1]; the
distance array for item 2 is [0, 1, 1, 2, 3, · · · , N − 2]. Initially,
the corresponding probability distribution is s1 = eϵ, with
the rest si being 1. To minimize utility loss, we need to
increment s2, · · · successively until some si satisfies ∂Q

∂si
=

Σj(λi−λj)sj
(Σjsj)2

≥ 0, which depends on the sign of the numerator
Σj(λi − λj)sj in the partial derivative result.

Since the distances are sorted in ascending order, for adja-
cent items k′ and k each starting from their respective prior
positions, there are j0 distances that are equal, as shown in



the elliptical region in Figure 3, i.e., λ′
1 = λ1, λ′

2 = λ2,· · · ,
λ′
j0

= λj0 . For the remaining N − j0 distances, we have
λ′
j0+1 = λj0+1 + 1, λ′

j0+2 = λj0+2 + 1, · · · ,λ′
N = λN + 1.

When considering increasing the probability weight si, if
i ≤ j0, then λ′

i = λi. when j ≤ j0, λ′
j = λj ; and when

j > j0, λ′
j = λj + 1. Let∑
j

(λ′
i − λ′

j)sj

=

j0∑
j=1

(λ′
i − λ′

j)sj +

N∑
j=j0+1

(λ′
i − λ′

j)sj

=

j0∑
j=1

(λi − λj)sj +

N∑
j=j0+1

(λi − (λj + 1))sj

=

j0∑
j=1

(λi − λj)sj +

N∑
j=j0+1

(λi − λj)sj −
N∑

j=j0+1

sj

=
∑
j

(λi − λj)sj −
N∑

j0+1

sj

≤
∑
j

(λi − λj)sj .

In Figure 3, this shows the monotonicity relationship within
the same column in the lower triangular red region, specifically
indicating that the numerator factor of the partial derivative of
utility loss for the item below is greater than the corresponding
factor for the item above when considering increasing the
probability weight.

If i > j0, then λ′
i = λi + 1. When j ≤ j0, λ′

j = λj ; and
when j > j0, λ′

j = λj + 1. Therefore,∑
j

(λ′
i − λ′

j)sj

=

j0∑
j=1

(λ′
i − λ′

j)sj +

N∑
j=j0+1

(λ′
i − λ′

j)sj

=

j0∑
j=1

(λi + 1− λj)sj +

N∑
j=j0+1

(λi + 1− (λj + 1))sj

=

j0∑
j=1

(λi − λj)sj +

N∑
j=j0+1

(λi − λj)sj +

j0∑
j=1

sj

=
∑
j

(λi − λj)sj +

j0∑
j=1

sj

>
∑
j

(λi − λj)sj .

In Figure 3, this demonstrates the monotonicity relationship
within the same column in the upper triangular green region,
specifically indicating that the numerator factor of the partial
derivative of utility loss for the item below is less than the
corresponding factor for the item above.

Based on Figure 3, if the threshold value i for changing
the sign of the partial derivative appears before j0 (in the

Fig. 3. Monotonicity comparison of the BRR mechanism with Euclidean
distance utility loss for array 1-N

red region), the lower rows will always reach the threshold
before the upper rows. In this case, starting from the midpoint
N/2 as the prior, the bottom-most row achieves the smallest
m. Conversely, if the threshold appears after j0 (in the green
region), the row k will reach the threshold before k′. In this
scenario, starting from the edge points 1 or N as the prior,
the top-most row achieves the smallest m. Figure 3 depicts
the situation where N is even; the case for odd N is similar
and will not be elaborated further.

Hence, it can be seen that the minimum m is obtained when
the true term is at the extreme point or the middle point. If it
is at the extreme point, we have

i−1∑
j=1

(λi − λj)e
ϵ +

N∑
j=i+1

(λi − λj)1

=
(1 + i− 1)(i− 1)

2
eϵ − (1 +N − i)(N − i)

2

=
i(i− 1)

2
eϵ − (N − i)2

2
− N − i

2

=
1

2
(eϵ − 1)i2 +

(
N − 1

2
eϵ +

1

2

)
i− 1

2
N2 − 1

2
N

(8)

which is a quadratic function in i, where ∆ = N2eϵ + 1
4 (1−

eϵ)2 > 0. i is a positive integer, and we get m1 = i =⌊√
N2eϵ+ 1

4 (1−eϵ)2−(N− eϵ

2 + 1
2 )

eϵ−1

⌋
.

