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A Novel Cipher for Enhancing MAVLink Security:
Design, Security Analysis, and Performance

Evaluation Using a Drone Testbed
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Abstract—Unmanned Aerial Vehicles (UAVs) are being widely
deployed for diverse applications, including surveillance, agricul-
ture, logistics, disaster response, etc. Secure communication be-
tween a UAV and its ground control station (GCS) is paramount,
as vulnerabilities can expose the system to cyber threats. Micro
Air Vehicle Link (MAVLink) is a widely used open-source
communication protocol that facilitates the exchange of messages
between a UAV and a GCS. However, under this protocol, a
UAV and a GCS communicate via an unencrypted channel, ren-
dering the exchange of information vulnerable to eavesdropping
attacks, and potentially compromising the mission objectives and
sensitive information. Numerous research efforts have addressed
the encryption of MAVLink protocol messages. However, most
of these studies are either theoretical or based on simulations,
rather than practical implementations. In this paper, we integrate
various existing encryption algorithms, viz., Advanced Encryp-
tion Standard - Counter mode (AES-CTR), ChaCha20, Speck-
CTR, and Rabbit, into MAVLink. We propose a novel cipher,
MAVShield, designed to safeguard MAVLink-based communi-
cations. We perform a security analysis of MAVShield, which
includes the study of 24 distinct attacks on the proposed cipher
using various statistical test suites, viz., the National Institute
of Standards and Technology (NIST) and Diehard test suites.
Our analysis demonstrates the robust resistance of MAVShield
to differential cryptanalysis. Also, we thoroughly evaluate the
performance of all five algorithms, viz., AES-CTR, ChaCha20,
Speck-CTR, Rabbit, and MAVShield, and compare it with that of
the standard unencrypted MAVLink protocol in terms of various
metrics such as memory usage, battery power consumption,
and CPU load, using a real drone testbed. Our performance
evaluation demonstrates that MAVShield outperforms all the
other encryption algorithms, and is hence a secure and efficient
solution for protecting MAVLink-based communications in real-
world deployments.

Index Terms—Unmanned Aerial Vehicle (UAV), MAVLink,
Encryption, Security Analysis, Drone Testbed

I. INTRODUCTION

AS the skies become increasingly crowded with drones,
the imperative to establish robust and reliable communi-

cation between Unmanned Aerial Vehicles (UAVs) and their
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ground control stations (GCS) has never been more critical
[2]. UAVs have been extensively deployed in several military
and civilian applications, ranging from disaster management to
agriculture automation and from border surveillance to traffic
monitoring. UAVs are entities that can be controlled remotely
or fly autonomously using pre-programmed flight plans. With
their ability to navigate complex landscapes and perform
tasks without human intervention, UAVs are revolutionizing
aerial operations [2]. In detail, an Unmanned Aerial System
is composed of the following key elements [3]:

• UAV: It comprises hardware and software that allow for
flight control, navigation, and stabilization.

• GCS: It works as a central hub for monitoring drone
status, controlling its movements, and receiving mission-
specific data such as sensor readings.

• Communication links: Communication between the GCS
and the UAV primarily relies on two links: the command
& control link and the data link. The GCS sends instruc-
tions to the drone via the former link and receives vital
telemetry data, such as position, speed, and battery status
via the latter link.

Micro Air Vehicle Link (MAVLink) is a lightweight mes-
sage serialization protocol, which has been specified to ensure
efficient, reliable, and extensible communications between a
UAV and a GCS [4]. It carries information about the status of
the UAV as well as commands for control from the GCS.
Lorenz Meier released MAVLink in 2009 under the GNU
Lesser General Public License (LGPL) [5]. MAVLink’s binary
serialization feature produces smaller messages and incurs less
overhead compared to other serialization techniques, contribut-
ing to its lightweight nature [4].

Security of UAV-GCS communication is paramount, as
vulnerabilities can expose the system to cyber threats [3].
However, although MAVLink is a robust communication pro-
tocol, it lacks adequate security mechanisms [6]. In its earlier
version, MAVLink 1.0, the protocol lacked native support
for authentication and authorization and was reported in the
National Vulnerability Database [7]. The current version,
MAVLink 2.0, maintains backward compatibility with version
1.0 while introducing a key security feature: packet signing
for authentication. This allows MAVLink systems to verify
that messages originate from trusted sources. The signature is
a 48-bit value derived from the first 48 bits of a SHA-256
hash, which is created from the entire packet combined with
a secret key [8]. Despite these improvements, the protocol
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remains susceptible to eavesdropping attacks [9]. As UAV-
GCS communications occur over an unencrypted channel
under MAVLink, they can be intercepted and read by mali-
cious actors, leading to breaches in the confidentiality of the
communication link [10].

To address these confidentiality threats, extensive research
has been conducted on improving the security of MAVLink by
integrating encryption into the communication link between
a UAV and a GCS (see Section II for a review). However,
most of these efforts primarily focused on theoretical frame-
works and simulation-based evaluations. There has been a
significant lack of real-world demonstrations showcasing the
implementation of encryption within the MAVLink protocol
as used in operational drones. In order to address this gap,
in this paper, we integrate four encryption algorithms, viz.,
Advanced Encryption Standard - Counter mode (AES-CTR)
[11], ChaCha20 [12], Speck in Counter mode (Speck-CTR)
[13], and Rabbit [14] with the MAVLink protocol to ensure
message confidentiality, and evaluate their performance using
a hardware testbed. In addition, we propose a novel encryp-
tion algorithm, MAVShield, integrate it with MAVLink, and
show, via extensive experimentation using our testbed, that
it significantly outperforms existing ciphers. To the best of
our knowledge, this paper is the first to integrate encryption
algorithms with MAVLink and evaluate their performance
using a real drone testbed.

Specifically, the contributions of this paper are as follows:
• First, we integrate the existing encryption algorithms

AES-CTR, ChaCha20, Speck-CTR, and Rabbit into
MAVLink.

• Second, we propose a novel cipher, MAVShield, designed
to safeguard MAVLink based communications.

• Third, we thoroughly evaluate the performance of all
five algorithms, viz. AES-CTR, ChaCha20, Speck-CTR,
Rabbit, and MAVShield, and compare it with that of
the standard unencrypted MAVLink protocol in terms of
various metrics such as memory usage, battery power
consumption, and CPU load, using a real drone testbed.
The drone we use is lab-engineered, and our testbed
also includes a QGroundControl ground station [15],
an ArduPilot autopilot system [16], a Pixhawk Cube
Orange+ flight controller [17], a Radiomaster boxer ra-
dio controller [18], a telemetry radio module, a Global
Positioning System (GPS) module, and a battery. Our
evaluation demonstrates that MAVShield surpasses all the
other encryption algorithms, and results in only marginal
increases in memory usage (0.024%), battery power
consumption (5.653%), and CPU load (2.937%) relative
to the unencrypted MAVLink protocol. These results
confirm the efficiency of MAVShield and show that it is a
feasible solution for use in practical UAV communication.

• Fourth, we perform a security analysis of MAVShield to
assess its resilience against various attack vectors and its
effectiveness in enhancing the overall security of UAV
communications. Our analysis includes a study of 24
distinct attacks on the proposed cipher using various sta-
tistical test suites, viz., the National Institute of Standards
and Technology (NIST) [19] and Diehard [20] test suites,

which demonstrates its robust resistance to differential
cryptanalysis [21]. It shows that MAVShield can ensure
the confidentiality of the secret key and plaintext data
by preventing intruders from detecting statistical differ-
ences between the encryptions of two different messages,
thereby validating the algorithm’s security.

Our results significantly enhance our understanding of
MAVLink security as well as promote the development of
strong countermeasures to safeguard the confidentiality of
MAVLink-based UAV communications. Also, our experimen-
tal results using a real drone testbed and detailed security
analysis establish that MAVShield is a feasible and effective
solution for protecting MAVLink-based communications in
real-world deployments.

