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Abstract

In the rapidly evolving domain of cybersecurity threats, ransomware stands out as a formidable challenge. Adversaries are in-
creasingly employing advanced encryption techniques, such as entropy reduction using Base64 encoding, along with partial and
intermittent encryption, to bypass traditional security measures and maximize their illicit gains. This study delves into the nuanced
battleground between these adversaries, who are adept at refining encryption strategies to evade detection, and the defenders, who
are constantly developing sophisticated countermeasures to safeguard vulnerable data assets. At the heart of our investigation is
the application of online incremental machine learning algorithms designed to predict file encryption activities, even in the face of
evolving adversaries’ complex obfuscation tactics. Our research is underpinned by an extensive dataset, which encompasses 32.6
GB of data across 11,928 distinct files, including Microsoft Word documents (.doc), PowerPoint presentations (.ppt), Excel spread-
sheets (.xlsx), and various image formats (.jpg, .jpeg, .png, .tif, .gif), PDF files (.pdf), audio files (.mp3), and video files (.mp4),
all encrypted by a wide variety of 75 ransomware families. This dataset facilitates a comprehensive empirical analysis, enabling
the assessment of various machine learning classifiers’ effectiveness in predicting encryption events amid a range of adversarial
strategies. The study’s results highlight the exceptional performance of the Hoeffding Tree algorithm, which stands out for its in-
cremental learning capabilities, making it particularly adept at identifying conventional and AES-Base64 (e.g., encryption-encoding
used to reduce the entropy values) adversarial methods . In contrast, the Random Forest classifier, augmented with a warm-start
feature, proves to be highly effective against the more elusive intermittent encryption techniques, underscoring the significance of
bespoke machine learning solutions in navigating the dynamic and sophisticated landscape of ransomware threats.

Keywords: ransomware, intermittent, partial encryption, incremental online learning, Base64 encoding, file system, Hoeffding
Tree

1. Introduction

In the ever-evolving landscape of cybersecurity, the battle
against ransomware represents one of the most challenging
frontiers [1]. This digital plague, characterized by its abil-
ity to encrypt victims’ files and demand ransom for their re-
lease, has become a significant threat to individuals, organiza-
tions, and even national security. The dynamic nature of this
threat is underscored by the cat-and-mouse game between cy-
ber adversaries, notably ransomware developers, and defenders.
This confrontation is emblematic of an asymmetrical battlefield
where attackers, needing only to find a single vulnerability, con-
sistently remain one step ahead of defenders who must secure
every possible point of entry.

Ransomware developers are in a constant state of innova-
tion, refining their tactics, techniques, and procedures (TTPs)
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to exploit the inevitable delay in defensive responses to new
threats. This relentless advancement ensures their strategies
are not just current but often pioneering, placing defenders in
a perpetual state of catch-up. The inherent challenge in cyber-
security defense is the difficulty of anticipating and defending
against the unknown. As adversaries introduce new and more
complex ransomware variants, defenders are forced into a re-
active stance, struggling to react effectively post-incident. For
example, NetWalker, also known as Mailto, is a ransomware
targeting Windows systems, first seen in 2019 and impacting
healthcare, education, and government sectors. Operating as a
ransomware-as-a-service (RaaS), it allows affiliates to execute
attacks and share ransom profits. Its fileless nature, the file-
less malware like NetWalker, however, operates directly within
the computer’s memory, leveraging legitimate system tools and
processes to perform its malevolent actions, including file en-
cryption and data theft. This stealthy approach not only en-
hances its evasion capabilities but also complicates efforts to
mitigate and eradicate the ransomware from infected systems
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[2].
The heart of this challenge lies in the limitations of current

ransomware detection methodologies, including machine learn-
ing models, static analysis, user behavior analytics, and dy-
namic analysis. Each of these approaches, while comprehen-
sive in their scope, often lags behind the sophisticated and con-
tinuously evolving offensive tactics employed by ransomware
developers. For instance, machine learning models, which are
trained on known malware samples, find it difficult to iden-
tify zero-day attacks that display previously unseen behaviors
[3]. Static analysis tools, on the other hand, are increasingly
evaded by ransomware that employs sophisticated obfuscation
techniques. User behavior analytics can result in high false pos-
itive rates due to the variability in legitimate user activities, and
dynamic analysis might be circumvented by ransomware that
can detect and alter its behavior in sandboxed environments.

The future of ransomware defense is poised at a critical
juncture, necessitating a departure from traditional detection
methodologies towards the adoption of more predictive and
adaptive strategies. Our research endeavors to explore the so-
phisticated tactics employed by adversaries to undermine the
efficacy of existing defense mechanisms, particularly those op-
erating at the file system level. These adversaries skillfully
navigate around conventional security measures by employing
strategies such as entropy value reduction, intermittent, and par-
tial encryption, thereby diminishing the impact and detection
capabilities of current defense systems.

Furthermore, our study delves into the potential of online in-
cremental learning as a pivotal technology to enhance the dif-
ferentiation between encrypted and normal files within hot data
storage environments [4]. This approach is particularly rele-
vant in the context of ransomware attacks that utilize intermit-
tent and partial encryption techniques to evade detection. Our
research aims to continuously update the detection models with
new data (encrypted and normal), enabling them to adapt to
evolving ransomware encryption tactics dynamically.

Our focus lies on the identification of unique file attributes,
represented as feature vectors, that serve as effective counter-
measures against adversarial actions. Several related works rely
on entropy-based detection [5, 6, 7, 8], involve frequent file
system operations [9] and system logs frequent pattern mining
[10]. These examples of mitigation strategies, used by defend-
ers, can be evaded using tactics such as intermittent encryption,
partial encryption, and memory mapping. These tactics are dis-
cussed in detail in Section 3. We place a spotlight on features
revealing the diversity of file types within systems, particularly
under the online incremental machine learning framework [11].
The contributions of this paper are manifold and can be delin-
eated as follows:

1. We formalize existing adversarial encryption techniques
used by ransomware developers, highlighting their capa-
bility to circumvent traditional security measures.

2. We identify unique feature vectors capable of distinguish-
ing between encrypted and unencrypted data at the file sys-
tem level.

3. Investigating ML models that can reduce the compu-
tational costs associated with the need for CPU- and
memory-intensive tasks.

4. Through empirical research, we investigate strategic ap-
proaches for both attackers, aiming to minimize entropy
to evade detection, and defenders, using entropy as a piv-
otal metric for spotting encrypted data. Our study particu-
larly examines the impact of Base64 encoding on entropy
reduction and evaluates its potential exploitation by adver-
saries to lower data entropy successfully.

5. We evaluate the efficacy of machine learning models in
real-world ransomware scenarios, aiming to thwart ran-
somware attacks during their encryption phase. This in-
cludes determining alert activation thresholds and devel-
oping adaptive strategies to respond to evolving data pat-
terns.

The structure of this paper is organized as follows: In Section
2, we outline the threat model and foundational assumptions
underpinning this study. Section 3 outlines methodologies to
understand strategies in adversarial and defensive scenarios, fo-
cusing on advanced encryption techniques used by ransomware
developers. Moving on to Section 4, we describe our method-
ology and approach. In Section 5, we conduct a comprehensive
analysis of machine learning paradigms, with a specific focus
on both shallow and deep learning classifiers. To evaluate their
efficacy, we perform targeted micro-experiments. Additionally,
we articulate the core principles associated with online incre-
mental machine learning, tailored for the identification of en-
crypted files within a file-level system. Subsequently, Section
6 reviews existing literature and elucidates the principles that
inform it. Finally, Section 7 offers concluding remarks and out-
lines prospective directions for future research.

2. Threat model

In our threat model, we presume that adversaries possess
comprehensive knowledge of the proposed system and the fea-
tures extracted from the files. This is grounded in the practi-
cal realities of the cybersecurity landscape, where sophisticated
adversaries are often privy to significant information about the
systems they target. For our experiments, we employ real-world
ransomware to encrypt files, replicating the tactics commonly
deployed by adversaries, such as partial encryption and inter-
mittent encryption.

It should be clearly stated that our systematization of knowl-
edge investigation does not aim to detect the ransomware binary
or its behavior patterns. Rather, our main objective is to ascer-
tain the encryption status of a multitude of file types within a
file system. By focusing our efforts on this aspect, we aim to
develop a robust and accurate tool that can contribute to the
mitigation of damage and data loss from ransomware attacks,
rather than identifying the ransomware itself. This approach
serves as a complement to other strategies and models focusing
on ransomware detection and behavior analysis.
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To understand countermeasures and adversaries’ techniques,
we elucidate the interplay between adversaries and defenders
using the framework of strategic games. By framing the cy-
bersecurity landscape as a strategic game, we can formally
analyze both defenders’ and adversaries’ system vulnerabili-
ties and weak points, particularly during the initial stages of
ransomware file encryption. Viewing this through the lens
of strategic games allows us to evaluate decision-making pro-
cesses, simulate possible responses, and predict potential out-
comes.

We operate under the assumption that online learning is par-
ticularly suitable for data streams. After conducting a system-
atic exploration of adversarial tactics and defensive strategies,
our objective is to incorporate machine learning, specifically
online learning algorithms, into backup systems and network
file-sharing drives, including, but not limited to, NFS and SMB
protocols. The model serves the purpose of detecting unautho-
rized encryption activities before the initiation of any protocol-
based encryption processes. In the realm of file-level systems,
this integration can be achieved through a variety of open-
source file systems capable of embedding the proposed online
incremental machine learning model. Prominent examples are
FUSE (File system in Userspace) and Puffs (Pass-to-Userspace
Framework File System), which are elaborated upon in [12] and
[13], respectively.

3. Adversarial strategies

In this section, we delineate formal methodologies for com-
prehensively understanding the strategies employed in both ad-
versarial and defensive scenarios, with a particular focus on so-
phisticated encryption techniques devised by ransomware de-
velopers.

3.1. Legitimate encryption process usage

The complexity of the game is accentuated by the attacker’s
strategy of co-opting legitimate system processes to carry
out malicious activities. This deceptive approach, commonly
termed a ’stealth attack,’ obfuscates the distinction between
benign and malicious operations, thereby posing a significant
challenge for the defender in neutralizing the threat without ad-
versely affecting regular system functions.

• Let us denote (E) as the set of legitimate encryption pro-
cesses that can be used by the operating system to encrypt
files and (R) as the ransomware process. Additionally, let
(A) be the adversary or ransomware attacker, (D) as the
system defender, and (P) as the set of all system processes.
Furthermore, (M) is a mapping function that maps a pro-
cess to its legitimacy status, such that (M : P → 0, 1),
where ‘0’ indicates malicious and ‘1’ indicates benign.

In a typical scenario, a system defender (D) tries to neu-
tralize malicious processes, i.e., for any process (p) in (P),
if (M(p) = 0), then neutralize (p). However, the com-
plexity arises when ransomware (R) employs legitimate
processes (E) for encryption, i.e., (R(E)). In this case,

(M(R(E)) = 1), making it seem benign to the system de-
fender (D).

Given this, it becomes a challenge for the defender to dis-
tinguish between benign and malicious activities, as the
ransomware attacker (A) has essentially turned the sce-
nario into a game where (A) and (D) have conflicting ob-
jectives. While (A) tries to maximize the use of legitimate
processes (E) for malicious deeds, (D) attempts to neutral-
ize malicious processes without disrupting regular opera-
tions.

Therefore, there is a need for a more nuanced approach
that can distinguish between the legitimate use of pro-
cesses E and their malicious use by R, possibly by con-
sidering additional context or behavioral patterns. How-
ever, this task is non-trivial and represents a significant
challenge in the current landscape of ransomware detec-
tion and neutralization.