Since the arrangement of the median depends on N , if the
minimum m is obtained at the middle point, it is necessary
to consider the two different cases when N is odd or even. In
the median, there are many paired values, making the paired
i always odd. Here, only the case where i is odd needs to be
considered.

For even N :

i−1∑
j=1

(λi − λj)e
ϵ +

N∑
j=i+1

(λi − λj)× 1

=
(eϵ − 1)

4
i2 +

N − (eϵ − 1)

2
i+

(eϵ − 1)−N2 − 2N

4

(9)

where ∆ = eϵ

4 N
2. We have i =

⌊
N

e
ϵ
2 +1

+ 1
⌋

.



For odd N :
i−1∑
j=1

(λi − λj)e
ϵ +

N∑
j=i+1

(λi − λj)× 1

=
i− 1

2
eϵ + (1 + 2 + · · ·+ i− 1

2
− 1)eϵ × 2

− (1 + 2 + · · ·+ N − 1

2
− i− 1

2
)× 2

=
(eϵ − 1)

4
i2 +

N − (eϵ − 1)

2
i+

(eϵ − 1)− 2N −N2 + 1

4
(10)

where ∆ = eϵ

4 (N
2 − 1) + 1

4 . We have i =⌊√
eϵ(N2−1)+1−N

eϵ−1 + 1

⌋
. If i is odd, then m2 = i; if i is even,

then m2 = i+ 1.
In conclusion, we just need to compare the m values

obtained at the extreme point and the middle point, and take
the smaller one as the final result m = min{m1,m2}.

For ease of discussion, let y =
∑i−1

j=1(λi − λj)e
ϵ +∑N

j=i+1(λi − λj)1. If the minimum m is obtained at the
extreme point, we have y1 = (eϵ−1)

2 i2 +
(
N − eϵ

2 + 1
2

)
i −

N2

2 − N
2 . If the minimum m is obtained at the middle point,

then for even N , we have y2 = (eϵ−1)
4 i2 + N−(eϵ−1)

2 i +
(eϵ−1)

4 − N
2 − N2

4 , and for odd N , we have y3 = (eϵ−1)
4 i2 +

N−(eϵ−1)
2 i+ (eϵ−1)

4 − N
2 − N2

4 + 1
4 . It can be observed that y3

can be obtained by shifting y2 upwards by 1
4 units. Therefore,

the left root of y3 is greater than the left root of y2, and the
right root of y3 is smaller than the right root of y2. The left

root of y3 is i3l = 1− N+
√

eϵ(N2−1)+1

eϵ−1 < 1, thus the left root
of y2 is also less than 1.

To analyze which of m1 or m2 is larger, it is necessary to
compare the right root of y1, i1r, with the right root of y3
when N is odd, i3r.

i1r =

√
N2eϵ + 1

4 (1− eϵ)2 − (N − eϵ

2 + 1
2 )

eϵ − 1

<
Ne

ϵ
2 + 1−eϵ

2 − (N − eϵ

2 + 1
2 )

eϵ − 1
=

Ne
ϵ
2 −N

eϵ − 1
,

i3r =

√
eϵ(N2 − 1) + 1− (N − eϵ + 1)

eϵ − 1

>
e

ϵ
2 (N − 1)− (N − eϵ + 1)

eϵ − 1
.

