
Protocol Dialects as Formal Patterns:

A Composable Theory of Lingos

Technical report
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Abstract

Protocol dialects are methods for modifying protocols that provide
light-weight security, especially against easy attacks that can lead to more
serious ones. A lingo is a dialect’s key security component by making
attackers unable to “speak” the lingo. A lingo’s “talk” changes all the
time, becoming a moving target for attackers. We present several kinds of
lingo transformations and compositions to generate stronger lingos from
simpler ones, thus making dialects more secure.

1 Introduction

Protocol dialects are methods for modifying protocols in order to provide a light-
weight layer of security, especially against relatively easy attacks that could
potentially be leveraged into more serious ones. The scenario is usually that
of a network of mutually trusting principals, e.g. an enterprise network, that
needs to defend itself from outside attackers. The most effective approach is
to prevent outside parties from even initiating a communication with group
members, e.g. by requiring messages to be modified in some way unpredictable
by the attacker.1

Protocol dialects are intended to be used as a first line of defense, not as a
replacement for traditional authentication protocols. In fact, they are primarily
concerned with protecting against weak attackers that are trying to leverage off

1By “message” we mean a unit of information transferred by the protocol, and can mean
anything from a packet to a message in the traditional sense.
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protocol vulnerabilities. We can make use of this restricted scope, as well as the
assumption that all parties in an enclave trust each other, to use an attacker
model based on the on-path attacker model [1, 2]: First, the attacker can read
messages, but cannot destroy or replace them. Second, principals trust each
other and share a common seed of a pseudo-random number generator that
they can use to generate and share common secret parameters. Because of the
simplified threat model and trust assumption, dialects can be designed to be
simpler than full-scale authentication protocols. Thus they can be expected to
be prone to fewer implementation and configuration errors than full-scale pro-
tocols. With this in mind, dialects can be used as a separate but very thin
layer in the protocol stack, useful as a defense against attacks in case the main
authentication protocol is misconfigured or implemented incorrectly. Consider-
ing the dialect as a separate layer makes it easier to keep it simple, because it
makes it possible to avoid dependencies on the layers it is communicating with.
In our work, we consider dialects that sit right above the transport layer in the
TCP/IP model, while the protocol it is modifying sits just above the dialect
in the application layer. However, other locations are possible for the protocol
being modified.

In [2] we introduced a system for specifying protocol dialects as formal pat-
terns that specify solutions to frequently occurring distributed system problems
that are generic, executable, and come with strong formal guarantees. More-
over, formal patterns can be further composed and instantiated to meet specific
needs. The dialect pattern is divided into two components: the lingo, which de-
scribes the actual message transformation, and the dialect, which is responsible
for managing lingos and interfacing with the underlying protocol. Methods are
also supplied for composing lingos, which allows for the creation of new lingos
and dialects from previous ones.

We build on our work in [2] by applying it to the design of dialects. However,
unlike [2] we concentrate on the design of lingos instead of the design of dialects
as a whole. In order to facilitate this, instead of composing whole dialects as
in [2], we develop new formal patterns to create and compose new lingos from
simpler ones, which we find to be a more flexible approach that allows better
concentration on the problem at hand. These patterns are lingo transformations,
which map one or more lingos enjoying some properties to a new lingos enjoying
some new properties. In particular, we concentrate on lingos that are based on
constantly changing secret parameters, which are generated by a pseudorandom
number generator shared throughout, itself parametric on a single shared secret,
an approach to lingo design introduced by Gogeneni et al. in [1]. Our spec-
ifications are written in the Maude rewriting logic language, which allows for
executable specifications and model checking rooted in logical theories, including
both probabilistic and statistical techniques. Indeed, all examples shown in this
paper are executable, and we provide executable Maude specifications in https:

//github.com/v1ct0r-byte/Protocol-Dialects-as-Formal-Patterns.
The paper is organized as follows. Section 2 introduces some preliminaries

needed to read the paper. In Section 3 we begin by concentrating on several
types of lingo transformations that can be used to guarantee specific properties
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of lingos such as non-malleability, authentication, and f-checkability, the check-
ability of correctness by the dialect instead of the protocol. In Section 4 we deal
with a more general type of lingo transformation: compositions. These include
functional composition (composing lingos as functions) and horizontal composi-
tion (choosing between different lingos probabilistically). We define lingo com-
position and introduce several examples to demonstrate its usefulness, including
showing how composition can be used to produce a lingo that is stronger than
either of its components. In Section 5 we introduce a formal pattern for the
dialects that use the lingos, completing the picture. Section 6 provides some
open questions and concludes the paper.

1.1 Related Work

Probably, the first work on dialects is that of Sjoholmsierchio et al. in [3]. In
this work, the dialect is proposed as a variation of an open-source protocol to
introduce new security measures or remove unused code, and is applied to the
OpenFlow protocol, introducing, among other things a defense against cipher-
suite downgrade attacks on TLS 1.2. This variation was independent of TLS,
and was achieved by adding proxies, thus allowing for modification without
touching the rest of the system and foreseeing the use of dialects as thin layers.
In later work by Lukaszewski and Xie [4] a layer 4.5 in the TCP/IP model was
proposed for dialects. In our own model we also make use of proxies for both
sending and receiving parties, but stop short of proposing an additional official
layer.

The threat model we use in this paper and in [2] is similar to that used by
Goginieni et al. in [1] and Ren et. al [5]: an on-path attacker who is not able to
corrupt any members of the enclave, as discussed earlier. We have also followed
[5]’s suggestion to view dialects as composable protocol transformations. In
this paper, we simplify this approach by reducing dialect transformations to
more basic lingo transformations, which are generic, compositional methods for
producing new lingos (and thus new dialects) from old ones.

In [1, 6, 7] Mei, Gogineni, et al. introduce an approach to dialects in which
the message transformation is updated each time using a shared pseudo-random
number generator. This means that the security of a transformation depends
as much, and possibly more, on its unpredictability as it does on the inability
of the attacker to reproduce a particular instance of a transformation. We have
adopted and extended this approach. In particular, we model a transformation
as a parametrized function, or lingo, that produces a new message using the
original message and the parameter as input. Both lingo and parameter can be
chosen pseudo-randomly, as described in [2].

None of the work cited above (except our own) applies formal design and
evaluation techniques. However, in [8] Talcott applies formal techniques to the
study of dialects running over unreliable transport, such as UDP. [8] is com-
plementary to our work in a number of ways. First, we have been looking at
dialects running over reliable transport, such as TCP. Secondly, we concentrate
on a particular attacker model, the on-path attacker with no ability to compro-
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mise keys or corrupt participants, and then explore ways of generating dialects
and lingos that can be used to defend against this type of attacker. In [8],
however, the dialects are relatively simple, but the attacker models are explored
in more detail, giving the attacker a set of specific actions that it can perform.
Like our model, the work in [8] is formalized in the Maude formal specification
language, providing a clear potential synergy between the two models in the
future.

1.2 Contributions of this paper

1. We present a theory of lingos that adds important new properties, trans-
formations and composition operations to the notion of lingo introduced
in [2]. The main goal of this theory is to improve the security of protocol
dialects.

2. We show that these new lingo transformations and composition operations
are formal patterns [9] that guarantee desired properties and replace and
greatly simplify two earlier formal patterns for dialects in [2]. These lingo
transformations provide new compositional techniques for creating new
lingos and dialects.

3. We provide formal executable specifications in Maude [10] for lingos, their
transformations and compositions, and dialects, available in a GitHub
repository referenced in this paper.

2 Preliminaries

We summarized background on Maude and Actor systems relevant for this pa-
per.
Maude [10, 11] is a formal specification language and system based on rewrit-
ing logic [12, 13], a logic for specifying a wide range of concurrent systems,
including, e.g., Petri nets [14], process calculi [15], object-based systems [16],
asynchronous hardware [17], mobile ad hoc network protocols [18], cloud-based
storage systems [19], web browsers [20], concurrent programming languages [21],
distributed control systems [22] and models of mammalian cell pathways [23,24].
A rewite theory is a triple R = (Σ, E,R), where (Σ, E) is an equational theory
defining the system states as elements of the initial algebra TΣ/E , and R is a
collection of rewrite rules of the form t → t′ that describe the local concurrent
transitions of the concurrent system specified by R.
Maude Functional (resp. System) Modules and Theories. Rewriting
Logic has Equational Logic as a sublogic. In Maude this corresponds to the
sublanguage of functional modules and theories. A Maude functional module
is an equational theory (Σ, E) delimited with keywords fmod and endfm and
having an initial algebra semantics, namely, TΣ/E . It includes type and operator
declarations for Σ (with the sort, resp. op, keywords), and equations E declared
with the eq keyword. Users can declare their own operator’s syntax with ’ ’
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denoting argument positions, e.g. + specifies a binary infix symbol. Maude
binary operators can be specified with built-in equational attributes such as
associativity (assoc), commutativity (comm) and identity (id:). Likewise, a
Maude functional theory is an equational theory (Σ, E) delimited by keywords
fth and endfth with a loose semantics (specifies all algebras satisfying the
theory). Similarly, a Maude system module (resp. system theory) is a rewrite
theory (Σ, E,R) delimited with keywords mod and endm (resp. th and endth)
with an initial (resp. loose) model semantics. The rules R in a system module
(resp, theory) are introduced with the keyword rl. See [10, 25] for further
details.
Maude Parameterized Modules. Maude supports parameterized functional
modules having a free algebra semantics. They are parameterized by one of more
functional theories. For example, fmod MSET{X :: TRIV} endfm is a parame-
terized module with parameter theory TRIV having a single parameter type Elt
and no operations or equations that maps any chosen set X of elements to the
free algebra of (finite) multisets on the elements of X. The choice of an actual
parameterX is made by a Maude view instantiating in this case TRIV to the cho-
sen data type X. For example, we can choose as elements the natural numbers
by a view Nat mapping TRIV to the functional module NAT of natural numbers
and mapping the parameter type (called a sort) Elt to the type (sort) Nat in
NAT. The semantics of the thus instantiated module fmod MSET{Nat} is the free
algebra of multisets with elements in the natural numbers. Likewise, parameter-
ized system modules have a free model semantics. For example, a parameterized
system module mod CHOICE{X :: TRIV} endm that imports the parameterized
functional module fmod MSET{X :: TRIV} endfm can have a rewrite rule for
non-deterministically choosing an element in a multiset of elements. Then, the
instantiation mod CHOICE{Nat} endm provides non-deterministic choice of an
element in a multiset of natural numbers.
Actors [26] model distributed systems in which distributed objects communi-
cate through asynchronous message passing. When an actor receives a mes-
sage, it changes its state, may send new messages, and may create new ac-
tors. In [2, 27], actors have been extended to generalized actor rewrite theories
(GARwThs). These are object-oriented rewrite theories specified in Maude as
a special class of system modules that satisfy natural requirements. The dis-
tributed states of a GARwTh (terms of sort Configuration) are multi-sets
of objects (terms of sort Object) and messages (terms of sort Msg). Multiset
union is modelled by an associative and commutative operator ‘_ _’ ( juxtapo-
sition), with null is the empty multi-set. Communication protocols are typical
GARwThs.

