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Abstract—The continuous monitoring of the interactions be-
tween cyber-physical components of any industrial control system
(ICS) is required to secure automation of the system controls,
and to guarantee plant processes are fail-safe and remain in an
acceptably safe state. Safety is achieved by managing actuation
(where electric signals are used to trigger physical movement), de-
pendent on corresponding sensor readings; used as ground truth
in decision making. Timely detection of anomalies (attacks, faults
and unascertained states) in ICSs is crucial for the safe running
of a plant, the safety of its personnel, and for the safe provision of
any services provided. We propose an anomaly detection method
that involves accurate linearization of the non-linear forms
arising from sensor-actuator(s) relationships, primarily because
solving linear models is easier and well understood. Further, the
time complexity of the anomaly detection scenario/problem at
hand is lowered using dimensionality reduction of the actuator(s)
in relationship with a sensor. We accomplish this by using a well-
known water treatment testbed as a use case. Our experiments
show millisecond time response to detect anomalies and provide
explainability; that are not simultaneously achieved by other state
of the art AI/ML models with eXplainable AI (XAI) used for
the same purpose. Further, we pin-point the sensor(s) and its
actuation state for which anomaly was detected.

Index Terms—Anomaly Detection, Cyber-Attacks, Safety, Se-
curity, Cyber-Physical System, Industrial Control System.

I. INTRODUCTION

Physical/mechanical automation components are more re-
cently becoming digitized and analogue systems are also being
developed with digital interfaces to enable integration with
digital systems. Industries such as manufacturing (including
assembly, quality check and distribution) and critical infras-
tructure (CI) - including the water sector (water and wastew-
ater treatment, and distribution), energy sector (generation,
transmission and distribution), and transportation sector, play
an important role in global society. The provision of high-
quality CI services in particular should be noted as significant
for public health, well-being and safety. The integration and
embedding of computational processing units expose the ICS
used in industries and CI to an expanded attack surface,
making it vulnerable to cyber-attacks [1]]. For example, mal-
ware was found in the manufacturing sector focused on a
steel plant [2]. This attack led to an unregulated furnace
and the resulting dangerous infrastructure could not be shut
down as normal, leading to physical damage to the plant [3]].
Recent power sector-focused malware such as FrostyGoop [4]]
were able to infiltrate CI and disrupt services. Disruption and
damage have been recorded in the water sector due to attacks

on CPS at the Maroochy Shire plant in Australia [5]], multiple
plants in Texas, USA [6]], Mayo in Ireland [[7], and a mitigated
attack at the Oldsmar plant in USA [8]). The spate of real-world
attacks on manufacturing and CI operational technology (OT),
and their consequences reiterate the value in timely detection
of these attacks and subsequent actions to bring these systems
into a safe and non-compromised state.

In this work, we use the Secure Water Treatment (SWaT) [9]]
testbed as a use case in ICS anomaly detection. We use system-
specific information to improve anomaly detection, as opposed
to other models that employ specialized solutions on a subset
of available information [10]—[12], or prefer to use a generic
data-driven approach [[13|]. Specifically, we rely on i.) the real-
time data logs to retrieve state information from plant sensors
and actuators, ii.) the PLC control logic sheet to determine
sensor boundary conditions and corresponding actuation steps
(if any), and iii. ) infer sensor-actuator(s) relationships from the
plant system architecture.

Going over the complete actuation state space is a case of
solving problems in exponential time (see Section [[I-B). We
employ a dimensionality reduction technique to reduce the
time complexity by considering only the nearest-neighbour
actuators related to a given sensor. This is followed by an ac-
curate linearization of a reduced number of actuator(s)-sensor
relationships. We note that the water treatment plant (see
Fig. EI), has limited nonlinear sensor-actuator(s) relationships.
This is attributed to the (mostly) serial nature of numerous
industrial processes, including those involving assembly lines
in a factory setting and a water treatment plant. Once the
sensor-actuator(s) relationships are linearized, it is trivial to
determine the bounds required to detect anomalies in the ICS.
The advantage of this approach is that it typically allows
detection and explanation within a millisecond (see Section[V).
It saves valuable time with fast detection and explanation,
helping with faster diagnostics, mitigation, or recovery. The
novelty being that our solution is fit for use in near real-time
and resource-constrained decision-making control systems (see
Section [VI-F). We make the following main contributions.

i.) We present our anomaly detector in Section [T}
ii.) An extended solution is proposed in Section [[V|to detect
rare event anomalies.
iti.) We compare our solution results with AI/ML models for
anomaly detection and explainable Al (see Section [V).
iv.) We discuss how explainability [[14] is incorporated into
our solution (see Section |VI-EJ).
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Fig. 1. Safe state determination using sensors. Boundaries are fed
into a programmable logic controller. Lower bound (LB) and upper
bound (UB).

The paper is organised as follows. Section [II] provides the
problem context and discusses the threat model. Section
presents the detector solution. The solution is extended in
Section [TV] Experiments are carried out and results presented
in Section [Vl The work is discussed in Section[VIl The related
work is provided in Section The conclusions are drawn,
and future work is proposed in Section

II. PROBLEM CONTEXT AND THREAT MODEL
A. Sensor readings and boundary conditions

In context, boundaries refer to safety limits for plant
operations. These limits (see Fig. [I) apply to (i) transport
components’ operational characteristics (such as pump speed
and pipe pressure), and (ii) service provisions (such as the
chemicals required to maintain the hydrogen ion concentration
(pH) and oxidation-reduction potential (ORP) for water, in the
required safe range for consumption). The distinction between
transport characteristics and service provisioning is made
based on requirement. For example, pipes and pumps may
be used to safely transport a variety of fluids, whereas service
provisions for water treatment implies that provisioning used is
specific for water quality and consumption safety. A service
is most often provided using a conglomeration of different
transport components and service provisions.

Transportation components from reputable manufacturers
are supplied with detailed specifications, defining the accept-
able safe operational range and conditions of use. When
used as part of a system, a new appropriate system-imposed
limit may apply depending on the system design and other
operational bottlenecks. For example, a pipe may be Original
Equipment Manufacturer (OEM) safety rated for a pressure of
0-5 Bars. However, downstream constraints may only allow a
pressure of 1-3 Bars. In such cases, a system-imposed limit is
put in place. With respect to service provisioning boundaries,
they are deduced from extensive knowledge and tests to
determine the safe range for consumption. For example, a
water treatment process must ensure that adding acid or base
chemicals do not significantly result in the pH of water moving
away from 7 (neutral).

The OEM/system imposed limits for transport components
and deduced limits for service provisioning parts are fed
into one or more controllers, such as a PLC (see Fig. .
The min-to-max operational range values on the PLC assists
with taking action and (possibly) alerting an operator, when

Fig. 2. A sensor and dependent series-parallel actuators in a physical
process. Its nearest neighbor actuator(s) are shown inside the dotted
rectangle.

the safety threshold is breached. Additionally, the PLCs may
also include logic to act, even before a breach, by providing
a warning buffer. This may be achieved by setting tighter
boundary conditions. Traditionally, at least two layers of safety
are provided, the lower boundary is the warning boundary
which alerts operators to take action, the upper boundary is
the min-max boundary, and this should never be passed. In
some systems if the min-max boundary is passed the personnel
must evacuate the site and services are put on hold until safe
conditions are assured.