(11)

Let a = Ne
ϵ
2 − N , b = e

ϵ
2 (N − 1) − (N − eϵ + 1), then

b− a = eϵ − e
ϵ
2 − 1 = (e

ϵ
2 − 1

2 )
2 − 5

4 . Setting b− a > 0, we
solve for ϵ > 2 ln

(√
5+1
2

)
≈ 0.9624. Therefore, when ϵ ≥ 1,

we always have i3r > i1r, and m1 = ⌊i1r⌋, m2 = ⌊i3r⌋,
hence m1 ≤ m2. This shows that when ϵ ≥ 1, the minimum
m is obtained at the extreme point.

V. EXPERIMENTS

In this section, we conducted four distinct sets of com-
parative experiments. In the first set of experiments, we uti-
lized the generalized Jaccard similarity coefficient (Tinimoto

coefficient) as the similarity function to compare the utility
performance of BRR, GRR, and the exponential mechanism
under this similarity definition. The second set of experiments
employed the Euclidean distance as the similarity function,
using it as a measure of utility loss to compare the utility
loss under different noise addition schemes. In the third set
of experiments, we applied the BRR mechanism to privacy-
preserving decision tree pruning. Lastly, in the fourth set of
experiments, we incorporated the BRR mechanism into the
stochastic gradient descent (SGD) process.

A. Experiments with Jaccard Similarity

For a sequence of N numbers, 1 ∼ N , the similarity is de-
fined as the pairwise generalized Jaccard similarity coefficient
(Tinimoto coefficient):

λ(x, y) =
xy

x2 + y2 − xy
.

In the experimental setup, we aim to compare and ana-
lyze the performance of three different differential privacy
protection mechanisms—BRR, GRR, and the Exponential
mechanism, under varying privacy budgets, with sample sizes
N set at 20, 40, 60, 80, and 100 respectively. The objective is to
understand the applicability and utility of these mechanisms
across different data scales and levels of privacy protection.
Through experimental data, we hope to uncover the differences
in how these mechanisms maintain data quality while ensuring
data privacy, as N varies.

Fig. 4. Experimental results comparing the Q value of BRR, GRR, and
Exponential mechanisms using Jaccard similarity with varying privacy budgets
and sample sizes

From Figure 4, it can be observed that, for the same N ,
the utility increases with higher privacy budgets across all
mechanisms. This trend is inherent to the properties of differ-
ential privacy: with higher privacy budgets, less noise is added,
thereby enhancing data utility. When examined vertically, it is
evident that the results obtained using the BRR mechanism
surpass those of the GRR and exponential mechanisms. These
findings indicate that the BRR mechanism enhances data
utility. The experimental results thus substantiate our proposed
theory.



B. Experiments with Euclidean Distance

In Section 3, we have detailed the specific location of the
m-value in the BRR mechanism when the similarity function
is considered as the Euclidean distance. In this context, we
need to identify the specific value that makes the partial
derivative ∂Q

∂si
< 0. This step is crucial for optimizing the

BRR mechanism, as it ensures that the selected m-value can
maximize the reduction of utility loss within the Euclidean
distance framework of the similarity function.

Fig. 5. Utility loss comparison of BRR, GRR, and Exponential mechanisms
using Euclidean distance similarity with varying privacy budgets and sample
sizes

From figure 5 we observed that, under the same privacy
budget, the utility loss with the BRR mechanism is consistently
lower than that of the GRR and exponential mechanisms. Since
our goal is to minimize utility loss, this indicates that the
BRR mechanism provides more effective data. The superior
performance of the BRR mechanism in maintaining data utility
underscores its efficacy and potential for practical applications
in privacy-preserving data analysis.

By comparing the utility performance of the generalized
Jaccard correlation coefficient (Tinimoto coefficient) and Eu-
clidean distance as similarity functions. We verify the superior-
ity of the BRR mechanism under different similarity function
definitions, which further supports the views and conclusions
we put forward in the theoretical analysis. Experimental results
show that under the same privacy budget, the BRR mechanism
can not only provide higher data utility, but also have lower
utility loss than other data perturbation mechanisms, such as
GRR and exponential mechanism. These findings not only
prove the effectiveness of the BRR mechanism, but also
provide strong support for its practical application.