2.1 Formal Semantics of MQTT

MQTT [28] is a lightweight, publish-subscribe, protocol popular in devices with
limited resources or network bandwidth. It requires a transport protocol such as
TCP/IP that can provide ordered, lossless, bi-directional connections. MQTT
provides no security itself, and, although it can be run over secure transport
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rl [mqtt/C/send-connect] :

< Me : MqttClient | peer : nothing, cmdList : connect(B); CMDL, Atrs >

=>

< Me : MqttClient | peer : nothing, cmdList : CMDL, Atrs >

(to B from Me : connect(B)) .

rl [mqtt/B/accept-connect] :

< Me : MqttBroker | peers : Ps, Atrs > (to Me from O : connect(Me))

=>

< Me : MqttBroker | peers : insert(O, Ps), Atrs > (to O from Me : connack) .

rl [mqtt/C/recv-connack] :

< Me : MqttClient | peer : nothing, Atrs > (to Me from O : connack)

=>

< Me : MqttClient | peer : O, Atrs > .

Figure 1: Subset of actor rules from the MQTTMaude specification, formalizing
the semantics of a client connecting to a broker.

protocols such as TLS, it is known to be commonly misconfigured [29]. This
makes it an attractive application for protocol dialects [1]. We use MQTT as
the base protocol for the examples shown in the paper.

Example 1 We formalize MQTT in Maude as a protocol example for Dialects.
Specifically, we select to specify a subset of MQTT for illustration purposes.
We give formal semantics to the following MQTT commands: connect, sub-
scribe, unsubscribe, publish and disconnect. Furthermore, in our MQTT’s sym-
bolic model we have two classes of actors, MqttClient and MqttBroker. Class
MqttClient defines three attributes: i) the broker it is connected to, ii) a list
of commands to execute in order, and iii) a map between topic and value, to
store the last value received on the subscribed topic. Class MqttBrocker has
two attributes: i) a lists of peers and ii) a map between topics and the peers
subscribed to it. With this two classes and set of commands we can build and
represent environments with multiple clients and brokers, exchanging messages
in a concurrent and asynchronous manner.

As an example of the formal semantics of MQTT, we show the process of a
client connecting to a broker with the actor rules of Figure 1. First rule models
the behaviour of an MqttClient with identifier Me sending a connect message
to an MqttBroker with identifier B. Second rule represents what the MqttBroker
will do upon receiving the connect message, i.e. add the MqttClient to it’s set
of peers and send back to the sender an acknowledgement message. With the
third rule, the MqttClient processes any incoming acknowledgement message
by setting its peer attribute with the senders identifier.

The initial configuration, represented in Figure 2, has three objects: two
clients (with identifiers c1 and c2 respectively) and one broker (with identifier
b). Given the commands in the cmdList attribute of each client, what will
happen is: 1) both clients will connect to the broker, 2) client c1 will subscribe
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< c1 : MqttClient | peer : nothing,

cmdList : (connect(b) ; subscribe("temp")),

lastRecv : empty >

< c2 : MqttClient | peer : nothing,

cmdList : (connect(b) ; publish("temp", "34")),

lastRecv : empty >

< b : MqttBroker | peers : empty, subscribers : empty >

Figure 2: Initial MQTT configuration for experiments.

to topic temperature and, 3) client c2 will publish value 34 on that same topic.
In the end, client c1 will receive a value published by client c2 regarding the
temperature, storing the last received value (34) in attribute lastRecv. For the
dialect examples in this work, we use this initial configuration (state).

3 Lingos

A lingo is a data transformation f between two data types D1 and D2 with a
one-sided inverse transformation g. The transformation f is parametric on a
secret parameter value a belonging to a parameter set A. For each parameter a,
data from D1 is transformed into data of D2, which, using the same parameter
a, can be transformed back into the original data from D1 using the one-sided
inverse g. In all our applications lingos will be used to transform the payload
of a message in some protocol P with data type D1 of payload data. D2 will
then be the data type of transformed payloads. Such transformed payloads can
then be sent, either as a single message or as a sequence of messages, to make
it hard for malicious attackers to interfere with the communication of honest
participants, who are the only ones knowing the current parameter a ∈ A. The
point of a lingo is that when such transformed messages are received by an
honest participant they can be transformed back using g (if they were broken
into several packets they should first be reassembled) to get the original payload
in D1.

Briefly, the set D1 can be thought of as analogous to the plaintext space,
the set D2 as analogous to the ciphertext space in cryptographic systems, and
the parameter set A (also known as the secret parameter set) as analogous to
the key space. The elements of A are generally required to be pseudorandomly
generated from a key shared by enclave members so it can’t be guessed in
advance, and it is also generally updated with each use, so information gleaned
from seeing one dialected message should not provide any help in breaking
another. However, it is not necessarily required that an attacker not be able to
guess a after seeing f(d1, a). The only requirement is that it is not feasible for
the attacker to compute f(d1, a) without having have been told that a is the
current input to f(d1, a). This is for two reasons. First the lingo is intended
to provide authentication, not secrecy. Secondly, the lingo is only intended
to be secure against an on-path attacker [2] that can eavesdrop on traffic but
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not interfere with it. Thus, if an enclave member sends a message f(d1, a) the
attacker, even if it learns a, can’t remove f(d1, a) from the channel and replace
it with f(d′1, a) where d′1 is a message of the attacker’s own choosing. It can
send f(d′1, a) after f(d1, a) is sent, but f(d

′
1, a) will not be accepted if the secret

parameter is changed each time the message is sent. The enforcement of the
policy on the updating of parameters is the job of the dialect, which will be
discussed in Section 5.

Definition 1 (Lingo) A lingo Λ is a 5-tuple Λ = (D1, D2, A, f, g), where D1,
D2 and A are sets called, respectively, the input, output and parameter sets,
f , g are functions f : D1 × A → D2, g : D2 × A → D1 such that2 ∀d1 ∈ D1,
∀a ∈ A, g(f(d1, a), a) = d1. We call a lingo non-trivial iff D1, D2 and A are
non-empty sets. In what follows, all lingos considered will be non-trivial.

Note that a lingo Λ = (D1, D2, A, f, g) is just a three-sorted (Σ, E)-algebra,
with sorts3 D1, D2 and A, function symbols f : D1×A → D2 and g : D2×A →
D1, and E the single Σ-equation g(f(d1, a), a) = d1.

This means that there is a natural notion of lingo homomorphism, namely, a
Σ-homomorphism. Given lingos Λ = (D1, D2, A, f, g) and Λ′ = (D′

1, D
′
2, A

′, f ′, g′),
a lingo homomorphism h : Λ → Λ′ is a triple of functions h = (h1, h2, h3) with
h1 : D1 → D′

1, h2 : D2 → D′
2 and h3 : A → A′, s.t. ∀d1 ∈ D1, ∀d2 ∈ D2,

∀a ∈ A,

h2(f(d1, a)) = f ′(h1(d1), h3(a)) and h1(g(d2, a)) = g′(h2(d2), h3(a)).

In Maude, an equational theory (Σ, E) can be specified as a functional theory.
Therefore, the above notion of lingo has the following natural specification in
Maude:

fth LINGO is

sorts D1 D2 A . op f : D1 A -> D2 . op g : D2 A -> D1 .

var d1 : D1 . var a : A . eq g(f(d1,a),a) = d1 .

endfth

Since lingos are a key component of dialects [2], there is some extra infor-
mation that a lingo must provide so a dialect can apply it. We easily extend
the above theory to one with: i) a function called param for computing the
corresponding value a ∈ A from natural numbers, and ii) ingress and egress
values denoting how many messages the lingo receives as input, and how many
messages does it provide as output.

fth PMLINGO is

protecting NAT .

2The equality g(f(d1, a), a) = d1 can be generalized to an equivalence g(f(d, a), a) ≡ d.
The generalization of lingos to allow for such message equivalence is left for future work.

3Note the slight abuse of notation: in Σ, D1, D2 and A are uninterpreted sort names,
whereas in a given lingo Λ′ = (D′

1, D
′
2, A

′, f ′, g′), such sorts are respectively interpreted as
sets D′

1, D′
2 and A′ and, likewise, the uninterpreted function symbols f and g in Σ are

interpreted as actual functions f ′ and g′ in a given lingo.

8



including LINGO .

op param : Nat -> A .

ops ingressArity egressArity : -> NzNat .

endfth

Note the asymmetry between f and g, in the lingo definition, since we do
not have an equation of the form ∀d2 ∈ D2, ∀a ∈ A, f(g(d2, a), a) = d2. The
reason for this asymmetry is that, given a ∈ A, the set {f(d1, a) | d1 ∈ D1}
may be a proper subset of D2. However, we show in Corollary 2 below that the
equation f(g(d2, a), a) = d2 does hold for any d2 ∈ {f(d1, a) | d1 ∈ D1}. Other
results and proofs are included in Appendix ??. Of course, for the special case
of a lingo such that ∀a ∈ A, D2 = {f(d1, a) | d1 ∈ D1}, the equation ∀d2 ∈ D2,
∀a ∈ A, f(g(d2, a), a) = d2 will indeed hold. In particular, the set equality
D2 = {f(d1, a) | d1 ∈ D1} holds for all a ∈ A in the following example.