The rest of this paper is organized as follows. Section II
reviews related work. Section III presents the system model
and problem formulation, core architecture of the MAVLink
2.0 protocol, its security weaknesses, and the adversary model.
Section IV describes our encryption and decryption model and
various existing encryption algorithms. Section V describes
the proposed MAVShield cipher. Section VI provides a se-
curity analysis of MAVShield using various statistical suites.
Section VII describes the experimental setup for our drone
testbed. Section VIII explains how the encryption algorithms
are implemented in our testbed. Detailed experimental results,
including a comparison of the performance of various existing
encryption algorithms and the MAVShield algorithm, are pro-
vided in Section IX. Finally, Section X provides conclusions
and directions for future research.

II. RELATED WORK

Ensuring security is crucial for the wide adoption of UAV
systems. In this context, we now examine prior research on
attacks on MAVLink communication links and the integration
of encryption algorithms with the MAVLink protocol.

In [22], the authors have proposed a solution called
MAVSec to address confidentiality and privacy problems in
MAVLink. Various security algorithms, viz., AES-CTR, AES-
Cipher Block Chaining (CBC), ChaCha20, and Rivest Cipher
4 (RC4), were implemented on both an autopilot and a GCS.
The authors compared the performances of different security
solutions using an ArduPilot Simulation in the Loop (SITL)
setup. A new solution has been proposed in [3] to address
the problem of key exchange between the UAV and the GCS.
Also, the authors have compared the performances of fourteen
encryption algorithms using a virtual drone and determined the
best algorithm to be Speck 128/192, which was later used with
a key exchange phase. They concluded that this causes only
a slight overhead relative to using only encryption. In [6], a
new approach based on an encryption algorithm and a custom
mapping has been applied to secure the MAVLink communi-
cation protocol. In this approach, a new concept of lists has
been introduced, under which a serial number is shared instead
of directly sending the secret key used for encryption between
the UAV and GCS, thereby ensuring that the actual secret key
is not exposed during transmission. The proposed method is
compared with the original MAVLink protocol in a simulation



3

environment and the authors get almost similar results in
terms of transfer speed, memory consumption, and CPU usage
for the two protocols. In [23], the authors have proposed
an innovative method called DMAV based on dynamic DNA
coding to strengthen the security of the MAVLink protocol.
Their approach encrypts the MAVLink payload using DNA
coding with binary bits and the lightweight GIFT algorithm.
The technique has been compared with the original, unse-
cured MAVLink protocol in the ArduPilot-SITL environment,
demonstrating that it effectively secures communication with-
out introducing much system overhead. In another study [24],
the authors have secured the MAVLink-based communication
between the GCS and the UAV through implementation of
the following security algorithms: encryption by Navid [6],
DMAV [23], and ChaCha20 [25]. In a performance evaluation
conducted in the Gazebo simulation environment, ChaCha20
emerged as the most efficient algorithm, outperforming the
others in terms of memory consumption, CPU utilization,
and packet transfer rate. Further research contributions in
[12] proposed integrating a novel stream cipher into the
MAVLink communication protocol. The authors have designed
the new cipher by modifying the Quarter Round function
of the ChaCha20 algorithm to enhance the security without
causing much overhead in the system. In [26], the authors
have provided an overview of data interception attacks, data
manipulation attacks, and denial-of-service attacks on four
different channels, viz., UAV-GCS, UAV-GPS, UAV-other
aircraft, and UAV-automatic dependent surveillance-broadcast
(ADSB) system. Also, defense strategies for several attacks
have been discussed and compared.

In the above studies [3], [6], [12], [22]–[24], [26], re-
searchers have proposed security protocols for encrypting
MAVLink and evaluated their effectiveness via simulations;
however, none of these studies have implemented these secu-
rity measures in a real drone testbed or tested their perfor-
mance in real-world conditions. The practicality and safety
of implementing their solutions in actual scenarios remain
uncertain, as their assessments were confined to simulation
environments. In contrast, in this paper, we implement several
existing encryption algorithms using a real drone testbed,
propose a new encryption method, as well as compare its
performance with that of the existing security schemes using
our testbed.

In [27], the authors have proposed an optimized version of
the Speck cipher that leverages a substitution table to enhance
the efficiency of the encryption process. By updating the S-
box in each iteration using the RC4 algorithm, they were
able to reduce the number of rounds required for the Speck
128/128 cipher. Building on this concept, this paper presents
a novel encryption approach, MAVShield, which enhances
the Speck round function by dynamically updating the key
value. This is accomplished through a sophisticated process,
which involves word splitting, S-box substitution, and XOR
operations. Furthermore, by incorporating a nonce, the same
approach is utilized for key generation after applying rotation
and arithmetic operations to the nonce, ensuring that the secret
key for each round is completely random. Our experimen-
tal findings from the drone testbed reveal that MAVShield

surpasses Speck-CTR, as well as AES-CTR, ChaCha20, and
Rabbit, in terms of battery power consumption, memory usage,
and CPU utilization.

III. SYSTEM MODEL AND PROBLEM FORMULATION

This section describes the system model in which UAV-GCS
communication takes place using MAVLink, which lacks built-
in confidentiality measures. Also, it describes the objective of
this paper, which is to evaluate existing encryption algorithms
using a drone testbed and to design a new cipher, viz.,
MAVShield. It also describes the adversary model, which
highlights cyber threats such as eavesdropping and data in-
terception, and stresses the need for robust encryption.

Fig. 1. The figure shows the communication between a UAV and a GCS.

A. System Model

In this study, we focus on a communication link employing
the MAVLink protocol between a UAV and a GCS. Here, com-
munication takes place over a wireless link, which commonly
utilizes a radio frequency (RF) link or the Wi-Fi protocol.

The MAVLink protocol offers bidirectional communication
between a GCS and a UAV (see Fig. 1). The channel from
the GCS to the UAV is used to send command and control
messages, while the channel from the UAV to the GCS is
used for telemetry data transmission such as payload data
and status information. To keep the communication alive, the
UAV periodically transmits a HEARTBEAT message [4] to
the GCS.

MAVLink is a lightweight and open-source message serial-
ization protocol [24]. It is mainly used for two-way informa-
tion exchange between a UAV and a GCS. It is designed to be
lightweight because it is used for real-time communication.

Additionally, MAVLink messages are serialized at the ap-
plication layer before being passed to the lower layers. Their
transmission can occur over various networks and protocol
stacks, including the TCP/ IP protocol stack, Wi-Fi (which
operates at the medium access control (MAC) and physical
layers), and low-bandwidth serial telemetry links [24]. This
serialization and de-serialization process occurs at both ends
of the communication link and minimizes the number of trans-
mission messages required for the serialization. As a result, the
design is well-suited for resource-constrained environments.

Fig. 2 shows the MAVLink 2.0 packet structure [4]. Mes-
sage types are identified by message IDs and the “payload”
field contains the actual data. A MAVLink message has a
packet size of 11 to 297 bytes, of which the maximum length
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Fig. 2. The figure shows the MAVLink 2.0 packet structure.

Fig. 3. The figure shows the adversary model.

of the actual payload data is 255 bytes. Each MAVLink mes-
sage includes a few error detection and security mechanisms
[28]:

• Checksum: It facilitates the detection of message corrup-
tion, serving as an error detection mechanism to ensure
the correctness of data transmitted over a network.

• Signature: It enables message authentication, i.e., verifi-
cation that the message comes from a trusted source and
has not been modified during transit.

The inclusion of a signature in a MAVLink packet plays a cru-
cial role in preventing the tampering or spoofing of messages
during transmission. However, despite these security measures,
an adversary with access to the channel can still eavesdrop on
the transmitted messages, observing the communication flow
without altering its contents.

B. Objectives

MAVLink messages exchanged over the communication
link are not encrypted, and an attacker can intercept the data
and extract sensitive information. Therefore, to address this
vulnerability of the MAVLink protocol and to achieve true
security, encryption is necessary. Our objective is to strengthen
the protocol’s security by integrating encryption into it, while
preserving its existing integrity and authentication features. We
seek to integrate existing encryption algorithms such as AES-
CTR, Speck-CTR, ChaCha20, and Rabbit into MAVLink and
evaluate their performance in terms of various performance
metrics such as memory usage, CPU utilization, and battery
power consumption by conducting experiments on a real drone
testbed. Another goal is to design a new encryption algorithm
that outperforms existing ones, evaluate its performance on
our drone testbed, and conduct its thorough security analysis.