C. Application of BRR in Privacy-Preserving Decision Tree
Training

Decision tree is a supervised learning algorithm employed
for both classification and regression tasks, extensively utilized
in various data mining and machine learning applications.

In the realm of Gradient Boosting Decision Trees (GBDT),
pruning entails curtailing the expansion of decision trees to
mitigate overfitting and bolster the model’s generalization
capability. While GBDT primarily hinges on the aggregation
of multiple weak learners (usually shallow decision trees),
pruning remains instrumental in the construction of these foun-
dational learners. Within the paradigm of differential privacy,
appending noise to each leaf node subsequent to pruning
can synergistically harness the advantages of both pruning
and noise addition. This experiment is mainly compared with
DPBoost by Li et al. (2022) [42]. When training DP-GBDT,
we need to perturb the gradient value of the leaf node.
According to the literature [42], the sensitivity of the noise
added during each clipping is ∆f = min(

g∗
l

1+λ , 2g
∗
l (1−η)t−1).

During the DP-GBDT training process, the gradient clipping
range c needs to be consistent with the sensitivity ∆f of the
leaf node to control the noise scale. To control the range of
perturbations for leaf node values, an interval length L is set to
evenly divide the leaf node value range [−c, c] into n = 2c

L +1
discrete values. Then, the leaf node values are adjusted to
the nearest discrete points to ensure alignment. Finally, the
perturbed leaf node values after applying the BRR mechanism
are used.

For the regression tasks on the abalone, Bias and supercon-
duct(sup) datasets, RMSE (Root Mean Squared Error) was
used as the evaluation metric. The number of instances and
features for these datasets are (4177, 8), (7588, 23), and
(21263,82) respectively. The experiment compared the perfor-
mance of applying BRR and Laplace mechanisms for noise
addition under different privacy budgets. As shown in figure
6, the results indicate that the BRR mechanism consistently
outperforms the Laplace mechanism in terms of regression
performance. Moreover, the BRR mechanism demonstrates
greater stability across various privacy budgets, highlighting
its advantage in balancing privacy preservation with model
accuracy.

D. Application of BRR in SGD

The application of differential privacy techniques to safe-
guard the privacy of training data has gained considerable
traction in deep learning research (e.g., [21], [33]). Stochastic
Gradient Descent (SGD), a widely adopted optimization algo-
rithm, has been refined through critical enhancements, particu-
larly in the treatment of gradient clipping and noise injection.
These modifications ensure that the final model parameters
adhere to differential privacy standards. By incorporating noise
and applying gradient clipping at each iteration of the descent
process, the influence of individual data points on the overall
model is rigorously constrained.

The experiment conducted is based on the differential
private SGD algorithm [21]. In the experiment , the BRR
mechanism is compared with the Laplace mechanism, with
a focus on analyzing how these two noise mechanisms affect
model accuracy under varying privacy budgets. NP-SGD is the
base scheme where no noise is added. The MNIST dataset, a
widely-used benchmark for handwritten digit recognition, was



(a) Bias (b) abalone (c) sup

Fig. 6. Comparison of BRR and Laplace mechanisms in privacy-preserving decision tree training based on RMSE with varying privacy budgets

(a) ϵ = 0.1 (b) ϵ = 0.3 (c) ϵ = 0.5

(d) ϵ = 0.7 (e) ϵ = 0.9 (f) ϵ = 1

Fig. 7. Accuracy dynamics of differentially private SGD with BRR and Laplace mechanisms compared to Non-Private SGD (NP-SGD) across training
iterations under varying privacy budgets

chosen for the classification task. Throughout the experiment,
model performance is evaluated using accuracy as the primary
metric, the prediction results of the model are compared with
the real labels of the test set and the accuracy is output,
with the aim of assessing the effectiveness of these noise
mechanisms across different privacy budget conditions.