Example 2 (The XOR{n} Lingo) Let Λxor{n} = ({0, 1}n, {0, 1}n, {0, 1}n,⊕,⊕),
with ⊕ : {0, 1}n × {0, 1}n → {0, 1}n the bitwise exclusive or operation.

Note that Λxor{n} is parametric on n ∈ N \ {0}. That is, for each choice of
n ≥ 1 we get a corresponding lingo. This is a common phenomenon: for many
lingos, D1, D2 and A are not fixed sets, but parametrised data types, so that
for each choice of their parameter we get a corresponding instance lingo.

We can specify in Maude the parametrised data type {0, 1}n parametric on
a non-zero bit-vector length n and its associated xor function. Since in Maude’s
built-in module NAT of (arbitrary precision) natural numbers there is a function
xor that, given numbers n,m, computes the number n xor m whose associated
bit-string is the bitwise exclusive or of n and m when represented as bit-strings,
we can define such a parametrised module as follows:

fth NzNATn is protecting NAT . op n : -> NzNat [pconst] . endfth

fmod BIT-VEC{N :: NzNATn} is protecting NAT .

sorts BitVec{N} BitStr{N} . subsort BitVec{N} < BitStr{N} .

op [_] : Nat -> BitStr{N} [ctor] . vars N M : Nat .

cmb [N] : BitVec{N} if N < (2 ^ N$n) .

op _xor_ : BitStr{N} BitStr{N} -> BitStr{N} [assoc comm] .

op _xor_ : BitVec{N} BitVec{N} -> BitVec{N} [assoc comm] .

eq [N] xor [M] = [N xor M] .

...

endfm

view 8 from NzNATn to NAT is op n to term 8 . endv

We can easily define its instantiation for bytes and evaluate some expressions.

fmod BYTE is

protecting BIT-VEC{8} * (sort BitVec{8} to Byte) .

endfm
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==========================================

reduce in BYTE : [3] xor [5] .

result Byte: [6]

==========================================

reduce in BYTE : [1000] xor [1] .

result BitStr{8}: [1001]

Note that, exploiting the bijective correspondence between the decimal notation
and the bit-string notation, the parametric subsort BitVec{N} of BitStr{N} is
defined as the bitvectors of dimension n by the conditional membership axiom
[i] : BitVec\{N\} if i < (2 ^ N$n). For convenience, when n = 8 we have
renamed the sort BitVec{8} to Byte.

Having defined BIT-VEC{N :: NzNATn}, we can now define the parametrised
lingo Λxor = ({0, 1}n, {0, 1}n, {0, 1}n,⊕,⊕) in Maude as follows:

fmod IDLINGO{L :: LINGO} is

op f’ : L$D1 L$A -> L$D2 . op g’ : L$D2 L$A -> L$D1 .

var d1 : L$D1 . var d2 : L$D2 . var a : L$A .

eq f’(d1,a) = f(d1,a) . eq g’(d2,a) = g(d2,a) .

endfm

view xorl{N :: NZNATn} from LINGO to BIT-VEC{N} is

sort D1 to BitVec{N} . sort D2 to BitVec{N} . sort A to BitVec{N} .

op f to _xor_ . op g to _xor_ .

endv

fmod XOR-L{N :: NZNATn} is protecting IDLINGO{xorl{N}} . endfm

As explained in Section 1, Lingos are transformations used by Dialects to
transform the messages from, and to, the underlying object. The parametrized
module IDLINGO is our approach, for illustration purposes, to show the execution
of a lingo’s f and g functions. For more information on Dialects and an example
we refer the reader to Section 5.

The meaning of the parametrized module IDLINGO{L :: LINGO} is that of
the identical lingo obtained by instantiating the theory LINGO with concrete
data types D1, D2 and A, and concrete functions f and g. Recall that such in-
stantiations are achieved in Maude by means of a view. The only notational dif-
ference is that we rename f and g by f’ and g’. We then instantiate the theory
LINGO to BIT-VEC{N} by means of a parametrized view xorl{N :: NZNATn}.
Our desired parametrized lingo Λxor = ({0, 1}n, {0, 1}n, {0, 1}n,⊕,⊕) is then
the parametrized module XOR-LINGO{N :: NZNATn}. We can then instantiate
it to bytes as follows:

fmod BYTE-LINGO is

protecting XOR-L{8} * (sort BitVec{8} to Byte) .

endfm

==========================================

reduce in BYTE-L : f’([3], [5]) .

result Byte: [6]

==========================================
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reduce in BYTE-L : g’([3], [5]) .

result Byte: [6]

Example 3 (XOR-BSEQ Lingo for Bit-sequences) Yet another variation
the same theme is to define the Λxor.BSeq lingo, whose elements are bit sequences
of arbitrary length. This can be easily done in Maude as follows:

view xor-seq-l from LINGO to NAT is

sort D1 to Nat . sort D2 to Nat . sort A to Nat .

op f to _xor_ . op g to _xor_ .

endv

And instantiate IDLINGO to evaluate some expressions.

fmod XOR-BSEQ-LINGO is

protecting IDLINGO{xorl-Nat} .

endfm

==========================================

reduce in XOR-BSEQ-LINGO : f’(3, 5) .

result NzNat: 6

==========================================

reduce in XOR-BSEQ-LINGO : g’(6, 5) .

result NzNat: 3

Note that BIT-VEC{N :: NZNATn} is not the only possible parametrised data
type on which a lingo based on the xor operation could be based. A different
parametrised data type can have as elements the finite subsets of a parametrised
data type of finite sets, whose elements belong to a parameter set D, and where
the xor operation is interpreted as the symmetric difference of two finite subsets
of D. A finite subset, say, {a, b, c} ⊆ D, with a, b, d ∈ D different elements, can
be represented as the expression a xor b xor c. Here is the parametrised module
defining such a parametric data type and its instantiation forD the set of quoted
identifiers (a built-in module QID in Maude with sort Qid).

fmod XOR-SET{D :: TRIV} is

sort Set . subsort D$Elt < Set .

op zero : -> Set . op _xor_ : Set Set -> Set [ctor assoc comm] .

var S : Set . eq S xor S = zero . eq zero xor S = S .

endfm

view Qid from TRIV to QID is sort Elt to Qid . endv

We can use both the functional module and the view to evaluate some ex-
pressions.

fmod XOR-QID is

protecting XOR-SET{Qid} .

endfm

==========================================

reduce in XOR-QID : (’a xor ’b xor ’c xor ’d) xor

11



(’c xor ’d xor ’e xor ’f) .

result Set: ’a xor ’b xor ’e xor ’f

==========================================

reduce in XOR-QID : ’b xor ’c xor ’b xor ’b xor ’d .

result Set: ’b xor ’c xor ’d

Note the isomorphism between vector and the finite set representations: If |D| =
n, then the power set ℘(D) with symmetric difference is isomorphic to the
function set [D → {0, 1}] with pointwise xor of predicates p, q ∈ [D → {0, 1}],
i.e., p xor q = λd ∈ D. p(d) xor q(d), which is itself isomorphic to {0, 1}n with
pointwise xor .

To obtain the corresponding parametrised xor lingo in its set representation
we proceed in a way entirely analogous to our Maude specification of Λxor{n}:

view xorlingo{D :: TRIV} from LINGO to XOR-SET{D} is

sort D1 to Set . sort D2 to Set . sort A to Set .

op f to _xor_ . op g to _xor_ .

endv

And instantiate IDLINGO to evaluate some expressions.

fmod LINGO-XOR{D :: TRIV} is

protecting IDLINGO{xorlingo{D}} .

endfm

fmod QID-LINGO is

protecting LINGO-XOR{Qid} .

endfm

==========================================

reduce in QID-LINGO :

f’(’a xor ’b xor ’c xor ’d, ’c xor ’d xor ’e xor ’f) .

result Set: ’a xor ’b xor ’e xor ’f

==========================================

reduce in QID-LINGO :

g’(’a xor ’b xor ’c xor ’d, ’c xor ’d xor ’e xor ’f) .

result Set: ’a xor ’b xor ’e xor ’f

Example 4 (Divide and Check (D&C) Lingo) ΛD&C = (N,N×N,N, f, g),
given ∀n, a, x, y ∈ N then:

• f(n, a) = (quot(n+ (a+ 2), a+ 2), rem(n+ (a+ 2), a+ 2))

• g((x, y), a) = (x · (a+ 2)) + y − (a+ 2)

where quot and rem denote the quotient and remainder functions on naturals.

The idea of the ΛD&C lingo is quite simple. Given a parameter a ∈ N, an
input number n is transformed into a pair of numbers (x, y): the quotient x
of n + a + 2 by a + 2 (this makes sure that a + 2 ≥ 2), and the remainder y
of n + a + 2 by a + 2. The meaning of “divide” is obvious. The meaning of
“check” reflects the fact that a receiver of a pair (x, y) who knows a can check

12



x = quot((x ·(a+2))+y, a+2)) and y = rem((x ·(a+2))+y, a+2)), giving some
assurance that the pair (x, y) was obtained from n = (x · (a+ 2)) + y − (a+ 2)
and has not been tampered with. This is an example of an f -checkable lingo
(see Section 3.2), whereas no such check is possible for any of the isomorphic
versions of the Λxor lingo (see again Section 3.2). The lingo ΛD&C can be
formally specified in Maude as follows:

fmod NAT-PAIR is protecting NAT .

sort NatPair .

op [_,_] : Nat Nat -> NatPair [ctor] . ops p1 p2 : NatPair -> Nat .

vars n m : Nat . eq p1([n,m]) = n . eq p2([n,m]) = m .

endfm

view D&C-ling from LINGO to NAT-PAIR is

sort D1 to Nat . sort D2 to NatPair . sort A to Nat .

var n : D1 . var P : D2 . var a : A .

op f(n,a) to term [(n+(a+2)) quo (a+2), (n+(a+2)) rem (a+2)] .

op g(P,a) to term sd(((p1(P) * (a+2)) + p2(P)), (a+2)) .

endv

We instantiate IDLINGO to evaluate some expressions.

fmod D&C-LINGO is

protecting IDLINGO{D&C-ling} .

endfm

==========================================

reduce in D&C-LINGO : f’(13, 3) .

result NatPair: [3, 3]

==========================================

reduce in D&C-LINGO : g’([3, 3], 3) .

result NzNat: 13

==========================================

reduce in D&C-LINGO : g’(f’(13, 3), 3) .

result NzNat: 13

3.1 Basic Properties of Lingos

This section proves several useful properties of lingos.

