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Abstract

Smart homes represent intelligent environments where interconnected devices gather information, enhancing users’
living experiences by ensuring comfort, safety, and efficient energy management. To enhance the quality of life, com-
panies in the smart device industry collect user data, including activities, preferences, and power consumption. How-
ever, sharing such data necessitates privacy-preserving practices. This paper introduces a robust method for secure
sharing of data to service providers, grounded in differential privacy (DP). This empowers smart home residents to
contribute usage statistics while safeguarding their privacy. The approach incorporates the Synthetic Minority Over-
sampling technique (SMOTe) and seamlessly integrates Gaussian noise to generate synthetic data, enabling data and
statistics sharing while preserving individual privacy. The proposed method employs the SMOTe algorithm and applies
Gaussian noise to generate data. Subsequently, it employs a k-anonymity function to assess re-identification risk before
sharing the data. The simulation outcomes demonstrate that our method delivers strong performance in safeguarding
privacy and in accuracy, recall, and f-measure metrics. This approach is particularly effective in smart homes, offering
substantial utility in privacy at a re-identification risk of 30%, with Gaussian noise set to 0.3, SMOTe at 500%, and the
application of a k-anonymity function with k¼ 2. Additionally, it shows a high classification accuracy, ranging from 90%
to 98%, across various classification techniques.
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1. Introduction

T he increasing appeal of smart residences re-
flects a growing desire among individuals to

have greater control over their living spaces and
enhance their overall quality of life. Within a smart
home, an array of devices, including but not limited to
smart thermostats, security systems, lighting, and
entertainment systems, can be seamlessly operated
from afar. The connectivity of these devices to the
internet enables users to remotely administer them
using their cellphones or other internet-connected
devices [1]. Perhaps the most noteworthy aspect of a

smart home is its remarkable convenience. It grants
users thepower to govern the temperature, lights, and
security of their dwelling from virtually any location
worldwide. Leveraging a smartphone, one can
effortlessly extinguish lights, adjust the thermostat,
and monitor security cameras, ensuring both the
comfort and safety of the home. Additionally, smart
homes deliver tangible savings in terms of energy
costs. Smart thermostats, for instance, are adept at
adjusting a home's temperature in alignment with
the inhabitants' preferences and presence, thus
translating into reduced expenditures on heating and
cooling. Similarly, smart lighting systems possess the
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capability to automatically power down lights when
rooms remain unoccupied, leading to significant en-
ergy conservation [2].
Smart homes offer enhanced security features,

allowing homeowners to oversee their properties
from remote locations and receive alerts in case of
suspicious activities, thus augmenting protection [3].
Furthermore, the capacity to lock and unlock doors
from a distance permits the convenient admission of
guests or service personnel without physical
presence.
In the realm of entertainment, smart homes have

the ability to elevate one's leisure experiences. Con-
trol over television, music, and other entertainment
systems can be exerted from any point within the
smart home. The integration of voice assistants
further simplifies entertainment management
through voice commands. The wealth of data har-
vested from smart homes holds significant potential
for a wide array of applications, spanning from the
prediction of smart home activities [4] to improved
healthcare services for patient treatment [5], enabling
more effective disorder assessment, enhancing smart
city pedestrian monitoring systems [6], and opti-
mizing energy management strategies. This data is
increasingly recognized by businesses as a valuable
resource for enhancing their products and services.
However, it is imperative for data collectors to

prioritise the confidentiality of such data. Mishan-
dling or inadequate management of this data can
give rise to substantial issues. As a result, a novel
system has been proposed, one that harmonizes
both privacy and utility. In the realm of remote
health systems, the processes of collecting,
disclosing, and utilizing personal health information
give rise to significant privacy concerns. Households
are often perceived as the utmost private environ-
ments by many individuals. In these settings, de-
vices like glucometers for blood sugar measurement,
spirometers for lung function assessment, and sen-
sors monitoring sleep patterns are commonly used.
These devices can inadvertently disclose sensitive
health information, potentially indicating conditions
such as diabetes, asthma, or depressive disorders.
Consequently, patients frequently prefer to limit
access to this data, usually confining it to a selected
group, predominantly their personal healthcare
providers, due to privacy considerations.
Differential Privacy, as highlighted in [7], has