As shown in Figure 7, with smaller privacy budgets, the
injected noise increases, resulting in a decline in the accuracy
of model updates. Under these conditions, the Laplace mecha-
nism introduces larger noise magnitudes, leading to significant
fluctuations in accuracy and difficulty in maintaining stability.
In contrast, the BRR mechanism demonstrates better stability,
although its convergence is slower. As the privacy budget

increases, the noise intensity decreases, reducing its impact on
model updates. The Laplace mechanism can achieve higher
accuracy more quickly; however, its fluctuations persist. On
the other hand, the BRR mechanism exhibits a more stable
convergence process and eventually reaches, or even surpasses,
the accuracy of the Laplace mechanism. At high privacy bud-
get levels, both mechanisms inject smaller amounts of noise,
and the model’s performance approximates a noise-free sce-
nario. At this stage, the gap in accuracy between the Laplace
and BRR mechanisms narrows, and both ultimately achieve
similarly high accuracy levels. Overall, the BRR mechanism
proves to be more advantageous in terms of stability and final
accuracy, particularly when balancing privacy protection with



(a) Gowalla (b) FourSquare

Fig. 8. Dataset partition distribution map

(a) Gowalla (b) FourSquare

Fig. 9. Data utility comparison of L-SRR, GRR, and BRR under the varying
privacy budgets.

maintaining strong model performance.

E. Application of BRR in LBS

In location-based services (LBS), ensuring user privacy
while maintaining data utility is a significant challenge. L-
SRR, proposed by Wang et al. (2022) [43], employs a staircase
mechanism to enhance privacy protection while effectively
improving data utility. Therefore, in our evaluation of BRR
mechanism in the LBS context, we compare its performance
with that of L-SRR.

We experimented using Gowalla and FourSquare datasets.
Extract 1,000 locations from the Gowalla dataset and 3,000 lo-
cations from the FourSquare dataset to preprocess the dataset.
To ensure consistency and facilitate comparison, following
the hierarchical coding approach of the L-SRR scheme, we
partition the dataset accordingly based on a common prefix,
as shown in Figure 8. This zoning ensures that when BRR and
GRR are applied to location perturbations, the perturbations
are confined to each zone and do not affect locations in the
other zones. Make sure that the average size of the domains is
equal to each other for all schemes. The size of each domain
is represented by the number of locations inside.

The experimental results are shown in Figure 9, where we
compare the performance of three schemes (L-SRR, GRR,
and BRR) under different privacy budgets (ϵ ranging from
0.25 to 2). From the results, it is observed that the BRR
scheme performs the best across all privacy budgets. On the
Gowalla dataset, the average Qloss of the BRR is reduced

(a) US Census (b) bank

Fig. 10. Comparison of model performance between the BRR and the
Laplace-based DNN-DP approach on the US Census and bank datasets under
varying privacy budgets.

by 8.7% compared to the L-SRR, with the most significant
improvement of 23.4% when ϵ = 2.0. Similarly, on the
FourSquare dataset, the average Qloss of BRR decreased by
6.7%, with the highest improvement observed at ϵ = 0.25
by 14.3%. Overall, when the privacy budget is low, the data
utility of all schemes is significantly affected, but BRR still
outperforms the other schemes, demonstrating better noise
resistance. As the privacy budget increases, the overall utility
loss gradually decreases, with BRR maintaining relatively
optimal accuracy across the entire range.

F. Application of BRR in Vector Perturbation

To evaluate the effectiveness of the BRR mechanism in
vector perturbation, we adopted the DNN-DP framework
proposed by Wang et al. [44] as a comparative baseline.
This framework is a deep neural network training architecture
that supports differential privacy by incorporating the Laplace
mechanism for data perturbation. To ensure a fair comparison,
we replaced the original Laplace noise by BRR mechanism
while keeping the rest of the DNN-DP architecture unchanged.
This allows us to improve the two mechanisms’ abilities
by uniform hyper-parameter optimization to preserve model
performance under privacy constraints.