3.2. Gradual write I/O to storage

Typically, defenders scrutinize file system operations, includ-
ing reading, writing, deletion, and renaming, by utilizing pre-
determined threshold values as a means to detect ransomware
activity. Nevertheless, ransomware employs a strategy that re-
sorts to memory mapping to circumvent the file I/O read and
write behaviors. In such circumstances, the existing counter-
measures applied by defenders are prone to failure.

Memory mapping is a technique that allows programs to in-
teract with data in storage as if it were in the computer’s main
memory. The operating system creates a mapping between the
program’s address space and the storage, within the context of
virtual memory. This enables the program to use standard mem-
ory access instructions for file operations, potentially simplify-
ing and improving efficiency over traditional file access meth-
ods.

• Let (O) be the set of file operations including reading, writ-
ing, deletion, and renaming, and (T ) be the predetermined
threshold values used to detect ransomware activity. Tra-
ditional detection methods focus on monitoring these op-
erations such that if any operation (o) in (O) exceeds the
corresponding threshold (t) in (T ), an alarm is raised. For-
mally, for any operation (o) in (O), if (o > t), then an alarm
is raised.

However, ransomware employs memory mapping which
is a process by which the operating system creates a map-
ping (M) between the address space of the process (P)
(the range of addresses that the process can use to address
memory) and the storage object (S ). This can be repre-
sented as (M : P → S ). When this mapping is in place,
file I/O operations are transformed into memory access op-
erations.

Consequently, if ransomware (R) utilizes memory map-
ping, the file I/O operations become memory operations
and can evade detection by systems strictly monitoring file
access. So for any file operation (o) in (O) performed by
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ransomware (R), if (R) employs memory mapping, (o) is
transformed into memory operation (m), i.e., (o → m).
Since defenders are monitoring (O) and not (m), these op-
erations can potentially bypass detection.

There are number of research studies in [14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24] using monitoring methods often focus
on file system changes, and when ransomware uses memory
mapping, these file I/O operations are essentially translated into
memory operations. This means that changes that would or-
dinarily be tracked (like file creation, deletion, renaming, and
modifications) may not be detected, leading to a potential blind
spot in ransomware detection mechanisms.

3.3. Partial data encryption

Ransomware strategies, distinguished by their swift and elu-
sive encryption techniques, exhibit intriguing characteristics,
such as the adaptable partial encryption of files exceeding 5.245
MB [25]. Although partial file encryption is not an innovative
tactic - various ransomware programs deploy this to acceler-
ate the process - the novel feature lies in its ability to specify
the quantum of a file to encrypt. This capability bears signifi-
cant implications for security programs that traditionally mon-
itor file modifications to identify potential ransomware incur-
sions. The ensuing fragmentation and probable low percentage
of encrypted file content reduces the likelihood of detection by
defenders.

This encryption methodology, along with other tactics em-
ployed by Royal ransomware, bears resemblance to Conti ran-
somware. For instance, the Conti ransomware also utilized
5.24MB as a threshold for partial encryption, subsequently seg-
menting the file into several equal parts, encrypting one part
and leaving the next unencrypted. However, Conti’s approach
diverges by encrypting 50% of those segments. This partial en-
cryption can be dynamic. Therefore, defensive strategies may
fail if they rely on changes in file system attributes or CPU arith-
metic operations like the Exclusive OR (XOR) logic gate.

The several potential modes of partial encryption used by
real-world ransomware include:

• Skip-step encryption mode: Let F denote the file to be
encrypted, where Fi represents the ith megabyte (MB) of
the file F. Let N and Y be non-negative integers. Then, in
the skip-step mode, the file F is encrypted such that:

∀i, Fi is encrypted ⇐⇒ i mod (N + Y) ≥ N

This represents an encryption process that skips the first N
MB, then encrypts the next Y MB, and so on.

• Fast encryption mode: Let F and Fi denote the same as
above, and N be a non-negative integer. Then, in the fast
mode, the file F is encrypted such that:

∀i, Fi is encrypted ⇐⇒ i < N

This indicates an encryption process that encrypts only the
first N MB of the file F.

• Percent encryption mode: Let (F) and (Fi) denote the
same as above, and (N) be a non-negative integer, and (P)
be a percentage (0 ≤ P ≤ 100). Also, let (S ) be the size of
the file in MB, and (PMB =

P
100 × S ). Then, in the percent

mode, the file (F) is encrypted such that:

∀i, Fi is encrypted ⇐⇒ i mod (N + PMB) ≥ PMB

This represents an encryption process that skips (PMB)
(which equals (P%) of the total file size), then encrypts
every (N) MB, and so on.

3.4. Intermittent encryption
Intermittent encryption strategies involve selectively en-

crypting data based on specific criteria. This approach allows
for dynamic encryption, optimizing security and efficiency by
adapting to varying contexts.

The intermittent encryption strategy [26], as used by Lock-
File and Black Basta ransomware, significantly differs from the
partial encryption techniques adopted by LockBit 2.0, Dark-
Side, and BlackMatter. While partial encryption, targeting the
initial segments of documents, aims to expedite the process, in-
termittent encryption focuses on encrypting alternate 16-byte
segments of a file. This results in scrambled and untouched
data alternating throughout the file.

Although this strategy is slower than partial encryption, it
disrupts statistical analysis which is a key tool in ransomware
detection. Detection programs typically block any process from
modifying additional files if the statistical analysis test indicates
encryption. With encrypted files appearing significantly differ-
ent from unencrypted ones in statistical analysis, a clear differ-
ence can be seen in the chi-squared (chi2) test scores or entropy
value for files encrypted by ransomware.

The Intermittent Encryption strategy used by ransomware
brings an additional layer of complexity for defenders where
the ransomware encrypts pieces of a file at regular intervals.
Ransomware can use the option to intermittently encrypt data,
which is a feature that can be adjusted and customized.

For instance, BlackCat ransomware introduces a versatile
implementation of intermittent encryption, enabling operators
to select from an array of byte-skipping patterns. This flexibil-
ity allows for diverse encryption modes that can enhance the
complexity and potentially the security of the encrypted data,
such as:

• SmartPattern [N,P]: Encrypts N megabytes of the file
in percentage steps. For example, as its default setting it
starts from the file’s header and encrypts 10 megabytes ev-
ery 10%.

• Auto mode: This mode amalgamates multiple encryption
methods for a more convoluted result. The encryption pat-
tern in this mode is a complex function of the different
encryption methods available, potentially including all the
previously mentioned modes and their parameters.

Another intermittent encryption is Black Basta ransomware,
a prominent figure in the cybercrime space that operates differ-
ently. Its strain of ransomware makes decisions based on the
size of the file rather than offering operator-selected modes.
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• For small files: For a file F of size S , F is encrypted if
S < 704 bytes.

• For medium size files: For a file F with S in the range 704
bytes ≤ S < 4 KB, for every bth byte Fb, Fb is encrypted
if b mod 256 < 64.

• For larger files: For a file F with S > 4 KB, for every bth

byte Fb, Fb is encrypted if b mod 192 < 64.

Notably, if the defender strategy is calibrated to react only
to significant statistical differences to prevent false positives, it
could fail to detect the encryption performed by ransomware.
Additionally, the ransomware strategy complicates incident re-
sponse efforts by deleting itself after completing the encryption
process, making it difficult for defenders to locate a ransomware
binary for analysis and system cleansing.

3.5. Adversaries avoidance of decoy techniques

In the ongoing struggle against nefarious file system activi-
ties, both commercial and research anti-ransomware strategies
have adopted the use of deception-based methodologies, par-
ticularly the strategic placement of decoy files amongst authen-
tic user files. This approach introduces an additional layer of
complexity to ransomware detection efforts, predicated on the
understanding that any interaction with a decoy file inherently
signifies a malicious activity. However, in order to illustrate
how ransomware can effectively circumvent existing deception-
based detection strategies, researchers have put forth a proof-
of-concept for anti-decoy ransomware in a scholarly publica-
tion [27]. This lab-developed ransomware is equipped with a
decision engine that employs a minimal set of rules, thereby
successfully evading decoys. Here an abstract analysis of the
approach to bypass the decoy strategy can be used by an adver-
sary.

• Detecting static decoys through heuristics: This strat-
egy involves ransomware using heuristics to identify pat-
terns that suggest the presence of decoy files. These pat-
terns could be files filled with empty values or those with
static creation dates and content. By fingerprinting these
checks at run-time, ransomware can exclude these decoy
files from the target files to encrypt. It notes that if ran-
somware mistakenly identifies a user file as a decoy and
excludes it, the impact on the overall strategy is minimal as
the ransomware will still encrypt other files. Two heuris-
tic methods are suggested; one targets hidden and empty
files, while the other aims at non-regular files like sym-
bolic links or named pipes.

• Distinguishing decoys using statistical methods: This
method is based on understanding file storage on the Win-
dows operating system to discern file attributes and meta-
data. The paper mentions that decoy files, which are not
typically accessed by users, will show different access pat-
terns than genuine files. By analyzing these differences
statistically, it’s possible to distinguish between decoy and

genuine files. The technique uses 36 metrics for each di-
rectory based on file attributes and their standard devia-
tions, creating a feature vector of 72 metrics. This statisti-
cal method seems effective at finding discrepancies, espe-
cially with time and date information.

• Monitoring User to Reveal Non-decoy Files: This tech-
nique focuses on monitoring user activities to identify gen-
uine files. Two strategies are suggested. The first involves
injecting a spy module into Explorer.exe to monitor which
files are accessed by user applications. The second pro-
poses enumerating all processes and injecting an intercep-
tor module, replacing the WriteFile API with encryption
routines.

3.6. File entropy and data manipulation strategy

The strategy employed by defenders to monitor potential
shifts in file entropy, which might serve as indicators of ran-
somware’s cryptographic activities, has been scrutinized and
studied [5, 23, 28, 24]. In one study [8], it was claimed that no
instance of ransomware was discovered that manipulates the en-
tropy values of encrypted content. Nevertheless, we have high-
lighted certain ransomware families that utilize techniques such
as partial encryption and intermittent encryption. Moreover,
Maze ransomware [12], is known for its insertion of "Null"
characters as a strategy to reduce the entropy of an encrypted
file prior to its storage.

The referenced study [8] evaluates the entropy-based
changes experienced by diverse file types as a result of Base64-
Encoding and either partial or full encryption. Our extensive
analysis suggests the existence of at least three methodologies
by which file entropy values can be manipulated. This supposi-
tion adds another layer to the complex landscape of ransomware
evasion tactics and challenges the robustness of entropy-based
detection strategies. Therefore, an attacker’s strategy might in-
volve reducing the file entropy values after the encryption and
encoding phases, while the defender could rely on measuring
the uncertainty, unpredictability, or randomness of the file at
the storage level.

3.6.1. Base64 encoding
Various studies have suggested approaches for countering

ransomware detection by using a Base64 encoding algorithm to
lower file entropy [7, 8]. The Base64 algorithm converts binary
data into ASCII text by transforming it into a radix-64 format
[29].