B. Reducing time complexity: core idea

In this section, we explain the core idea on which we base
our solution. The set of boundaries [LB, UB] in anomaly
detection, used as safe range for operations may not always
be trivial to optimally determine. Taking into consideration
all actuators together causes a time complexity blow up,
resulting in a longer time to solve the problem optimally. For
example, let each actuator have k actuation sequences (such
as open/transition/close; here |k| = 3), and let there be n such
actuators, in relation with a given sensor s. Hence, there are a
total of k™ actuation states, in relation with sensor s. In Fig.
the readings from a sensor s may change due to actuation
in plant processes, at points marked X. The actuators at the
input side are named a; — ag, and the output side are a7 — ag.
Now, if we can reduce the state space for sensor relations
to its immediate neighbour actuators (a; — a3 and a7y — as;
see dotted rectangle in Fig. [2), we reduce our solution seek
time. Therefore, we employ a dimensionality reduction of the
actuator(s) in relation with sensor s.

Let there be normal and attack plant operation datasets for
the sensor and actuator states logged during plant operations,
under normal and attack conditions, respectively. A normal
training dataset comprises of all seen (normal) state relations
embedded into it. We implicitly rely on all actuator relations
flaq,--- ,ag) w.rt. the sensor, but explicitly consider the ac-
tuation sequences for a; — ag, for input side linearization. The
excluded actuators a4 — ag are indirectly responsible for the
change in measurement readings at sensor s. However, these
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This description of each device can be found as follows:
FIT-XXX: Flow meter, LIT-XXX: Level Transmitter, AIT-
XXX: Analyser, DPIT-XXX: Differential pressure indicating
transmitter, PIT-XXX: Pressure meter, MV-XXX: Motorized
valve, P-XXX: Pump and UV-XXX: UV Dechlorinator [9].
The dataset was collected for eleven days, of which the first
seven days is under normal working conditions. The final
four days included injecting/ swapping with anomalous data,
involving 41 CPS attacks on the SWaT water testbed. The plant
was run from an empty to a fully operational state. The attacks
were conducted by altering the OT network traffic, spoofing
the sensor values, and issuing bogus SCADA commands.
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P1 LIT-101, FIT-101 MV-101, P101
Fig. 3. High level system architecture of SWaT water treatment P2 AIT-201, AIT-202, MV-201, P-201, P-202, P-203,
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actuator state space is reduced. The sensor reading remains TABLE I

a function of all related actuators. Sensor reading is readily
available from the normal dataset and its measured range, w.r.t.
ai,--- ,as actuation remains unchanged. In short, we refined
our search space to the sensor’s nn-actuator(s). However, the
set of normal operations seen in the normal dataset might be
a tiny subset of the entire normal state space. In this context,
everything not seen as part of the normal plant operation
dataset and derivations are treated as anomalous (similar to
the concept used in one-class classification [15]], [[16]]), and our
detector flags it as a warning. The detector warnings provide
an additional layer of safety along with the PLC boundaries
discussed in section [[I-A] by generating a suitable alert when
action is required.

C. SWaT Water Treatment Testbed and datasets

The SWaT water treatment (see Fig. [3) is a six-stage process
(P; to Pg) and emulates a typical treatment plant. The water
for treatment is the input to P; and treated water is the
main output of Fs. Different (and redundant) sensors are
strategically placed to make measurements across the testbed.
Actuators are used for control. The sensors and actuators used
in P; — Ps appear in Table[l] Process P; is designed to get the
raw water into the system. P» is focused on chemical dosing
and P3 with ultra-filtration. Py includes UV-dechlorination and
Ps carries out reverse osmosis (RO). Pg uses a backwash tank
for cleaning and stores treated water in another tank (that
is recycled). The device names consist of two parts where
the first 3 characters are shortened for devices type and the
last 3 numbers refer to the process stage and number of
devices. For example, the device FIT-101 refers to the flow
meter in the first process where it is the first flow meter.

I'Henceforth, it is referred to as nn-actuators. It is common to place the
actuator immediately preceding the related sensor. If not, we yet consider
that directly related actuator as a nearest neighbour — to improve detector
resolution, when that information is available. Resolution is further enhanced
by picking non-neighbour PLC imposed actuation, affecting the sensor read-
ing; as part of the design (see Section [VI-D).

THE SENSORS AND ACTUATORS IN EACH PROCESS STAGE [[12]].

The SWaT datasets provided the state view of the fifty-one
sensors and actuators in the plant at one second resolution,
as time series data. A state may include actuators in either
open/close, on/off or open/transition/close state, depending on
the type of the actuator used. The normal dataset consisted of
495,000 records of plant state under normal operations. The
attack dataset had 449,919 records. Note that the attack dataset
is a mix of normal and attack records. The attack records
accounted for where less than 6% of total data [12]]. If the
plant was under attack during the record generation (within
the dataset) then this record is tagged as Artack, and otherwise
as Normal.

D. Threat Model

An attacker is assumed to have followed an attack vec-
tor [[17] to gain access into plant operational technology. This
adversary is assumed to be able to inject control commands
and modify sensor readings and actuator status in OT. This
leads to four attack types [9] — single stage single point
(SSSP) where exactly one sensor/actuator data is under attack,
single stage multi-point (SSMP) where multiple sensor/actu-
ator data in exactly one process is under attack, multistage
single point (MSSP) where exactly one sensor/actuator data
in multiple processes are under attack, and multistage multi-
point (MSMP) where multiple sensor/actuator data in multiple
processes are under attack. It is assumed there are no attacks
on the plant when the normal dataset is collected, which would
be used as the training dataset.

III. GIANT-STEP BABY-STEP SOLUTION
A. Design rationale and considerations

The sensor and actuator values in the training dataset are
viewed as ground truth data. Our core requirements [18§]]



are (R1) near real-time detection, (R2) anomaly cause iden-
tification, and (R3) minimising false alarms. An automated
response is not a core consideration because governance
considerations involve human intervention and human-in-the-
loop solutions [[19], [20] to be qualified as compliant to
safety standards i.e. a fully automation solution might not be
viable. While the ability to automate is provided, the level
of automation is left to the discretion of the implementer.
One-class classification is used due to the typical imbalance
between normal and attack dataset [21]]; the latter contributing
only a tiny percentage of attack data. We train using the normal
dataset and employ unsupervised learning [22].

B. Solution outline

To meet the requirements in Section [[lI-A] we use binary
classification to solve a decision problem [23|]. The proposed
anomaly detector has two main steps — giant and baby
step. The giant-step is used to determine [LB, UB] boundary
for measured sensor values (available in normal dataset), in
relation with every nn-actuation state. For example, consider
the more detailed SWaT process stages as illustrated in Fig. 4]
In this system, water flows into the tank when motorized
valve (actuator) MV101 transitions from close to open. The
tank level indicator (sensor) LIT101 measures the water tanks
instantaneous water level. When pump (actuator) P101 is
turned on, water is pumped out from the tank, and the flow
transmission (sensor) FIT201 registers non-zero flow values.
The two nn-actuators for sensor LIT101 are MV101 and P101.
MV 101 has three actuation states (close-1/transition-0/open-2)
and P101 has two actuation states (on-2/off-1), in combination
this allows for six possible states across the two actuators con-
nected to the sensor LIT101. The [LB;, UB;]i=1,... ¢ bounds
for LIT101 is computed by our giant-step solution for all
actuator combinations of MV101 and P101: 11, 12, 01, 02,
21, and 22.