C. Security Issues and Adversary Model

In general, attacks on networks can compromise the confi-
dentiality, integrity, availability, and authenticity of the system
[29]. They can result in interception (compromising data
confidentiality and privacy), modification (compromising data
integrity), interruption (compromising data availability), and/
or fabrication (attacks on authenticity).

Confidentiality means that only authorized users should be
able to read transmitted messages; if it is violated, then an
attacker can eavesdrop on the channel and read messages such
as sensor readings, GPS data, telemetry feeds, and commands
communicated from the GCS to the UAV [30]. Recall that
the MAVLink protocol incorporates security mechanisms for
achieving message integrity and authentication, but not for
achieving confidentiality. To mitigate this weakness and to
protect data in transit, we implement encryption mechanisms,
thereby securing the communication channel.

The adversary model shown in Fig. 3 illustrates both the
vulnerabilities that exist in data transmission and the defensive
measures necessary to maintain confidentiality within the
system. In particular, the upper part of the figure shows that
the UAV transmits MAVLink packets to the GCS software,
QGroundControl, via a communication channel. An intruder
monitoring the transmission can capture the data, e.g., in a
packet capture (.pcap) file using a Wireshark packet analyzer.
Since the messages are in clear text, they can be easily
intercepted and analyzed, leading to a breach of confidentiality.
The lower part of the figure shows the proposed solution, in
which MAVLink packets are encrypted using the MAVShield
encryption algorithm. This method involves word splitting, S-
box substitution, and XOR operations of 64-bit secret key,
followed by the application of the updated key to the round
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(a) MAVLink payload encryption (b) MAVLink payload decryption

Fig. 4. The figure shows the integration of security algorithms in the
MAVLink protocol.

functions. If an adversary intercepts the message transmitted
over this encrypted channel and attempts to collect and analyze
the data, they fail since the message is unintelligible to them.
Consequently, confidentiality remains intact. Thus, this model
highlights the importance of robust encryption techniques in
protecting UAV communications against potential threats from
intruders.

IV. SECURITY IN MAVLINK COMMUNICATIONS

Since under MAVLink 2.0, UAV-GCS communications are
vulnerable to attacks against data confidentiality and privacy,
we encrypt the communication channel. In this section, we
describe our encryption and decryption model and different
existing encrytion algorithms, viz., AES, Speck, ChaCha20,
and Rabbit, which we integrate into MAVLink.

A. Encryption and Decryption Model

Fig. 4 illustrates the integration of an encryption algo-
rithm within the MAVLink protocol. To preserve the proper
functionality of MAVLink communication, at the transmitter,
encryption is applied exclusively to the payload data, as
depicted in Fig. 4a. Encryption of the header is not done since
it could prevent the recipient from identifying the message type
[4]. Consequently, MAVLink packets retain an unencrypted
MAVLink ID in the header to ensure seamless message
recognition. Furthermore, recall that MAVLink incorporates a
checksum mechanism for the detection of bit errors; under our
model, encryption is performed before checksum computation,
thereby safeguarding the confidentiality of the payload.

Subsequently, at the receiver, as depicted in Fig. 4b, de-
cryption occurs only after successful checksum verification;
if the checksum fails, the payload is discarded. Hence, our
encryption-decryption process guarantees the confidentiality
and functionality of MAVLink communication.

B. Encryption Algorithms

We integrate the security algorithm into both ends of the
MAVLink communication channel, i.e., in the UAV and GCS.

To address the confidentiality flaws in MAVLink, we use four
different symmetric key cryptography algorithms, viz., AES-
CTR, ChaCha20, Speck-CTR, and Rabbit. Here, ChaCha20
and Rabbit are stream ciphers, while AES and Speck are block
ciphers [29].

Block ciphers support various modes of operation, including
Electronic Codebook (ECB), CBC, Output Feedback (OFB),
and CTR, each tailored to specific use cases [29]. Among
these, CTR mode is particularly well-suited for encrypting
MAVLink payloads, because in this mode, a one-time pad
(OTP) can be pre-computed, allowing encryption to be per-
formed by simply XORing the OTP with the plaintext once the
latter becomes available. This approach reduces the encryption
latency compared to other modes, such as ECB and CBC [29].
Another advantage of the CTR mode is that it accommodates
arbitrary payload lengths and maintains a ciphertext length
equal to the plaintext length. While the CBC mode is also
compatible with the considered block ciphers, AES and Speck,
its use has been constrained by challenges in supporting
arbitrary payload lengths [3].

As shown in Fig. 5, CTR mode converts a block cipher
into a stream cipher. The considered block ciphers employ
a randomly generated 128-bit initialization vector (IV), also
known as the initial counter, which is unique for each en-
cryption process. For each plaintext block, the counter value
is incremented and then encrypted using the secret key to
generate a keystream block. The ciphertext block is then
obtained by XORing the plaintext block with the correspond-
ing keystream block. Decryption follows the same process,
where the ciphertext block is XORed with the keystream block
generated using the same counter value to retrieve the original
plaintext. Since encryption and decryption are independent for
each block, they can be performed in parallel. Additionally,
this independence makes the CTR mode resilient to block loss
[29].

Fig. 5. The figure shows the encryption process in counter mode [29].

1) Advanced Encryption Standard (AES)
AES employs a symmetric key algorithm, utilizing the same
secret key for encryption and decryption. The AES algorithm
uses substitutions, sequences, and a series of rounds applied to
each encrypted and decrypted block. This algorithm has 128-
bit, 192-bit, or 256-bit long keys [11]. It is a highly secure
and efficient method of encryption. It was established by the
U.S. NIST in 2001 and has since become a globally accepted
encryption standard.
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Fig. 6. The figure shows the encryption process of the AES algorithm.

As shown in Fig. 6, AES employs a unique internal key,
known as a “round key”, derived from the secret key, for
each round of encryption. This algorithm involves four types
of byte transformations: SubBytes, ShiftRows, MixColumns,
and AddRoundKey [11]. At the start of the first round, the
plaintext is copied into the state and then undergoes the
byte transformation AddRoundKey. After that, the state is
transformed by the SubBytes, ShiftRows, MixColumns, and
AddRoundKey operations N − 1 times, where N is the total
number of rounds [11]. This set of operations is called the
AES round function. In the last round, the state is transformed
by the SubBytes, ShiftRows, and AddRoundKey operations
and it does not experience the MixColumns transformation.
This iterative approach in AES enhances security by using a
complex encryption process.

2) ChaCha20

The ChaCha family of stream ciphers is a category of high-
throughput stream ciphers that are primarily designed for soft-
ware platforms. It achieves a good balance between security
and performance [12]. Algorithm 1 provides the pseudo-code
for ChaCha20, detailing its steps and structure [12].

The ChaCha20 algorithm begins with an initial row-vector
I , which contains four 32-bit constants, a 256-bit key, a 32-bit
initial counter, and a 96-bit nonce. This vector is structured as
a 4× 4 grid, with each entry representing a 32-bit word. The
initial vector I is then utilized to create a 512-bit operational
vector O. In ChaCha20, the internal state O undergoes 10
double rounds, resulting in a total of 20 updates. Each round
consists of four quarter rounds (QR). The quarter round applies
four operations to four state variables, mixing the data through
addition, bitwise XOR, and rotation operations. The rounds
conclude once every state in O has been updated. The final
output of O is combined with I . The addition operator, +,
combines the current state value O with the initial value I ,
generating the keystream and serializing 32-bit values into
a 512-bit keystream. The plaintext is then divided into 512-
bit blocks, and the ciphertext is produced by performing an
XOR operation between the plaintext blocks and the generated
keystream [12].