The objective of Base64 encoding is to transform a binary
data stream D comprised of n 8-bit bytes b1, b2, . . . , bn into
an ASCII string S . The algorithm partitions the n bytes into
blocks of three, concatenates each block to form a 24-bit block,
and divides this 24-bit block into four 6-bit segments. Each
6-bit segment is then mapped to an ASCII character from the
Base64 alphabet, usually composed of 64 printable ASCII char-
acters ranging from ’A’ to ’Z’, ’a’ to ’z’, ’0’ to ’9’, ’+’, and ’/’.
Padding is applied when the last block contains fewer than 3
bytes, filling with zero bits and appending one or two ’=’ char-
acters as needed.
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Mathematically, for a data stream D = b1b2 . . . bn, it
is partitioned into k blocks D1,D2, . . . ,Dk where Di =

(b3i−2, b3i−1, b3i). Each Di produces a 24-bit block Bi = b3i−2 ∥

b3i−1 ∥ b3i, which is subdivided into four 6-bit segments
S i1, S i2, S i3, S i4. These segments are mapped to ASCII char-
acters Ci j = Base64(S i j). The output S is the concatenation
C11C12C13C14C21C22 . . .Ck4. This facilitates the safe transfer
of binary data over systems optimized for text-based data.

We conduct an experiment to determine the most effective
strategy for an adversary aiming to reduce data entropy. But,
first, it is well-known that Base64 encoding increases the size
of the data by approximately 33% [30]. Our focus is on a se-
quential data transformation process aimed at entropy reduc-
tion. Initially, we gathered raw binary data from a dataset con-
sisting of 3,200 files (8.13 GB) across multiple formats, includ-
ing JPG, PDF, Microsoft documents, and TIFF. The entropy
of this raw data is calculated using Shannon’s entropy formula
to establish a baseline. The data then undergoes a first layer
of transformation via Base64 encoding, which serves to stan-
dardize the data representation and generally aims to reduce its
entropy. This stage is represented by the blue bar in Figure 1.
Subsequently, the data is encrypted using AES, a step that sig-
nificantly increases its entropy. This transformation is depicted
by the red bar in Figure 1. Finally, we apply a combination of
AES encryption and Base64 encoding. This multi-step process
successfully reduces the entropy of the files, as illustrated by
the purple bar in Figure 1. However, this results in a 33.38%
increase in the original file size.

Figure 1: Base64 encoding reduces the entropy from 7.99 to 5.99. Adversary
seeking to minimize entropy, a sequential AES −→ Base64 encoding approach is
a tangible approach. However, this results in a 33.38% increase in the original
file size.

In our empirical study, we observed that the Shannon entropy
values for data processed through an Encrypt-Base64 encod-
ing pipeline consistently fall within the range of 5.99 to 6.0.
These findings imply that defensive mechanisms could lever-
age this specific range of entropy values to improve the detec-
tion of encrypted data stores. Figure 2 presents the Shannon
entropy measurements across 3200 different types of files. But
the question is, will adversaries risk incorporating Base64 en-
coding into their strategy, despite being aware that an increase
in file size may potentially trigger other defense systems?

Figure 2: Base64 encoding reduces the entropy from 7.99 to 5.99. However,
in a sequential AES −→ Base64 encoding approach, the Shannon entropy results
fall in the range of 5.99 to 6.

3.7. Adversary falsifies the defender’s strategy by maintaining
a uniform distribution of symbols

Many proposed models rely on measuring of file entropy for
detecting ransomware [31, 32, 33, 7, 24, 34, 21]. Entropy in
information theory facilitates the establishment of a uniform
distribution of symbols, an essential precondition for ensur-
ing high encryption security. Under ideal circumstances, ev-
ery possible outcome within a uniform distribution should hold
an equivalent likelihood, thereby fostering maximum unpre-
dictability. If an encrypted file upholds this uniform distribu-
tion, it indicates successful randomization, making it challeng-
ing for cryptoanalysis to detect patterns or infer original data.

However, failure to maintain a uniform distribution might
suggest the existence of identifiable patterns in the encryption.
These patterns could be manipulated by either a defender or an
adversary, leading to decreased security. This is particularly
critical when an adversary is attempting to implement robust
encryption while preserving the ability to decrypt, highlighting
an inherent paradox within the ransomware business model.

On the one hand, the attacker must implement robust encryp-
tion to prevent access to the victim’s data. Conversely, they
must also retain the ability to reliably reverse this encryption
when necessary (if and only if the victim pays the ransom). An
inability to accomplish this dual objective threatens the viabil-
ity of the ransomware business model, removing the victim’s
incentive to pay the ransom.

An adversary’s strategic move in this confrontation often in-
volves the use of partial or intermittent encryption, a tactic aim-
ing to lower the entropy value while maintaining the legitimacy
of the ransomware business model. This strategy’s successful
execution could signify a potential loss for the defender in this
strategic standoff.

4. Methodology

In our research, we meticulously aim to evaluate the compat-
ibility and efficacy of various machine learning models, with
a primary focus on file system data encryption realms. Our
methodological framework is robustly constructed, guiding the
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identification and validation of optimal machine learning mod-
els. These models are anticipated to make substantial contribu-
tions to future works aimed at detecting and mitigating the chal-
lenges posed by the cryptographic landscapes of ransomware.

Phase 1: Baseline Analysis with Traditional Machine Learn-
ing Models. Initially, we assess a range of popular non-online
machine learning classifiers to understand their efficacy in dif-
ferentiating between encrypted and unencrypted data buffers at
the storage level [35]. The classifiers chosen for this phase
represent a diverse set of well-established machine learning
paradigms, as detailed in previous literature [36, 37]. Our pri-
mary goal here is to establish a baseline and comprehend the
limitations of traditional machine learning techniques in real-
time classification tasks.

Phase 2: Hypothesis Formation and Real-time Use Cases.
Drawing from the foundational insights garnered in Phase 1,
we have developed a hypothesis that online learning methods
could be advantageous in real-time detection scenarios, specif-
ically in identifying ransomware attacks (i.e., file encryption).
We are exploring the possibility of deploying classifiers, based
on online learning, in dynamic environments such as large cor-
porate offices or multi-tenant cloud storage systems.

Phase 3: Selection of Online Learning Models. Subse-
quently, we narrow our focus to first-order online learning mod-
els, which promise the real-time adaptation essential for dy-
namic environments. For a more in-depth investigation, we se-
lect three leading online learning algorithms: Stochastic Gra-
dient Descent (SGD), Perceptron, and Passive-Aggressive al-
gorithms [38]. The choice of these models is not arbitrary but
is influenced by the limitations we identified in traditional ma-
chine learning classifiers. To refine our model selection further,
we also explore other compatible linear models and ensemble
methods for online learning [36, 37].

Phase 4: Addressing the Challenges with Stream Data. We
recognize that both traditional and online learning algorithms
may still fall short in capturing the complexities of stream data,
which is often encountered in the scenarios we consider. The
dynamic nature of these scenarios—ranging from ransomware
attacks to routine organizational data flow-calls for specialized
algorithms designed to handle continuous data streams.

Phase 5: Final Model Selection. Given the challenges out-
lined in Phase 4, the Hoeffding algorithm is employed for our
study. This decision tree learning method is specifically de-
signed for classifying stream data. It provides a robust mecha-
nism for real-time classification of encrypted and unencrypted
data, thereby aligning with our objective for immediate detec-
tion and response in various scenarios.

Approach to handling file operations and the core compo-
nents

Integrating DeltaFile Guard with the FUSE file system en-
ables a sophisticated approach to handling file operations with

Figure 3: Conceptualize diagram: DeltaFile Guard represents the utilization of
online incremental learning within the FUSE file system.

an added layer of intelligence. We have developed a Middle
Layer component to accommodate online incremental learning
illustrated in Figure 3. Here is a detailed breakdown of how this
integration facilitates online incremental learning to predict the
encryption status of files based on extracted features:

• DeltaFile Guard: This represents the specialized compo-
nent designed to intercept file operations within the FUSE
file system. Its main role is to apply machine learning al-
gorithms for real-time analysis and prediction. DeltaFile
Guard focuses on identifying whether files are encrypted,
leveraging online incremental learning to adapt its models
based on incoming data.

• FUSE File System: A flexible user space file system
framework that allows custom file system operations to be
implemented without altering the kernel. It serves as the
foundation upon which DeltaFile Guard operates, provid-
ing the necessary infrastructure for file manipulation and
access.

Workflow
As files are accessed by the write function within the FUSE

file system, DeltaFile Guard intercepts these operations. This
interception is crucial for analyzing file content and metadata
without disrupting the user’s interaction with the file system.

• Feature Extraction: For each file operation, DeltaFile
Guard extracts relevant features. These features are dis-
cussed in the following feature engineering section.

• Online Incremental Learning: Utilizing the extracted
features, the embedded machine learning model within
DeltaFile Guard performs real-time predictions to deter-
mine if a file is encrypted. The "online incremental" aspect
refers to the model’s ability to learn and update its param-
eters dynamically as new data arrives, ensuring the system
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evolves and adapts to new patterns or encryption methods
over time.

• Prediction and Action: Based on the prediction out-
come, DeltaFile Guard can take predefined actions. For
encrypted files, it flags them for further review and trigger
alerts. For non-encrypted files, it ensures they are handled
per standard file system operations.

5. Empirical evaluation and results

5.1. Dataset

In this section, we implement a structured empirical ap-
proach to appraise the performance of a multitude of machine
learning classifiers. We require an appropriate classification
function with the intent of augmenting the probability of detect-
ing encrypted data whilst concurrently reducing the occurrence
of false positives and false negatives.

For this study, a comprehensive set of 75 unique ransomware
families was curated from publicly available malware reposito-
ries. utilizing controlled environments, each ransomware vari-
ant was executed against a dataset comprising approximately
32.6 GB, encompassing a total of 11,928 files. This dataset
spans a broad array of file formats, including but not limited
to mp3, mp4, docx, pptx, png, pdf, jpeg, gif, xls, and csv.
The assembled dataset features a mixture of encrypted and non-
encrypted files, designed to mimic a genuine computational set-
ting. Notably, the encrypted portion of this dataset has been
generated using real-world ransomware, ensuring the inclusion
of the latest ransomware families in our analysis.

5.2. Ransomware dataset

In the course of our research, we amassed a comprehensive
collection of ransomware samples sourced from various pub-
lic repositories, including but not limited to VirusShare, Mal-
wareBazar, MalwareDB, and the Zoo. Our ensemble consists
of approximately 1,500 distinct samples. To gain insights into
the characteristics and behavior of these malicious entities, we
employed both static and dynamic analysis techniques. Prior
to in-depth analysis, each sample underwent rigorous testing to
ensure its ability to execute, thereby allowing us to accurately
observe and document its inherent behavior.

5.2.1. System specification
Our experimental environment is powered by the AMD

Ryzen ThreadRipper Pro 5975WX 32-core, paired with 32 GB
of RAM and a 1TB SSD, providing ample processing power
and storage capacity for handling extensive datasets and com-
plex models. This setup operates on Windows 11 and leverages
Python 3.10 and the Spyder integrated development environ-
ment (IDE) for seamless machine learning code development
and experimentation.

5.3. Feature engineering

We preprocess the data by extracting relevant features from
the files, preprocessing data through extraction of pertinent fea-
tures plays a significant role in enabling classifiers to effectively
distinguish between encrypted and unencrypted files. Each se-
lected feature offers a distinctive perspective on the characteris-
tics of the file content, thus providing the classifier with a com-
prehensive understanding of its structure and composition.