The baby-step computes the [LB, UB] boundary based upon
the rate of change in sensor reading(s) associated with its nn-
actuator(s). Again, consider the level indicator sensor LIT101
in Fig. @] Instead of directly measuring the instantaneous
level value of water in the tank, here we measure the rate of
change of water level between consecutive time intervals. As
seen earlier, we find [LB;, UB;];=1,... ¢ bounds for LIT101 in
relation to actuator combinations of MV101 and P101. These
measurements form the basis of the min-max bounds for the
rate of change of water level; for each of the six actuation
states w.r.t. the level sensor. The combination of the proposed
giant-step and baby-step methods is not only able to detect
sensor values that are out of bound for dependent actuator
states but also detect whether the rate of change of sensor
value is also within bounds. When the readings from the sensor
under observation are beyond determined thresholds/bounds,
the detector issues a warning event to a suitable log; to be
processed and considered as a trigger for the generation of an
alert to system operators.

MV: Motorised valve LIT: Level sensor FIT: Flow sensor P: Pump

FIT201

Fig. 4. Mid-granular level view of P; and early P> SWaT process
stages.
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C. A switchboard to map actuation state, building linearized
state groups, and enable explanation

The training dataset is built on the normal SWaT dataset and
the testing dataset from the SWaT attack dataset (see Fig. [5).
Dataset prefixed with example are hypothetical and are used
to drive the core idea (see TABLE [I] and [ITI).

1) Switchboard: A switchboard is used to linearize ac-
tuation states. It is also part of a bijective map between
the data output from training and the testing (sensor) value.
A switchboard state (sb) is a numerical string. It uniquely
identifies the nn-actuator(s) state for the sensor, at time index

Baby Step For Sensor LIT101
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Fig. 6. Plotted six [LB, UB] baby-step training bounds for sensor
LIT101. SWaT normal dataset is used for training.



t, and is expressed as a concatenation of the nn-actuator state.
Consider two nn-actuators, one with 3 possible states (off = 1,
transition = 0, on = 2), and the other with 2 possible states (off
=1, on = 2). This results in six switchboard states — 11, 12,
01, 02, 21, and 22. First, we parse through the normal training
dataset and copy the time index, sensor reading, nn-actuators
(see first four columns in example TABLE . Next, we
append a switchboard state (for nn-actuator(s)), at each time
index t. This is called the pretrain-sb dataset (see additional
column labeled Switchboard in TABLE @) Next, for the
baby-step method, we compute the difference (diff) between
consecutive sensor values and append it to a new column. We
call this Pretrain-diff dataset (see additional column labeled
LIT101Diff in TABLE [). This is also the Training-by
dataset. For the giant-step method, the direct sensor values are
used. Hence, Training-gi and Pretrain-sb datasets are identical
(see Fig. [3).

2) Linearized state groups: Further, we split the Training-
by dataset into linearized groups (LSGyyp), for all sb €
Training-by dataset. The first group contains only dataset rows
associated with the sb = 11 switchboard state for this example,
in the exact order it appeared in the Training-by dataset. The
remaining groups are determined in a similar manner. We
are now able to study the behaviour within each linearized
group. The output of passing the training dataset through
1) Switchboard, and 2) Linearized state groups, are a set
of [LB, UB] state bounds, to be used in anomaly detection
(see Fig. ). A similar linearization split is carried out for
Training-gi dataset, and another set of [LB, UB] state bounds
are determined. This completes the training steps. For testing,
the test sensor value testval (with corresponding sb state
appended to it) is read from the testing dataset.

3) Explainability: The switchboard provides bijective map-
ping from training dataset to testing dataset, using a unique
numerical string to represent nn-actuation state. The [LB,
UB] bounds are determined from the linearized groups. The
bijective nature implies the existence of an inverse mapping,
from the testing set to training set (see Fig. ). Le., provided
with the nn-actuator(s) and the test sensor value, we can
determine its corresponding training [LB, UB] bounds for the
giant and baby-step. When the sensor value is out of bound,
the explainability includes sensor label/name, actuation state,
the time index ¢, and the bound it breached (LB or UB). For
the explainability pseudocode refer to lines 6-9 in Algorithm 2]

D. An example of operations

In TABLE [[I, the sensor considered is LIT101. Its nn-
actuators are MV101 and P101 (see Fig. ). The switchboard
state at ¢ is an ordered concatenation of its nn-actuator state.
LIT101Diff is the difference between consecutive LIT101
readings. Assume first four columns in TABLE [MI] were the
only entries in the normal dataset. The remaining two columns
are derived using information from the earlier columns. As part
of the training, the linearized groups LSGy;, are computed for
each of existing switchboard states on the training dataset. Let
btr denote the baby-step training. The btr step computes the

min and max boundaries, [LB, UB]IS’Z’":11 = [0.0011, 0.1570]

and [LB,UBJ%" ,, =[0.0785, 0.4711] (see TABLE[H). These
trained [LB, U B] bounds are used to determine the anomaly
status.

Index LIT101 MV101 P101 Switchboard LIT101Diff

1 121.2518 1 1 11 _

2 121.4088 1 1 11 0.1570
3 121.4099 1 1 11 0.0011
4 121.6050 0 1 01 0.1951
5 121.6835 0 1 01 0.0785
6 122.1546 0 1 01 0.4711

TABLE 11

AN EXAMPLE NORMAL (TRAINING) DATASET FOR SENSOR
LITI101 AND ITS NN-ACTUATORS. SWITCHBOARD AND DIFF
VALUES ARE DERIVED.

Index LIT101 MV101 P101 Switchboard LIT101Diff
1 123.2151 1 1 11 _
2 121.6835 1 1 11 -1.5316
TABLE III

AN EXAMPLE ATTACK (TESTING) DATASET SHOWING ROW
ENTRIES FOR SENSOR LIT101 AND ITS NN-ACTUATORS.

An example attack (testing) dataset (see first four columns)
is shown in TABLE As seen earlier, the remaining two
columns are derived. The testing switchboard state sb = 11
is mapped to matching [LB,UB]%", seen in training. The
corresponding testing sensor value is checked to determine if
it satisfies the condition LB < testsensorval < UB. For
time index 1 in TABLE LIT101Diff is undefined. This
is because computing a diff, i.e., current value - previous
value, requires two consecutive (time indexed) LIT101 sensor
values. For testing index 2, a diff exists. With respect to
corresponding (training) sb = 11 actuation state, its baby-
step bounds are [0.0011, 0.1570]. The verification check there-
fore is 0.0011<LIT10Diff<0.1570? Which in our example
(LIT10Diff = -1.5316) returns the False condition, resulting
in the baby-step method issuing an out of bounds warning
event. The 6 baby-step bounds for LIT101 determined from
training using the SWaT normal dataset are shown in Fig. [6]
Had the giant-step been used, we would train and test directly
on the sensor values in column labeled LIT101 instead of
column labeled LIT101Diff, in TABLE [[ll and TABLE
respectively.

For other sensors such as FIT201 (see Fig. , it is of interest
to find the giant and baby-step training bounds. When water
is pumped using P101, the flow rate measured by FIT201
settles in a steady range of (mostly) adjacent values. Training
directly on the flow rate, and finding bounds, allows us to
detect anomalous flows. The baby-step is also of significance
w.r.t. this sensor. We are also interested in the bounds on rate
of flow change, w.r.t. its nn-neighbor(s) actuation. Later, in
section we will see that the baby and giant-step may be
combined with an extended detection algorithm, to provide up
to four different detection mechanisms.