emerged as a widely embraced technique for safe-
guarding privacy. Its core concept involves granting
users a level of plausible deniability by introducing
random values into their input. This methodology,
in the realm of centralized differential privacy, for-
tifies user privacy significantly, thereby shielding

their data from potential adversaries, including
service providers and external parties. In this sce-
nario, a process entails the introduction of noise into
the database, complemented by the application of a
differential privacy aggregation algorithm.
The Synthetic Minority Over-sampling Technique

(SMOTe), introduced in [8], is employed to address
imbalanced datasets by creating synthetic samples
for the minority class, thereby mitigating bias in
machine learning models towards the majority
class. When coupled with privacy-preserving
methodologies, SMOTe plays a pivotal role in for-
tifying the privacy of minority class data. By
generating synthetic instances while upholding data
confidentiality, it contributes to the development of
more equitable and secure predictive models.
This paper presents an innovative approach to

securely transmit household data to the aggregator
while addressing potential threats posed by mali-
cious aggregator nodes. To tackle this issue, we
employ Differential Privacy to safeguard real-time
data collected from residences. Before trans-
mission, a privacy preservation process is applied,
utilizing the SMOTe algorithm to generate syn-
thetic data and adding Gaussian noise to the
generated data. This guarantees that the aggregator
is unable to determine the identity of the individual
resident, thereby maintaining their anonymity. The
proposed model presents unique benefits over
current approaches. By employing SMOTe and
Gaussian noise, it creates a protected and anony-
mous data setting, successfully preventing any
hostile aggregator nodes from obtaining confiden-
tial data.
The main contributions of this paper are as

follows:

� Presenting a well-defined formulation specif-
ically tailored to address the challenges of pri-
vacy preservation in smart homes.

� Employing the Synthetic Minority Over-sam-
pling Technique (SMOTe) algorithm to generate
synthetic datasets.

� Enhancing data privacy by applying Gaussian
noise to the dataset.

� Implementing various classification methods, to
ascertain that the accuracy of the data is not
substantially compromised post-application of
our privacy-preserving techniques. This pro-
cedure validates the utility of the generated data,
confirming that our approach effectively bal-
ances privacy with the need for accurate data
analysis.

� Utilizing the k-anonymity model as a pivotal
framework for conducting security analysis.
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The subsequent sections of this paper are orga-
nized as follows: Section 2 reviews current privacy
preservation techniques in smart homes and un-
derscores their limitations. Section 3 provides
essential background information on SMOTe and
Gaussian noise. Section 4 outlines our approach and
introduces the system model. In Section 5, the
scheme's performance is analyzed from both secu-
rity and efficiency perspectives.

2. Related work

In recent times, the intersection of data synthesis
methods with Differential Privacy (DP) solutions has
been a pivotal area of research. This convergence
aims to address the challenge of releasing data for
analysis, ensuring its usefulness while simulta-
neously safeguarding the privacy of individuals
[9,10]. Generative Adversarial Networks (GAN) are
widely recognized for their capacity to produce
synthetic data from real datasets, offering a power-
ful tool for data generation. However, it's important
to note that GAN methodologies lack robust privacy
guarantees [11]. Conversely, previous approaches
have attempted to generate synthetic data using
various methodologies. Some rely on summary
statistics extracted from the original dataset, while
others leverage specific domain-knowledge for data
creation [12,13]. However, these conventional
methods are bound by constraints, they operate
within low-dimensional feature spaces, cater to
specific fields, and notably lack the crucial aspect of
differential privacy, making them less suited for
contexts demanding robust privacy preservation
measures. This integration of data synthesis with DP
and the refinement of GAN techniques represents a
substantial advancement, offering a promising
pathway to create synthetic data that not only
maintains utility but also ensures stringent privacy
protections for individuals involved in the dataset.
The authors in [14] proposed a new strategy for

