
VIMU: Effective Physics-based Realtime Detection and Recovery
against Stealthy Attacks on UAVs

Yunbo Wang∗, Cong Sun∗B, Qiaosen Liu∗, Bingnan Su∗, Zongxu Zhang∗, Michael Norris†, Gang Tan†, Jianfeng Ma∗
∗ School of Cyber Engineering, Xidian University, China

† The Pennsylvania State University, University Park, PA, USA
Email: robertwang@stu.xidian.edu.cn, suncong@xidian.edu.cn, {man5336, gtan}@psu.edu

Abstract—Sensor attacks on robotic vehicles have become
pervasive and manipulative. Their latest advancements exploit
sensor and detector characteristics to bypass detection. Recent
security efforts have leveraged the physics-based model to
detect or mitigate sensor attacks. However, these approaches
are only resilient to a few sensor attacks and still need
improvement in detection effectiveness. We present VIMU,
an efficient sensor attack detection and resilience system for
unmanned aerial vehicles. We propose a detection algorithm,
CS-EMA, that leverages low-pass filtering to identify stealthy
gyroscope attacks while achieving an overall effective sensor
attack detection. We develop a fine-grained nonlinear physical
model with precise aerodynamic and propulsion wrench model-
ing. We also augment the state estimation with a FIFO buffer
safeguard to mitigate the impact of high-rate IMU attacks.
The proposed physical model and buffer safeguard provide an
effective system state recovery toward maintaining flight sta-
bility. We implement VIMU on PX4 autopilot. The evaluation
results demonstrate the effectiveness of VIMU in detecting and
mitigating various realistic sensor attacks, especially stealthy
attacks.

Index Terms—Cyber-Physical System, Unmanned Aerial Vehi-
cle, Security, Sensor Attack, Attack Detection, Resilience

1. Introduction

Airborne drones rely on sensor measurements for navi-
gation and flight control. The sensors continually transduce
raw physical signals into digital forms that can be interpreted
and operated by the controller software [9]. For instance, the
autopilot controller uses gyroscope measurements to track
changes in flight attitude. Autopilots use simple validation
(e.g., majority voting) by default to isolate the faulty sensor.
Although this proved efficient in handling hardware failures,
this practice is being challenged by increasingly sophisti-
cated sensor attacks.

Launching GPS spoofing attacks to take over robotic
vehicles is straightforward [15], [28], and the evolved spoof-
ing practices have been further facilitated by the widespread

The post-conference authors’ version fixed several figure display issues
(Figures 7, 8, 9, 16, 18, 19, 21) in the production of the conference-
proceeding version.
B Corresponding author.

low-cost software-defined radio platforms [21], [25]. Mean-
while, another primary sensor attack category targets the
inertial measurement unit (IMU). An IMU consists of an
accelerometer, a gyroscope, and an optional magnetometer.
The accelerometer measures changes in velocity, whereas
the gyroscope and magnetometer are critical to attitude
control. If they report erroneous measurements, the drone
will immediately lose control and crash [13], [27]. Hence,
effective attacks have been demonstrated by tampering with
the accelerometer or gyroscope readings using sound waves
at a known resonant frequency of the target sensor [27], [30],
[31] or remotely blocking the transmissions between IMU
and flight controller through electromagnetic interference
(EMI) [13].

Conventional security mechanisms, e.g., data encryp-
tion, network protection, or software-oriented mitigation,
are inadequate to protect robotic vehicles against sensor
attacks since such attacks are conducted on an orthogonal
attack surface [9]. People have used the physical invariants
intrinsic in cyber-physical systems to detect or mitigate
sensor attacks [1], [2], [11], [18]. This physics-based ap-
proach also received growing attention in robotic vehicles
due to its explainability and low overhead [5], [6], [22].
The physics-based approaches are categorized into physics-
based attack detection (PBAD) and physics-based attack
resilience (PBAR). Both rely on a physical model that
makes iterative predictions on the expected system states.
Generally, the PBAD approaches compare the predictions
with sensor measurements to detect the sensor attacks. The
PBAR approaches, on the other hand, strive to sustain
system operation by using the physical model to recover
or replace the effects of faulty sensors.

Pushing towards efficient PBAD and PBAR in robotic
vehicles, recent efforts have used the linear state-space
model to capture the physical invariants in the vehicles [5],
[6]. Using a linear model to approximate the higher-order
dynamic has been justified as analogous to the PID con-
trol [5]. However, PID control relies on accurate feedback
from the functional sensors to correct the approximation
error. In contrast, PBAD and PBAR are designed to reject
the compromised sensors, and their physical model should
continue the state prediction even without the correction
from sensors. Without such sensor-based correction, the
model performance will deteriorate as the approximation er-

ar
X

iv
:2

50
4.