E. Giant-Step Baby-Step Anomaly Detector

The giant-step baby-step (GiBy) anomaly detector is based
on the switchboard implementation, linearization step, and



determination of training bounds detailed in Section [[II-C
The algorithm is run for each sensor with a nn-actuator(s)
dependency. We note that the GiBy algorithm is able to take
as input, nn-actuator(s) with different actuation sequences.
For example, the first actuator a; might have |k1| = 2, as
with |ke| = 3 and ag actuator with |ks| = 2. There is also
no limitation on the number of input nn-actuators imposed
by the algorithm. Algorithm (1| shows GiBy-core training for
one sensor. The giant-step training in lines 30-33 involves
determining the switchboard states in lines 3-7, linearized state
groups (LSG) in lines 15-23 and the bounds in lines 24-29.
The baby-step training in lines 34-38 additionally involves
computing the dif f in lines 8-14, before it proceeds with the
linearization step and bound determination. Algorithm 2]shows
GiBy-core testing for one sensor. The giant-step test in lines
10-13 are used to determine the switchboard state and map the
test sensor actuation state to its training [LB, UB] bounds (see
lines 1-9). The baby-step in lines 14-19 also carries out similar
steps, except it is carried out for the test sensor diff value.
Note the definition BoundsCheck in lines 1-9 also provides
an explanation when an anomaly is detected. The underlined
variables are replaced with its actual value when printed.

IV. EXTENDING DETECTION CAPABILITIES

Extended capabilities are built to provide rare event anomaly
detection for a time-series window of sensor readings tending
towards the boundaries or around the centre of the probability
distribution (see Fig. [8). Stealth attacks on ICS were studied in
Urbina et al [24]. The goal of an adversary is to keep detection
statistic below the selected threshold. Some detection solutions
using a residual-error threshold [[13|] are vulnerable to stealth
attacks. We used stateful detection to catch anomalies based on
the probability distribution of state values in a time-window.
The extended detector is able to flag a subset of time-series
sensor readings clustered around (within) the boundaries or
towards the centre of the distribution (see Fig. ; that are
rare events not captured during training. Note that it may
be used with giant or baby-step. While it improves stealth
attack detection (see Section E), this extended detector may
not flag attack record readouts exceptionally close to normal
operations; typically, when normal operations range, and its
statistics are known to an (insider) attacker.

The anomaly probability is deduced using a proposed em-
pirical method. The empirical method is preferred when a
relatively large number of entries are available in the training
dataset (this is case for the SWaT used within Section |[I-CJ).
The examples in TABLE [[V] and TABLE [V] are hypothetical,
and drives the core idea. The extended detector relies on a
probability score deduced from the sensor reading.

1) Empirical anomaly score: Consider the hypothetical
example in Fig. The range of sensor readings is shown
along the x-axis, and the frequency range of these readings
is shown up the y-axis. The distribution of sensor values for
a given sensor and a specified actuation state is shown. As
an example, we begin to calculate the anomaly probability for
the sensor reading value of 2 (shown by the red line). We
compute four probabilities w.r.t. the sensor — Equation [2] and

Algorithm 1: Giant-step Baby-step Training
Input: Setl: Normal SWaT dataset (NSD). Set2: Sensor label s and
time index 7. Set3: Sensors-actuators relationship graph RG.
Output: The state bounds [LB, UB] for the sensor.
Def NearestNeighbors (s, RG):
L return nearestActsList:= FindInOutSensorEdges(s)

o=

Def SswitchBoardState (i, s, actstate, RG) :
nnActs:= NearestNeighbors(s, RG)

sbFlag:= isMember(actstate, nnActs)

if sbFlag==True: return sb:= Concat(nnActs)
else: return -1
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Def DatasetDiff (NSD,s):
9 for indexi=1toend // i € NSD

®

10 do

11 sensorval:= FindSensorVal(N S D, i, s)

12 diffSenVal:= sensorval[i]-sensorval[i-1]

13 NSDJi]:= AppendToRow(N SDJi], dif fSenVal)
14 return NSD

15 Def LinearizeStates (s, NSD, RG):
16 for index i =0toend // i € NSD

17 do

18 nnActs:= NearestNeighbors(s, RG)

19 senval:= FindSensorVal(N S D, i, s)

20 actstate:= FindAllActState(i, s, NS D)

21 sb:=SwitchBoardState(i, s, actstate, RG)

22 LSG[sb]:= AppendRow(i, s, senval, nnActs, sb)
23 return LSG// Linearized State Group

24 Def DetermineBounds (LSG):

25 for Each linearized state group LSG do

26 LB:= min(senwval;)V i € LSG

27 UB:= max(senwval;)V i € LSG

28 LSGBoundList:= AppendRow(s, sb, LB, UB)
29 return LSGBoundList

30 Def GiantStepTrain (s, NSD, RG):

31 LSG:=LinearizeStates(s, NSD, RG)

32 GiBoundList:= DetermineBounds(LSG)
33 return GiBoundList

34 Def BabyStepTrain (s, NSD, RG):

35 NSDdiff:= DatasetDiff(NSD,s)

36 LSG:=LinearizeStates(s, NSDdif f, RG)
37 ByBoundList:= DetermineBounds(LSG)
38 return ByBoundList

are the left and right anomaly probabilities, respectively. The
empirical anomaly probability in shown in Equation [5] and
finally it’s not-anomaly probability is 1 — Prgp,om. Let sen
be the sensor reading of interest (for this example sen = 2).
It is the third reading from the left. Therefore, sensor index
n = 3. Let sen{ be the frequency at the i*" sensor index. Let

[ denote left and r for right. We find

end
T=> sen! (1)
i=1
n—1
P(seny') = (Z senf>/T (2)
i=1
end
P(sen;) = < Z Sen{) /T (3)
1=n+1

For the example with n = 3, we have T = 36, P(sen}') =
3/36 = 0.083 and P(sen!") = 31/36 = 0.861. The center of the
probability distribution is p = 0.5. The anomaly probability



Algorithm 2: Giant-step Baby-step Testing

Input: Setl: Attack SWaT dataset (ASD). Set2: Sensor label s and
time index . Set3: Sensors-actuators relationship graph RG
and training bounds lists.

Output: The state bounds [LB, UB] for the sensor.

1 Def BoundsCheck (4, s, senval, actstate, RG, BoundList) :

sb:=SwitchBoardState(i, s, actstate, RG)

Bounds:= retrieveTrainingBounds(s, sb, BoundList)

LB:=Bounds[’Low’]

UB:=Bounds[’High’]

if LB<=senval<=UB ==Fulse or sb==-1 then

print(“Explanation: Anomaly DETECTED for sensor s at

time index ¢ for actuation state actstate because sensor
value senval not in [LB, UB]. Otherwise, actuation
state is invalid or not seen in training when sb = -1.)
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8 else
9 L print("No anomaly was detected.”)