privacypreserving data sharing called Priva-
teSMOTe. They used PrivateSMOTe in the highest-
risk cases regarding k-anonymity. Differential
privacy, a method for preserving privacy, is widely
applied in various computer science domains. It's
notably used in recommendation systems to main-
tain the confidentiality of user preferences and
actions, enabling precise suggestions [15,16]. In data
mining, differential privacy allows analyzing sensi-
tive information without disclosing individual data
[17]. Its application extends to crowd-sourcing [18],
network measurements for protecting individual
network traffic data while obtaining aggregate
measurements [19], and in areas like intelligent

transportation and sensor network stream process-
ing [20]. The authors in [21] presents a thorough
examination of differential privacy (DP) applications
within smart city frameworks, particularly focusing
on edge computing, to address the underexplored
area of data privacy preservation in IoT-driven,
resource-limited environments. This study [22] in-
troduces an efficient, locally differentially private
data aggregation scheme for smart grids, enhancing
user privacy without incurring significant compu-
tational overhead, thereby addressing the limita-
tions of current homomorphic encryption and
randomization techniques. This paper [23] conducts
a comprehensive literature review on the applica-
tion of differential privacy to building data,
exploring the current state, challenges, and future
research opportunities in utilizing this privacy-pre-
serving technique to enhance data utility while
addressing privacy concerns.
However, these methods often rely on a trusted

third party to gather data, apply algorithms, and
conduct privacy-preserving analysis by adding
“noise,” leading to reduced data accuracy. Our
approach enhances the synthesis framework, inte-
grating stringent privacy assurances and rendering
the synthetic data differentially private relative to
the original dataset.
We implement differential privacy at the data

source for increased privacy, complemented by the
SMOTe algorithm and Gaussian noise addition for
data generation. In studies such as [24e28], various
researchers have proposedmethodologies that utilize
data masking techniques. Adding extra data masking
in privacy-preserving methodologies can lead to
several disadvantages:Reduced Data Utility,
Increased Complexit and can slow down data pro-
cessing, affecting the overall system performance.
This is further strengthened by data masking tech-
niques, ensuring data remains inaccessible to unau-
thorized entitieswithout specificmasking knowledge.
These strategies, combined with differential privacy,
offer robust privacy protection, allowing valuable
computations on sensitive data while safeguarding
individual privacy. Controlled noise addition hinders
specific individual identification in datasets, yet per-
mits meaningful data analysis and insights.

3. Preliminaries

This section provides background information on
Synthetic Minority Over-sampling Technique
(SMOTe) and the Gaussian noise approach. It also
discusses K-anonymity which is a privacy concept
and data anonymization method used to protect the
identity and sensitive information of individuals in

A.T. Elsayed et al. / Al-Azhar Bulletin of Science 35 (2024) 71e84 73



datasets. In addition, it investigates the imple-
mented machine learning methods, such as
K-nearest neighbours (KNN), Support vector ma-
chines (SVMs), and Naive bayes (NB). In the final
section of this discussion, we will investigate the
performance and evaluation metrics used to eval-
uate the performance of the proposed scheme.

3.1. Synthetic Minority Over-sampling technique
(SMOTe)

SMOTe is a widely adopted method in the realms
of machine learning and data mining, specifically
designed to rectify class imbalance issues in datasets.
Beyond its utility in class rebalancing, SMOTe finds
applications in privacy-preserving data sharing
through synthetic data generation. In the context of
class imbalance, it effectively augments underrepre-
sented class samples by creating synthetic instances
based on existing data points. Simultaneously, in
privacy settings, SMOTe contributes to safeguarding
sensitive information by generating synthetic data
that mirrors the statistical characteristics of the
original dataset, enhancing privacy while still facili-
tating meaningful analysis and sharing of data across
domains. Here are how it works:

� Identify minority class instances: SMOTe starts
by identifying instances from the minority class
that are candidates for generating synthetic ex-
amples. These instances serve as the basis for
creating synthetic samples.

� Select nearest neighbors: For each minority class
instance selected, SMOTe identifies its k-nearest
neighbors among the minority class instances.
The value of ‘k’ is a user-defined parameter that
determines the number of nearest neighbors to
consider.