20
56

9v
1

 [
cs

.C
R

]
 2

9
A

pr
 2

02
5

ror accumulates. We expect a more accurate physical model,
e.g., a well-fitted and high-order nonlinear model, to delay
this process and take effect as the basis of sensor-attack
resilience. Nonlinear physical invariant has been deployed
in PBAD [22] without considering recovery. This nonlinear
physical model does not account for the propulsion losses
caused by the electrical and mechanical factors, which
impede its usage in attack resilience. Other approaches
based on passive fault-tolerant control (FTC) [7], [8], [32]
also apply nonlinear models to capture the high-order vehi-
cle dynamic. However, these solutions’ high computational
overhead and processing latency make mitigating high-rate
IMU attacks harder [13].

Besides the model’s accuracy and efficiency, there are
more security concerns in state-of-the-art approaches. First,
existing PBAD and PBAR approaches [5], [6], [22] use
statistic-based attack detection. However, they are limited
in differentiating the measurement noise of each sensor
(e.g., gyroscope) from the detection statistics, leaving a
loose alarm threshold for advanced adversaries to conduct
stealthy attacks. Second, high-rate IMU attacks can crash
the drone within one sampling interval [13], [14]. Existing
PBAD and PBAR approaches cannot identify such attacks
before the faulty data enters the estimator and control loop.
Third, passive FTC approaches [7], [8] accept all sensor
measurements without validation, allowing the adversary
to manipulate the flight control freely through vulnerable
sensor data. Fourth, the state-of-the-art PBAR approach [5]
requires a functional accelerometer for recovery when all
gyroscopes are compromised. As both sensors belong to
IMU, such recovery dependency is exposed to attacks that
corrupt all transmissions between IMUs and autopilot [13].

Regarding the above limitations, we emphasize four
criteria for an effective PBAR: 1) an accurate physical
model that supports long recovery duration, 2) an effective
detection algorithm with tightened thresholds to restrain
stealthy sensor attacks, 3) a delay mechanism avoiding high-
rate attack data reaching the state estimates before being
detected, and 4) an efficient implementation meeting the
timing and resources of real hardware. In this work, we
present Virtual IMU (VIMU), a new PBAR framework to
address sensor attacks, esp. stealthy attacks, against aerial
vehicles. We tighten alarm thresholds with a new detection
algorithm, CS-EMA. CS-EMA extends Cumulative Sum
(CUSUM) with a residual-capped EMA detector, which
also works as a low-pass filter to distinguish the persistent
deviation from high-frequency measurement noises. Then,
we use a nonlinear physical model that includes precise
submodels on aerodynamic drag and propulsion wrench to
achieve a recovery performance better than the state-of-the-
art PBAR [5] and the nonlinear model of [22]. To address the
high-rate IMU attacks, we design a FIFO buffer safeguard
that prevents faulty data from reaching the state estimates
immediately. We summarize our contributions as follows:
1. We found that specific measurement noise, e.g., the gy-

roscope’s white noise, can be filtered out to improve de-
tection effectiveness. Our detection algorithm, CS-EMA,
outperforms the detection algorithms of the state-of-the-

art PBAD [6], [22] and PBAR [5] in effectiveness against
the overt and stealthy gyroscope attacks of [10], [22],
[31]. CS-EMA detector identifies more stealthy attacks
than the detectors of [5], [6], [22].

2. We propose the buffer safeguard to protect the integrity of
UAV’s reference states from instant attack injection. With
the fine-grained physical model and buffer safeguard,
VIMU surpasses the existing PBAR [5] and the nonlinear
physical model of [22] in recovery duration. Even when
all IMUs are compromised, VIMU can sustain flight
stability longer without relying on the accelerometer or
external system, as opposed to [5].

3. We implement VIMU in PX4 autopilot. We demon-
strate that our implementation meets the timing and
resources on real hardware (CUAV v5+). Our imple-
mentation is available at https://github.com/wangwwno1/
Project-VIMU.