10 Def GiantStepTest (i,s, ASD, RG, GiBoundList) :

11 actstate:= FindAllActState(i, s, ASD)

12 senval:= FindSensorVal(AS D, i, s)

13 BoundsCheck(i, s, senval, actstate, RG, GiBoundList)

14 Def BabyStepTest (i,s, ASD, RG, ByBoundList) :

15 actstate:= FindAllActState(i, s, AS D)

16 senvalNow:= FindSensorVal(AS D, i, s)

17 senvalPrev:= FindSensorVal(ASD,: — 1, s)

18 senval: = senvalNow - senvalPrev

19 BoundsCheck(i, s, senval, actstate, RG, ByBoundList)

Hypothetical example for illustration

10 A

Frequency

0 1 2 3 4 5 6 7
Sensor readings for a given nn-actuator(s) state

Fig. 7. An example sensor readings distribution for a given nn-
actuation state. Some readings may repeat and is represented by its
y-axis frequency.

for sen is computed using Equation [5] The edge cases are
shown in Algorithm [3]

2) Sliding window in training and testing: The goal is
to detect a series of consecutive sensor reading probabili-
ties whose values cluster around the probability boundaries
anomprob = 1, and anomprob = 0 (see example Fig. [§).
For training, we multiply a series of consecutive not-anomaly
probabilities as part of a sliding window, for sensor readings
in a time-series dataset. The min and max values [min, maz]
of the product are computed. For testing, the same sliding
window multiplication is carried out on the test dataset. For
the multiplied test probability testprob, when the condition
man < testprob < max is violated, an anomaly is raised and
the explanation provided. The set of consecutive test sensor

A

anomprob increases anomprob increases

anomprob decreases

e

p=0.5

anomprob=0

anomprob decreases

A

p=0

anomprob=1 anomprob=1

Fig. 8. A hypothetical illustration of the distribution probabilities
for sensor readings given its nn-actuation state, centred at p = 0.5.
The anomaly probability is O at the centre and tends towards 1, as it
approaches either of the boundaries. The x-axis is range of probability
distribution and y-axis, its frequency.

values for which anomalies are raised are seen as rare events,
not captured during training of normal dataset. It may also
be used to detect multiple rare events (if any), over a given
time interval. TABLE [IV|shows a hypothetical training dataset
for sensor LIT101 and switchboard status 11. Column labeled
1 - PrAnom, is the empirically determined not-anomaly
probability. PrAnom is derived using Equation [5 Column
labeled SWProduct is the sliding window (sw) product. The
sliding window length (swj.,) was chosen to be 3, for ease
of illustration. We compute

Index LIT101 LIT101Diff sb  1-PrAnom SWProduct
1 186.2518 _ 11 _ _
2 186.4088 0.1570 11 0.8 _
3 186.4099 0.0011 11 0.2 _
4 186.6050 0.1951 11 0.6 0.096
5 186.6835 0.0785 11 0.6 0.072
6 187.1546 0.4711 11 0.2 0.072

TABLE IV
AN EXAMPLE TRAINING DATASET. NN-ACTUATORS ARE NOT
SHOWN. SB IS SWITCHBOARD, SWj., = 3. COLUMNS LABELED
1-PRANOM AND SWPRODUCT ARE DERIVED.

Index
SW Product(Index) = H
i=Index—swjen,+1
For the example in TABLE the min and max bounds
for SWProduct are [0.072, 0.096] for sb = 11.

1 — PrAnom; (4)

Index LIT101 LIT101Diff sb 1-PrAnom SWProduct

1 111.2324 _ 11 _ _

2 111.2824 0.05 11 0.4 _

3 111.3324 0.05 11 0.4 _

4 111.3824 0.05 11 0.4 0.064
TABLE V

TEST FOR EXTENDED ANOMALY. TESTVAL IS LIT101DIFF,
WLen =3.

The example test dataset in TABLE [V|shows the test sensor
readings and its diff. The empirical not-anomaly probability



(1-PrAnom) for LIT101Diff is 0.4, since the diffs are the same.
The fourth test index with LIT101Diff has sliding window
product, SWProduct = 0.064. The verification check therefore
is 0.072 < SWProduct < 0.096? Which in our example
(SWProduct = 0.064) returns the False condition, and anomaly
is flagged by the detector. For the experiments in Section
the SWaT normal dataset is used for training through use of its
sensor values across its linearized group states (see Fig.[5) —
for sliding window sizes 5, 10, 25, 50 and 100. For example,
a sliding window of size 100 implies that 100 consecutive
sensor readings for the given state at one second resolution
were trained, and the SWProduct min, max values were the
output of that training. This was tested against the SWaT
attack dataset. Different window sizes are used to capture
anomalies across different time ranges and provide different
detection sensitivity depending on for how long the attack
lasted. The extended detection training methods are provided
in Algorithm 3] The FindMinMaxProduct function at line 37 is
used to find the min and max sliding window product bounds
for different window lengths and each switchboard state in
LSG (derived from training dataset).

(0.5 — min(P(sen}), P(seny))) - 2,
when P(sen}') # 0.5, P(sen!') # 0.5.
®)
For testing the extended algorithm, a similar sequence
of steps is used but with the testing dataset. The sensor
values used here are the attack dataset readings for giant-
step and its diff for baby-step. To find the test sensor value
anomaly probability, a binary search is carried out on the
corresponding sortedSenList (this is the LSG values sorted
in ascending order on frequency, see lines 1-3 in Algorithm [3)
derived from extended training. If testval equals the sorted
sensor list value, then PrLeft, PrRight and PrAnom (lines 6-
27) are computed for this sortedSenListVal. For nearest
sortedSenListVall < testval < sortedSenListVal2; on
sortedSenListVall, compute its PrLeft = 1 — PrRight
and on sortedSenListVal2, compute its PrRight = 1 —
PrLeft. Le., we include the frequency of the tested value in
the probability computation. Now that we have the PrLeft and
PrRight probabilities for testval, 1 - PrAnom is computed as
seen in line 28. The products are then computed for the sliding
window lengths and checked against the min, max extended
bounds determined in training. An anomaly flag is raised when
it is out of bounds. Note that sorting and static probabilities
were computed once, stored during training and reused later.

Pranom(sen) =

V. EXPERIMENTAL RESULTS AND ANALYSIS

The experiments are carried out on a Windows 11 machine,
with an Intel(R) Core(TM) i7-1195G7 @ 2.90GHz processor,
with one of four cores used in experimentation. The GiBy-core
detector (Section [[II-E)) and extended algorithm (Section [[V))
are used. The SWaT normal dataset is used for training and
attack dataset is for testing. Table [VIII] shows the attacks
that are detected by GiBy. Attacks 5, 9, 12, 15 and 18 in
TABLE had no physical impact on the system. Hence,
it is not displayed. For Attack 3, the 1 mm rate of change

Algorithm 3: Extended Detection Training Functions

1 Function SortAscendingByValueOnFrequency (LSG, sb):

2 sortedSenList:= SortAscendingBy ValueOnFrequency(LSG,
sb)// Sort the Linearized group for
switchboard state on frequency of
repeated sensor values as in Fig. .

3 return sortedSenList

4 Function Total (sortedSenList):
5 L T: = fzcll sortedSenList{ return T

¢ Function FindPrLeft (index, sortedSenList,T):

7 n:= index
8 Prleft: = (Z?;ll sortedSenList{) /T
9 return PrLeft

10 Function FindPrRight (index, sortedSenList,T'):
11 n:= index

12 end:= lastIndex(sortedSenList)
13 PrRight: = ( ;?Zi+1 sortedSenList{) /T
14 | return PrRight

15 Function FindAnomPr (PrLeft, PrRight):
16 if PrLeft ==0 or PrRight ==0 then

17 | PrAnom: =1// flag anomaly

18 else if PrLeft# 0.5 and PrRight 0.5 then
19 | PrAnom:= |0.5-min(PrLeft, PrRight)| -2
20 else

21 | PrAnom:= 0.5

22 if PrLeft + PrRight <0.5 then

23 | PrAnom: = |PrLeft+PrRight|

24 if PrRight == 0 and PrLeft #1 then

25 | PrAnom: = PrLeft

26 else if PrLeft == 0 and PrRight# 1 then
27 | PrAnom: = PrRight

28 return index, 1-PrAnom// Not anomaly probability

29 Function FindSWProduct (index, swlen, LSG, sb) :

30 sortedSenList:= SortAscendingBy ValueOnFrequency(LSG, sb)
31 T:= Total(sortedSenList)