Our approach seeks to augment traditional detection meth-
ods, which primarily focus on entropy and file size, with a suite
of more nuanced features. Traditional methods are increas-
ingly circumvented by advanced encryption schemes designed
to evade detection, highlighting the need for a broader set of
characteristics that can reveal the presence of encryption. While
file size and byte entropy are foundational, they offer limited
insight into sophisticated evasion techniques. Our inclusion of
content-based features such as byte frequency, variance, kur-
tosis, skewness, and the analysis of strings and file content pat-
terns, delves deeper into the structural intricacies of files. These
features are designed to detect subtle anomalies and patterns
(or their absence) indicative of encryption, thereby providing a
more robust framework for distinguishing encrypted files from
their unencrypted counterparts.

Moreover, our methodology introduces novel features such
as entropy variance and percentiles utilization, which are not
commonly employed in existing solutions. The entropy vari-
ance feature aims to capture the uniformity of randomness
across a file, a characteristic trait of encrypted content, while
percentiles utilization examines the distribution of byte values
at specific intervals, offering insights into the uniformity ex-
pected from encrypted files versus the varied distributions of
plaintext files. These novel features, particularly when com-
bined with traditional metrics, enhance the detection of en-
crypted files by identifying characteristics that evade simpler
detection methods. This comprehensive approach not only ad-
dresses the limitations of relying solely on entropy and file
size but also sets a new standard for encrypted file detection
by incorporating a more detailed analysis of file characteris-
tics, thereby improving the ability to detect advanced encryp-
tion schemes.

1. File Size: This attribute provides a trivial understand-
ing of a file’s intricacy and potential data volume. No-
tably, encrypted files, contingent on the applied encryption
methodology, may exhibit unique size patterns that starkly
contrast those of their unencrypted counterparts. Later in
the context of online learning, we opt to exclude this fea-
ture since the file size may be subject to constant changes.

2. Byte Entropy: This feature, indicative of a file’s random-
ness or unpredictability, generally presents higher values
in encrypted files. The calculation of byte entropy serves
as a tool for the identification of encrypted files due to their
inherently unpredictable nature.
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H(X) = −
n∑

i=1

p(xi) logb p(xi) (1)

Where X is a random discrete variable, xi is a possible
value of X, p(xi) is the probability mass function of X at
xi, and b is the base of the logarithm.

3. Content-Based Features: Including the frequency or
scarcity of specific characters or sequences within file con-
tent, these features aid in unveiling patterns or consisten-
cies present in unencrypted files but absent in encrypted
ones.

Byte frequency:.

fi =
count(xi)

N
(2)

In Byte frequency, xi is a byte value and N is the total
number of bytes.

4. Byte Variance: As a measure of dispersion, byte variance
can offer valuable insights into the range of byte values in
a file. The high variance may suggest a broader range of
byte values, a characteristic potentially indicative of en-
crypted files.

σ2 =
1
N

N∑
i=1

(xi − µ)2 (3)

5. Byte Kurtosis: This measure of data point distribution can
provide a statistical fingerprint of encrypted data. Elevated
kurtosis values may denote a distribution with pronounced
tails or sharper peaks, characteristics potentially represen-
tative of encrypted data. In other words, elevated Byte
Kurtosis in an unencrypted file may hint at a concentrated
distribution of byte values. In contrast, for an encrypted
file, Byte Kurtosis would typically approach zero, reflect-
ing the uniform distribution of byte values.

K =
N(N + 1)

(N − 1)(N − 2)(N − 3)
1
N

N∑
i=1

( xi − µ

σ

)4
−

3(N − 1)2

(N − 2)(N − 3)
(4)

6. Byte Skewness: This measure of distributional asymme-
try can assist in differentiating between the recurring pat-
terns found in unencrypted data and the randomness intrin-
sic to encrypted data. Encrypted data, due to its random
characteristics, is anticipated to exhibit a skewness value
approximating zero, while unencrypted data may mani-
fest significant skewness if it contains repeated elements
or patterns.

S =
N(N − 1)
(N − 2)

1
N

N∑
i=1

( xi − µ

σ

)3
(5)

In Variance, skewness, and kurtosis of byte content, xi is
the byte value, N is the total number of bytes, µ is the mean
of the byte values, and σ is the standard deviation of the
byte values.

7. Strings (Average String Length): The diversity in string
lengths within unencrypted files can provide hints regard-
ing their nature. Encrypted files may manifest a uniform
distribution of strings, whereas unencrypted files may ex-
hibit varied string lengths attributable to the presence of
natural language structures or formatting.

avg_string_length =
1
N

N∑
i=1

|si| (6)

In Average string length, si is a string in the file and N is
the total number of strings.

8. File Content Analysis: This feature encompasses a de-
tailed examination of the file content, such as the fre-
quency of specific patterns or the presence of distinct
structures (e.g., headers, footers, metadata), providing ad-
ditional clues that can assist in differentiating between en-
crypted and unencrypted files.

avg_word_length =
1
N

N∑
i=1

|wi| (7)

In Average word length, wi is a word in the file and N is
the total number of words.

9. Entropy Variance: By measuring the fluctuation in ran-
domness across different sections of a file, this feature can
aid in identifying encrypted files. Encrypted files may ex-
hibit a comparatively consistent entropy level, whereas un-
encrypted files may show greater entropy variability. Note
that the entropy is a measure of the disparity of the den-
sity function f (x) from the uniform distribution. On the
other hand, the variance measures an average of distances
of outcomes of the probability distribution f (x) from the
mean [39].

σ2
H =

1
N

N∑
i=1

(H(Xi) − µH)2 (8)

In Entropy variance, H(Xi) is the entropy of the i-th 512-
byte block, N is the total number of 512-byte blocks, and
µH is the mean entropy of the blocks.
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10. Percentiles utilization: We assume that percentiles serve
to appraise the dispersion of byte values within a file.
Within a data cohort, the Nth percentile is characterized
as the value beneath which N percent of the data resides.
Hence, the 25th, 50th, and 75th percentiles epitomize the
values beneath which 25%, 50%, and 75% of the data re-
side, respectively. Plaintext files predominantly possess a
structured framework, engendering the recurrence of par-
ticular byte values. For instance, within a text file, ASCII
values corresponding to common alphabets and spaces oc-
cur with high frequency. In the event of plotting the distri-
bution of byte values, one would observe peaks at certain
values, thereby inducing a skew in the distribution. As
a consequence, the 25th, 50th, and 75th percentiles in a
plaintext file may not adhere to a uniform distribution ow-
ing to these peaks and troughs.

Encryption algorithms are conceived to metamorphose
plaintext into a semblance that radiates randomness to any
entity devoid of the decryption key. Optimally, this trans-
formation engenders a uniform distribution of byte values
spanning the feasible range (0 to 255 for 8-bit bytes). In
such a distribution, the likelihood of each byte value is eq-
uitably distributed, and thus, the distribution’s percentiles
would settle at regular intervals across this range. To elu-
cidate:

• The 25th percentile would approximate the value 64
(since 25% of 256 is 64).

• The 50th percentile (also recognized as the median)
would approximate the value 128 (since 50% of 256
is 128).

• The 75th percentile would approximate the value 192
(since 75% of 256 is 192).

This percentile analysis conjecturally can offer a proper
feature to distinguish between normal and encrypted files
predicated on the distribution of their byte values at the file
level system.

5.3.1. Feature extraction computational resources
The process of extracting statistical features from individual

files, as detailed in the data, involves varying degrees of compu-
tational resource utilization, which is dependent on the file type
and whether it is in its normal or encrypted state. For normal
files, the resource demand is largely influenced by the file’s size
and type. For example, feature extraction from a large Excel file
is considerably resource-intensive, requiring up to 441.827 sec-
onds and utilizing 0.0352 MB of memory. Conversely, simpler
files such as JPEG images and mp3 audio files demand signif-
icantly less computational power, with JPEG extraction taking
a mere 0.0090 seconds and mp3 files requiring 0.927 seconds,
both utilizing a minimal memory footprint of 0.0039 MB.

When files are encrypted by ransomware, the computational
requirements for feature extraction exhibit slight variations.
Some file types show a decrease in processing time, albeit
with an increment in memory usage. For instance, the mem-
ory requirement for an encrypted Excel file slightly increases to

0.0391 MB. Table 1 illustrates the differences in time and mem-
ory usage for extracting information from various file types,
both in their normal state and when encrypted by ransomware.

Table 1: Computational resources required for feature extraction from normal
and encrypted files by ransomware.

File Type Size Time (Second) Memory Usage (MB)
PDF Normal 82.1 MB 11.526 0.0039
mp4 Normal 182 MB 26.845 0.0039
JPEG Normal 23.7 KB 0.0090 0.0039
Excel Normal 3.58 GB 441.827 0.0352
Doc Normal 89.8 MB 12.772 0.0039
mp3 Normal 6.59 MB 0.927 0.0039
PDF Encrypt 82.1 MB 11.215 0.0156
mp4 Encrypt 182 MB 26.069 0.0155
JPEG Encrypt 24.0 KB 0.0040 0.0039
Excel Encrypt 3.58 GB 421.884 0.0391
Doc Encrypted 89.8 MB 12.760 0.0195
mp3 Encrypted 6.59 MB 0.924 0.0039

5.4. Benchmarking supervised learning algorithms for classi-
fications: A comparative analysis

In the empirical analysis, we employed a series of batch clas-
sifiers, as delineated in the preceding section, to assess the effi-
cacy of both traditional shallow and deep learning algorithms in
discerning encrypted from non-encrypted files across multiple
file formats. Subsequently, the feature vectors were extracted
for both the normal and encrypted files using our supervised
machine learning tool, leading to a comprehensive dataset con-
sisting of 65.1 GB (70,008,138,878 bytes) files.

Quantitative metrics are showcased in Table 2, furnishing
a comparative performance analysis of the various machine
learning classifiers under review. These metrics encompass Ac-
curacy, Precision, Recall, and F1-score, providing a thorough
understanding of each model’s performance capabilities. No-
tably, the training of these classifiers was rigorously based on
the feature variables outlined in section 5.3. Our findings sug-
gest that certain machine learning classifiers, particularly Ran-
dom Forest, Decision Threes, AdaBoost, and Gradient Boost-
ing, offer exceptional capabilities in the classification of files
based on their encryption status, thereby providing valuable in-
sights into effective strategies for the detection of ransomware-
encrypted files. We partitioned the dataset, allocating 70% for
training and the remaining 30% for evaluation. However, our
assumption is that online learning, when incorporated with De-
cision Trees, can be suitable in such a file system (i.e., data
stream) environment for learning and predicting encrypted and
unencrypted buffers.

The necessity for online incremental learning approaches to
improve performance, even with such high accuracy rates pre-
sented in Table 2, can be justified on several fronts:

1. File system Dynamic Environments:In practical scenar-
ios, the characteristics of files, user behavior, and system
environments are not static. An online learning approach
can adjust to changes in the environment that might affect
the model’s performance, such as new file types or legit-
imate encryption practices by users, reducing false posi-
tives and improving detection accuracy over time.
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Table 2: The table presents a comparative assessment of multiple machine
learning classifiers, including Logistic Regression, Support Vector Machines
(SVM), Decision Trees, Random Forests, k-Nearest Neighbors, AdaBoost,
Gradient Boosting, Multilayer Perceptron, and Naive Bayes, in classifying files
as encrypted or normal. Decision Trees emerged as the most accurate classi-
fier, with an accuracy of 98.08% and an F1-score of 98.20%. Random Forests
and Gradient Boosting also showcased robust performance, closely following
Decision Trees with comparable precision and recall. These results underscore
the effectiveness of Decision Trees, Random Forests, and Gradient Boosting in
maintaining a harmonious balance between precision and recall, affirming their
position as leading classifiers in this specific classification task.