Lemma 1 Let Λ = (D1, D2, A, f, g) be a lingo. Then, ∀d1, d′1 ∈ D1, ∀a ∈ A
f(d1, a) = f(d′1, a) ⇒ d1 = d′1.

Proof: Applying g on both sides of the condition, by the definition of lingo we
get, d1 = g(f(d1, a), a) = g(f(d′1, a), a) = d′1. □

Lemma 2 Let Λ = (D1, D2, A, f, g) be a lingo. Then, ∀d1 ∈ D1, ∀d2 ∈ D2,
∀a ∈ A, d2 = f(d1, a) ⇒ d1 = g(d2, a).

Proof: Applying g to both sides of the condition, by the definition of lingo we
get, g(d2, a) = g(f(d1, a), a) = d1. □.
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Corollary 1 Let Λ = (D1, D2, A, f, g) be a lingo. Then, ∀d1 ∈ D1, ∀d2 ∈ D2,
∀a ∈ A, d2 = f(d1, a) ⇒ d2 = f(g(d2, a), a).

Proof: By Lemma 2, d1 = g(d2, a). Thus, d2 = f(d1, a) = f(g(d2, a), a). □

Corollary 2 Let Λ = (D1, D2, A, f, g) be a lingo. Then, ∀d2 ∈ D2, ∀a ∈ A,
((∃d1 ∈ D1, f(d1, a) = d2) ⇒ d2 = f(g(d2, a), a)).

Proof: By Lemma 2 we have, ∀d2 ∈ D2,∀a ∈ A, (∀d1 ∈ D1, d2 = f(d1, a) ⇒
d2 = f(g(d2, a), a)). which means ∀d2 ∈ D2,∀a ∈ A, (∀d1 ∈ D1, ¬(d2 =
f(d1, a))∨d2 = f(g(d2, a), a)) which by d1 not a free variable in d2 = f(g(d2, a), a)
is equivalent to ∀d2 ∈ D2,∀a ∈ A, ((∀d1 ∈ D1, ¬(d2 = f(d1, a))) ∨ d2 =
f(g(d2, a), a)) which by duality of quantifiers is equivalent to ∀d2 ∈ D2,∀a ∈
A, (¬(∃d1 ∈ D1, d2 = f(d1, a)) ∨ d2 = f(g(d2, a), a)) which means ∀d2 ∈
D2,∀a ∈ A, ((∃d1 ∈ D1, d2 = f(d1, a)) → d2 = f(g(d2, a), a)) as desired.
□

Corollary 3 below shows that users of a lingo can check if a received payload
d2 ∈ D2 is of the form d2 = f(d1, a) for some d1 ∈ D1 and a ∈ A the current
parameter, i.e., if it was generated from some actual d1 ∈ D1 as d2 = f(d1, a).
We call a d2 ∈ D2 such that d2 = f(d1, a) for some d1 ∈ D1 compliant with
parameter a ∈ A. As shown in Corollary 3 compliance with a can be checked
by checking the equality f(g(d2, a), a) = d2 for any given d2 ∈ D2 and a ∈ A.

Corollary 3 Let Λ = (D1, D2, A, f, g) be a lingo. Then, ∀d2 ∈ D2, ∀a ∈ A,
∃d1, (f(d1, a) = d2) ⇔ d2 = f(g(d2, a), a).

Proof: The (⇒) implication follows from Corollary 2. The (⇐) implication
follows by choosing d1 = g(d2, a). □

3.2 f-Checkable Lingos

In this section, we discuss lingos where validity of its generated payloads can
be checked by the dialect. We develop a lingo transformation that substantially
reduces the probability an attacker successfully forging a message.

Definition 2 (f-Checkable Lingo) A Lingo Λ = (D1, D2, A, f, g) is called f -
checkable iff ∀a ∈ A ∃d2 ∈ D2 s.t. ̸ ∃ d1 ∈ D1 s.t. d2 = f(d1, a). The ’f ’ in f -
Checkable Lingo is an uninterpreted function symbol, but once an interpretation
is given (i.e., through a view), f becomes interpreted as the function specified by
the interpretation.

As just explained above, Λxor is not f -checkable. More generally, call a lingo
Λ = (D1, D2, A, f, g) symmetric iff (D2, D1, A, g, f) is also a lingo. Obviously,
Λxor is symmetric. Any symmetric lingo is not f -checkable, since any d2 ∈ D2

satisfies the equation f(g(d2, a), a) = d2.
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Example 5 ΛD&C is f -checkable. Indeed, for each a ∈ N, any (x, y) with
y ≥ a + 2 cannot be of the form (x, y) = f(n, a) for any n ∈ N. This is a
cheap, easy check. The actual check that a d1 exists, namely, the check (x, y) =
f(g((x, y), a), a) provided by Corollary 3, was already explained when making
explicit the meaning of ”C” in ΛD&C .

Theorem 1 Let Λ = (D1, D2, A, f, g) be a lingo, where we assume that D1,
D2 and A are computable data-types and |D1| ≥ 2 Then, Λ♯ = (D1, D2

2, A ⊗
A, f ♯, g♯) is an f -checkable lingo, where:

• A⊗A = A×A \ idA, with idA = {(a, a) ∈ A2|a ∈ A}

• f ♯(d1, (a, a
′)) = (f(d1, a), f(d1, a

′))

• g♯((d2, d
′
2), (a, a

′)) = g(d2, a)

Proof: We first prove that Λ♯ = (D1, D2
2, A ⊗ A, f ♯, g♯, comp♯) satisfies the

lingo equation g(f(d1, a), a) = d1. Indeed,

g♯(f ♯(d1, (a, a
′)), (a, a′)) = g♯((f(d1, a), f(d1, a

′)), (a, a′)) = g((f(d1, a), a) = d1

as desired.

To prove that, in addition, Λ♯ = (D1, D2
2, A ⊗ A, f ♯, g♯) is an f -checkable

lingo, note that, since |D1| ≥ 2, for each (a, a′) ∈ A ⊗ A we can choose

d♯2 = (f(d1, a), f(d
′
1, a

′)) with d1 ̸= d′1. Then, there is no d′′1 ∈ D1 such that d♯2 =
f ♯(d′′1 , (a, a

′)), since this would force (f(d′′1 , a), f(d
′′
1 , a

′)) = (f(d1, a), f(d
′
1, a

′)),
which by Lemma 1 would force d′′1 = d1 = d′1, which is impossible. □
The lingo transformation Λ 7→ Λ♯ has a simple specification in Maude as the
following parametrised module (note that A⊗A is here denoted by APair#):

fmod LINGO#{L :: PMLINGO} is protecting INITIAL-EQUALITY-PREDICATE .

sorts APair# APair D2Pair . subsort APair# < APair .

op a[_,_] : L$A L$A -> APair [ctor] .

op d2[_,_] : L$D2 L$D2 -> D2Pair [ctor] .

vars a a’ : L$A . var d1 : L$D1 . vars d2 d2’ : L$D2 .

cmb a[a,a’] : APair# if a .=. a’ = false .

op f# : L$D1 APair# -> D2Pair .

eq f#(d1,a[a,a’]) = < f(d1,a),f(d1,a’) > .

op g# : D2Pair APair# -> L$D1 .

eq g#(d2[d2,d2’],a[a,a’]) = g(d2,a) .

...

endfm

Example 6 (f-checkable transformed version of Λxor{n}) The lingo trans-
formation Λ 7→ Λ♯ maps Λxor{n} in Example 2 to the f -checkable lingo Λ♯

xor{n} =
({0, 1}n, {0, 1}n × {0, 1}n, {0, 1}n ⊗ {0, 1}n,⊕♯,⊕♯).
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The lingo Λ♯
xor{n} and it instance for bytes Λ♯

xor{8} are both obtained by in-
stantiating the parametrised module LINGO#{L :: PMLINGO} as follows:

fmod XOR-LINGO#{N :: NzNATn} is protecting LINGO#{xorpml{N}} . endfm

fmod BYTE-LINGO# is

protecting XOR-LINGO#{8} * (sort BitVec{8} to Byte) .

endfm

And evaluate some expressions.

reduce in BYTE-LINGO# : f#([3], [[5], [7]]) .

result D2Pair: d2[[6], [4]]

==========================================

reduce in BYTE-LINGO# :

g#(f#([3], [[5], [7]]), [[5], [7]]) .

result Byte: [3]

Suppose the probability of an attacker’s successfully forging a message in the
original lingo is PF . The probability of the attacker passing the f -checkability
test in the transformed lingo is 1/2n. Thus the probability of the attacker’s
successfully forging a message is the transformed lingo is PF /2

n.

3.3 Malleable Lingos

A cryptographic function is called malleable if an intruder, without knowing the
secret key, can use an existing encrypted message to generate another message
also encrypted with the same secret key. In a similar way, if a lingo Λ is what
below we call malleable, an intruder can disrupt the communication between an
honest sender Alice and an honest receiver Bob in a protocol P whose messages
are modified by means of a lingo Λ4 by producing a message compliant with a
secret parameter a ∈ A of Λ supposedly sent from Alice to Bob (who share the
secret parameter a), but actually sent by the intruder.

To see how malleability can become an issue for lingos, consider a variant of
the xor lingo in which the same random bit-string is applied to two messages
instead of one. Thus the attacker will see d1 ⊕ a, then d′1 ⊕ a. Although the
attacker may be able to find a after seeing both messages, it will not be able
to replace either one with a d′′1 ⊕ a of its own choosing, since it can’t interfere
with messages in flight. But suppose that it has a good idea that the first
byte of the first message will be y. After it has seen d1 ⊕ a, it can then send
y; 0n⊕ z; 0n⊕d1⊕a, thus sending a message identical to d1 except that its first
byte is z. Note that the attacker can do this without knowing a. Thus it is
not the fact that a may derivable from the two messages that causes a security
vulnerability, but the fact that exclusive-or is malleable. Here is the definition.