The experiments were conducted on two publicly available
datasets: the US Census dataset and the bank-additional-
full.csv dataset, which contains records from a direct mar-
keting campaign conducted by a Portuguese bank. The former
contains 14 features that were used by Wang et al. in the
initial DNN-DP experiments, while the latter has been widely
adopted in taxonomic studies and contains 20 features. In
order to ensure the fairness and comparability of experimental
results, we adopted a uniform hyperparameter optimization
strategy in the experiments. During the experiments, we varied
the privacy budget within the range of 0.25 to 3.5 to system-
atically evaluate the performance differences between the two
mechanisms under different levels of privacy protection.

As shown in Figure 10, the experimental results on the US
Census dataset demonstrate that the BRR-based perturbation
approach consistently outperforms the traditional DNN-DP



framework and also the results shown in [44] as the privacy
budget increases from 0.25 to 3.5.

Similar results were observed when the same experiments
were conducted on the bank dataset, where the BRR mech-
anism again exhibited superior performance compared to the
Laplace-based DNN-DP method. These findings suggest that
BRR, as a novel noise injection strategy, can more effectively
preserve—or even enhance—model utility while ensuring data
privacy.

VI. DISCUSSION

A. Bipartite Randomized Response using Weighted Average m

The BRR mechanism proposed in this paper has been
described in detail above, focusing on how to determine how
many items have a publishing weight from 1 to eϵ, i.e., to
determine the value of m. However, if we know the a prior
probability distribution on the set of real items N, we can find
a more suitable m. The detailed process will be described next.
In the same way, considering the real occurrence k, we first
sort the similarity λ

(k)
i and weights s

(k)
i as follows:

λ
(k)
1 ≥ λ

(k)
2 ≥ · · · ≥ λ

(k)
N , s

(k)
1 ≥ s

(k)
2 ≥ · · · ≥ s

(k)
N .

The weights s
(k)
i are summed and normalized to generate

w
(k)
i =

s
(k)
i

Σjs
(k)
j

with satisfying Σiw
(k)
i = 1. The global utility

Qg is defined as:

Qg = Σkπ(k)Σiλ
(k)
i w

(k)
i = Σk

π(k)Σiλ
(k)
i s

(k)
i

Σjs
(k)
j

, (12)

where π represents the prior occurrence probability distribu-
tion over the set of real terms N , which can be determined
based on historical frequency records or recommended fre-
quency collection. Here, π can be assumed to be uniform,
with π(k) = 1/N . Similarly, for the derivative with respect to
weights s

(k)
i :

∂Qg

∂s
(k)
i

=
π(k)

∑
j(λ

(k)
i − λ

(k)
j )s

(k)
j

(
∑

j s
(k)
j )2

. (13)

To ensure a unified count m of high-weighted terms, we can
treat s(k)i uniformly as si. Thus, Qg becomes:

Qg =
∑
k

∑
i λ

(k)
i si∑
j sj

. (14)

Taking the derivative:

∂Qg

∂si
=

π(k)

(
∑

j sj)
2

∑
j

(∑
k

(λ
(k)
i − λ

(k)
j )

)
sj , (15)

with π(k) = 1
N . Similar to the case of local single-point

release, in the expression above, the factor before si (nu-
merator part),

∑
k(λ

(k)
i − λ

(k)
j ) = 0, where i = j.Similarly,

the monotonicity of Qg with respect to si is independent
of the values of si. Based on this, to maximize the utility
Qg , we initialize it as the GRR mechanism, where s1 = eϵ

Algorithm 3 BRR∗: Modified BRR with average m

Input: utility matrix {λ(k)
j }N×N with λ

(k)
1 ≥ λ

(k)
2 ≥ · · · ≥

λ
(k)
N > 0, privacy budget ϵ

1: Initialize: s1 = eϵ, s2 = · · · = sN = 1, w1 = eϵ

eϵ+N−1 ,
w2 = . . . = wN = 1

eϵ+N−1 , Qg = 1
NΣkΣiλ

(k)
i wi, m = 1

2: for i = 2 to N do
3: Compute ∂Qg

∂si
by (15)

4: if ∂Qg

∂si
> 0 then

5: si = eϵ, m = i
6: else
7: Break
8: end if
9: end for

10: for i = 1 to N do
11: wi =

si
Σjsj

12: end for
Output: (w1, . . . , wN ) and m

and s2, . . . , sN are uniformly assigned the minimum value
1. We then incrementally increase s2 to the maximum value
s1, and successively increase s3, s4, . . . until some si satisfies
∂Qg

∂si
≤ 0. At this point, si, . . . , sN remain unchanged and are

uniformly assigned the minimum value 1. Algorithm 3 outlines
the detailed procedure for determining the modified BRR with
average m.