Classifier Accuracy Precision Recall F1

Logistic Regression 0.9155 0.8748 0.9878 0.9246
SVM 0.9502 0.9324 0.9793 0.9535
Decision Trees 0.9808 0.9496 0.9880 0.9820
Random Forests 0.9806 0.9703 0.9947 0.9786
k-Nearest Neighbors 0.9353 0.9226 0.9591 0.9385
AdaBoost 0.9719 0.9607 0.9879 0.9732
Gradient Boosting 0.9800 0.9686 0.9941 0.9808
Multilayer Perceptron 0.7897 0.9160 0.9801 0.8395
Naive Bayes 0.8918 0.8346 0.9967 0.9055

2. Model Drift: Over time, the performance of models
trained in an offline setting might degrade due to model
drift. This phenomenon occurs when the underlying data
distribution changes, making previously learned patterns
less applicable. Online learning continuously updates the
model, mitigating the effects of model drift and maintain-
ing high accuracy levels.

3. Resource Efficiency: Online learning models can be more
resource-efficient in certain contexts. They require less
memory and computational power to update with new
data, compared to retraining an entire offline model with
a growing dataset. This efficiency is particularly valuable
in environments with limited resources.

5.5. Exploring the efficacy of incremental learning in predict-
ing encrypted and unencrypted buffer at file system

In traditional machine learning paradigms, particularly
within supervised learning contexts, the modus operandi is pre-
dominantly batch-oriented. In this framework, an accumulated
dataset serves as the initial substrate for the algorithmic training
process. This necessitates the availability of the entire training
dataset in advance of the model’s learning phase, often relegat-
ing the training process to offline execution due to the substan-
tial computational and temporal overheads involved [38]. De-
spite their ubiquity, batch learning techniques are fraught with
inherent limitations, including (a) suboptimal efficiency con-
cerning both time and computational resources, and (b) a lack
of scalability, especially in large-scale applications where the
introduction of new data typically mandates a comprehensive
retraining of the existing model.

Incremental online learning represents a significant advance-
ment in machine learning, offering unparalleled adaptability,
efficiency, and real-time processing capabilities, especially in
dynamic environments like file systems. This document ad-
dresses the concerns regarding its advantages over traditional
ML schemes.

• Adaptability to New Data: Incremental online learn-
ing algorithms are designed to adapt to new data in real-
time or near-real-time, without the need for retraining the
model from scratch [40]. This is particularly advantageous
in dynamic environments like file systems, where new file
types may be introduced over time, and the system must
quickly adapt to recognize and process these new struc-
tures. Traditional ML schemes, in contrast, often require
batch processing and retraining on the entire dataset, in-
cluding both old and new data, which is computationally
expensive and time-consuming.

• Efficiency in Handling Large Datasets: File systems
typically contain a vast amount of data. Incremental online
learning algorithms can process data in smaller chunks,
making them more memory-efficient than traditional ap-
proaches that may require the entire dataset to be loaded
into memory. This efficiency is crucial for learning file
types’ structures and predicting data encryption status,
where models must scale to accommodate large datasets
without significant increases in computational resources.

• Real-time Prediction and Detection: The ability to up-
date models incrementally allows for real-time prediction
and detection of encrypted versus unencrypted data. This
is essential for cybersecurity applications where timely de-
tection of encrypted files (potentially indicative of ran-
somware activity) is critical. Traditional ML models, due
to their batch-learning nature, cannot easily provide real-
time insights or adapt quickly to newly emerging encryp-
tion patterns.

• Experimental Comparison and Justification: To empir-
ically demonstrate the advantages of incremental online
learning, we propose a comprehensive experimental com-
parison involving several datasets representative of real-
world file system structures, including a mix of encrypted
and unencrypted data.

• Application-Specific Benefits: For file system monitor-
ing and encryption detection, the incremental learning
approach allows for continuous learning from incremen-
tal changes in file structures or content, enhancing the
model’s ability to detect subtle shifts towards encryption
patterns. This contrasts with traditional ML models that
might miss or delay detecting these patterns due to the
static nature of their training process.

In contrast, online learning provides a more adaptive ma-
chine learning paradigm well-suited for data streams that are se-
quentially ordered. The underlying objective is the iterative re-
finement and dynamic updating of the model to maximize pre-
dictive performance on future, as-yet-unseen data. This adapt-
ability effectively ameliorates the limitations of batch learning
by enabling incremental model updates as new instances of data
become available. Consequently, online learning algorithms
demonstrate enhanced efficiency and scalability, attributes par-
ticularly beneficial in large-scale, real-world data analytics sce-
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narios where data is not only voluminous but also arrives at a
high velocity [38] [41].

5.6. Computational cost comparison between the traditional
and online learning models

The comparison between the traditional and the online learn-
ing models, based on evaluations conducted using our full
dataset, reveals significant differences in computational effi-
ciency and resource utilization. The Traditional Model, while
delivering high accuracy, requires a considerably longer CPU
time of approximately 3.76 seconds and consumes around 7.47
MB of memory. This indicates a substantial computational
effort and resource allocation to achieve its predictive per-
formance, highlighting the model’s reliance on the extensive
dataset for training and evaluation. On the other hand, the on-
line learning model stands out for its remarkable efficiency,
needing only about 0.27 seconds of CPU time and a minimal
memory usage of 0.016 MB. Despite the differences in accuracy
metrics, the online learning model’s performance showcases its
potential for applications requiring rapid responses and mini-
mal resource consumption. The utilization of the full dataset
for obtaining these results underscores the efficiency of the on-
line learning model in handling large volumes of data swiftly
and with significantly lower resource requirements, making it
particularly suitable for real-time or resource-constrained envi-
ronments. Table 3 compares the performance of a traditional
machine learning model, specifically, a Random Forest Classi-
fier, and an online learning model, specifically, SGDClassifier
in terms of CPU time and memory usage.

Table 3: Computational costs: The traditional model is more resource-
intensive, while the online learning model is highly efficient, demonstrating
lower CPU time and minimal memory usage, highlighting its suitability for
real-time applications with strict resource constraints.

Model CPU Time (s) Memory Usage (MB)

Traditional 3.755 7.473
Online Learning 0.266 0.016

5.6.1. Online learning benchmarks
To rigorously assess the most effective machine learning

classifiers for distinguishing between encrypted and unen-
crypted files, we conducted a comprehensive empirical study
using a large and diverse dataset. The dataset featured 11,928
files, totaling 32.6GB in size, encrypted through various tech-
niques from 75 unique ransomware families. Noteworthy
among these were sophisticated encryption strategies like par-
tial and intermittent encryption, commonly employed by ran-
somware variants such as Black Basta, BlackMatter, Grand
Crab, lab-developed ransomware AES-Base64, Paradise, and
LockBit 3.0.

5.7. First-order online learning
In the context of online learning, First-order algorithms

are particularly useful for large-scale learning tasks and data
streams due to their incremental model updating using only

gradient information (i.e., first-order derivative). In our investi-
gation, we leveraged conventional machine learning classifiers
that fall under the category of first-order online learning algo-
rithms. These include a Stochastic Gradient Descent (SGD)
(logistic regression as the linear classifier), Passive-Aggressive
techniques, and the Perceptron model. These algorithms were
strategically employed for predictive analytics on a file system-
based dataset, enabling us to rigorously explore the inherent
differences between categories of encrypted and unencrypted
data within a complex data corpus for large-scale learning tasks
and data streams.

5.7.1. Mathematical formulation in an online learning context
Let D = {(x1, y1), (x2, y2), . . . , (xn, yn)} represent a heteroge-

neous dataset sourced from a file system. Here, each xi denotes
a data buffer, and yi ∈ {0, 1} signifies whether the buffer is en-
crypted (1) or unencrypted (0). We applied machine learning
classifiers, particularly focusing on algorithms such as Stochas-
tic Gradient Descent (SGD), Passive-Aggressive algorithms,
and the Perceptron model. The algorithms aim to minimize the
objective function J(θ) concerning the model parameters θ.

For the SGD algorithm, the update rule at time t is as follows:

θt+1 = θt − αt∇J(θt)

In the case of the Passive-Aggressive algorithm, the update
rule can be defined as:

θt+1 = θt + τt(yt − sgn(θTt xt))xt

Here, τt is selected to minimize J(θ), subject to specific con-
straints.

For the Perceptron algorithm, the update occurs conditionally
upon an error:

θt+1 = θt + αt(yt − sgn(θTt xt))xt

This update is executed only when yt , sgn(θTt xt).
utilizing these algorithms, we continually adjust θ with each

incoming sample (xt, yt).
The dynamic adaptability and real-time learning capabilities

of these algorithms render them highly effective for the real-
time detection of encrypted versus unencrypted data buffers at
the file system level. The methodology thus provides a detailed
and nuanced understanding of the intrinsic variances between
encrypted and unencrypted data, making it possible to detect
encrypted buffers in real time. This paves the way for detecting
between encrypted and unencrypted data buffers.

5.8. Hoeffding Tree algorithm and key advantages

The Hoeffding Tree Algorithm, also known as VFDT (Very
Fast Decision Tree Learner), serves as a cutting-edge approach
for the incremental induction of decision trees from unbounded
data streams. This algorithm is designed to analyze each incom-
ing data instance exactly once, thereby eliminating the need to
store past instances once they have been incorporated into the
evolving decision tree. Within this computational framework,
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the only entity that necessitates in-memory storage is the de-
cision tree itself, which accumulates relevant metadata within
its terminal nodes to not only allow for future growth but also
to enable real-time predictive inference. The mathematical ro-
bustness of the Hoeffding Tree Algorithm has been formally
corroborated by Domingos and Hulten, who have demonstrated
that the algorithm produces decision trees closely approximat-
ing those generated through conventional batch learning meth-
ods [42]. This finding lends empirical weight to the argument
that the Hoeffding Tree is highly efficacious in producing high-
quality decision trees, thereby aligning with the prevailing con-
sensus that batch-learned decision trees are among the most
effective model architectures in the field of machine learning.
Here are some key advantages, especially in scenarios involv-
ing streaming data, such as a file system space:

• Adaptability to Heterogeneous Data: In environments
where data characteristics can change over time due to
various factors such as user behavior, system updates, or
evolving threat landscapes, the ability of online learning
models like the Hoeffding tree to adapt and learn incre-
mentally from each new batch of data becomes invaluable.
This adaptability ensures that the model remains effective
even as the nature of the data it analyzes changes, provid-
ing a level of resilience that static offline models may lack.

• Resource Efficiency: One of the significant advantages of
the Hoeffding tree, highlighted in the performance met-
rics, is its efficiency in terms of CPU and memory us-
age. This efficiency is critical in real-time file system en-
vironments where resources are limited, and the overhead
of running complex detection models can be prohibitive.
The ability of the Hoeffding tree to deliver effective per-
formance while minimizing resource consumption makes
it particularly suitable for deployment in such contexts,
where maintaining system performance and responsive-
ness is paramount.

• Real-Time Detection Capabilities: The Hoeffding tree’s
online incremental learning approach enables it to update
its knowledge base in real-time as new data arrives. This
capability is crucial for the timely detection of ransomware
attacks, where early detection and response can signifi-
cantly mitigate the impact. In contrast, offline models, de-
spite their high accuracy, require periodic retraining and
deployment, which can introduce delays in adapting to
new threats.

• Continuous Improvement and Learning: Although the
performance of the Hoeffding tree may appear to stabilize
after a certain point, this does not preclude the potential for
future improvements as more diverse data is encountered.
The model’s design to shuffle and learn from the data in a
way that reflects the heterogeneous nature of file systems
ensures that it remains sensitive to subtle changes in data
patterns that could indicate new or evolving threats.