32 PrLeft:= FindPrLeft(index, sortedSenList,T)

33 PrRight:= FindPrRight(index, sortedSenList,T')

34 PrAnom:= FindAnomPr(Pr Le ft, Pr Right)

. Index .
35 swproduct:= [[;277%  1ent1 (1 — PrAnom;)
36 return swproduct

37 Function FindMinMaxProduct (index, swlen, LSG, sb) :
// swlen 5, 10, 25, 50, 100 are used
38 end:= lastIndex(LSG, sb)

39 minswprod:= inf// A large positive number
40 maxswprod:= —inf// A large negative number
41 for i=1 to end do

swprod:= FindSWProduct(indez, swlen, LSG, sb)
minswprod:= min(minswprod, swprod )
maxswprod:= max(maxswprod, swprod )

42
43
44

45 return minswprod, maxswprod// Do for each sb state

is within the range of normal behaviour of the tested state.
Hence, this rate of change is not flagged for one of two attack
states. The extended algorithm can detect the anomaly when
the sliding window (multiplied) probability exceeds the seen
threshold in training. Attack 13, 14, and 17 are not detected
because the changing MV-304 and MV-303 states yet showed
normal DPIT-301 readings in attack dataset. Attack 24 on P-
203 is not detected because despite turning on this pump, the
pH sensor readings were in normal range seen in training. The
same is also true with Attack 29 on P-203.



nn-act(s), sen  diff (if any) & Linearize ~ Core bounds Extended bounds Total time

Giant-step 219s 82s 16s 407s 724s

Baby-step 162s 65s 15s 269s S11s
TABLE VI

AVERAGE TIME TAKEN TO TRAIN ONE SENSOR IN NORMAL
DATASET.
nn-act(s), sen  diff (if any) Total pre-test time Total test time/#records  Test time/sensor

Giant-step 148s _ 148s 323s/449919 0.00071s

Baby-step 145s 47s 192s 320s/449919 0.00071s
TABLE VII

AVERAGE TIME TAKEN TO TEST ONE SENSOR IN ATTACK DATASET.

The time taken to train and test the normal and attack
SWaT datasets are shown in TABLE [VI] and TABLE
respectively. The total training time per sensor was seen to
be 9 to 12 minutes. For testing, the total time to copy the nn-
actuator(s) and sensor to a new spreadsheet, and computing
diff (if any) in the attack dataset are determined in pre-
testing steps. The total pre-test time shown is for a total of
449919 attack dataset records. The test step (includes detecting
anomaly and providing explanation) is typically seen to be
under 1 millisecond per sensor. The time taken for training
and pre-testing are linear to the number of records seen in the
normal and attack datasets, respectively.

For ECOD and Deep-SVDD in Mathuros et al. [12]], the
training time is shorter in comparison with GiBy. This is
because they train approximately 24 minutes of data, i.e.,
24 - 60 = 1440 records for each of the six process stages
of SWaT; as opposed to the entire normal dataset of 495000
records trained by GiBy. ECOD detection time was reported
to range from 0.72s to 4.62s, whereas for Deep-SVDD, it was
15.88s to 16.45s. Their Integrated Gradient (IG) XAl used with
Deep-SVDD was the fastest with a time of 5.33s. However,
the XAI provided there use feature ranking to explain what
feature likely caused the anomaly. With GiBy, the explanation
is precise and pinpoints to the sensor and nn-actuation state
(see line 6 in Algorithm [2).

;;;;;
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TABLE VIII
THE ATTACKS DETECTED USING GIBY.

1) Analysis: The attacks in TABLE [VII|— 3, 13, 14, 17,
24, 26, 29 were either undetected or partially detected. This
is because the range of sensor values in the attack dataset

were also seen in the training/normal dataset. However, they
are considered as attacks because the sensor readings changed
even though it remained below the detection threshold. For
example, in attack 29, P-203 is ON and HCI flowed out of the
chemical tank and was mixed with water. However, the pH
sensor AIT-203 readings remained at levels seen in normal
dataset training, though it resulted in wastage of chemical
(HCI in this case). It is possible to detect other edge case
attack types such as attack 3 and 6; where the sensor reading
is either a fixed value or changes by a constant value but
remained below the detection threshold. Such a detection may
be carried out by observing the number of times the sensor
reading pattern repeats and then assigning probabilities for that
event. Also, for any detector training there is an entropy loss;
where the training dataset input is compressed into a smaller
trained output (for example see Fig. [5). For these reasons, we
avoid trying to detect specific attacks and designed GiBy to
be a generalized one-class classifier. However, the implementer
is free to plug-in their edge-case detection models onto GiBy
classifier. Without any plug-in, GiBy in TABLE has 33
Y’s and 11 N’s in the Detected column. This translates to a
75% detection of the attacks in the table. Since attack 4 and
attack 29 on P-201 has non-existent training data, a correct
representation of detected attacks is 33/42, which is 78.5%.
We emphasize that the detection accuracy of 78.5% is specific
to attacks in TABLE Accuracy might be alternatively
reported as i.) number of detected attack records in SWaT
attack dataset divided by the number of total attack records,
or worse as ii.) number of total correctly detected labels
(Attack/Normal) in attack dataset divided by total number of
records in attack dataset. Hence, the interpretation of what
accuracy measures and how it is reported may be inconsistent.
Next, we use an example attack on SWaT to show the
fallibility of anomaly detectors against subtle sensor reading
manipulation.

a) Undetectable attacks: Despite best efforts, a powerful
attacker who is able to compromise the PLC may introduce a
small constant drift ¢ to the sensor reading to avoid detection.
Consider the following attack scenario where an attacker has
successfully compromised the PLC. Let an attacker manipulate
the level sensor LIT-101 reading with the goal to underflow
the tank and dry pump using P-101 (see Fig. ). Further, let the
lower limit for LIT-101 be 10 mm; below which the PLC turns
OFF the pump P-101; to prevent dry pumping. For the tank
filling state MV101 = OPEN and P101 = OFF, the attacker
would spoof the LIT101 value on the PLC to Levelval, =
Levelval; + (6 - i); at each time step i = {1,2,--- ,tmazx} €
tsteps. This causes the water level to appear to be higher than
it actually is. For the tank draining state MV101 = CLOSE
and P101 = ON, the attacker would spoof the LIT101 value on
the PLC to Levelval; = Levelval;+6-(i+j); again, causing
the tank to appear fuller than it is. By adjusting the value of
0 and the number of time-steps ¢, it results in tank under-flow
and P-101 dry pumping. For example, consider LIT-101 value
is 12 mm. Let 6 = 0.01 and tsteps = 200. When tank is in
filling state for 150 time-steps, Levelvalisg = Levelvalisg +
(0.01 - 150). Our accumulated drift is now 1.5 mm. Next, let
the tank be in draining state for the next 50-time steps. Then,




Levelvalsy = Levelvalsg + 0.01 - (150 4+ 50). This causes
additional drift of 0.5, and a total drift of 1.5 4+ 0.5 = 2 mm.
As the tank continues to drain, and LIT-101 sensor reading
arrives at 11.9 mm, in reality the tank level is at 9.9 mm. The
PLC control logic considers the tank level to be above the set
lower-bound, but tank underflow occurred, and P-101 is dry
pumping. To make detection further intractable, the drift § may
be further reduced and the time-steps increased. Further, this
attack may be used on one or more sensors simultaneously and
might be used to create synchronized failures when additional
system information is available. Such subtle attacks tailored
to remain below the detection threshold are difficult to detect
(refer to Section for possible remedial steps).