Algorithm 1 Pseudo-code of ChaCha20 Algorithm

Input: Key ∈ {0, 1}256, Nonce ∈ {0, 1}96 , Count ∈
{0, 1}32 , PlainText ∈ {0, 1}∗
Output: CipherText = ChaCha20(Key,Nonce, Count,
P lainText)

1: I ← Init(Key,Nonce, Count)
2: for a← 1 to (no of bits P lainText

512 ) do ▷ (a is block
number)

3: O ← I
4: for b← 1 to 10 do
5: O[0, 4, 8, 12]← QR(O[0, 4, 8, 12])
6: O[1, 5, 9, 13]← QR(O[1, 5, 9, 13])
7: O[2, 6, 10, 14]← QR(O[2, 6, 10, 14])
8: O[3, 7, 11, 15]← QR(O[3, 7, 11, 15])
9: O[0, 5, 10, 15]← QR(O[0, 5, 10, 15])

10: O[1, 6, 11, 12]← QR(O[1, 6, 11, 12])
11: O[2, 7, 8, 13]← QR(O[2, 7, 8, 13])
12: O[3, 4, 9, 14]← QR(O[3, 4, 9, 14])
13: end for
14: Sl← Serial(O + I) ▷ (Serialized keystream)
15: for c← 1 to 512 do
16: CipherText[512(a − 1) + (c − 1)] ←

PlainText[512(a− 1) + (c− 1)]⊕ Sl[c− 1]
17: end for
18: I[12]← I[12] + 1 ▷ (Counter value incremented by

one)
19: end for
20: return CipherText

The process of decryption is similar to encryption. During
decryption, we use the keystream generated in the same
manner as during encryption, and XOR it with the ciphertext
to recover the plaintext.

3) Speck

Speck is a lightweight block cipher offering robust security
and efficient performance in both hardware and software [13].
Developed in 2013 by the U.S. National Security Agency
(NSA), it is optimized for resource-constrained devices using
streamlined cryptographic techniques.

As illustrated in Fig. 7, Speck is an Add-Rotate-XOR
(ARX) block cipher with a Feistel-like structure, where both
branches are updated in each round [29]. Its 2n block en-
cryption process applies the following operations to each
of two n-bit words: left or right circular shifts, modulo-2
addition, and bitwise XOR. These operations collectively form
the algorithm’s round function. Non-linearity in its design
comes from modular addition, making the algorithm strong
cryptographically [13]. In Fig. 7, we use the following notation
for operations on n-bit words [31]:

• bitwise XOR: ⊕,
• mod 2 addition: +,
• left circular shift by β bits: Sβ ,
• right circular shift by α bits: S−α.

Also, x2i+1 and x2i are the upper and lower words, respec-
tively, of the state at the beginning of the ith round. The



7

following two equations outline how x2i+3 and x2i+2 are
computed:

x2i+3 = ((S−α(x2i+1)) + x2i)⊕Ki, (1)

x2i+2 = (Sβ(x2i))⊕ x2i+3. (2)

Fig. 7. The figure shows the Speck round function [32].

Speck has multiple possible instantiations, supporting block
sizes of 32, 48, 64, 96, and 128 bits, and with up to three key
sizes to go along with each block size, as detailed in Table
I. The Speck family provides ten algorithms in all. In this
paper, we use a block size of 128 with key lengths of 128
bits, 192 bits, and 256 bits. For each key size, the number
of rounds is different. For each round, a unique key is used
for encryption. Round keys are expanded by key schedules.
When Speck is operated in the CTR mode, the encryption and
decryption processes described in Section IV-B are used.

TABLE I
THE TABLE SHOWS THE SPECK PARAMETERS [31].

Block Size
2n

Key Size
mn

Keyword
m α, β Speck Rounds

32 64 4 7, 2 22
48 72, 96 3, 4 8, 3 22, 23
64 96, 128 3, 4 8, 3 26, 27
96 96, 144 2, 3 8, 3 28, 29
128 128, 192, 256 2, 3, 4 8, 3 32, 33, 34

4) Rabbit
Rabbit is a stream cipher based on iterating a set of coupled
non-linear functions [33]. It takes a 128-bit secret key as input
and generates an output block of 128 pseudo-random bits from
a combination of internal state bits in each iteration.

The internal state spans 513 bits, which are divided between
eight 32-bit state variables, xj,i, eight 32-bit counters, cj,i, and
one counter carry bit, ϕ7,i, where i, j ∈ {0, . . . , 7}. Here, xj,i

and cj,i represent the variables of subsystem j at iteration
i. Each subsystem j corresponds to one of the eight distinct
state variables that form the cipher’s internal state, while i
indicates the current iteration number. The eight state variables
and counters are initialized using the key, while the counter

carry bit starts at zero. The state variables are updated by eight
coupled non-linear integer-valued functions [33].

a) Key Setup Scheme: This algorithm’s initialization pro-
cess involves expanding a 128-bit key into eight state variables
and eight counters. The key is divided into segments and each
segment is used to initialize one state variable xj,0 and one
counter cj,0. The key, K [127...0], is divided into eight subkeys:
k0 = K [15...0], k1 = K [31...16], . . . , k7 = K [127...112].

Let the symbols ⋄ and ⊕ denote the concatenation of two
bit sequences and the logical XOR operation, respectively. The
initial values of the state and counter variables are derived
from subkeys as follows:

xj,0 =

{
k((j+1) mod 8) ⋄ kj , for j even,
k((j+5) mod 8) ⋄ k((j+4) mod 8), for j odd,

(3)

cj,0 =

{
k((j+4) mod 8) ⋄ k((j+5) mod 8), for j even,
kj ⋄ k((j+1) mod 8), for j odd.

(4)

Based on the next-state function, the system undergoes
four iterations, to reduce the correlation between the key bits
and internal state variables. After these iterations, the counter
values are updated as follows to protect the key from any
potential recovery attempts through reversal of the counter
system:

cj,4 = cj,4 ⊕ x((j+4) mod 8),4. (5)

b) Next State Function: Let the notations ≪ and ≫
represent left bit-wise rotation and right logical bit-wise shift,
respectively. The core of the Rabbit algorithm is the iteration
of the system defined by the following equations [14]:

gj,i = ((xj,i + cj,i)
2 ⊕ ((xj,i + cj,i)

2 ≫ 32)) mod 232, (6)

xj,i+1 =


gj,i + (g(j−1) mod 8,i ≪ 16)

+(g(j−2) mod 8,i ≪ 16), if j is even,
gj,i + (g(j−1) mod 8,i ≪ 8)

+(g(j−2) mod 8,i), if j is odd.

(7)

In these equations, all additions are performed modulo 232.
The term gj,i is the output of the non-linear function applied
to the internal state variables during the ith iteration for
subsystem j.

c) Counter System:

cj,i+1 =

{
(c0,i + a0 + ϕ7,i) mod 232, if j = 0,

(cj,i + aj + ϕj−1,i+1) mod 232, if j ∈ {1, . . . , 7},
(8)

where the counter carry bit ϕ7,i is given by:

ϕj,i+1 =


1, if (c0,i + a0 + ϕ7,i ≥ 232) ∧ (j = 0),

1, if (cj,i + aj + ϕj−1,i+1 ≥ 232) ∧ (j > 0),

0, otherwise.
(9)

Here, the constants, a0, a3, and a6 are 0x4D34D34D, a2 and
a5 are 0x34D34D34, and a1, a4, and a7 are 0xD34D34D3.
The symbol ∧ denotes the logical AND operation.
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Fig. 8. The figure shows the MAVShield key scheduling and encryption functions.

d) Extraction Scheme: After each iteration, four 32-bit
words of the pseudo-random keystream block are generated as
follows:

s
[15...0]
j,i = x

[15...0]
2j,i ⊕ x

[31...16]
(2j+5) mod 8,i, (10)

s
[31...16]
j,i = x

[31...16]
2j,i ⊕ x

[15...0]
(2j+3) mod 8,i. (11)

Finally, at each iteration i, the 128-bit ciphertext is obtained
by the XOR operation of the plaintext and the keystream.
The same process applies in reverse, allowing retrieval of the
plaintext from the ciphertext.