4I.e., honest participants that use a dialect DΛ(P) based on P and Λ to modify their
messages (see §5).
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Definition 3 (Malleable Lingo) Let Λ = (D1, D2, A, f, g) be a lingo which
has been formally specified as a functional module in Maude by an equational
theory (ΣΛ, EΛ) enjoying the required executability conditions, so that its data
types and functions are all computable. Λ is called malleable iff there exists a
ΣΛ-term t(x, y) of sort D2 with free variables x, y of respective sorts D2 and A
and a computable function r : A → A such that ∀d1 ∈ D1, ∀a, a′ ∈ A,

1. f(d1, a) ̸= t(f(d1, a), r(a
′)), where, by convention, t(f(d1, a), r(a

′)) abbre-
viates the substitution instance t{x 7→ f(d1, a), y 7→ r(a′)}

2. ∃d′1 ∈ D1 such that t(f(d1, a), r(a
′)) = f(d′1, a).

Note that, by (2) and the fact that Λ is a lingo, d′1 = g(t(f(d1, a), r(a
′)), a).

That is, if a ∈ A is the current secret parameter that an honest sender Alice is
using to send d1 (modified as f(d1, a)) to honest receiver Bob, t(x, y) is a recipe
that an intruder can use to replace f(d1, a) by t(f(d1, a), r(a

′)) to generate a
message compliant with the secret parameter a currently used by Bob to accept
a message modified by Alice by means of the secret parameter a. In this way the
intruder can spoof Bob into believing that t(f(d1, a), r(a

′)) came fromAlice. The
function r ensures that the randomly chosen parameter r(a′) meets condition
(1), since otherwise there would be no spoofing. Let us see two examples of
malleable lingos.

Example 7 The lingo Λxor{n} from Example 2 is malleable. The recipe t(x, y)
is x⊕ y and r⊕ is the function r⊕ = λy ∈ {0, 1}n. if y .= . 0⃗ then 1⃗ else y fi ∈
{0, 1}n, where . = . denotes the equality predicate on bitvectors. Therefore,
t(f(d1, a), r(a

′)) = d1 ⊕ a ⊕ r(a′), which meets condition (1) because r(a′) ̸= 0⃗
and obviously meets condition (2), since t(f(d1, a), r(a

′)) = f(d1 ⊕ r(a′), a).

An f -checkable lingo provides a first line of defense against an intruder trying to
generate a payload compliant with a secret parameter a. However, the example
below shows that an f -checkable lingo can be malleable.

Example 8 The lingo Λ♯
xor{n} from Example 6 with n ≥ 2 is comp-malleable

with recipe5 t(x, y) = (p1(x)⊕ p1(y), p2(x)⊕ p1(y)) and function r defined by:

λy ∈ {0, 1}n ⊗ {0, 1}n. if ¬(p1(y). = .⃗0) then y else

if ¬(p2(y) .= . 1⃗) then (⃗1, p2(y)) else (0 1⃗n−1, p2(y)) fi

fi ∈ {0, 1}n ⊗ {0, 1}n,
where 0 1⃗n−1 denotes the n-bitvector starting with 0 and continued with n −
1 1’s. Note that the key property of r(y) is that p1(r(y)) ̸= 0⃗. Therefore,
t(f ♯(d1, (a, a

′)), r((a′′, a′′′))) = (d1⊕a⊕p1(r((a
′′, a′′′))), d1⊕a′⊕p1(r((a

′′, a′′′))))
is in fact f ♯(d1⊕p1(r((a

′′, a′′′))), (a, a′)), which is different from f ♯(d1, (a, a
′)) =

(d1 ⊕ a, d1 ⊕ a′), thus meeting conditions (1) and (2).

5We assume without loss of generality that Σ
Λ
♯
xor

contains projection functions p1, p2 :

D2 D2 → D2 and p1, p2 : A A → A equationally specified by the usual projection equations.

17



Examples 7–8 suggest the following generalization:

Theorem 2 Let Λ = (D1, D2, A, f, g) be a lingo where all data types and all
functions are computable, and such that for all d1 ∈ D1, a, a′, a′′ ∈ A, (i)
f(d1, a) ∈ D1, (ii) there is a computable subset A0 ⊆ A with at least two
different elements a0, a1 and such that a′′ ∈ A0 ⇒ f(d1, a

′′) ̸= d1, and (iii)
f(f(d1, a), a

′) = f(f(d1, a
′), a). Then both Λ and Λ♯ are malleable.

Proof: To see that Λ is malleable, define r = λa ∈ A. if a ∈ A0 then a else a0 fi.
Then, recipe f(x, y) works, since by (ii), we have f(f(d1, a), r(a

′)) ̸= f(d1, a),
and both f(f(d1, a), r(a

′)) and f(f(d1, r(a
′)), a), a) are compliant with a.

To see that Λ♯ is malleable define r as the function:

r = λy ∈ A⊗A. if p1(y) ∈ A0 then y else

if p2(y) .= . a0 then (a1, p2(y)) else (a0, p2(y)) fi

fi ∈ A⊗A.

r’s key property is of course that ∀y ∈ A ⊗ A, p1(r(y)) ∈ A0. Then, recipe
t(x, y) = [f(p1(x), p1(y)), f(p2(x), p1(y))] works because

t(f ♯(d1, (a, a
′)), r((a′′, a′′′))) =

[f(f(d1, a), p1(r((a
′′, a′′′)))), f(f(d1, a

′), p1(r((a
′′, a′′′))))] =

[f(f(d1, p1(r((a
′′, a′′′)))), a), f(f(d1, p1(r((a

′′, a′′′))), a′)]

so that, by the definition of r and (ii) we have,

t(f ♯(d1, (a, a
′)), r((a′′, a′′′))) ̸= f ♯(d1, (a, a

′), r((a′′, a′′′)))

and we of course have (f(f(d1, p1(r((a
′′, a′′′)))), a),

f(f(d1, p1(r((a
′′, a′′′)))), a′)) compliant with (a, a′), as desired. □

Being malleable is an undesirable property. One would like to transform a
possibly malleable lingo Λ into a non-malleable lingo Λ′. Developing general
methods for proving that a lingo is non-malleable is a topic for future research.
However, in Section 4.5 we discuss several methods that we conjecture could
support lingo transformations Λ 7→ Λ′ yielding non-malleable lingos Λ′.

3.4 Authenticating Lingos

Here we extend our threat model to one in which it is possible that some enclave
members are dishonest and may try to impersonate other enclave members. In
this case we assume each pair of principals that communicate with each other
shares a unique secret. (When a client-server architecture is used, this means
that the number of secrets is only equal to the number of clients.) We show
how a lingo whose secret parameter a is updated every time it is used can be
turned into a lightweight authenticating lingo below.
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The key idea about an authenticating lingo is that, if Bob receives a trans-
formed payload f(d1, a) supposedly from Alice, he has a way to check that it was
sent by Alice because he can extract from f(d1, a) some data that was produced
using secret information that only Alice and Bob share. In this case it will be
the result of computing a one-way hash function hash over their identities and
their current shared parameter a. To make this possible, we need to make ex-
plicit two data types involved in the communication. First, honest participants
in the communication protocol using lingo Λ typically have corresponding object
identifiers that uniquely identify such participants and belong to a finite data
type Oid . Second, the result of computing the hash belongs to another finite
data type H. Here is the definition:

Definition 4 An authenticating lingo is a tuple ((D1, D2, A, f, g),Oid , H, param,
hash, code)such that:

1. (D1, D2, A, f, g) is a lingo;

2. Oid and H are finite data types of, respectively, object identifiers and
outputs of hash.

3. param is a function param : N×Oid ⊗Oid → A;

4. hash is a function hash : N×Oid ⊗Oid → H;6 and

5. code is a function code : D2 ×A → H

such that ∀d1 ∈ D1, ∀n ∈ N, ∀(A,B) ∈ Oid ⊗Oid,

code(f(d1, param(n, (A,B))), param(n, (A,B))) = hash(n, (A,B)).

Let us illustrate this notion by means of a transformation Λ 7→ Λα that generates
an authenticating lingo Λα from a lingo Λ. For concreteness, assume that Λ is
of the form Λ = (N<2n ,N<2m , A0, f0, g0) with A0 a finite set, and that there
is a function param0 : N≤2k → A0 assigning to each random number n ∈
N<2k a corresponding parameter in A0. This reflects the fact that, in practice,
two honest participants will share a common parameter a0 ∈ A0 by sharing a
common secret random number n and using param0 to generate a0. Assuming
a finite data type Oid of honest participants, choose a function hash : N<2k ×
Oid ⊗ Oid → N<2j , with j and k big enough for hash to be computationally
infeasible to invert. Choose a function ι : N<2k → Invo(m + j) mapping each
random number n to an involution7 permutation σ on m + j elements. By
abuse of notation, if b⃗ = b1, . . . , bm+j is a bit sequence of length m + j, we let
σ(b1, . . . , bt) = bσ(1), . . . , bσ(m+j).

Then define Λα as follows: Λα = ((N<2n ,N<2m+j , A0 × Invo(m + j) ×
N<2j , f, g),
Oid ,N<2j , param, hash, code) where:

6hash should have good properties as a hash function. This seems impossible, since H is
finite but N is not. But this problem is only apparent. In practice the values n ∈ N used as
first arguments of hash (and also as first arguments of param) will be random numbers n such
that n ∈ N<2k for some fixed k.

7An involution is a permutation σ such that σ is its own inverse permutation, i.e., σ = σ−1.
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1. f(d1, (a0, σ, d)) = σ(f0(d1, a0); d), where we view f0(d1, a0) and d as bit
vectors of respective lengths m and j, f0(d1, a0); d denotes their concate-
nation as bit sequences.

2. g(⃗b, (a0, σ, d)) = g0(p1(σ(⃗b)), a0), where by abuse of notation identify b⃗
with a number smaller than 2m+j , and where p1 (resp. p2) projects an
m+ j bitvector to its first m bits (resp. its last j bits).