� Generate synthetic samples: SMOTe generates
synthetic examples by randomly selecting one of
the k-nearest neighbors and interpolating be-
tween the feature values of the selected instance
and the current instance. The interpolation is
controlled by a randomvalue between 0 and 1. For
example, if k ¼ 5 and the random value is 0.3,
SMOTe creates a new instance by taking 30% of
the feature values from the selected neighbor and
70% from the current instance.

� Repeat for all minority class instances: Steps 2
and 3 are repeated for all minority class in-
stances selected in first step. This process gen-
erates multiple synthetic instances for each
original minority class instance.

� Combine original and synthetic data: The syn-
thetic instances are combined with the original
data to create a balanced dataset. This balanced
dataset can then be used for training machine
learning models.

3.2. Gaussian noise

In the context of privacy-preserving techniques,
“gaussian noise” typically refers to a method used to
add noise to data in order to protect the privacy of
individuals while still allowing for meaningful
analysis. This technique is often employed in the
field of differential privacy, which is a framework for
preserving privacy in statistical and data analysis
[29].
Consider X1, X2, …, XN as a set of N Gaussian

random variables. These variables can be collec-
tively referred to as a multivariate Gaussian distri-
bution. The joint probability density function of
these variables is given by:

FXðxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞNdetðKXÞ

q
exp

�
� 1
2
ðx�mXÞTK�1

X ðx�mXÞ
�
;

ð1Þ

where mX is the mean vector and KX is the
covariance matrix of the distribution, defined as:

mX ¼

2664
m1

m2

«
mN

3775; KX ¼

2664
K11 / K1N

K21 / K2N

« 1 «
KN1 / KNN

3775: ð2Þ

3.2.1. Additive perturbation
The additive perturbation method generates per-

turbed data Y by adding random noise Z to the
original data X, expressed as:

Y¼ XþZ: ð3Þ
The covariance matrix of the original dataset X

is given by:

KX ¼ � ðX�mÞðX�mÞT
�
: ð4Þ

The noise Z is a jointly Gaussian vector with a
zero mean. Its covariance matrix is defined as:

KZ ¼
�
ZZT

�
: ð5Þ
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3.3. K-anonymity

K-anonymity is a methodology in data privacy
aimed at anonymizing datasets to shield individual
identities and sensitive details. It assures that each
person's data, when disseminated or shared, re-
mains unidentifiable and merged with a minimum
of M others, reducing the possibility of pinpointing
individuals in the dataset. K-anonymity is notably
used in securing demographic or health data [30].
Definition 1: (Quasi-identifier) Consider a dataset

D(B1, …, Bm). A quasi-identifier for D is a subset of
attributes {B, …, Bj}⊆{B1, …, Bm} that requires regu-
lated release.
The aim is to enable data dissemination from D

while ensuring individual anonymity. This requires
the information released to non-specifically corre-
spond to at least M individuals, where M is deter-
mined by the data custodian, as per the subsequent
specification.
Definition 2: (M-anonymity Requirement) Each

data release must ensure that for every quasi-iden-
tifier value combination, it matches non-specifically
to at least M individuals.
Definition 3: (M-anonymity) Let D(B1, …, Bm) be a

dataset and QID its quasi-identifiers. D adheres to
M-anonymity if, for every quasi-identifier QI 2 QID,
each value sequence in D[QI] appears with at least
M instances in D[QI].
Here, QID signifies the set of quasi-identifiers

linked to D, and D indicates the cardinality, i.e., the
count of tuples in D.