V. PROPOSED CIPHER

MAVShield is an innovative symmetric key block cipher,
which we use in CTR mode with a 128-bit key and block size.
Fig. 8 illustrates the mechanism underlying the MAVShield en-
cryption scheme. This encryption scheme performs a dynamic
process that systematically updates each 64-bit round key
generated by the key-scheduling algorithm of MAVShield. The
process involves a series of sequential operations, including
word splitting, S-box substitution, and XOR operations. At
both ends of these operations the XORed secret key acts as
the input 32-bit key for the Speck round functions. These
updated 32-bit keys are applied to each round function to

transform the plaintext into the ciphertext. Also, as shown
in the key scheduling part of Fig. 8, the generation of each
round key follows similar operations, followed by rotation and
arithmetic operations on a 64-bit nonce. This process enhances
the randomization of the secret key.

As discussed in Section IV-B3, the Speck family of
block ciphers is characterized by its security, flexibility, and
lightweight design. It delivers outstanding performance on
software platforms, ensuring the advertised (but not excessive)
level of protection when resources are scarce, making it
ideal for UAV-GCS MAVLink communications. MAVShield
is designed by incorporating several key modifications into
Speck, which improve its performance while preserving its
strong security, as we now explain.

The proposed cipher, MAVShield, is designed to enhance
encryption by refining the Speck round function, which oper-
ates with a block size of 64 bits and a key size of 128 bits.
In MAVShield, the number of rounds is reduced to 10, from
27 rounds in Speck 64/128. This notable reduction enhances
CPU performance by accelerating the ciphering process, while
ensuring that MAVShield remains secure, as shown in Section
VI.

MAVShield incorporates some preliminary values, including
a 128-bit initialization vector (IV), a 64-bit nonce, and a
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128-bit secret key. The primary objective of MAVShield
is to achieve a balance between security and performance.
MAVShield addresses this balance by enhancing the round
number used as input to the Speck round function during key
scheduling. In the original Speck round function, the round
number corresponds to the total number of previous rounds. In
contrast, MAVShield adds complexity by utilizing a random
round number for each iteration, making it complicated for
adversaries to uncover the round keys. The encryption scheme
of the proposed cipher further incorporates non-linearity via
the substitution technique, which effectively obfuscates the
key’s impact and makes it challenging for an attacker to deduce
the key from the ciphertext.

Algorithm 2 Pseudo-code of MAVShield Encryption

Input: initial secret key ∈ {0, 1}128, PT ▷ (PT stands for
Plaintext)
Output: CT ▷ (CT stands for Ciphertext)

1: K[T ]← key generation(initial secret key) ▷ (Key
schedule containing T values)

2: function MAV Shield xcrypt(PT, initial secret key)

3: Initialization: CT ← PT
4: CT3, CT2, CT1, CT0 ← 128bit to 32bit word(CT )
5: for i← 0 to (T − 1) do ▷ (No. of rounds is T ,

which is equal to 10)
6: (Ku,Kl)← RoundValueGeneration(K[i])
7: (CT3, CT2)← RoundFunction(CT3, CT2,Ku) ▷

(First Round Function)
8: (CT1, CT0)← RoundFunction(CT1, CT0,Kl) ▷

(Second Round Function)
9: CT ← (CT3, CT2, CT1, CT0)

10: end for
11: return CT
12: end function

Algorithm 2 outlines the pseudo-code for the MAVShield
encryption process, which is divided into three main com-
ponents: Key Scheduling, Round Value Generation, and the
Round Function. Utilizing a 128-bit initial secret key, Algo-
rithm 3 generates a key schedule comprising 10 keys, each 64
bits in length. During each iteration of the encryption process,
the function RoundValueGeneration is called, taking each key
as input to produce an upper 32-bit word (Ku) and a lower 32-
bit word (Kl). Subsequently, the Ciphertext array is updated
using two calls to the Speck basic round function– one call
each with the keys Ku and Kl. The round function depends
on the output of the previous round and a key generated by a
key-scheduling algorithm [21].

In Algorithm 3, we carry out key scheduling by utilizing a
64-bit nonce, which undergoes rotation and complement oper-
ations. The function RoundValueGeneration refines this 64-bit
word through a complex process involving word splitting, S-
box substitution, and XOR operations, ultimately generating
upper and lower-order words. The S-box is a non-linear
substitution table that transforms a given set of input bits into
a corresponding set of output bits. Within a 32-bit word, each
of its four bytes acts as an index in the S-box table, where it is

replaced with a corresponding 8-bit output. This ensures that
all four bytes undergo individual substitution, producing four
distinct output bytes. To enhance diffusion, XOR operations
are applied to mix the upper and lower-order 32-bit words. The
resulting XORed output words are then used as a substitute for
a round number in two instances of RoundFunction, enabling
the generation of the key array.

Algorithm 3 Pseudo-code of MAVShield Key Schedule Gen-
eration
Input: initial secret key ∈ {0, 1}128, C0 = Nonce ∈
{0, 1}64
Output: KS[T ] ▷ (Key Schedule containing T values)

1: function key generation(initial secret key)
2: Initialization:
3: key ← initial secret key
4: key3, key2, key1, key0 ← 128bit to 32bit word(key)
5: for i← 0 to (T − 1) do ▷ (No. of rounds is T ,

which is equal to 10)
6: Add & Rotate Operations:
7: Ci ← S−iCi

8: Ci ← complement(Ci)
9: (Cu, Cl)← RoundValueGeneration(Ci)

10: key3, key2 ← RoundFunction(key3, key2, Cu)
11: key1, key0 ← RoundFunction(key1, key0, Cl)
12: ki ← (key1key0)
13: ki+1 ← (key3key2)
14: d← 32 bit array to 64 bit word(ki, ki+1)
15: Append d to KS[T ]
16: end for
17: return KS[T ]
18: end function
19: function RoundValueGeneration(Ci) ▷ (Ci is a 64-bit

word)
20: Word Splitting & S-box Substitution: ▷ (sbox is a

256× 256 matrix having each entry of 8-bit size.)
21: (Cu, Cl)← 64bit to 32bit word(Ci)
22: (Cu1, Cu2, Cu3, Cu4)← 32bit to 8bit array(Cu)
23: (Cu1, Cu2, Cu3, Cu4)← sbox(Cu1, Cu2, Cu3, Cu4)
24: C ′

u ← 8bit array to 32bit word(Cu1, Cu2, Cu3, Cu4)
25: (Cl1, Cl2, Cl3, Cl4)← 32bit to 8bit array(Cl)
26: (Cl1, Cl2, Cl3, Cl4)← sbox(Cl1, Cl2, Cl3, Cl4)
27: C ′

l ← 8bit array to 32bit word(Cl1, Cl2, Cl3, Cl4)
28: XOR Operations:
29: Cl ← Cu ⊕ Cl

30: Cu ← C ′
u ⊕ C ′

l

31: return Cu, Cl

32: end function
33: function RoundFunction(a, b, key) ▷ (a, b & key are

32-bit words)
34: a← S−αa ▷ (a is right shifted by α)
35: a← a+ b
36: a← a⊕ key
37: b← Sβb ▷ (b is left shifted by β)
38: b← b⊕ a
39: return a, b
40: end function
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This approach ensures a high degree of randomness in key
scheduling, such that even a minor change in the key leads to a
significant and unpredictable alteration in the ciphertext during
encryption. In other words, these operations enhance the
encryption’s confusion and diffusion properties [29], thereby
improving its security.

VI. SECURITY ANALYSIS

In this section, the security of MAVShield is analyzed using
differential cryptanalysis [21] as well as using the Wireshark
network packet analyzer [34].

A. Differential Cryptanalysis

The goal of cryptanalysis is to find weaknesses in encryption
algorithms, which could allow an attacker to decrypt messages
or gain unauthorized access to protected information. The
encryption algorithm is assumed to be publicly known, and the
data security follows solely from the secrecy of the randomly
selected key.