• Scalability: The scalability of online learning models like
the Hoeffding tree, given their incremental nature, is an-

other factor that contributes to their standout performance.
As the volume of data in file systems grows, the model can
continue to learn and adapt without the need for complete
retraining, making it well-suited to environments with ex-
panding data volumes.

5.9. Online learning evaluations and results

We have developed a tool designed to evaluate and com-
pare online learning algorithms, specifically addressing the
challenges presented by large-scale or real-time data within
environments like enterprise-level corporate offices or multi-
tenant cloud storage. This tool employs an incremental learn-
ing paradigm, leveraging a sliding window mechanism to man-
age the data files. This operational approach enables the incre-
mental training of classifiers such as SGD (Stochastic Gradient
Descent), Perceptron, Passive Aggressive, and Hoeffding Tree,
making it exceptionally suitable for situations where the data’s
size prohibits in-memory storage or when data is generated in
real-time, such as at the file system level. By reading, process-
ing, and using a subset of the data for model training during
each computational iteration, the tool overcomes limitations re-
lated to computational resources. This strategy allows for the
dynamic ingestion of data, ensuring that the system remains ef-
ficient and effective even as data volumes grow or as new data
streams in continuously.

To assess the effectiveness of online learning models, we
encrypted a dataset with 75 ransomware families using a lab-
developed AES-Base64 encryption-encoding model. The re-
sults, presented in Table 4, showcase the performance of these
online learning models when confronted with well-known ran-
somware, alongside the encryption-encoding model. Here
brief descriptions of each online learning evaluation conducted
against the encrypted dataset are provided.

GrandCrab Ransomware evaluation:. GandCrab, a notorious
ransomware, has significantly impacted global cybersecurity
by encrypting user files and demanding ransom payments for
decryption keys. It distinguished itself through its ability to
evade detection with frequent updates and a variety of distribu-
tion methods. In our study, we encrypted data using the latest
GandCrab variant to test the efficacy of online learning models.
The results illustrated that these models frequently achieve over
90% accuracy in distinguishing between normal and encrypted
files. Particularly noteworthy is the performance in Batch 4,
where the Hoeffding Tree classifier achieved perfect classifica-
tion (accuracy = 100%). This suggests that the Hoeffding Tree
is exceptionally effective at capturing the underlying data dis-
tribution, making it a potent tool for identifying and mitigating
threats posed by sophisticated ransomware like GandCrab. Re-
sult illustrated in Table 4 row A.

AES-Base64 encryption-encoding evaluation (lab-
developed):. One malicious method to reduce entropy
involves using AES-Base64 for encryption and encoding.
We developed a tool for encrypting and encoding data into
Base64 and evaluated its effectiveness with online learning
algorithms. Our empirical experiment, detailed in the second
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row (B) of Table 4, outlines the performance of online learning
models. The Hoeffding Tree classifier stands out for its
proficiency, especially from batch 2 onwards, consistently
scoring above 95% and achieving a perfect score of 1.0 in
batch 5. This superior performance suggests its enhanced
adaptability to evolving data or superior capability in online
learning. Conversely, the Passive Aggressive classifier peaks at
a score of 77.5% in batch 11 but shows variability across other
batches, indicating potential sensitivity to data distribution.
The SGD and Perceptron classifiers exhibit moderate and
varying performances, with SGD reaching approximately 72%
in batch 12 and Perceptron peaking at 65% in batches 3 and 4.

Paradise Ransomware evaluation (Partial encryption):. Par-
adise ransomware has become a notable threat in the cyberse-
curity domain, characterized by its advanced encryption meth-
ods and the severe impact on the data of its victims. Through
reverse-engineering analysis, it has been found that Paradise
ransomware conducts two primary operations on the files it tar-
gets: reading and encrypting the content. The encryption strat-
egy of Paradise is meticulously tailored to the size of the files
it infects. Specifically, files less than 5MB in size are entirely
encrypted by the ransomware, rendering them completely inac-
cessible. For files that fall within the 5MB to 100MB range,
Paradise employs partial encryption. This involves encrypting
5MB of the file’s content, divided into two sections of 2.5MB
each, with one section from the beginning and another from
the end of the file. Files exceeding 100MB undergo a similar
approach of partial encryption, where 25MB of the content is
encrypted. However, this is done in a staggered fashion, with
the encryption distributed across ten 2.5MB chunks, each po-
sitioned at intervals spanning every 10% of the file’s total size
[43].

Our empirical evaluation highlights the Hoeffding Tree clas-
sifier’s exceptional and consistent performance in distinguish-
ing between encrypted and normal data, particularly evident
from Batch 2 onwards. It consistently scores above 95% ac-
curacy, reaching a perfect score in Batch 9. This consistent
high performance underlines the classifier’s adaptability and su-
perior online learning capabilities in the context of encryption
detection, as detailed in the results presented in Table 4 Row
C).

Black Basta Ransomware evaluation (intermittent encryp-
tion):. The advancement of intermittent encryption has
changed the strategic adversarial landscape, favoring the at-
tacker over the defender. By employing dynamic encryption
and enhancing its stealth, adversaries can effectively bypass
prevailing defense countermeasures. This is particularly true
for systems that rely on I/O request packets (IRPs) to de-
tect anomalous behavior. We encrypt the dataset using recent
Black Basta variants. The Black Basta ransomware exhibits a
unique encryption behavior that does not allow for operator-
configurable encryption modes but rather implements intermit-
tent encryption dictated by the size of the target file.

Specifically, Black Basta undertakes a comprehensive en-
cryption of the entire file content when the file size is less than

(1) First 64 encryption

(3) Second 64 encryption after

(2) Skipping 128 bytes before encrypting the next 64-byte

Figure 4: Black Basta encrypts CSV files larger than 4 KB. The ransomware
persistently encrypts 64-byte portions, maintaining a consistent interval of 128
bytes until reaching the end of the file. This is an example of how intermittent
encryption impacts defender strategies that use I/O request packets.

704 bytes. For files that are larger but remain under 4 KB in
size, the ransomware encrypts in increments of 64 bytes, initi-
ating from the beginning of the file and thereafter skipping 192
bytes before encrypting the next 64-byte block. The process al-
ters when encrypting files exceeding 4 KB in size; here, Black
Basta again encrypts 64-byte blocks starting from the file’s in-
ception but with a reduced skip interval of 128 bytes between
each encrypted segment. Through a detailed analysis, it was
discerned that in the case of files larger than 4 KB, the ran-
somware persistently encrypted 64-byte portions, maintaining
a consistent interval of 128 bytes until reaching the file’s end.
This operational methodology elucidates a distinctive encryp-
tion mechanism employed by Black Basta, with the encryption
pattern being solely influenced by the size of the file under en-
cryption. Figure 4 illustrates how Black Basta encrypted csv
file.

Confusion Matrix Based on Hoeffding Tree Classifier (Crypt-
File2 Ransomware):. We evaluated the model’s performance
using the confusion matrix and additional performance met-
rics like accuracy, precision, and recall. Illustrated in Figures
5 and 6. The depicted figures detail a comprehensive evalua-
tion of the Hoeffding Tree algorithm’s performance on datasets
affected by the CryptFile2 ransomware, focusing on the initial
twelve batches of data. This analysis, segmented into two main
figures, underscores the algorithm’s ability to classify data as
either ’Normal’ or ’Encrypted’ based on precision and recall
metrics derived from confusion matrices.

The first figure 5, spans batches 0 through 2 and highlights
a progressive improvement in the algorithm’s accuracy (AC),
precision, and recall rates for both normal and encrypted data
classifications. Specifically, Batch 0 starts with a relatively low
accuracy of 0.42, exhibiting no precision or recall for encrypted
data. This trend sees a significant uptick in Batch 2, where
the accuracy surges to 0.97, coupled with perfect precision and
recall for encrypted data and near-perfect metrics for normal
data.

The second figure 6, encompasses batches 3 through 11, pro-
viding a broader view of the algorithm’s performance over time.
Notably, batches 3 and 4 maintain high accuracy levels of 0.97
and 0.98, respectively, with Batch 9 achieving a perfect score
of 1.00 across all metrics. This extended analysis underscores a
notable consistency in the Hoeffding Tree’s ability to accurately
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Table 4: Comparative Performance of Online Learning Classifiers against Adversarial Encryption Techniques. This table illustrates the incremental evaluation
results of various classifiers, with data fed in rounds of 1000, in a simulated file system-like environment. Four encryption techniques were analyzed: Grand Crab
Ransomware’s Strong Encryption, AES-Base64’s Suggested Entropy Reduction, Paradise’s Partial Encryption, and CryptoFile2 ransomware which uses encrypted
by a strong encryption with RSA-2048.

A particular focus is placed on the standout performance of the Hoeffding classifier, which exhibited superiority across all tested
contexts. Row A illustrates the results from data encrypted with GrandCrab Ransomware. Row B illustrates data first encrypted
with the AES algorithm and then encoded using Base64 encoding. Row C illustrates the results from data encrypted by Paradise
ransomware, which uses partial encryption. Row D illustrates the results from encrypted data by CryptFile2 ransomware. The

Hoeffding algorithm shows outperforming accuracy results compared to other online learning algorithms.
# Comparison of Classifier Performance Graph Comparison of Classifier Performance (Accuracy)

A

Batch SGD Perceptron Passive Aggressive Hoeffding Tree

1 0.4917 0.35 0.6333 0.9250
2 0.4917 0.4667 0.65 0.9833
3 0.5250 0.6750 0.7833 0.9833
4 0.4167 0.3333 0.7417 1.0000
5 0.7333 0.2667 0.6333 0.9833
6 0.4917 0.5750 0.6833 0.9000
7 0.6000 0.5167 0.7250 0.9167
8 0.7250 0.3667 0.5167 0.9667
9 0.4167 0.6250 0.5750 0.9583
10 0.5083 0.5583 0.6833 0.9583
11 0.5000 0.7250 0.6833 0.9250
12 0.3839 0.5268 0.8036 0.9554

B

Batch SGD Perceptron Passive Aggressive Hoeffding Tree

1 0.5250 0.3833 0.5583 0.5333
2 0.6333 0.5417 0.6500 0.6083
3 0.4917 0.6500 0.6667 0.9750
4 0.5833 0.6500 0.5750 0.9833
5 0.6000 0.6083 0.5500 1.0000
6 0.6167 0.4250 0.6167 0.9750
7 0.5083 0.4500 0.5250 0.9833
8 0.4583 0.5333 0.6083 0.9750
9 0.6000 0.4500 0.6750 0.9750
10 0.6833 0.3667 0.4667 0.9833
11 0.3417 0.4417 0.7750 0.9583
12 0.7207 0.5766 0.5856 0.9640

C

Batch SGD Perceptron Passive Aggressive Hoeffding Tree

0 0.5583 0.7417 0.7667 0.5167
1 0.5667 0.4500 0.6333 0.5750
2 0.8167 0.7417 0.6583 0.9750
3 0.5333 0.5500 0.4083 0.9917
4 0.4250 0.6167 0.6667 0.9667
5 0.6917 0.5583 0.5667 0.9833
6 0.5417 0.4750 0.9000 0.9667
7 0.1917 0.7500 0.5333 0.9667
8 0.4833 0.4083 0.4583 0.9917
9 0.5000 0.2333 0.7917 1.0000
10 0.4167 0.2917 0.8417 0.9667
11 0.8036 0.3571 0.6964 1.0000

D

Batch SGD Perceptron Passive Aggressive Hoeffding Tree

0 0.4583 0.5083 0.5583 0.4250
1 0.6416 0.4666 0.7000 0.5166
2 0.8083 0.5000 0.7833 0.9750
3 0.6250 0.5750 0.7500 0.9666
4 0.6500 0.4666 0.5500 0.9833
5 0.4583 0.5583 0.8500 0.9500
6 0.6000 0.5916 0.6500 0.8500
7 0.4333 0.7916 0.7916 0.9666
8 0.5750 0.6000 0.5833 0.9000
9 0.6416 0.4750 0.7166 1.0000
10 0.6000 0.4500 0.6500 0.9250
11 0.5625 0.4821 0.6250 0.9553

differentiate between normal and encrypted data, with a slight
dip in Batch 6 before resuming high performance in subsequent
batches.