3.4. Machine learning techniques

The K-nearest neighbors (KNN) classifier is a
fundamental yet vital algorithm in Machine
Learning, used extensively in pattern recognition,
data mining, and intrusion detection [31]. KNN
identifies the nearest elements or clusters for a
given query element, requiring a distance metric,
given by:

dðz;vÞ ¼
 Xm

j¼1

ðzj � vjÞq
!1

q

ð6Þ

Support vector machines (SVM) are robust
supervised learning algorithms for classification.
They find an optimal hyperplane in a multidimen-
sional space to distinguish data classes, aiming to
maximize the margin, the distance from the hyper-
plane to the nearest data points of each class [32].
Hyperplane Equation in SVM:

u$zþ c¼ 0 ð7Þ

where: u is a weight vector orthogonal to the hy-
perplane. z is a feature vector of a data point. c is the
hyperplane's offset from the origin along u.
Classification in SVM:

gðzÞ ¼ signðu$zþ cÞ ð8Þ

where sign(.) is the sign function, returning -1 or 1
based on its argument's sign.
Naive Bayes Classifier (NB): These algorithms

apply Bayes’ theorem under the assumption of
conditional independence between feature pairs,
given a class variable. For class variable y and
dependent features z1 through zm:

Pðyjz1;…; zmÞ ¼ Pðz1;…; zmjyÞPðyÞ
Pðz1;…; zmÞ ð9Þ

Assuming conditional independence:

Pðzjjy; z1;…; zj�1; zjþ1;…; zmÞ ¼ PðzjjyÞ ð10Þ
Simplified relationship:

Pðyjz1;…; zmÞ ¼
PðyÞQm

j¼1 PðzjjyÞ
Pðz1;…; zmÞ ð11Þ

Classification decision in NB:

by¼ argmax
y

PðyÞQm
j¼1 PðzjjyÞ

Pðz1;…; zmÞ ð12Þ

3.5. Performance evaluation measurements

The evaluation of the classifier's performance was
conducted using Precision, Recall, and F-measure,
derived from the confusion matrix detailed in
Table 1. An explanation of these metrics is provided
below.

� Precision: This metric evaluates the proportion
of correctly identified actions among all selected
actions. It's calculated as the ratio of correct se-
lections to the total selections made.

Precision¼ TP
ðTPþ FPÞ ð13Þ

� Recall: This measures the fraction of accurately
identified actions out of all the relevant actions.

Table 1. Confusion matrix.

P’ (Predicted) N’ (Predicted)

P (Actual) TP FN
N (Actual) FP TN
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Essentially, it assesses the percentage of relevant
actions that have been correctly captured.

Recall¼ TP
ðTPþ FNÞ ð14Þ

� F-measure: This is a composite metric that
combines precision and recall, providing a
weighted average of the two. It's particularly
useful for assessing the balance between preci-
sion and recall.

F�measure¼ 2*Precision*Recall
ðPrecisionþRecallÞ ð15Þ

4. The proposed privacy-preserving model in
smart homes

This section describes the proposed approach and
model, including a thorough explanation of the data
capture procedure, applied preprocessing method-
ologies, and any specific algorithms or techniques
that are intricately incorporated into the model's
framework as shown in Fig. 1.

4.1. System model and overview

Based on the basic idea of differential privacy and
SMOTe, the proposed approach consists of two
steps: data synthesis and noise addition. This
approach proposes a differential privacy-based
system to protect the privacy of data collected from
smart homes by adding synthetic data followed by
noise using SMOTe algorithm. Given an initial data
Do for smarthome owner, the objective is to protect
the privacy of data by generating a synthetic dataset

Ds that closely matches the statistical characteristics
of Do.

4.2. Problem formulation

Consider the dataset Do which consists of n re-
cords, each containing d characteristics. A synthetic
dataset Ds is considered when it closely resembles
Do across all functions, as indicated by f(Ds) ¼ f(Do).
Our investigation focuses on statistical metrics
classification models.

4.3. Generating synthetic data and apply Gaussian
noise

In this research phase, we start by thoroughly
understanding the smart home dataset, focusing on
attributes with sensitive information, which are
anonymized and generalized for privacy. The
widely used SMOTe technique, originating from
machine learning and data mining, addresses class
imbalance and privacy concerns. It generates syn-
thetic data that maintains the statistical features of
the original dataset, enhancing privacy and enabling
meaningful cross-domain data analysis and sharing.
as described in section 3. The algorithm delineated
in Algorithm 1 articulates the methodology under-
lying the proposed approach. This approach en-
compasses the following steps:

� Identification of Minority Class Instances: Initial
identification of minority class instances to
generate synthetic samples.