VI. DISCUSSION
A. Detector limitations

Our core detection solution (see Section is limited to
its nn-actuators, for any given sensor. We mapped a smaller
state-space of actuator states to the sensor reading. As a result,
we forsook the determination of a larger number of tighter
individual bounds that takes exponential time for the conve-
nience of a practically smaller solution seek space. However,
our sensor measurements are taken directly from the normal
operations dataset. As a result, the overall determined [LB,
UB] bounds remained unchanged, and hence does not change
the overall safety limits determined. For example, consider
eight dependent actuators influencing a sensor reading. When
the actuation sequence for each actuator is k& = {on, off},
then |k| = 2. When |k| = 2 and number of actuators is 8,
there are a total of 28 = 256 actuation states. This requires
determination of [LB;, UB;]v;=1,... 256 bounds. Additionally,
let us assume that only 3 out of the 8 dependent actuators are
nearest neighbours, w.r.t. sensor s. Using GiBy, we would have
only considered nearest neighbour (23 = 8) actuation states,
and determined [LB;,UBj]vj=1,... . As a result, there was
no change in the overall state sensor bounds (safety limits)
determined, although some detection resolution was lost by
considering only the nearest neighbours.

Another limitation expected from the anomaly detector is a
sensitivity to out of bound measurements, resulting in warn-
ings being issued when no attack is present. This limitation
could occur even in the system normal (initial) operating
phase. The normal dataset is expected to cover its everyday
boundaries of operation. However, in some cases the normal
dataset may not cover all boundaries of normal operations,
and these normal boundaries may be surpassed during future
plant operations. Any logged warning observed, that is deemed
as normal, will have to be reviewed and trained, to avoid
those warnings from re-appearing. However, this will stabilize
once sufficient normal (training) data indicative of its range of
operations is available. This is a training dataset limitation that
affects our model. A final limitation is that it may not detect
all invalid actuation states. It is limited to the resolution of the
actuator states seen for the nn-actuators.

B. Detection in an early prototype system design

In Fig. [3] we note that hydrochloric acid (HCI) is added
into the first tank. Water is pumped using P101 and combined

with the HCl pumped by P201. The pH is then measured
using sensor AIT201. However, if the HCI being transported
is mislabelled as NaOCl, each is poured into an incorrect tank.
This means the tank holding HCI now holds NaOCl and vice
versa. AIT201 no longer measure the pH of water mixed with
HCI, and it instead measures the mix with NaOCI. Now, if the
dosing rates are different, the chemicals will be administered
at an incorrect rate. For this scenario, it is not possible to
detect the pH of water after the addition of HCI, without
the assistance of a redundant pH sensor downstream. This
design shortcoming is rectified in the actual SWaT testbed.
The normal dataset provided is indicative that NaCl was used
in the first tank, HCI in second and NaOCI in the third tank.
This is because the sensor measurements from the dataset,
corresponded with conductivity (AIT201), pH (AIT202) and
oxidation reduction potential (AIT203). An inadequate design
may lead to detection failures, for no fault of the detector
modelled. We emphasize that good detection capabilities are
reliant on meticulous system design.

C. GiBy Detection capabilities

In the threat model (Section [[I-D)), the attacks are classified
into single-stage single/multiple component attacks and multi-
stage single/multiple component attacks. The component con-
sidered is a sensor or an actuator. The goal of this classification
is to build a quantifiable measure (score) on the quality of
the detector, w.r.t. its ability to detect these types of attacks.
Without loss of generality, the classification may be merged
into single and multiple sensor/actuator attack(s) on a system.

Our core detector (see Section can detect single sensor
or actuator manipulations, when it breaks the safety bounds
of the relation between sensor and its actuation state. When
both sensor and corresponding actuator(s) are spoofed, it is no
longer able to individually detect that attack, but it depends
on whether any of the sensor readings downstreanf’] as a
result, went out of bounds. For example, in Fig. [3] consider
an attack where P101 is spoofed to ON and FIT201 reading
to normalFlowRate, despite the pump being OFF and no
water flowing. Assume the controller logic is to turn on the
first HCI dosing pump (P201), when the FIT201 flow rate
y is between 0 < z < y < z and to OFF otherwise. The
attack causes the dosing pump to release HCl even when
no water is pumpe However, due to pH sensor AIT201,
this attack is detected. Further, if we assume that AIT201
is also spoofed to show normal range of measurements —
a redundant downstream sensor AIT501 incorporated in P5 is
able to detect the abnormality in pH. However, if AIT501 is
also spoofed, it may not be able to detect the attack from the
measurements made. As a side effect, changing the pH might
possibly change its conductivity sensor reading, permitting the
attack to be detected. It would be difficult to conclude without
further experimentation.

In some scenarios, it may be sufficient to detect the anomaly
at a later stage, and in others, it requires to be detected in

2Downstream bounds are also captured by GiBy, since it is computed for
every sensor with nn-neighbour actuator(s).

3The success of this attack depends on whether the attacker can compromise
the controller PLC and manipulate its measurements.



the same stage. For example, if pump P101 is running above
its safe rpm, it might cause the adjacent (following) pipe to
burst, affecting the plant and personnel. Where such a concern
exists, the design has to include a pressure sensor. When there
is a risk the pressure sensor reading is spoofed, a physical
pressure safety (release) valve will have to be incorporated
into the design. An anomaly detector’s ability to detect sin-
gle/multiple attacks is highly dependent on intrinsic design
relationships and system dependencies. This tight coupling
makes generalized interpretations on detection capability (by
only considering the detection model) less meaningful.

D. Non-neighbor PLC imposed actuation

The P, stage in Fig. 3| involves chemical dosing. Dosing
tanks are required to be in the order NaCl, HCl and NaOCl
(see Section for reason). AIT201 in the SWaT dataset
measures conductivity. According to the PLC control logic
sheet, the conductivity sensor AIT503 (downstream sensor
in Ps) read by the PLC instructs P201 to be turned off,
when this sensor value hits a preset threshold. Turning off the
salt pump, in-turn regulates the conductivity sensor reading
at AIT503. Hence, P201 is additionally considered as a nn-
actuator (though not a neighbour) for the sensor AIT503;
to capture this relationship. It is added to train the sensor
(using GiBy). In general, the PLC logic sheet is examined to
include such ‘additional’ nn-actuators, when there is a sensor
dependency. Not including this relationship does not change
the overall detection bounds captured in training. However, it
means that some detection resolution is lost because we are
no longer directly capturing the relationship between AIT503
and pump P201.

E. Explainablity

Anomaly detection is typically followed by a mitigation
response, when required. However, extra processing is required
to identify why the detector raised a warning; to inform the
plant operator of the detector reasoning. This is to assist
with the next steps such as diagnostics, emergency manual
shutdown, or plant recovery. For example, the anomaly de-
tector may flag time index ¢t = 34323'" second from start
of operation as anomalous. This time index has 51 sensor and
actuator readings (see TABLE.[I). Without further explanation,
it is not possible to deduce i.) what sensor(s) readings detected
the anomalies, ii.) what change in actuation states led it to an
anomalous state, and iii.) what bound it breached.