The intermittent encryption and online learning Challenges:.
Given the pronounced advantages conferred to adversarial en-
tities and the feasibility of its deployment, it is imperative
to concentrate on the exploration of intermittent encryption,

which constitutes a minor fraction of files encrypted by ran-
somware. Consequently, we posit that contemporary online
learning paradigms may not adequately adapt to the nuances of
intermittent encryption. In this section, we subject our dataset
to encryption via the Black Basta algorithm. Table 5 delineates
the performance metrics of various online learning classifiers,
namely SGD, Perceptron, Passive Aggressive, and Hoeffding
Tree algorithms, spanned across 12 distinct batches. It is salient
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(a) Batch 0: AC=0.42, (Precision Normal=0.44, En-
crypt=0.0), (Recall Normal=0.93, Encrypt=0.0)

(b) Batch 1: AC=0.52, (Precision Normal=0.52, En-
crypt=0.50) , (Recall Normal=0.98, Encrypt=0.2)

(c) Batch 2: AC=0.97, (Precision Normal=0.95, En-
crypt=1.0) , (Recall Normal=1.0, Encrypt=0.95)

Figure 5: The results of the Hoeffding Tree’s performance on a dataset encrypted by CryptoFile ransomware involved analyzing the confusion matrix, precision,
and recall across the first three batches.

(a) Batch 3: AC=0.97, (Precision Normal=0.94, En-
crypt=1.0) , (Recall Normal=1.00, Encrypt=0.94)

(b) Batch 4: AC=0.98, (Precision Normal=0.98, En-
crypt=0.98) , (Recall Normal=0.98, Encrypt=0.98)

(c) Batch 5: AC=0.95, (Precision Normal=0.91, En-
crypt=1.00) , (Recall Normal=1.00, Encrypt=0.90)

(d) Batch 6: AC=0.85, (Precision Normal=0.88, En-
crypt=0.82) , (Recall Normal=0.85, Encrypt=0.85)

(e) Batch 7: AC=0.97, (Precision Normal=0.94, En-
crypt=1.00) , (Recall Normal=1.00, Encrypt=0.93)

(f) Batch 8: AC=0.90, (Precision Normal=0.90, En-
crypt=0.90) , (Recall Normal=0.90, Encrypt=0.90)

(g) Batch 9: AC=1.00, (Precision Normal=1.00, En-
crypt=1.00) , (Recall Normal=1.00, Encrypt=1.00)

(h) Batch 10: AC=0.93, (Precision Normal=0.95, En-
crypt=0.91) , (Recall Normal=0.90, Encrypt=0.95)

(i) Batch 11: AC=0.96, (Precision Normal=0.95, En-
crypt=0.96) , (Recall Normal=0.96, Encrypt=0.95)

Figure 6: The analysis of the Hoeffding Tree’s performance on a dataset encrypted by CryptFile2 ransomware extended to include the confusion matrix, precision,
and recall measurements across an additional nine batches, following the initial three illustrated in Figure 5.
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Table 5: Comparative Analysis of Online Classifiers Against Intermittent Encryption Adversarial Threats. This table delineates the performance distinctions
among various online classifiers when contending with data encrypted using intermittent encryption. Initial observations reveal a suboptimal performance by the
Hoeffding classifier in contrast to other encryption strategies. However, upon deeper examination, it emerges that the Random Forest classifier notably surpasses
its counterparts, exhibiting a superior predictive accuracy concerning intermittent encryption. Row A illustrates the use of intermittent encryption, which results in
underperforming the Hoeffding Tree. Row B illustrates benchmarking classifiers with differential entropy as an additional feature, resulting in the random forest
classifier outperforming others. Row C illustrates a comparison between the Random Forest and Hoeffding Tree classifiers.

# Comparison of Classifier Performance Graph Comparison of Classifier Performance

A

Batch SGD Perceptron Passive Aggressive Hoeffding Tree

0 0.5167 0.5250 0.5500 0.4917
1 0.4917 0.4333 0.5417 0.5333
2 0.4500 0.5833 0.8500 0.9250
3 0.5250 0.4500 0.4500 0.6417
4 0.6333 0.4833 0.6833 0.7917
5 0.6750 0.5250 0.5000 0.8750
6 0.5333 0.4833 0.5500 0.8083
7 0.5000 0.4750 0.6667 0.7667
8 0.5750 0.6417 0.5500 0.9250
9 0.5250 0.5333 0.5250 0.8333
10 0.5833 0.5000 0.7167 0.8667
11 0.4732 0.5000 0.6071 0.7589

B

Classifier Accuracy Precision Recall F1-score
Logistic Regression 0.6248 0.6000 0.7530 0.6636
Support Vector Machines 0.6130 0.6304 0.6127 0.6134
Decision Trees 0.7155 0.7170 0.7199 0.7229
Random Forests 0.7832 0.7643 0.8225 0.7911
k-Nearest Neighbors 0.6027 0.6001 0.6521 0.6233
AdaBoost 0.6605 0.6549 0.7452 0.6839
Gradient Boosting 0.7131 0.6918 0.8038 0.7366
Multilayer Perceptron 0.5949 0.5659 0.8591 0.5991
Naive Bayes 0.5448 0.5281 0.8939 0.6620

C

Batch Random Forest Score Hoeffding Tree Score
1 0.9660 0.5080
2 0.8400 0.5140
3 0.9200 0.5080
4 0.8080 0.6400
5 0.9460 0.7840
6 0.9200 0.7540
7 0.8420 0.8120
8 0.9480 0.7580
9 0.8840 0.9740

10 0.9340 0.8560
11 0.9480 0.9160
12 0.9375 0.8836

to note that the Hoeffding Tree algorithm manifests favorable
outcomes in merely four of the delineated batches.

Shortcomings of the Hoeffding Tree algorithm in intermittent
encryption:. we advocate for the integration of differential en-
tropy [44] as a pivotal feature in the classification process of
intermittently encrypted data. The differential entropy allows
for a flexible and adaptive measure of the data’s uncertainty,
making it more suitable for dealing with the fluctuations and
gaps caused by intermittent encryption.

The differential entropy, represented as h(X), serves as a po-
tent tool in quantifying the uncertainty of continuous random
variables, articulated mathematically as:

h(X) = −
∫ ∞
−∞

f (x) log2 f (x) dx (9)

where f (x) signifies the probability density function (pdf) of the
variable X.

By employing differential entropy, we aim to harness its an-
alytical acumen to navigate the encrypted buffers’ intricacies
within the file system adeptly, thereby fostering a model im-
bued with enhanced precision and reliability in the face of in-
termittent encryption’s unpredictabilities.

Conversely, a more in-depth exploration reveals that the Ran-
dom Forest classifier notably excels, manifesting predominant
efficacy in predicting outcomes under the influence of intermit-
tent encryption (See results in Table 5).

5.10. Baseline model and discussion
Recent literature emphasizes that the majority of ransomware

detection mechanisms proposed for detecting encryption activ-
ities at the file system level predominantly utilize entropy anal-
ysis [6, 32, 8, 45, 46, 47, 17]. As delineated in Section 3, adver-
saries have evolved their strategies to either circumvent entropy
detection measures or reduce the visibility of encryption indi-
cators, thereby undermining the effectiveness of conventional
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machine learning models. These models, which largely depend
on static offline training, are increasingly ineffectual against the
sophisticated techniques employed by modern adversaries. As
part of our baseline evaluation, we assessed the performance
of popular traditional classifiers such as SVM, Decision Trees,
Random Forests, etc., all of which leverage Shannon entropy as
a key feature. For this purpose, we utilized the Black Basta ran-
somware to encrypt a dataset, subsequently comparing the out-
comes with our initial evaluation that employed the same tradi-
tional classifiers but augmented with a set of identified features,
as discussed in Section 5.3. The findings from this evaluation
are encapsulated in Table 6.

In the comparative analysis of classification algorithms based
on their performance metrics—accuracy, precision, recall, and
F1 score—it is evident that the inclusion of a multifaceted fea-
ture set encompassing byte entropy, byte variance, byte mean,
byte kurtosis, byte skewness, differential entropy, and Shannon
entropy, as opposed to relying solely on entropy, significantly
enhances classifier performance. Table 6, characterized by its
singular reliance on entropy as a feature, yielded modest perfor-
mance metrics across various classifiers, with Decision Trees
achieving the highest accuracy of 0.5331 and k-Nearest Neigh-
bors demonstrating the best recall and F1 score, at 0.6710 and
0.5750, respectively. This suggests a limited capability of en-
tropy alone to capture the intricate patterns within the data, thus
constraining the classifiers’ effectiveness.

Conversely, the integration of a comprehensive feature set
in the second dataset led to a remarkable improvement in all
evaluated metrics (see table 2). Notably, Decision Trees exhib-
ited a profound increase in accuracy to 0.9808, while Random
Forests achieved superior precision and recall rates of 0.9703
and 0.9947, respectively. Such improvements underscore the
critical importance of feature diversity in enhancing the pre-
dictive accuracy and reliability of classifiers. The multifaceted
feature set evidently provides a richer, more nuanced represen-
tation of the data, thereby enabling more complex classifiers
like Random Forests, Gradient Boosting, and AdaBoost to ex-
ploit this complexity to achieve near-optimal performance.

Table 6: Classification reports summary for various models that rely on entropy
feature encrypted by Black Basta (intermittent encryption) and CryptFile2 ran-
somware that encrypted by a strong encryption with RSA-2048.

Classifier Accuracy Precision Recall F1

Logistic Regression 0.4881 0.4878 0.3807 0.4165
SVM 0.5018 0.5019 0.4006 0.4154
Decision Trees 0.5331 0.5390 0.4618 0.4948
Random Forests 0.5298 0.5331 0.4877 0.5068
k-Nearest Neighbors 0.5062 0.5064 0.6710 0.5750
AdaBoost 0.5012 0.4999 0.5952 0.5309
Gradient Boosting 0.5128 0.5110 0.5714 0.5339
Multilayer Perceptron 0.4875 0.4863 0.3769 0.4135
Naive Bayes 0.4940 0.4983 0.4804 0.4691

6. Related work

Over recent years, the field of ransomware detection has re-
ceived significant attention within the academic community.

Traditional detection methodologies typically involve the anal-
ysis of malicious executable [48], an approach that is increas-
ingly proving to be ineffective against the mounting sophisti-
cation of polymorphism and code obfuscation techniques em-
ployed by malicious actors [49].