� Selection of Nearest Neighbors: Each minority
class instance has its k-nearest neighbors iden-
tified within the same class, with k being a pre-
defined parameter.

Fig. 1. The proposed system model.
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� Synthetic Sample Generation: Synthetic samples
are produced through interpolation between the
feature values of a minority class instance and
one of its k-nearest neighbors, chosen at
random.

� Repetition Across All Instances: This neighbor
selection and sample generation process is
repeated for each instance in the minority class.

� Data Integration: The resultant synthetic in-
stances are integrated with the original dataset,
creating a balanced dataset for model training.

� Additive Perturbation Phase: The dataset un-
dergoes Gaussian noise addition, a differential
privacy technique enhancing individual privacy
while allowing valuable data analysis.

Computational Complexity Analysis: Lines 7 to 9
finding the s nearest neighbors for each minority
sample can be time-consuming. If a simple linear
search is used, this step could take O(M*N*d )
time, where M is the number of minority sam-
ples, N is the total number of samples, and d is
the number of dimensions/attributes. Lines 10 to
15: the time complexity for generating each
synthetic sample is O(d ), since it involves a
calculation for each attribute. The outer loop runs
E times, making this step O(E*d ). Line 17:
merging datasets is generally a linear operation,
O(M þ E ), assuming E synthetic samples are
created. Line 19: adding Gaussian noise involves
generating a random value for each attribute of
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each synthetic sample, which has a complexity of
O(E*d ).
Therefore, the overall time complexity of the al-

gorithm is dominated by the nearest neighbors’
calculation and the generation of synthetic samples.
The exact time complexity would depend on the
method used for nearest neighbor search and the
size of the dataset, but assuming a linear search,
the complexity would be approximately
Oðd)ðM)N þ EÞ.

5. Experimental and analysis

To evaluate the effectiveness of the proposed
methodology, this study utilizes a substantial real-
world dataset, namely the MHEALTH dataset [33].
The dataset consisting of approximately 1 million
records. The data primarily consists of numerical
values. Specifically, it is referred to as the “Mobile
HEALTH” dataset, which captures body motion and
vital signs recordings. The dataset encompasses
measurements from ten volunteers with diverse
profiles while engaging in various physical activities.
Additionally, the research employs Google Colab

[34], a free, cloud-based platform that provides a

Jupyter notebook environment for writing and
executing Python code. It offers easy access to
powerful computing resources like GPUs and TPUs,
making it ideal for machine learning and data
analysis projects. Colab facilitates seamless collab-
oration and integrates with Google Drive for
convenient file storage and sharing. Table 2 presents
the configurations for the XGBoost and KNN (with
K ¼ 3) algorithms. These algorithms are integral to
the proposed method and are utilized for analyzing
data shared in smart home environments.

5.1. Classification evaluation

This subsection analyses the influence of different
parameters on the classification results, including
the Gaussian noise value g, the amount of SMOTe N
% and the re-identification risk for k value when
apply K-anonymity function. Knowing that the ac-
curacy for the dataset without applying the proposal
were DT: 98.11%, KNN: 98.4%, NB: 89.91% and
XGBoost: 96.01%.
Figure 2 delineates the interplay between the ac-

curacy of several classification algorithms and the
extent of Gaussian noise, following the application
of a SMOTe percentage of N ¼ 130%. The Gaussian
noise ranges from 0 to 1, within which the accuracy
for various classification methods is observed as
follows: Decision Tree (DT) between 85.60% and
98.05%, K-Nearest Neighbors (KNN) from 87.82% to
98.74%, Naive Bayes (NB) within 86.55%e89.45%,
and XGBoost achieving 86.38%e95.86%. Comparing
these results to the baseline accuracies obtained

Fig. 2. Gaussian noise for amount of SMOTe N ¼ 130% and k ¼ 2.

Table 2. XGBOOST Configuration.