Differential cryptanalysis, first introduced in [21], has be-
come a powerful technique for successfully attacking a wide
array of block ciphers. In a block cipher, data is processed in
fixed-sized blocks, with the encryption algorithm using a secret
key to convert each block of Plaintext into Ciphertext. In
its basic form, differential cryptanalysis examines the effect of
particular differences in Plaintext pairs on the differences of
the resultant Ciphertext pairs. These attacks are statistical,
where the attacker seeks to identify probabilistic patterns over
multiple rounds of the cipher. By distinguishing the cipher’s
behavior from a random permutation, the attacker aims to
recover the secret key.

In the model in this paper, the adversary attempts to infer the
confidential secret key (K) used to encrypt the Plaintext pair
(P and P ′), which, after the encryption process, is transformed
into the Ciphertext pair (C and C ′). This method generally
relies on analyzing many pairs of Plaintext with a consistent
specific difference, using only the corresponding Ciphertext
pairs for the analysis.

In differential cryptanalysis, the attacker tries to identify
differential characteristics (∆P , ∆C) such that the difference
between C and C ′ is linked to the difference between P and
P ′:

P ⊕ P ′︸ ︷︷ ︸
Difference in Plaintexts

= ∆P −→ ∆C = C ⊕ C ′︸ ︷︷ ︸
Difference in Ciphertexts

The differential characteristics are valid if, for many
Plaintext pairs for which the difference is ∆P , the resulting
ciphertext pairs frequently exhibit the difference ∆C. By ana-
lyzing the pairs that produce the output difference, the attacker
might succeed in identifying characteristics that distinguish the
cipher [35].

1) Chosen Plaintext Attack (CPA) Model
Differential cryptanalysis is performed using the CPA model
to analyze the security of MAVShield. In this model, the
attacker has the ability to choose arbitrary Plaintexts and
obtain their corresponding Ciphertexts from the encryption
system. For this, we make the following assumptions [12]:

• The adversary has access to the proposed algorithm,
which he/ she uses to perform encryption.

• Plaintext pairs (Pi, P ′
i ) are chosen to differ by only one

bit, where i is the bit position index.
• The set of Plaintext-Ciphertext pairs available to the

attacker are denoted by: (Pi, Ci) and (P ′
i , C ′

i), where Pi,
P ′
i represent differential Plaintexts and Ci, C ′

i are the
corresponding encrypted outputs.

• The attacker has no prior knowledge of the secret key
employed by the algorithm.

Algorithm 4 Pseudo-code for generating Plaintext Pairs with
Unit Distance:
Output: ‘pt.bin’ ▷ (File containing plaintext pairs of unit
distance)

1: for q ← 0 to 3, 000, 000− 1 do
2: P [q]← GenerateRandomPlaintexts( )
3: P ′[q]← P [q]
4: P ′[q]← FlipRandomBit(P ′[q])
5: ‘pt.bin’← (P [q], P ′[q]) ▷ (Plaintext pairs are

appended to a binary file)
6: end for
7: return ‘pt.bin’
8: function GenerateRandomPlaintexts( ) ▷ (Generate a

random 32-byte array of plaintext)
9: for i← 0 to 31 do

10: PT [i]← Generate a random byte between 0 to 255
11: PT [i]← ByteToAsciiBit(PT [i])
12: end for
13: return PT
14: end function
15: function FlipRandomBit(B) ▷ (Single bit of 32-byte

input array is inverted)
16: i← random integer between 0 to 31
17: B[i]← (B[i]⊕ 1) ▷ (least significant bit of selected

byte is flipped)
18: return B
19: end function
20: function ByteToAsciiBit(byte) ▷ (An unsigned integer

byte is converted into ASCII representation)
21: for i← 7 to 0 do
22: byte← ((byte≫ i)⊕ 1)
23: end for
24: return byte
25: end function

2) Unit Distance Plaintext Pairs

Algorithm 4 describes the procedure for generating 32-byte
Plaintext pairs that differ by a single bit. This is accom-
plished by inverting a single bit through a XOR operation with
1. The Plaintext pairs can either be randomly generated or
assumed to be selected by an adversary, who then obtains the
corresponding Ciphertext by encrypting the Plaintext using
the MAVShield algorithm along with a randomly selected
confidential secret key. The adversary aims to intercept the
Ciphertext pairs to recover the secret key.
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B. Analysis using NIST and Diehard Statistical Suites

NIST [19] and Diehard [20] are both test suites, which are a
collection of statistical tests used to evaluate the randomness of
binary sequences produced by cryptographic random number
generators. To carry out this analysis, the following approach
has been used:

- We produce 3,000,000 pairs of Plaintext that exhibit
minimal differences in terms of bits.

- We apply the proposed algorithm to produce 3,000,000
pairs of Ciphertext for the corresponding Plaintext
pairs.

- To determine if statistical differences exist, Ciphertext
pairs are thoroughly analyzed using these test suites.

- If statistical differences are observed in the ciphertext
produced by the proposed algorithm, it indicates a flaw
or weakness in the encryption process. Therefore, there
should be no discernible patterns in the encrypted output.

Algorithm 5 Pseudo-code for generating Ciphertext Pairs:

Input: (P, P ′) ∈ ‘pt.bin’, secret key ∈ {0, 1}128
Output: ‘ct.bin’ ▷ (File containing ciphertext pairs)

1: for q ← 0 to 3, 000, 000− 1 do
2: C[q]←MAV Shield xcrypt(P [q], secret key)
3: C ′[q]←MAV Shield xcrypt(P ′[q], secret key)
4: ‘ct.bin’← (C[q], C ′[q]) ▷ (Ciphertext pairs are

appended to a binary file)
5: end for
6: return ‘ct.bin’

Algorithm 5 shows the procedure for generating
Ciphertext pairs, which are written to the binary file
“ct.bin”. The Ciphertext pairs were subjected to both the
NIST Statistical Test Suite (NSTS) and the Diehard battery
of statistical tests. The evaluation focused on p-values and
randomness metrics. For NIST, the minimum pass rate for
each statistical test is 8 for a sample size of 10 binary
sequences, with p-values needing to exceed 0.025 to be
considered successful. In contrast, the Diehard tests require
p-values to fall within the interval of 0.025 to 0.975 for a
successful outcome [36].

TABLE II
THE TABLE SHOWS THE NIST TEST RESULTS.

Tests p-value Proportion
Frequency 0.350485 10/10
Block Frequency 0.350485 10/10
Cumulative Sums 0.739918 10/10
Runs 0.350485 10/10
Longest Runs 0.035174 10/10
Linear complexity 0.911413 10/10
Approximate Entropy 0.213309 10/10
Overlapping template 0.911413 9/10
Non overlapping template 0.991468 10/10
Serial 0.991468 10/10

Table II presents the results of 10 statistical tests, which
are part of the NIST test suite, illustrating the performance
of the MAVShield encryption algorithm. These tests assess

whether the output of the cryptographic function aligns with
the statistical properties of a truly random process [19].

Among the tests conducted, the frequency test evaluates the
proportion of zeros and ones with a p-value of 0.350485 and
with a maximum pass rate of 10, and the frequency within a
block test refines this approach by assessing the proportion
of ones within fixed-length blocks, yielding a p-value of
0.350485 [37]. The cumulative sum test, which interprets the
sequence as a random walk and examines how closely its
excursions remain near zero, produces a p-value of 0.739918.
The runs test analyzes “runs” of consecutive 1s and 0s to deter-
mine if their oscillation is excessively fast or slow. In contrast,
the longest runs test verifies whether the longest sequence of
1s aligns with expectations for randomness. These two tests
yield p-values of 0.350485 and 0.035174, respectively.

The linear complexity test determines whether or not the
sequence is complex enough to be considered random, while
the approximate entropy test compares the frequency of over-
lapping blocks of two consecutive lengths against the expected
result for a random sequence; these tests produce p-values of
0.911413 and 0.213309, respectively.