3. param : N<2k × Oid ⊗ Oid → A0 × Invo(m + j) × N<2j is the function
λ(n, (A,B)). (param0(n), ι(n), hash(n, (A,B))).

4. code (⃗b, (a0, σ, d)) = p2(σ(⃗b)).

The reader can check that Λα is an authenticating lingo.

4 Lingo Compositions

Lingos can be composed in various ways to obtain new lingos. Lingo composi-
tions provide modular, automated methods of obtaining new lingos from existing
ones. Such compositions are often stronger, i.e., harder to compromise by an
attacker, than the lingos so composed. We define four such lingo composition
operations, namely, horizontal and functional composition of lingos, products of
lingos, and tuplings of lingos. We also explain how a lingo’s input and output
data types can be modified by means of data-adaptors.

4.1 Horizontal Composition of Lingos

Given a finite family of lingos Λ⃗ = {Λi}1≤i≤k, k ≥ 2, all sharing the same input

data type D1, their horizontal composition, denoted
⊕

Λ⃗ is intuitively their

union, i.e., in
⊕

Λ⃗ the input data type D1 remains the same, D2 is the union

of the D2.i, 1 ≤ i ≤ k, and A is the disjoint union of the Ai, 1 ≤ i ≤ k.
⊕

Λ⃗
is a more complex lingo that each of its component lingos Λi, making it harder
to compromise by an attacker, because it becomes a hydra with k heads: quite
unpredictably, sometimes behaves like some Λi and sometimes like another Λj .
Furthermore, it has a bigger parameter space, since |A| = Σ1≤i≤k|Ai|.

Definition 5 (Horizontal Composition) Let Λ⃗ be a finite family of lingos

Λ⃗ = {Λi}1≤i≤k, k ≥ 2, all having the same input data type D1, i.e., Λi =

(D1, D2.i, Ai, fi, gi), 1 ≤ i ≤ k. Let d⃗0 = (d0.1, . . . , d0.k) be a choice of default
D2.i-values, d0.i ∈ D2.i, 1 ≤ i ≤ k. Then, the horizontal composition of the
lingos Λ⃗ with default D2.i-values d⃗0 is the lingo:⊕

d⃗0

Λ⃗ = (D1,
⋃

1≤i≤k

D2.i,
⋃

1≤i≤k

Ai × {i},⊕f⃗ ,⊕g⃗)

where, for each d1 ∈ D1, d2 ∈
⋃

1≤i≤k D2.i, and ai ∈ Ai, 1 ≤ i ≤ k,
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1. ⊕f⃗ = λ(d1, (ai, i)).fi(d1, ai),

2. ⊕g⃗ = λ(d2, (ai, i)). if d2 ∈ D2.i then gi(di, ai) else
gi(d0.i, ai).⊕

d⃗0
Λ⃗ is indeed a lingo: ⊕g⃗(⊕f⃗(d1, (ai, i)), (ai, i)) = gi(fi(d1, ai), ai) = d1.

We have already pointed out that, in practice, two protocol participants using a
lingo to first modify and then decode a payload d1 that, say, Alice sends to Bob,
agree on a secret parameter a ∈ A by agreeing on a secret random number n,
because both use a function param : N → A to get a = param(n). This then poses
the practical problem of synthesizing a function ⊕ ⃗param : N →

⋃
1≤i≤k Ai ×{i}

for
⊕

d⃗0
Λ⃗ out of the family a functions {parami : N → Ai}1≤i≤k used in each of

the lingos Λi. Furthermore, different lingos in the family Λ⃗ may have different
degrees of strength against an adversary. This suggest favouring the choice of
stronger lingos over that of weaker lingos in the family Λ⃗ to achieve a function
⊕ ⃗param that improves the overall strength of

⊕
d⃗0

Λ⃗. This can be achieved by

choosing a bias vector β⃗ = (β1, . . . , βk) ∈ Nk
>0, so that, say, if lingo Λi is

deemed to be stronger than lingo Λj, then the user chooses βi > βj. That

is, β⃗ specifies a biased dice with k ≥ 2 faces, so that the dice will show face
j with probability

βj

Σ1≤i≤kβi
. Therefore, we can use a pseudo-random function

throw β⃗ : N → {1, . . . , k} simulating a sequence of throws of a k-face dice with

bias β⃗ to get our desired function ⊕ ⃗param as the function:

⊕ ⃗param(n) = (paramthrow
β⃗
(n)(n), throw β⃗(n)).

Example 9 To see how horizontal composition can strengthen lingos, consider
the D&C lingo described in Example 4, in which f(n, a) = (x, y) where x =
quot(n + (a + 2), a + 2) and y = rem(n + (a + 2), a + 2). We note that any
choice of 0 ≤ y < a + 2 will pass the f -check, so the choice of y = 0 or 1 will
always pass the f -check. To counter this, let reverse D&C be the lingo with
f(n, a) = (y, x), where y and x are computed as in D&C. The attacker’s best
strategy in reverse D&C is the opposite of that in D&C. Thus composing D&C
and reverse D&C horizontally with a bias vector (.5, .5) means that the attacker
strategy of choosing the first (respectively, second) element of the output to be 0
succeeds with probability 0.5 in any particular instance, as opposed to probability
1 for D&C by itself.

The following result is immediate.

Lemma 3 If each Λi in Λ⃗ = {Λi}1≤i≤k, k ≥ 2, is f -checkable, then
⊕

d⃗0
Λ⃗ is

also f -checkable.

The horizontal composition of k lingos sharing a common input data type can
be specified in Maude as a functional module parametrised by the k-LINGO
parameter theory. We illustrate here the construction for k = 2, where 2-LINGO
is abbreviated to DILINGO. Likewise for k = 3, where 3-LINGO is abbreviated to
TRILINGO.
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fth DILINGO is

sorts D1 D21 D22 A1 A2 .

op f1 : D1 A1 -> D21 . op f2 : D1 A2 -> D22 .

op g1 : D21 A1 -> D1 . op g2 : D22 A2 -> D1 .

op d0.1 : -> D21 . op d0.2 : -> D22 .

var a1 : A1 . var a2 : A2 . var d1 : D1 .

eq g1(f1(d1, a1), a1) = d1 .

eq g2(f2(d1, a2), a2) = d1 .

endfth

fmod HOR-COMP{DL :: DILINGO} is

sorts A D2 . subsorts DL$D21 DL$D22 < D2 .

op [_]1 : DL$A1 -> A [ctor] . op [_]2 : DL$A2 -> A [ctor] .

op +f : DL$D1 A -> D2 . op +g : D2 A -> DL$D1 .

var d1 : DL$D1 . var a1 : DL$A1 . var a2 : DL$A2 .

var d21 : DL$D21 . var d22 : DL$D22 . var d2 : D2 .

eq +f(d1,[a1]1) = f1(d1,a1) . eq +f(d1,[a2]2) = f2(d1,a2) .

eq +g(d21,[a1]1) = g1(d21,a1) . eq +g(d22,[a2]2) = g2(d22,a2) .

ceq +g(d2,[a1]1) = g1(d0.1,a1) if d2 :: DL$D21 = false .

ceq +g(d2,[a2]2) = g2(d0.2,a2) if d2 :: DL$D22 = false .

endfm

Example 10 (Horizontal composition of XOR-BSeq and D&C Lingos)
The lingos Λxor.BSeq of Example 3 and ΛD&C of Example 4 share the same D1,
namely, N. They do therefore have a horizontal composition Λxor.BSeq⊕d⃗0

ΛD&C

for any choice of d⃗0. We leave as an exercise for the reader to define an appropri-
ate view v from the theory DLINGO to NAT-PAIR in Maude, so that the horizontal
composition Λxor.BSeq ⊕d⃗0

ΛD&C is just the instantiation HOR-COMP{v}.

4.2 Functional Composition of Lingos

Given two lingos Λ and Λ′ such that the output data type D2 of Λ coincides
with the input data type of Λ′, it is possible to define a new lingo Λ⊙Λ′ whose
f and g functions are naturally the compositions of f and f ′ (resp. g and g′)
in a suitable way. Λ ⊙ Λ′ is clearly more complex and harder to compromise
than either Λ or Λ′. In particular, its parameter space is A×A with cardinality
|A| × |A′|; a much bigger set whose secret parameters (a, a′) are considerably
harder to guess than either a or a′.

Definition 6 (Functional Composition) Given lingos Λ = (D1, D2, A, f, g)
and Λ′ = (D2, D3, A

′, f ′, g′), their functional composition is the lingo Λ⊙Λ′ =
(D1, D3, A × A′, f · f ′, g ∗ g′), where for each d1 ∈ D1, d3 ∈ D3, and (a, a′) ∈
A×A′,

• f · f ′(d1, (a, a
′)) =def f ′(f(d1, a), a

′),
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• g ∗ g′(d3, (a, a′)) =def g(g′(d3, a
′), a).

(D1, D3, A×A′, f · f ′, g ∗ g′) is indeed a lingo, since we have:

g ∗ g′(f · f ′(d1, (a, a
′)), (a, a′)) = g(g′(f ′(f(d1, a), a

′), a′), a)

= g(f(d1, a), a) = d1.

The functional composition transformation (Λ,Λ′) 7→ Λ ⊙ Λ′ can be formally
specified in Maude with a parametrised module, parametric on the theory
COMP-LINGOS of (functionally) composable lingos.

fth COMP-LINGOS is

sorts D1 D2 D3 A A’.

op f : D1 A -> D2 . op f’ : D2 A’ -> D3 .

op g : D2 A -> D1 . op g’ : D3 A’ -> D2 .

var d1 : D1 . var d2 : D2 . var a : A . var a’ : A’ .

eq g(f(d1,a),a) = d1 . eq g’(f’(d2,a’)) = d2 .

op param : Nat -> A . op param’ : Nat -> A’ .

endfth

fmod FUN-COMP{CL :: COMP-LINGOS} is

sort pairA . op a[_,_] : CL$A CL$A’ -> pairA [ctor] .

var d1 : D1 . var d3 : D3 . var a : A . var a’ : A’ . var n : Nat .

op f.f’ : D1 pairA -> D3 . eq f.f’(d1,a[a,a’]) = f’(f(d1,a),a’) .

op g*g’ : D3 pairA -> D1 . eq g*g’(d3,a[a,a’]) = g(g’(d3,a’),a) .

op param.param’ : Nat -> pairA .

eq param.param’(n) = a[param(n),param’(n)] .

endfm

Example 11 (Functional composition of XOR-BSeq and D&C Lingos)
The lingos Λxor.BSeq of Example 3 and ΛD&C of Example 4 are functionally com-
posable as Λxor.BSeq ⊙ΛD&C , because N is both the output data type of Λxor.BSeq

and the input data type of ΛD&C . It is possible to define an appropriate view
w from the theory COMP-LINGOS to NAT-PAIR in Maude, so that the functional
composition Λxor.BSeq⊙ΛD&C is just the instantiation FUN-COMP{w}. Note that,
by Lemma 4 below, and Theorem 1, Λxor.BSeq ⊙ ΛD&C is f checkable, in spite
of Λxor.BSeq not being so.