Parameter Value

Number of Estimators 61
Minimum Child Weight 7
Maximum Tree Depth 6
Gamma Value 0.4
Number of Rounds 10
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without our proposed methodology, the error
margin appears dependent on the Gaussian noise
level, remaining relatively stable at g ¼ 0.3 and
increasing thereafter.
Figure 3 illustrates the relationship between the

accuracy of various classification methods and
Gaussian noise levels after applying a SMOTe per-
centage of N ¼ 220%. With Gaussian noise fluctu-
ating between 0 and 1, the resulting accuracies for
the algorithms are as follows: DT with 83.01%e
98.23%, KNN between 84.7% and 98.74%, NB

ranging from 86.40% to 89.45%, and XGBoost
achieving 86.08%e95.7%. These outcomes, when
contrasted with the accuracies attained without our
proposed approach, demonstrate an error margin
linked to the level of Gaussian noise, particularly
stable at g ¼ 0.3 but escalating with higher noise
levels.
In Fig. 4, the correlation between the accuracy of

different classification algorithms and Gaussian
noise, under a SMOTe percentage of N ¼ 370%, is
presented. The Gaussian noise, varying from 0 to 1,

Fig. 3. Gaussian noise for amount of SMOTe N ¼ 220% and k ¼ 2.

Fig. 4. Gaussian noise for amount of SMOTe N ¼ 370% and k ¼ 2.
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impacts the accuracy of the algorithms as follows:
DT records accuracy between 84.70% and 98.26%,
KNN shows 86.73%e98.74%, NB operates within
86.34%e89.45%, and XGBoost achieves 85.82%e
95.68%. When these results are compared with the
accuracies obtained without the implementation of
our methodology, the error margin, influenced by
the Gaussian noise, remains relatively stable at
g ¼ 0.3 and increases with higher levels of noise.
Figure 5 expounds on the relationship between

the accuracy of various classification algorithms and
Gaussian noise after the application of a SMOTe
percentage of N ¼ 500%. Within the Gaussian noise
range of 0e1, the accuracies for the algorithms are
observed as follows: DT maintains 83.14%e98.05%,
KNN ranges between 87.2% and 98.74%, NB records
86.44%e89.45%, and XGBoost achieves 86.1%e
95.66%. Comparing these findings with the baseline
accuracies obtained without our methodology, the
error margin is seen to depend on the Gaussian
noise level, showing a relative stability at g ¼ 0.3
before increasing at higher noise levels.
Our comprehensive analysis, as depicted in previ-

ous figurs, reveals a consistent trend in the interplay
between the accuracy of classification algorithms and
the level of Gaussian noise, across varying SMOTe
percentages N ¼ (130%, 220%, 370%, and 500%) Irre-
spective of the SMOTe percentage applied, the
Gaussian noise, ranging from 0 to 1, uniformly affects
the accuracy of the classificationmethods under study
- Decision Tree (DT), K-Nearest Neighbors (KNN),
Naive Bayes (NB), and XGBoost. These effects are

evident within specific accuracy ranges for each al-
gorithm. A pivotal observation is that the error
margin, which is linked to the level of Gaussian noise,
exhibits a similar pattern across all SMOTe levels.
Particularly, this error margin remains relatively sta-
ble at a Gaussian noise level of g ¼ 0.3, and then
progressively increases with higher noise levels. This
trend underscores the robustness and consistency of
our proposed methodology in maintaining accuracy
while ensuring privacy, despite variations in data
augmentation via SMOTe.

5.2. Security analysis

This section delves into the utilization of the k-
anonymity model as a pivotal framework for con-
ducting security analysis. The k-anonymity
approach is fundamentally designed to thwart the
re-identification of individuals within a dataset. It
accomplishes this by ensuring that within any
grouping of k records, the shared attributes of the
individuals are sufficiently homogenized. This level
of similarity provides a cloak of anonymity, effec-
tively safeguarding individual identities.
K-anonymity is both a statistical and computa-

tional strategy that plays a crucial role in the defense
of sensitive data. Its primary objective is to create a
formidable barrier against the efforts of potential
adversaries or external entities who might attempt
to isolate and extract specific personal details per-
taining to individuals from a dataset. By blending
individual data points into larger, indistinguishable