Similarly, the overlapping template test rejects sequences
that show too many or too few occurrences of runs of 1s,
generating a p-value of 0.911413. The non-overlapping tem-
plate test, which evaluates the occurrences of predefined target
strings [38], produced a high p-value of 0.991468. Likewise,
the serial test determines whether the number of occurrences
of the 2m m-bit overlapping patterns is approximately the
same as expected for a random sequence [20]; it returns a p-
value of 0.991468, suggesting weak statistical evidence for any
observed differences. The analysis shows that all 3,000,000
Ciphertext pairs meet the criteria of the tests, demonstrating
that MAVShield is secure.

TABLE III
THE TABLE SHOWS THE DIEHARD TEST RESULTS.

Tests p-value Assessment
Birthday Spacing Test 0.724920 Passed
OPERM5 0.849769 Passed
Binary Rank Test (32× 32) 0.054433 Passed
Binary Rank Test (6× 8) 0.725270 Passed
OPSO 0.194492 Passed
OQSO 0.194211 Passed
DNA 0.180828 Passed
Bitstream Test 0.253896 Passed
Count-The-1’s Test on a stream of bytes 0.459584 Passed
Count-The-1’s Test for specific byte 0.626511 Passed
Parking Lot Test 0.069298 Passed
3D Sphere Test 0.084122 Passed
Squeeze Test 0.650560 Passed
Craps Test 0.597665 Passed

Next, in our security analysis of the MAVShield cipher, the
Diehard test suite is employed to rigorously assess the quality
of randomness through 14 statistical evaluations. The results
are shown in Table III. The birthday spacing test analyzes the
distribution of gaps between m random birthdays in a year
of n days, comparing it to the expected distribution to assess
the randomness quality, giving a p-value of 0.724920 [39].
The overlapping 5-permutation test (OPERM5) analyzes five-
number sequences in random integers using covariance-based
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statistics. Its p-value of 0.849769 indicates that there is no
significant deviation from the expected random distribution.
Binary rank tests analyze matrix ranks by treating columns
as axes in an N -dimensional cube. Here, the chi-squared test
results in p-values of 0.054433 (for 32 × 32 matrices) and
0.725270 (for 6 × 8 matrices) by comparing the observed
and expected rank distributions. These values indicate that
deviations are not statistically significant.

In Diehard, the test groups Bitstream, Overlapping Pairs
Sparse Occupancy (OPSO), Overlapping Quadruples Sparse
Occupancy (OQSO), and DNA are very similar. The OPSO,
OQSO, and DNA tests assess randomness by counting missing
words in generated sequences. The OPSO test (2-letter words,
10-bit segments) yields a p-value of 0.194492 over 23 runs,
shifting bits from 1–10 to 23–32 across 221+1 keystrokes.
The OQSO test (4-letter words, 5-bit segments) produces
a p-value of 0.194211 over 28 runs, shifting from 1–5 to
28–32 across 221+3 keystrokes. DNA (10-letter words, 2-bit
segments) yields a p-value of 0.180828 by analyzing 4 letters
C, G, A, T. The Bitstream test treats the file as a stream of
bits, forming overlapping 20-letter words. Missing words are
counted in 221 overlapping sequences, resulting in a p-value
of 0.253896.

The Count the 1’s tests map bytes to letters (A–E) based
on their 1s count. This test on a stream of bytes analyzes 55

overlapping words in 256,000 sequences, yielding a p-value of
0.459584, while the test on specific bytes shifts bytes across
25 runs (bits 1–8 to 25–32), producing a p-value of 0.626511.
These p-values indicate that the observed distributions align
well with the expected randomness, showing no significant
deviation from uniformity.

The Parking Lot test simulates parking a unit-radius car
in a 100 × 100 square. Each car is randomly placed, and if
a collision occurs, a new position is chosen. After 12,000
attempts, the number of successfully parked cars follows a
normal distribution and generates a p-value of 0.069298. The
3D Sphere test places 4000 points in a 100003 cube, forming
spheres to reach the nearest point. The smallest sphere’s
volume follows an exponential distribution. Transforming the
minimum cube radius maps values to a uniform [0, 1) distribu-
tion, validated by a Kolmogorov-Smirnov (K-S) test, yielding
a p-value of 0.084122.

The Squeeze test progressively “squeezes” the initial value
k = 232 down to zero by repeatedly multiplying it by a
uniform random number U in [0, 1) until k = 0, analyzing
the iteration counts J with a chi-square test, and producing
a p-value of 0.650560. The Craps test simulates 200,000
games, counting wins and throws per game. Wins follow
a normal distribution, while throws undergo a chi-square
test. Dice rolls derive from floating 32-bit integers. The test
yields a p-value of 0.597665. p-values near 0 or 1 suggest
possible non-randomness, and extreme cases (p < 0.0025 or
p > 0.9975) indicate test failure at the 0.05 significance level.
Since this is not the case, MAVShield has successfully passed
all the Diehard tests, affirming its robustness and reliability in
ensuring cryptographic security.

C. Security Analysis using Wireshark

Wireshark [34] is a network packet analyzer that runs
on the same laptop as the GCS in our testbed. Wireshark
captures network packets in real time, allowing users to see
all the data being transmitted over a network. It supports
various protocols, enabling us to analyze the details of network
communications. Wireshark displays packets in a structured
format, showing details such as timestamps, source and des-
tination IP addresses, protocols, and payload data [34]. To
introduce the MAVLink protocol in the Wireshark interface,
a mavlink 2 common.lua script is used as a plugin in
Wireshark, enabling the parsing of MAVLink messages.

Fig. 9. The figure shows a captured MAVLink 2.0 HEARTBEAT message.

Fig. 10. The figure shows a captured MAVLink 2.0 encrypted message.

Since the transport layer encrypts all MAVLink messages
during transmission if Transport Layer Security (TLS) is used,
the payload data in network packets will appear encrypted in
Wireshark. We implemented the proposed encryption scheme,
MAVShield, in the MAVLink protocol for encrypting payload
data across all message types, except the HEARTBEAT mes-
sage (message id. = 0).

Fig. 9 shows communication between the source IP address
34.117.188.166 and the destination IP address 10.59.1.129, in
the case where TLS is absent, resulting in the payload data
being unencrypted and visible. In contrast, Fig. 10 shows that
communication is still taking place between the same source
and destination addresses, but in this case, TLS is present and
the application data is encrypted, obscuring the payload as
ciphertext. This demonstrates the effectiveness of the proposed
encryption algorithm in safeguarding sensitive information in
the communication process.

VII. TECHNOLOGIES USED AND EXPERIMENTAL SETUP

In this section, we describe the software and hardware
technologies used and the experimental setup for our drone
testbed.
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A. Technologies Used

In our drone testbed, we use the following technologies:

• QGroundControl (QGC) Ground Station: It is an open
source, C++ based GCS program, which fully supports
MAVLink communication [15] and runs on an Ubuntu
22.04 laptop.

• Autopilot: It is an autonomous program that allows UAVs
to perform missions with or without the intervention of
a pilot. Autopilot is embedded into the UAV and allows
the control of the UAV movements. We use the ArduPilot
software for autopilot functions [16].

• SITL: It is a build of autopilot code that uses the
MAVLink protocol. SITL allows the simulation of a
plane, a copter, and a rover without the requirement of
any specific hardware. It is deployed with a simulated
(virtual) UAV, and is used to verify MAVLink communi-
cation before experimentation using our hardware testbed.

B. Experimental Setup

Our experimental drone setup is comprised of a Quad-
copter with a Pixhawk Cube Orange+ flight controller [17],
Radiomaster boxer radio controller [18], Holybro-SiK 433
MHz, 500 mW telemetry radio module [40], Ublox GPS with
antenna [41], LiPo 6s 10000 mAh battery [42], four motors
with electronic speed control [43] and a laptop running QGC
as the GCS. Fig. 11 shows the main components of our testbed.

The Cube Orange+ flight controller used in the testing
environment has the following characteristics:

• CPU: 32-bit, 480 MHz ARM Cortex M7 processor and
240 MHz Cortex M4 processor,

• RAM: 1 MB,
• Flash: 2 MB.

Fig. 11. The figure shows the experimental setup of our drone testbed.