Thus, for the global scenario, considering all possible real
occurrences (prior terms), under the condition of a unified
count m of high-weighted terms, we can find an optimized
discrete probability distribution for m. For each prior real term,
the distribution ensures that m items each have the weight eϵ,
and the remaining items have the weight 1. This approach
towards global BRR considers all prior real occurrences and
optimizes the distribution of m high-weighted items, ensuring
differential privacy. We refer to this mechanism derived from
the extension of BRR as BRR∗.

B. Comparison of m-Values in BRR and BRR∗

The distribution trend of m-values was studied under the
condition where similarity is measured by Euclidean distance
and the privacy budgets ϵ = 1, 3, 5. A linear model y = kx was
used to fit the BRR scheme and the BRR∗ scheme separately.
The y = kx model effectively captured the trend under varying
privacy budgets, with the fitted curve closely matching the data
points.

Figure 11 clearly demonstrates how an increase in the
privacy budget leads to a decrease in the slope, meaning that
the growth rate of the output value m with respect to the
input n slows down as the privacy budget increases. This
is because as the privacy budget ϵ increases, the strength of
privacy protection weakens, reducing the dependency of the
output value m on the input n. Consequently, the BRR and
BRR∗ mechanisms become closer to the GRR mechanism.



(a) BRR (b) BRR∗

Fig. 11. Fitted trends of value m in BRR and BRR∗ mechanisms using linear
models

The slope of the BRR∗ is always greater than that of
the BRR under different privacy budgets. This is reasonable,
because the m chosen in the BRR mechanism is the minimum
m value obtained from different terms, while the BRR∗ mech-
anism considers the global utility, which can better maintain
data dependencies while protecting privacy.

C. Utility Loss Comparison of BRR, BRR∗, and GRR

This experiment aims to evaluate the utility performance
of the BRR and BRR∗ mechanisms under different privacy
budgets (ϵ), comparing them to the GRR mechanism. The
primary objective is to explore the trade-off between privacy
protection and utility loss among these three mechanisms. The
GRR mechanism adopts a fixed value of m = 1, representing
a classical randomized response method. The BRR mechanism
determines the value of m using Algorithm 2, which calculates
the optimal m for each point based on utility maximization
conditions and selects the smallest m as the global value. In
contrast, the BRR∗ mechanism leverages prior probabilities
and determines m using Algorithm 3, aiming to minimize
global utility loss. The experiment employs Euclidean distance
as the similarity function and utility loss as the evaluation
metric, setting privacy budgets at ϵ = 3, 5, 8, and examines the
utility loss variations of each mechanism across the region.

The results, presented in Figure 12, demonstrate that un-
der a low privacy budget (ϵ = 3), the GRR mechanism
exhibits the highest utility loss and performs the worst. This
is primarily due to severe information loss caused by the
strong randomization with fixed m = 1. In contrast, the
BRR and BRR∗ mechanisms show significantly reduced utility
loss, with comparable overall performance. Notably, BRR∗

achieves lower utility loss at certain points, highlighting its
advantage of global optimization. When the privacy budget
increases to ϵ = 5, the utility loss of the GRR mechanism
decreases but remains inferior to the other two mechanisms.
The BRR mechanism, which adopts a local optimization
strategy by selecting the smallest m, further reduces utility
loss. The BRR∗ mechanism, benefiting from the global utility

optimization strategy, demonstrates superior performance in
most regions. As the privacy budget increases further to ϵ = 8,
the m value of the BRR mechanism degrades to 1, resulting
in utility loss identical to that of the GRR mechanism, making
their performances equivalent. However, the BRR∗ mechanism
continues to maintain lower utility loss in most regions due
to its global optimization approach. While it exhibits slightly
higher utility loss than the BRR mechanism at a few points,
its overall utility remains advantageous.