Fig. 5. Gaussian noise for amount of SMOTe N ¼ 500% and k ¼ 2.
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groups, k-anonymity makes the task of pinpointing
unique personal information significantly more
challenging, thereby enhancing the overall security
and confidentiality of the data. This methodology, as
discussed in the seminal work of Samarati (2001),
has emerged as a cornerstone in the field of data
privacy and protection [35].
In Fig. 6, the interrelation between the re-identi-

fication risk and varying SMOTe amounts, set

against a Gaussian noise level of g ¼ 0.1, is expertly
depicted. The data portrays a clear trend: with an
increase in the SMOTe amount, there is a notable
reduction in the re-identification risk. This consis-
tent pattern at a Gaussian noise level of g ¼ 0.1
underlines the efficacy of SMOTe in mitigating
privacy risks.
Figure 7 effectively illustrates the relationship

between re-identification risk and the application of

Fig. 6. Re-identification risk and SMOTe relationship when gaussian noise g ¼ 0.1.

Fig. 7. Re-identification risk and SMOTe relationship when gaussian noise g ¼ 0.3.
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different SMOTe amounts, within the context of a
Gaussian noise level of g ¼ 0.3. The observed trend
remains consistent, indicating that as the SMOTe
amount is augmented, the re-identification risk
correspondingly diminishes. This trend at a
Gaussian noise level of g ¼ 0.3 reaffirms the role of
SMOTe in enhancing data privacy.

In the context of a Gaussian noise level of g ¼ 0.6,
Fig. 8 presents a detailed analysis of the correlation
between the re-identification risk and various
SMOTe amounts. The trend observed here aligns
with previous findings, showcasing a decrease in the
re-identification risk as the SMOTe amount in-
creases. This pattern, consistent at a Gaussian noise

Fig. 8. Re-identification risk and SMOTe relationship when gaussian noise g ¼ 0.6.

Fig. 9. Re-identification risk and SMOTe relationship when gaussian noise g ¼ 1.0.
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level of g ¼ 0.6, underscores the effectiveness of
SMOTe in reducing privacy vulnerabilities.
Figure 9 explores the relationship between the re-

identification risk and different SMOTe amounts at
a Gaussian noise level of g ¼ 1. The figure reveals a
trend consistent with lower levels of Gaussian noise:
an increase in the SMOTe amount leads to a
decrease in the re-identification risk. This trend,
observed at the highest Gaussian noise level of
g ¼ 1, further validates the utility of SMOTe in the
realm of privacy preservation. Each variation
focuses on the consistent trend observed at
different Gaussian noise levels, emphasizing the
effectiveness of SMOTe in reducing re-identification
risk across varying scenario.
The previous results indicate that the most effec-

tive outcomes were attained by setting Gaussian
noise to 0.3 and increasing the SMOTe ratio to 500%,
effectively balancing data accuracy and privacy. The
implementation of a k-anonymity function success-
fully mitigated re-identification risks. This combi-
nation of parameters led to a marked enhancement
in data security and user privacy within smart home
settings.

6. Conclusion

This study presents a novel approach for secure
data sharing in smart homes, prioritizing user pri-
vacy through an innovative method that combines
data synthesis, SMOTe algorithm, and Gaussian
noise application. Our findings demonstrate that
this technique effectively safeguards user privacy, as
evidenced by high privacy standards, accuracy,
recall rates, and f-measure metrics. The strategy is
particularly notable for achieving significant utility
in privacy by maintaining high classification accu-
racy and markedly reducing re-identification risks.
Specifically, optimal results were observed with a
re-identification risk at 30%, Gaussian noise g ¼ .3
and amount of SMOTe N ¼ 500% and k ¼ 2 applied
alongside k-anonymity function. The classification
accuracy ranged between 90% and 98% for the uti-
lized classification techniques. This research ad-
vances data privacy and utility in smart homes and
suggests a promising framework for privacy-pre-
serving solutions in the broader Internet of Things
(IoT) domain. Future work will explore extending
these methods to multimodal data in smart home
contexts, integrating information from diverse sen-
sors and devices.
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