In a concerted effort to overcome these increasingly complex
obfuscation tactics, academic research has gradually transi-
tioned toward behavior-based analysis techniques. These meth-
ods revolve around the scrutiny of runtime behaviors, such as
system call sequences and Read/Write operations, which are
intrinsically challenging to manipulate without fundamentally
altering the malware’s core functionality [50, 34]. For instance,
in the context of process-level monitoring, any ongoing process
that exceeds a predefined trust threshold is identified and classi-
fied as a potentially malicious activity. However, it is important
to note that these behavior-based detection techniques are not
without their limitations. Indeed, sophisticated adversaries may
circumvent these strategies by dividing the ransomware activity
into multiple distinct processes. Each process performs only a
fraction of the overall ransomware operations, thereby result-
ing in the same net output as a full-scale ransomware execution
[51]. A prominent example of a ransomware family employing
this evasion technique is LockerGoga [52].

The aforementioned behavior-based detection methodolo-
gies generally demonstrate efficacy in dealing with known
threats, yet their effectiveness diminishes in the face of previ-
ously unseen ransomware samples. Given the propensity for
ransomware to attack user files, recent scholarship has advo-
cated for the implementation of a decoy file-based deceptive
solution as a means to expediently detect cryptographic ran-
somware attacks. These decoy files, which can be created either
automatically or manually, are strategically dispersed across the
network [53].

Another direction within the field of ransomware detection
involves leveraging the communication between the Command
and Control (C&C) Server and the targeted victim as a be-
havioral characteristic to detect potential ransomware attacks
[54, 55, 56]. Almashhadani et al. [56] empirically demon-
strated this approach, utilizing network traffic data to investi-
gate Locky Ransomware. In their study, they extracted 20 fea-
tures from the network traffic data to construct a classification
model. Experimental evaluations of this proposed detection
system using Random Forests, Bayes Networks, and Support
Vector Machines indicated high detection accuracy, a low false
positive rate, and useful feature extraction. Additionally, the
system proved highly effective in tracking the network activi-
ties of ransomware. However, there are important caveats to
consider in the application of these techniques. Firstly, Almash-
hadani et al.’s work focuses solely on the Locky ransomware,
which introduces potential issues of generalisability, as the find-
ings might not apply to other types of ransomware. Secondly,
while some ransomware families necessitate an internet con-
nection to initiate the encryption process, numerous others do
not require a connection to the C&C server to begin encrypting
victim files, thereby limiting the effectiveness of this approach.

A different behavioral feature used for ransomware detection
is the monitoring of hardware performance counters (HPCs)
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such as cache-reference, cache misses, and instruction counts
[57, 58]. This methodology is rooted in the fact that ran-
somware perpetrators, in their quest to maximize potential
gains, seek to encrypt as many user files as possible. The ag-
gressive execution of file encryption and renaming processes
usually provokes a context switch, which in turn influences
the CPU status, affecting elements such as the CPU cache and
branch prediction. For instance, the authors in EGB [58] evalu-
ated the features derived from hardware performance counters
using several machine learning algorithms to classify applica-
tions into ransomware and non-ransomware categories. In their
research, EGB [58] demonstrated that a model built using the
Random Forest algorithm exhibited the highest detection rate.

Additionally, DeepGuard’s work [59] introduced an innova-
tive method for capturing user activity. Their proposed mecha-
nism relied on monitoring file interaction patterns and utilized
a deep generative autoencoder architecture to reconstruct the
input. DeepGuard’s approach is premised on the assumption
that, with sufficient training on user file-interaction logs col-
lected over several days, the deep generative autoencoder be-
comes proficient in reconstructing unseen inputs with minimal
reconstruction error, provided the input resembles legitimate
user activity. Consequently, this model can identify anomalous
(or ransomware) activity by exclusively modeling the user inter-
action pattern, effectively distinguishing benign user activities
from ransomware operations.

A study by Baek et al. [60] proposed a two-pronged ran-
somware protection system known as SSDinsider++. This sys-
tem focused both on the detection of ransomware attacks and on
data recovery. However, their approach was constrained by the
practical infeasibility of assessing every I/O block, its header,
and payload during runtime. SSDinsider++’s detection algo-
rithm operates by observing the I/O patterns of a host system
and determines whether the host is under ransomware attack at
an early stage.

Meanwhile, in an effort to enhance the detection rate of
crypto-ransomware, the authors in File-entropy [61] leveraged
the entropy of encrypted files as a metric to identify ran-
somware activity. They encrypted and analyzed over 20 file for-
mats using WannaCry, Phobos, GandCrab, and Globelmposter
ransomware, gathering features essential for distinguishing ran-
somware tasks from file encryption activities, such as Zip and
7z. These extracted features were then fed into a support vec-
tor machine for classification tasks. Their experimental results
showed that their model could detect ransomware activity with
an average accuracy of 85.17%. However, their research was
limited to only four ransomware samples, and may therefore
lack the ability to detect other varieties of ransomware.

The deception-based [62] solution operates by setting up ar-
tificial computer system assets such as a web server or router
across an enterprise network. These assets act as bait, en-
ticing intruders and subsequently triggering alerts when ac-
cessed. While this methodology is still relatively novel, some
recent studies have proposed deception-based strategies for ran-
somware detection [63, 64, 62, 65].

For example, Lee et al. [63] implemented a proof of con-
cept involving the creation and placement of decoy files based

on ransomware file traversal patterns. In their study, various
ransomware samples were decompiled and analyzed to under-
stand how ransomware traverses file systems. They suggested
planting two deceptive files in the root directory, one at the be-
ginning and another at the end of an alphabetical list. Addition-
ally, Gómez et al. [64] developed R-Locker, a tool designed
to thwart ransomware attacks by creating decoy files. These
files were generated using the ’makeinfo’ command in Unix
systems, filled with 3KB of data, and placed in the user’s home
directory. R-Locker would then block any process attempting to
access these files. However, the effectiveness of this approach
was limited because all the decoy files were of the same type,
allowing ransomware to potentially evade detection.

In Rwguard [65], the authors proposed a novel combination
of a behavioral-based detection model with a decoy-based ap-
proach to combat cryptographic ransomware attacks. Rwguard
randomly designated original user files as decoy files. Like-
wise, Cryptostopper [62] embedded arbitrarily generated decoy
files in the file system to create a deceptive defense against ran-
somware attacks. Any attempt to alter the content of these de-
ceptive files would trigger an alert, notifying the system admin-
istrator and closing the infected host. As Cryptostopper is a
commercial product, its technical details are not publicly avail-
able.

Several studies have utilized dynamic analysis to examine
the behavior of ransomware, including work by Kharraz et al.,
Song et al., Cabaj et al., and Andronio et al. [66, 34, 67, 68, 69].
These studies focused on various elements such as I/O data
buffer entropy, access patterns, file system activities [70], CPU
and memory usage, and network behavior. Despite its effec-
tiveness against evasive ransomware types, dynamic analysis
has inherent limitations. Notably, it necessitates the execution
of ransomware in a safe and monitored environment; otherwise,
the platform risks infection. This constraint may limit the fea-
sibility of dynamic analysis in certain scenarios. We have sum-
marized and critiqued related work approaches, as well as what
this paper offers, in Table 7.

Table 8 serves as a concise overview of various ransomware
detection approaches, highlighting their strengths and limita-
tions. It offers a quick reference for researchers and practition-
ers in the field of cybersecurity, providing insights into the key
criteria used to evaluate these approaches. The table aims to as-
sist in understanding the relative effectiveness of each method
in combating ransomware threats and what this paper is aiming
to achieve. The paper examines techniques employed by adver-
saries to diminish the indication of compromise threshold by
manipulating various features and activities, including factors
like entropy, input and output data, and the exhaustive utiliza-
tion of applications.

7. Conclusion and future directions

This study delves deeply into the ever-expanding realm of
ransomware, meticulously investigating the dynamic confronta-
tions between adversaries, who continuously evolve sophisti-
cated strategies for optimizing illicit gains, and defenders, who
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Table 7: Summary and Critique of Ransomware Detection Approaches

Approach Criteria Summary and Critique
Behaviour-Based Analysis - Effectiveness against polymorphism and

obfuscation techniques [49]
Effective against evolving ransomware tactics, but less effec-
tive against unknown ransomware [50].

- Efficacy against known threats [48] Demonstrates high efficacy.
Decoy File-Based Decep-
tion

- Detection speed and accuracy Rapidly detects cryptographic ransomware attacks.

- Lack of deception diversity Limited effectiveness when ransomware adapts to recognize
decoy files as fake.

Communication Analysis - Detection accuracy and false positive rate
[56]

High accuracy and low false positive rate.

- Limited applicability Limited effectiveness when ransomware doesn’t rely on C&C
servers or when dealing with new, previously unseen variants.

Hardware Performance
Counters

- Detection rate [58] High detection rate with hardware performance counters.

- Resource overhead [57] May introduce resource overhead, impacting system perfor-
mance.

- Limited applicability May not be effective against non-resource-intensive ran-
somware.

User Activity Monitoring - Anomaly detection capability [59] Effective at distinguishing benign activities from ransomware.
- Training data limitations Requires substantial training data and may struggle with

rapidly evolving ransomware.
SSDinsider++ - Early-stage detection capability [60] Early detection based on I/O patterns.

- Practicality [60] Practicality limited due to resource-intensive assessment.
File Entropy Analysis - Detection accuracy [61] Accurate in detecting ransomware activity.

- Limited ransomware sample coverage [61] Limited to the ransomware samples used for training.
- Scalability [61] May struggle to scale with a large number of file formats.

Deception-Based Strate-
gies

- Intruder enticement and alert triggering
[63]

Detects intruders and triggers alerts effectively.

- Effectiveness against adaptive ransomware Limited effectiveness when ransomware evolves to recognize
decoy assets.

Dynamic Analysis - Effectiveness against evasive ransomware
types [66]

Effective but requires a safe and monitored environment.

- Platform infection risk [66] Necessitates executing ransomware in a controlled environ-
ment, which may not always be feasible due to virtualiza-
tion detection, incubation period, and other evasion techniques
[28].

- Variability among ransomware variants
[28]

Behaviours are specific to individual ransomware variants, re-
quiring generic models or continuous training to adapt to new
variants.

carefully orchestrate countermeasures to mitigate risks associ-
ated with file system-level data encryption. Through a com-
prehensive analysis, the research illuminates nuanced adver-
sary techniques designed to circumvent storage-level and be-
havioral countermeasures, and employs advanced methodolo-
gies, like online incremental machine learning algorithms, to
unravel the complexities of these confrontations. The findings
reveal that the Hoeffding Tree algorithm, renowned for its in-
trinsic incremental learning abilities, stands out with exemplary
performance, particularly against strong, partial, and Base64
encoding encryption techniques, demonstrating an impressive
accuracy average above 90%. In contrast, the Random Forest
classifier, enriched with a warm-start feature set, prevails with
remarkable efficacy, achieving a minimum of 80% accuracy,
specifically in scenarios involving intermittent encryption. In
the forthcoming phases of our research, the vision is to inno-
vate further by deploying a hybrid model within our develop-
mental framework, intending to fortify the proxy gateway de-
signed to secure endpoints connecting to cloud storage. Data
preprocessing involves extracting relevant features from files,
a crucial step in enabling classifiers to effectively distinguish
between encrypted and unencrypted files. After a comprehen-

sive review of all ransomware techniques outlined in Section 3,
we identified and extracted features that can be roughly cate-
gorized into three groups: (1) Features related to file entropy;
(2) Features related to file size; and (3) Feature related to file
content/pattern. We also investigate how Asymmetric Numeral
Systems (ANS), which provide both efficient and near-optimal
entropy coding, could be leveraged by ransomware developers
as part of their tactics [71, 72].
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