The more sophisticated AI/ML models using neural network
and deep learning are inherently black box models. They are
used to detect anomalies but requires additional support from
eXplaianable Al (XAI) models to explain the decision made
by the AI detector. However, both the ML and XAI models
have individual accuracy limitations and is compounded when
used in combination. It also takes longer to train and test
these models (see Section [V). On the contrary, explainability
with the proposed GiBy detector is straightforward. Note that
we employed a switchboard in Section Traceability is
offered via the one-to-one and onto map, using the switchboard
— also in the inverse direction, from sensor reading (under

testing) to its [LB, UB] bounds (determined in the training
phase). Our training and testing are carried out per sensor, for
all concerned sensors and nn-actuator(s). When an anomaly
is detected, this immediately tells us what sensor readings are
causing anomalies. Since the sensor is known, we can look
at its current and previous actuation states, from the state log.
GiBy raises an anomaly warning when i.) the sensor reading
(under testing) for the nn-actuator state is out of bound. Our
detector is able to provide an explanation remark, whether it
was because the sensor reading was > UB or < LB. ii.)
when the normal training dataset did not have the nn-state
actuator state for the sensor, in it. This may happen for two
reasons a.) the actuation state is invalid or b.) that state is yet
to be encountered in the plants’ normal operation and hence
not yet seen in the normal training dataset. Another advantage
of GiBy, is that it does not produce false positives except
when the normal dataset is not wide enough to capture rare
non-everyday spikes, anomalies or boundary excursions. Its
detection boundaries are clear and limited to what it has seen
in normal dataset training. Our detector system is designed
to offer a level of explainability that is expected to equip the
operator to deal with most contingencies. The capability of our
system to provide the correct sensor location and response
to faulty components/attacks subsequently reduces the plant
downtime.

F. Usability in other sectors

Anomaly detection and mitigation in some sectors (such
as power), in certain scenarios, require an actuation within
10-15 milliseconds from event occurrence, to ensure safety.
The GiBy algorithm presented in Section is universally
transferable and GiBy-core testing may be parallelized. This
is because it produces a series of independent [LB, UB]
boundaries. It may be pre-programmed into the control logic
of an Intelligent Electronic Device (IED), typically used in a
power substation. It may be used to trip the circuit breaker in
near real-time (when sensor readings are out of safety bounds),
or to inform an operator regarding the anomalous behaviour.
The computational cost of GiBy-core tests (see Section [[II-E|
are to see whether the sensor value is in between two bounds
[LB, UBJ; taking up to two comparisons. The main costs of the
extended algorithm tests (see Section are the binary search
and sliding window multiplications in each time step. Its time
complexity may be reduced to that of binary search on the
pre-sorted linearized group (that takes logarithmic time), and
a maximum of one multiplication and division: for each time
step. Instead of repeatedly multiplying every sensor derived
value in the sliding window, the newest time step sensor
derived value may be multiplied into the existing product,
and the sensor derived value at the tail of the window is
divided out. As a result, it might also find (outlier detection)
applications in resource constrained devices, edge computing
devices and legacy systems with lower computational power.

VII. RELATED WORK

While there are solutions to detect packet anomalies on
the OT network [25] and memory anomalies on computation



devices [26], [27], amidst other detection vectors, the focus
of this work is on process anomaly detection [28], [29].
Several approaches are available for design-centric and data-
centric anomaly detection. In a design-centric approach, for
example, Adepu and Mathur [30] captured the design using
state condition graphs. It was used to capture the conditions
on actuation w.r.t. sensor readings, expressed using Boolean
conditions, and represented in a graphical format. The work
in Yoong et al. [31] used axiomatic design methodology for
systems, where it iteratively decomposes a CPS design to sets
of dependent components and transformed into invariants. In
Merwa et al. [32]], an association rule mining technique was
used to generate attack and invariant rules. In a data-centric
approach, for example, there exist solutions to distinguish
outliers, such as ECOD in Li et al. [10]. It computed a
univariate empirical cumulative distribution function for each
dimension separately. To measure the chance of a data point
being anomalous, they computed its tail probability across
all dimensions. Another outlier detector called deep Support
Vector Data Description (Deep-SVDD) proposed in Ruff et
al. [11]], trained a neural network while minimizing the volume
of a hypersphere that enclosed the network representations of
the data. In WaXAI, Mathuros et al. [12] employed ECOD
and Deep-SVDD in the context of SWaT anomaly detection.
In addition, they also employed explaianable Al [[14] models,
namely, kernel SHAP [33]], LIME [34], ALE [35] and IG [36],
to provide explanation for the anomaly detected. Further, a
20% improvement in attribution of attack root cause over
SHAP was achieved by using a Factorization Machines based
approach by Avdalovic et al. [37].

In this work we provided attribution (explainability) linked
directly to the sensor. Explainability was provided for each
sensor when out of bounds, to top up the recommendations
in Fung et al [38]]. The GiBy classifier (see Section is in
comparison [39]], [40] marginally less design centric. However,
to improve detection resolution, it may use the know-how of
direct sensor-actuator relationships, available from the testbed
design document or derived from the system architecture by
a subject expert, and PLC imposed non nn-actuation (see
Section logic available in the PLC control logic sheet.
Note, we do not break it down to process stages or look
for invariants across sub-systems to find association rules.
Instead, boundaries are determined per sensor and relation-
ships are generally constrained to nn-actuator(s). We assume
that a suitable approach was used to set the PLC min-max
boundaries discussed in Section [[IEAl These hard boundaries
are essential for correct system operations even in the absence
of anomalies. Recent developments in using large language
models (LLMs) for anomaly detection is extensively reviewed
in Su et al [41]. Unlike GiBy, none of the log analysis
detectors surveyed there positioned themselves as real-time
detectors. A generalized note they made on computational
efficiency in LLM deployment for forecasting and anomaly
detection was its sheer scale and complexity of those models. It
demanded substantial computational resources, likely to limit
its scalability and usability for real-time applications. Also of
concern was the sustainability and energy efficiency of LLMs
with future trends likely to persist on environmentally friendly

models through practices such as optimized algorithms and
energy-efficient hardware. In this aspect, unlike LLMs and
some of the deep learning Al models discussed; GiBy showed
millisecond detection speeds on an everyday used micropro-
cessor demonstrating that the algorithm is energy efficient.

VIII. CONCLUSIONS AND FUTURE WORK

We presented a simple yet powerful anomaly detector that
trained four set of bounds — the min-max bounds for the
giant-step, the rate of change bounds for baby-step, and the
extended detection algorithm bounds, for both giant and baby-
steps. The detector acted as a one-class classifier. Any tested
value outside trained bounds were flagged as an anomaly. The
transparent design of GiBy anomaly detector made it straight-
forward to implement and easy to interpret. The explainability
provided pinpoints the sensor and actuation state for which
anomaly was detected, and what bounds it breached. The
experiments showed that testing for an anomaly and providing

an explanation took around of a second per sensor.

th
This made it useful for implemen(t)ation in systems where near
real-time decisions are made, or on devices that are resource
constrained.

In our experiments, we observed in TABLE that some
attacks were well within the range of normal behavior and
could not be detected. We emphasize that detecting all attacks
in an attack table (TABLE is not the same as detecting all
attacks on a system. Attack tables, such as those provided by
SWaT are useful to check whether the detector detects different
types of attacks, based on attacker capabilities. However,
detecting some attacks are expected to remain difficult for
all anomaly detectors, due to entropy loss in training and
indistinguishability from normal operational data. Due to the
undetectable attacks discussed in Section in future work
we will explore other types of detection using digital signature
verification and encryption to hide the inferences on sensor
readings across OT, segregating and air-gapping high risk
sensors and PLCs, paying closer attention to attack prevention
and fast recovery strategies that do not compromise plant and
personnel safety in the meantime.
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