These findings indicate that under low privacy budget
conditions, the BRR∗ mechanism outperforms both the GRR
and BRR mechanisms, demonstrating superior utility. This
highlights that incorporating prior probabilities and designing
mechanisms based on global utility optimization can effec-
tively reduce utility loss or enhance utility while maintaining
privacy protection.

VII. CONCLUSION

In practical applications, the core challenge for LDP mech-
anisms lies in how to maximize data utility while ensuring pri-
vacy protection. This paper addresses this issue by proposing
a novel adaptive LDP mechanism, the Bipartite Randomized
Response (BRR), which aims to balance the trade-off between
privacy and data utility. The paper provides a theoretical
analysis and experimental validation of this approach. Initially,
it systematically reviews traditional differential privacy mech-
anisms, including RR, GRR, the Exponential Mechanism, and
the Laplace Mechanism. While these mechanisms have made
significant contributions to privacy protection, they exhibit
limitations in terms of data utility. In particular, the GRR
mechanism treats all non-true data values equally, failing to
account for data similarity, which reduces the utility of data
queries.

To address this limitation, the BRR mechanism introduces
data similarity by partitioning the data domain into values
close to the true value and those farther away, assigning
different release probabilities to each group. Specifically, BRR
optimizes the allocation of release probabilities, ensuring that
values close to the true data receive higher release proba-
bilities, while distant values receive lower probabilities. This
optimization not only improves data utility but also enhances
privacy protection. The paper theoretically proves that the
problem of maximizing privacy and utility can be resolved
by determining the optimal allocation of release probabilities,
which can be efficiently solved as a linear programming
problem. The computational complexity of this solution is
theoretically low, making it feasible for practical applications.

In the experimental section, four sets of experiments were
conducted to validate the superiority of the BRR mechanism
across various application scenarios. First, the utility perfor-
mance of BRR, GRR, and the Exponential Mechanism was
compared using the generalized Jaccard similarity coefficient
and Euclidean distance as similarity functions, with results
showing that BRR outperformed the other mechanisms in
terms of utility loss. Subsequently, BRR was applied to



(a) ϵ = 3 (b) ϵ = 5 (c) ϵ = 8

Fig. 12. Comparison of normalized Q Loss among the BRR, BRR∗, and GRR mechanisms under varying privacy budgets. The analysis evaluates the impact
of mechanism-specific m-value selection strategies on utility performance across different regions

privacy-preserving decision tree pruning and stochastic gradi-
ent descent (SGD), further demonstrating its ability to enhance
model accuracy while maintaining strong privacy protection.

Finally, we explored the utilization of the prior information
regarding the publication probability of occurrence term within
publication domain N, in order to identify a more precise and
appropriate value of m that is grounded in a global context.
We provided a detailed description of the specific derivation
process.
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Differential Privacy in Centralized Deep Learning: A Systematic Survey.
ACM Computing Surveys, 57(6), 2025.

[2] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith.
Calibrating noise to sensitivity in private data analysis. In Theory of
Cryptography: Third Theory of Cryptography Conference, TCC 2006,
New York, NY, USA, March 4-7, 2006. Proceedings 3, pages 265–284.
Springer, 2006.

[3] Stanley L Warner. Randomized response: A survey technique for
eliminating evasive answer bias. Journal of the American Statistical
Association, 60(309):63–69, 1965.

[4] Naoise Holohan, Douglas J. Leith, and Oliver Mason. Optimal Differen-
tially Private Mechanisms for Randomised Response. IEEE Transactions
on Information Forensics and Security, 12(11):2726–2735, 2017.

[5] Peter Kairouz, Sewoong Oh, and Pramod Viswanath. Extremal Mech-
anisms for Local Differential Privacy. Journal of Machine Learning
Research, 17(17):1–51, 2016.
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