Lemma 4 Given lingos Λ = (D1, D2, A, f, g) and Λ′ = (D2, D3, A
′, f ′, g′), if

Λ′ if f -checkable, then the functional composition Λ⊙ Λ′ is also f -checkable.

Proof: We need to show that for each (a, a′) ∈ A×A′ there exists d3 ∈ D3 such
that ∄d1 ∈ D1 such that d3 = f ′(f(d1, a), a

′). But, by assumption, there exists
a d3 ∈ D3 such that ∄d2 ∈ D2 such that d3 = f ′(d2, a

′). This fact applies, in
particular, to d2 = f(d1, a). □
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4.3 Modifying and Composing Lingos by means of Data
Adaptors

Two lingos Λ = (D1, D2, A, f, g) and Λ′ = (D′
2, D3, A

′, f ′, g′) will not be compos-
able via functional composition if D2 ̸= D′

2. However, they may be functionally
composable by using a data adaptor that “connects” the data types D2 and
D′

2 (i.e makes them equal). The most obvious case is when D2 and D′
2 are in

bijective correspondence, i.e., when, as data types, they are identical up to a
change of data representation. For example, D2 may be a binary representation
of naturals and D′

2 a decimal representation of naturals. This can be general-
ized to the case when D2 is in bijective correspondence with a subset of D′

2 by
means of a section-retract pair (j, r) of functions j : D2 → D′

2 and r : D′
2 → D2

such that ∀d2 ∈ D2, r(j(d2)) = d2. A section-retract pair (j, r) will be denoted
(j, r) : D2 ⇄ D′

2. Note that this forces j to be injective and r surjective, and
therefore defines a bijective correspondence between j(D2) and D′

2. Note also
that (j, r) and (r, j) are both section-retract pairs iff j : D2 → D′

2 is bijective
with inverse bijection j−1 = r. Therefore, section-retract pairs generalize bijec-
tive correspondences. We will treat the general section-retract pair case, leaving
the bijective special case to the reader. Furthermore, in what follows we will
call a section-retract pair (j, r) : D2 ⇄ D′

2 a data adaptor.
The first key observation is that, given a lingo Λ = (D1, D2, A, f, g) we

can obtain another lingo by either adapting D1 by means of a data adaptor
(j, r) : D′

1 ⇄ D1, or adapting D2 by means of a data adaptor (j′, r′) : D2 ⇄ D′
2.

Definition 7 Given a lingo Λ = (D1, D2, A, f, g) and data adaptors (j, r) :
D′

1 ⇄ D1 and (j′, r′) : D2 ⇄ D′
2, we define (j, r); Λ and Λ; (j′, r′) as follows:

• (j, r); Λ = (D′
1, D2, A, f̂ , ĝ), s.t. ∀d′1 ∈ D′

1, ∀d2 ∈ D2, ∀a ∈ A, f̂(d′1, a) =
f(j(d′1), a) and ĝ(d2, a) = r(g(d2, a))

• Λ; (j′, r′) = (D1, D
′
2, A, f̃ , g̃), s.t. ∀d1 ∈ D′

1, ∀d′2 ∈ D′
2, ∀a ∈ A, f̃(d1, a) =

j′(f(d1, a)) and g̃(d′2, a) = g(r′(d′2), a)

Theorem 3 (j, r); Λ and Λ; (j′, r′) from Definition 7 are both lingos.

Proof: (j, r); Λ = (D′
1, D2, A, f̂ , ĝ) is a lingo because,

ĝ(f̂(d′1, a), a) = r(g(f(j(d′1), a), a)) = r(j(d′1)) = d′1

Likewise, Λ; (j′, r′) = (D1, D
′
2, A, f̃ , g̃) is a lingo because,

g̃(f̃(d1, a), a) = g(r′(j′(f(d1, a)), a)) = g(f(d1, a), a) = d1

□

Theorem 4 For (j, r); Λ and Λ; (j′, r′) from Definition 7 the following equality
of lingos holds:

((j, r); Λ); (j′, r′) = (j, r); (Λ; (j′, r′))
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Proof: Let use denote ((j, r); Λ); (j′, r′) = (D′
1, D

′
2, A, f1, g1) and (j, r); (Λ; (j′, r′)) =

(D′
1, D

′
2, A, f2, g2). We need to show that f1 = f2 and g1 = g2. Indeed, for all

d′1 ∈ D′
1, d2 ∈ D′

2 and a ∈ A we have:

f1(d
′
1, a) = j′(f̂(d′1, a)) = j′(f(j(d′1), a)) = f̃(j(d′1), a) = f2(d

′
1, a)

g1(d
′
2, a) = ĝ(r′(d′2, a)) = r(g(r′(d′2, a))) = r(g̃(d′2, a)) = g2(d

′
2, a)

□
The following result shows how data adaptors can enable functional compo-

sitions of lingos that could not be so composed otherwise.

Theorem 5 Let Λ = (D1, D2, A, f, g) and Λ′ = (D′
2, D3, A

′, f ′, g′) be lingos,
(j, r) : D2 ⇄ D′

2 a data adaptor, and all the above-mentioned data types and
functions computable. Then, the following two functional compositions of lingos
are identical:

(Λ; (j, r))⊙ Λ′ = Λ⊙ ((j, r); Λ′)

Proof: Let (Λ; (j, r)) ⊙ Λ′ = (D1, D3, A × A′, f1, g1), and Λ ⊙ ((j, r); Λ′) =
(D1, D3, A×A′, f2, g1). We need to show that f1 = f2 and g1 = g2. Indeed, for
all d1 ∈ D1, d3 ∈ D3 and (a, a′) ∈ A×A′ we have:

f1(d1, (a, a
′)) = f ′(f̃(d1, a), a

′) = f ′(j(f(d1, a)), a
′)

= f̂ ′(f(d1, a), a
′) = f2(d1, (a, a

′)),

g1(d3, (a, a
′)) = g̃(g′(d3, a

′), a) = g(r(g′(d3, a
′)), a)

= g(ĝ′(d3, a
′), a) = g2(d3, (a, a

′)).

□

4.4 Cartesian Products and Tupling of Lingos

Recall that a lingo is just a (non-trivial) 3-sorted (Σ, E)-algebra. By Birkhoff’s
Variety Theorem, (Σ, E)-algebras are closed under Cartesian products. Since
products of non-trivial (Σ, E)-algebras are non-trivial, this means that lingos
are closed under Cartesian products. The simplest case is that of a binary
Cartesian product. Given any two lingos Λ = (D1, D2, A, f, g) and Λ′ =
(D′

1, D
′
2, A

′, f ′, g′), its Cartesian product Λ × Λ′ is the lingo, Λ × Λ′ = (D1 ×
D′

1, D2 ×D′
2, A×A′, f × f ′, g × g′) where, by definition,

f × f ′ = λ((d1, d
′
1), (a.a

′)). (f(d1, a), f
′(d′1, a

′)), and

g × g′ = λ((d2, d
′
2), (a.a

′)). (g(d2, a), g
′(d′2, a

′)).

This generalizes in a straightforward way to the product of k lingos, k ≥ 2, i.e.,
Given a family of k lingos {Λi = (D1.i, D2.i, Ai, fi, gi)}1≤i≤k, their Cartesian
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product Λ1 × . . .×Λk is the lingo: Λ1 × . . .×Λk = (D1.1 × . . .×D1.k, D2.1 × . . .×
D2.k, A1 × . . .×Ak, f1 × . . .× fk, g1 × . . .× gk).

A related lingo composition operation is the tupling of lingos which share the
same input data type. Given lingos Λ = (D1, D2, A, f, g) and Λ′ = (D1, D

′
2, A

′, f ′,
g′), their tuping [Λ,Λ′] is the 5-tuple, [Λ,Λ′] = (D1, D2×D′

2, A×A′, [f, f ′], g◁g′)
where, by definition, [f, f ′] = λ(d1, (a, a

′)). (f(d1, a), f
′(d1, a

′)) and g ◁ g′ =
λ((d2, d

′
2), (a, a

′)). g(d2, a). [Λ,Λ
′] is indeed a lingo, since we have:

(g ◁ g′)([f, f ′](d1, (a, a
′)) = (g ◁ g′)(f(d1, a), f

′(d1, a
′)) = g(f(d1, a), a) = d1.

Tupling generalizes in a straightforward way to the product of k lingos, k ≥
2 sharing a common input data type, i.e., given a family of k lingos {Λi =
(D1, D2.i, Ai, fi, gi)}1≤i≤k, their tupling [Λ1 × . . .× Λk] is the lingo:

[Λ1, . . . ,Λk] = (D1, D2.1 × . . .×D2.k, A1 × . . .×Ak, [f1, . . . , fk], g1 ◁ g2 . . . , gk)

with the obvious definition of [f1, . . . , fk] and g1◁g2 . . . , gk generalizing the case
k = 2.