We outlined a mission using 13 waypoints, as illustrated in
Fig. 12. The drone is set to take off from waypoint 1 (target
location) and, upon completing the designated mission path,
returns to its launch location. This mission is used as a test
for all the encryption algorithms that we consider.

VIII. IMPLEMENTATION

In this section, we describe our drone testbed implementa-
tion.

Fig. 12. The figure shows the mission plan displayed in QGC.

A. Implementation of the Encryption-Decryption Process

Since all the encryption algorithms we consider are based
on symmetric key cryptography, we use the same secret key
for encryption and decryption. To exchange data securely
between the GCS and the UAV, we modify MAVLink Libraries
both in QGC and ArduPilot. Specifically, we redefine the
mavlink helpers.h file, which handles the transmission, en-
coding, decoding, and reception of messages. Our encryption
and decryption schemes are incorporated in this file, and the
secret key is hard-coded in the source code. We modify three
functions in the MAVLink implementation [3]:

1) mavlink finalize message buffer: In this function,
first encryption is performed, and then the checksum of
the payload is calculated at the GCS (see Fig. 4a).

2) mav finalize message chan send: This function
is similar to the mavlink finalize message buffer
function, but it is used in the UAV.

3) mavlink frame char buffer: This function parses
the received message, i.e., it enables the decryption of the
payload message after successful checksum verification
(see Fig. 4b).

Also, the HEARTBEAT message (message id. = 0) transmit-
ted from the UAV to the GCS is intentionally left unencrypted
to ensure a continuous connection and to allow for real-time
monitoring without compromising responsiveness.

B. Mission Execution

During the testing phase, SITL and QGC were run on the
laptop. We run the sim vehicle.py file, which starts autopilot
SITL and establishes MAVLink communication between a
fictitious UAV and QGC. The encrypted reading is obtained
in the Ubuntu terminal while SITL runs on the same laptop.

After successfully verifying MAVLink communication in
SITL, a custom firmware file, arducopter.apj, is generated
for Cube Orange+ using the ArduPilot program. The mission
is conducted under moderate wind conditions, with the drone
flying at an altitude of 25 meters. During flight, the telemetry
radio module facilitates communication between the UAV and
the GCS via an RF data link operating at either 2.4 GHz or 5.8
GHz. Simultaneously, the GPS module receives signals from
multiple satellites through designated RF frequencies, ensuring
precise positioning and effective flight control.
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Fig. 13 shows the followed mission path in red. Also, Fig.
14 displays the actual drone flying in this path.

Fig. 13. The figure shows the traversed mission path in QGC.

Fig. 14. The figure shows the drone during the mission execution.

IX. PERFORMANCE EVALUATION

The ArduPilot firmware on the drone was modified twice
for ground testing: first, the standard version was used with no
encryption, and then it was replaced with a version incorporat-
ing encryption. With both the versions, the same mission plan–
shown in Fig. 12– was executed separately in a playground in
the IIT Bombay campus.

We evaluated the performance of four encryption algo-
rithms: AES, ChaCha20, Speck, and Rabbit. In our experi-
ments, AES and Speck operated in CTR mode with a 128-bit
block size. We compared the performance of these algorithms
with that of MAVShield and the unencrypted version of
the MAVLink protocol. The evaluation was based on the
following metrics: available memory (in bytes), CPU usage (as
a percentage), and battery power consumption (in milliwatts).

For each encryption algorithm integrated into the MAVLink
protocol, we conducted the same mission twice, using a
real drone to evaluate its performance. We monitored the
CPU usage and the available memory during each test at
millisecond intervals, while also estimating the UAV’s battery
power consumption during each flight session. The collected
data was analyzed and visualized through comparative graphs
to highlight the obtained results.

Figs. 15, 16, and 17 present our results for memory
availability, battery power consumption, and CPU usage, re-
spectively. Fig. 15 depicts the available RAM in the Cube
Orange+ flight controller for different security algorithms

when MAVLink communication is encrypted. The figure
shows that MAVShield exhibits the lowest memory consump-
tion among all the evaluated encryption algorithms. Fig. 16
shows that the proposed encryption technique, MAVShield,
requires only 14.39 mW, making it the most energy-efficient
option. This efficiency in power usage allows the drone
to achieve a long flight duration while maintaining secure
communication.

Fig. 15. The figure shows the available RAM under different encryption
algorithms.

Fig. 16. The figure shows the battery power consumption under different
encryption algorithms.

Fig. 17. The figure shows the CPU usage under different encryption
algorithms.

Fig. 17 shows that MAVShield has a CPU utilization of
34.69%, which indicates that it has a low computational
overhead and allows a lot of CPU resources for other critical
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TABLE IV
THE FIGURE SHOWS THE EXPERIMENTAL RESULTS FROM OUR DRONE TESTBED.

Algorithm Battery Power
Consumption (mW)

Memory
Available (B)

CPU
Usage (%)

Percentage Increase in
Battery Power Consumption

Percentage Increase in
Memory Consumption

Percentage Increase in
CPU Usage

Unencrypted 13.620 514819 33.70 - - -
MAVShield 14.390 514695 34.69 05.653 0.024 2.937
Speck 128/128 23.821 513806 33.79 74.897 0.196 0.267
Speck 128/192 21.337 513808 37.52 56.659 0.196 11.335
Speck 128/256 22.747 513806 34.94 67.012 0.196 3.679
AES 128/128 20.386 508888 35.70 49.676 1.152 5.934
ChaCha20 21.428 513808 36.12 57.327 0.196 7.181
Rabbit 23.573 513800 34.80 73.076 0.197 3.264

UAV tasks. Overall, the bar charts clearly demonstrate that
MAVShield outperforms all the other encryption algorithms.

To enable a performance comparison, Table IV shows the
experimental results from our drone testbed, corresponding
to the data presented in Figs. 15, 16, and 17. The proposed
algorithm, MAVShield, leads to only a slight increase of
2.94% in CPU utilization compared to unencrypted MAVLink.
Recall that the MAVShield encryption algorithm incorporates
three additional operations— word splitting, S-box substitu-
tion, and XOR operations— on top of two Speck 64/128
round functions. This combination results in a modestly higher
percentage increase in CPU usage compared to Speck 128/128.
In contrast, the other five encryption algorithms exhibit signifi-
cant increases in CPU utilization, which shows the efficacy of
MAVShield. In terms of memory consumption, MAVShield
results in a slight increase of only 0.024%, which is much
lower than that of all the other encryption algorithms. In
terms of battery power consumption, there is only a 5.653%
increase in usage under MAVShield relative to unencrypted
MAVLink, which indicates a high saving in battery power.
This increase is notably low compared to that under the
other encryption algorithms. In summary, our proposed cipher,
MAVShield, stands out as the top-performing algorithm and a
highly effective approach to encryption.

X. CONCLUSIONS AND FUTURE WORK

We integrated various existing encryption algorithms,
viz., AES-CTR, ChaCha20, Speck-CTR, and Rabbit, into
MAVLink. We proposed a novel cipher, MAVShield, designed
to safeguard MAVLink-based communications. Also, we per-
formed a security analysis of MAVShield, which includes a
study of 24 distinct attacks on the proposed cipher using the
NIST and Diehard test suites. Our analysis demonstrates the
robust resistance of MAVShield to differential cryptanalysis.
Also, we thoroughly evaluated the performance of all five
algorithms, viz., AES-CTR, ChaCha20, Speck-CTR, Rabbit,
and MAVShield, and compared it with that of the standard
unencrypted MAVLink protocol in terms of various metrics
such as memory usage, battery power consumption, and CPU
load, using a real drone testbed. Our performance evaluation
demonstrates that MAVShield outperforms all the other en-
cryption algorithms, and hence is well-suited for enhancing
the communication link security of MAVLink, while achieving
high performance. In summary, MAVShield is a secure and
efficient solution for protecting MAVLink-based communica-
tions in real-world deployments.

A direction for future research is to explore the algebraic
cryptanalysis of MAVShield. Another open problem is to de-
sign a key-exchange protocol for UAV-GCS communications.
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