To illustrate the usefulness of the tupling operation we need yet another simple
remark: by Birkhoff’s Variety Theorem, (Σ, E)-algebras are closed under subal-
gebras. In particular, if Λ = (D1, D2, A, f, g) is a lingo, a sublingo is a Σ-algebra
Λ′ = (D′

1, D
′
2, A

′, f ′, g′) such that D′
1 ⊆ D1, D

′
2 ⊆ D2, A

′ ⊆ A, f ′ ⊆ f and
g′ ⊆ g. Since we wish Λ′ to be non-trivial, we also require that D′

1, D
′
2 and A′

are all non-empty. Λ′ is then a lingo because Λ is so, as Birkhoff pointed out.
We then write Λ′ ⊆ Λ to denote the sub-lingo relation. Here is an interesting
example:

Example 12 Let Λ = (D1, D2, A, f, g) be a lingo. Recall its f -checkable trans-
formed lingo Λ♯ from Theorem 1. Note that we have a sub-lingo inclusion,
Λ♯ ⊆ [Λ,Λ].

4.5 Towards Non-malleable Lingos

In hindsight, lingo transformations and lingo compositions may provide useful
methods to obtain non-malleable lingos. We discuss below some methods that
we conjecture will be useful for this purpose. A first method is applying a
transformation of the form Λ 7→ (j, r); Λ, where (j, r) : D0 ⇄ D1 is such that
j(D0) ⊂ D1 is a “sparse” subset of D1. For example, Λ can be Λxor or Λ♯

xor

and D0 can be the set of all the words in the English language, with n large
enough so that j can represent words as bit-vectors in {0, 1}n by mapping each
English word to a (possibly padded) concatenation of the ASCII bit-vectors for
its letters. The intruder will see an obfuscated message of the form j(d0)⊕a with
d0 a word in English, and using the recipe x⊕y will replace it by the obfuscated
message j(d0) ⊕ a ⊕ rxor(a

′). But recipe x ⊕ y is unlikely to pass muster for
(j, r); Λxor , since, due to the sparsity of j(D0) in D1, it is highly unlikely that
the f -checking equality test j(d0) ⊕ rxor(a

′) = j(r(j(d0) ⊕ rxor(a
′)) will hold,
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Figure 3: Dialect meta-object enhanced from [2].

since this would exactly mean that j(d0) ⊕ rxor(a
′) is (the ASCII bit-vector

representation of) a word in English. This is not a proof that (j, r); Λxor is
non-malleable: it is just a hint that it seems unlikely to be malleable. A similar
hint could be given for (j, r); Λ♯

xor .
Given a malleable lingo Λ, we conjecture that a second method to trans-

form it into a non-malleable one may be by means of a functional composition
Λ⊙Λ′ with a suitably chosen lingo Λ′. For example, Λ may satisfy the equation
f(f(d1, a1), a2) = f(f(d1, a2), a1). But Λ′ may be chosen so that the corre-
sponding equation for Λ⊙ Λ′, namely,

f ′(f(f ′(f(d1, a1), a
′
1), a2), a

′
2) = f ′(f(f ′(f(d1, a2), a

′
2), a1), a

′
1),

where a1, a2 ∈ A and a′1, a
′
2 ∈ A′, fails to hold, thwarting the success of some

recipes. Again, we are just giving some hints about methods that need to be
further developed. This is analogous to how malleable cryptographic functions
are made non-malleable by composing them with other suitable functions.

5 Dialects

The dialect construction is a formal pattern of the form :

D : (Λ(D),P(D)) 7→ D(Λ(D),P(D))

where P(D) is a protocol, i.e., an actor-based system, with D its data type
of payloads, Λ(D) is a lingo with input data type D, and D(Λ(D),P(D)) is a
transformed protocol that endows P(D) with lingo Λ(D). In D(Λ(D),P(D)),
each protocol participant of P(D) is wrapped inside a dialect meta-object that
uses lingo Λ(D) to obfuscate the communication between the honest protocol
actors of P(D). We call D(Λ(D),P(D)) a dialect for P(D). The D construction
is both protocol-generic and lingo-generic: it applies to any protocol P(D) and
to any lingo Λ(D), provided D is shared. The essential behavior of a dialect is
summarized in Figure 3, which shows how a meta-object’s sending action uses
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f to transform outgoing messages and a meta-object’s receiving action uses g
(both with the same shared secret parameter a) to decode the original payload
and pass it to the receiving object. In D(Λ(D),P(D)) the code of protocol
P(D) is not changed in any manner: the meta-object wrappers are added in an
entirely modular way.

In Maude, the generic D construction is specified as parametrised object
modules (using keywords omod and endom), with two parameter theories: PMLINGO
and PROTOCOL. The former is the theory for Lingos presented in Section 3. The
PROTOCOL theory is specified as

oth PROTOCOL is

sort Payload . msg to_from_:_ : Oid Oid Payload -> Msg .

endoth

requiring a sort Payload, which has to match with sort D1 from PMLINGO, and
a message format. The object module also declares a Dialect class with the
following attributes.

1. conf: the underlying protocol (or dialect)

2. in-buffer: collection of incoming messages before applying the lingo’s
decoding function (i.e. g)

3. peer-counters: a map between object identifiers and natural numbers
that serves as a counter for the number of messages exchanged. It is also
used in the computation of the parameters used by the lingo’s transfor-
mation functions.

Furthermore, dialects add three new rules available in Figure 4. These rules
are protocol generic, meaning they can be applied independently of the protocol.
The rule labels and their semantics are as follows.

1. Rule labelled out processes messages produced by the wrapped protocol,
sending the transformed messages into the network, by applying the lingo’s
f function with the corresponding parameter.

2. Rule labelled deliver collects incoming messages to the underlying protocol
in the in.buffer attribute.

3. Rule labelled in processes messages stored in the buffer, by applying the
lingo’s g function with the proper parameter, delivering the original ver-
sion of the message to the protocol.

Notice how in Figure 4, both rules out and in apply the f and g respectively
and supply the argument by calling the lingo’s param function. Recall from
Section 3, that this function computes a value a ∈ A from N. The dialect
meta-object is responsible of making the parameter change. In a nutshell, the
dialect supplies to the param function the current message number from the
map peer-counter. Nevertheless, this is one of the approaches that dialects
can use to make lingo’s more unpredictable.
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in : < O1 : DC | in.buffer : Min, atts
′ > (to O1 from O2 : P )

→ < O1 : DC | in.buffer : (Min ∪ (to O1 from O2 : P ), atts ′ >

out : < O1 : DC | conf : (< O1 : C | atts > (to O2 from O1 : P ) ∪ M),

peer .counters : R, atts ′ >

→ < O1 : DC | conf : (< O1 : C | atts > M \ (to O2 from O1 : P )),

update(peer .counters : R, atts ′) >

(to O2 from O1 : f(P, param(R[O2])))

deliver : < O1 : DC | conf : (< O1 : C | atts > M), in.buffer : Min,

peer .counters : R, atts ′ >

→ < O1 : DC | conf : (< O1 : C | atts > M ∪ {g(Mselected,param(R[O2]))},
in.buffer : (Min \Mselected),

update(peer .counters : R, atts ′) >

if size(Min) ≥ egressArity ∧Mselected := take(egressArity,Min) ∧
fromOidTag(Mselected, R) = true .

Figure 4: Meta-Actor Rewrite Rules.

Example 13 (Dialects over MQTT) Given the lingo from Example 3 we
can transform the MQTT protocol of Example 1 by means of a dialect. To do so
we need to instantiate the DIALECT module with a valid lingo view and a protocol
view such as

protecting DIALECT{xor-seq-l, MqttProtocol{Nat} .

Let us use the the BitVec{N} type described in Section 3 as the payload of
messages from MQTT. We can have obtain a dialect where the lingo uses the
exclusive or operation over BitVec{N}, but adapted to comply with the PMLINGO

theory. Our formal semantics of MQTT is parametric enough to provide a
representation of its payload as bit vectors just by changing the view given to
the parameter. The instantiation of such a scenario is as follows.

protecting DIALECT{xor-lingo{BitVec{4}}, MqttProtocol{BitVec{4}}} .

In the case we need to increase the size, for example to 8, we can do so in a
very simple way. Just by changing the view given as parameter, for both lingo
and protocol, we obtain a more secure dialect since the range of parameters A
has increased exponentially.

protecting DIALECT{xor-lingo{BitVec{8}}, MqttProtocol{BitVec{8}}} .
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Another dialect instantiation with stronger guaranties would be the lingo from
Example 10. We provide in Appendix ?? an adapted example view xor&dc-lingo-BitVec{8}
for Example 10 and a view dhor-comp for DHOR-COMP. Thanks to the modularity
of lingos we can obtain the new dialect just with the following line.

protecting DIALECT{DHOR-COMP{xor&dc-lingo-BitVec{8}},

MqttProtocol{BitVec{8}}} .

Furthermore, if we want a dialect in which messages are first encoded with
XOR, and then made stronger through the use of Divide and Check, we can
automatically obtain a dialect that uses the lingo of Example 11 as

protecting DIALECT{FUN-COMP{xor+dc-lingos-BitVec{8}},

MqttProtocol{BitVec{8}}} .

All the examples shown in the paper are executable in Maude, and we made
them available in a GitHub repository at https: // github. com/ v1ct0r-byte/
Protocol-Dialects-as-Formal-Patterns .

6 Concluding Remarks

Dialects are a resource-efficient approach as a first line of defense against out-
side attackers. Lingos are invertible message transformations used by dialects
to thwart attackers from maliciously disrupting communication. In this paper
we propose new kinds of lingos and make them stronger through lingo trans-
formations, including composition operations, all of them new. These lingo
transformations and composition operations are formal patterns with desirable
security properties. We also propose a refined and simpler definition for dialects
by replacing two former dialect composition operations in [2] by considerably
simpler and more efficient lingo composition operations. All these concepts and
transformations have been formally specified and made executable in Maude.

Our next step is to explore lingos in action as they would be used by di-
alects in the face of an on-path attacker. We have been developing a formal
intruder model that, when combined with the dialect specifications provided
in this paper, can be used for statistical and probabilistic model checking of
dialects. This model provides the capacity to specify the probability that the
intruder correctly guesses secret parameters. For this we are using QMaude [30],
which supports probabilistic and statistical model checking analysis of Maude
specifications.
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fying framework for Petri nets,” in Unifying Petri Nets, pp. 250–303,
Springer, 2001.

[15] N. Mart́ı-Oliet and J. A. Verdejo-López, “Implementing CCS in Maude,”
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