2. Adversary Model

We target a similar adversary model to [5], [22]. The
adversary can inject false signals into multiple sensors and
obtain the following knowledge to carry out the attack:
1. Vehicle’s hardware specifications and physical properties.
2. The parameter settings of the autopilot program and its

anomaly detector, if the anomaly detector is available.
3. The maneuver commands from the autopilot or human

operator.
Our detection approach identifies sensor attacks based on the
deviation of sensor measurements from the predicted state
of the physical model, which requires an accurate system
state estimation at the initialization of VIMU. Since VIMU
is designed to launch simultaneously with the autopilot
controller, we assume the autopilot controller can acquire
the drone’s accurate initial system state, including position,
velocity, and attitude. We assume the actuators’ correct
functionality to ensure our physical model can predict the
system states with the actuator commands from the autopilot
controller. Thus, handling the faulty actuators is out of our
scope. The faulty actuators can be addressed by the fault-
tolerant control approaches [7], [8], [37], [38], but such
approaches require further efforts to reduce computational
delay and meet the real-time constraints. Although our ap-
proach can tolerate considerable wind disturbances on GPS
and gyroscope, detecting and mitigating more violent exter-
nal disturbances, e.g., physical collisions or the proximity
to obstacles, are out of our scope. These disturbances can
be discriminated through existing solutions, e.g., contact
detection [29] or ground effect model [3]. Moreover, the
attack surface of software and cyber attacks is orthogonal
to the sensor attacks addressed in this work. Mitigating these
threats is also beyond our scope.

3. Design of VIMU

VIMU is a physics-based attack resilience solution. It
attains attack resistance by providing the autopilot with

https://github.com/wangwwno1/Project-VIMU
https://github.com/wangwwno1/Project-VIMU

Online

Anomaly

Detectors

Control Module

Recovery

Monitor
 Physical Model

Detector

Sensor
Sensor
Sensor

Detector
Detector
 State Estimators

from Autopilot

u(t)

Sensor
Sensor
Actuators

State Estimator
from VIMU

u(t)

Hardware

Software Module

SetpointEstimation

Validated Measurement

Measurement

Reference State

Figure 1. High-level Overview of VIMU Modules

uninterrupted state estimates even when the sensors are
subjected to attack. VIMU has four modules: anomaly
detectors, a recovery monitor, a state estimator, and a
physical model. Fig. 1 shows the block diagram of VIMU.
The anomaly detectors (VIMU-AD) identify compromised
sensors. The recovery monitor (VIMU-RM) selects depend-
able data sources based on the detection results. The state
estimator (VIMU-SE) combines predictions from the non-
linear physical model (VIMU-PM) with available sensor
measurements to provide a reliable estimate of system states.
We denote the estimates from VIMU-SE and VIMU-PM as
reference states, in contrast to the estimates provided by
state estimators from the autopilot. When the system is not
under attack, VIMU ensures the estimates from the vanilla
estimators converge to the reference states, as both estimated
states are subject to the same physical laws. VIMU carries
out the following functionalities to protect flight safety:
1. Anomaly detection and recovery. The first step towards

attack resilience is to detect and isolate compromised
sensors. The anomaly detector compares the reference
states with sensor measurements to determine whether
the sensor instance is compromised (Section 3.2). The
recovery monitor enforces the lattice-based recovery poli-
cies, filters out compromised sensor data, and delivers
the remaining measurements to all state estimators (Sec-
tion 3.3). As compromised sensors get isolated, the state
estimators with available inputs, including VIMU-SE,
accurately estimate the system state, ensuring the safe
control of autopilot.

2. Uninterrupted estimation for flight control. Vanilla state
estimators in autopilot rely on IMU measurements to
update their estimates. This design fails when all IMU
instances are compromised. Accepting false sensor data
disturbs the estimated state. On the other hand, isolat-
ing the compromised sensor instances will interrupt the
vanilla estimators updating estimates. In both cases, the
flight controller no longer tracks the system state, leading
to an instant control loss. The reference state serves as a
backup of existing estimates (Section 3.3). The physical
model (Section 3.1) takes the last setpoint of actuator
output issued by the controller as the control input u(t)
to update its reference states. VIMU-SE takes these
reference states and the measurements of uncompromised
IMUs to update the estimates of VIMU-SE (Section 3.4).
This update process is iterative and works even without
an operational IMU. When all IMUs get compromised,

TABLE 1. PHYSICAL PARAMETERS OF NONLINEAR PHYSICAL MODEL

Param Definition
M Mass of the drone
l Distance from the motor to the airframe CoG
I 3×3 symmetric matrix of airframe’s moment of inertia. It comprises 3

diagonal terms (Ixx, Iyy, Izz) and 3 non-diagonal terms (Ixy, Ixz, Iyz)
CT thrust coefficient
CQ torque coefficient
CQ,r coefficient of rotor’s gyroscopic moment
tDC time constant for the rotor speed to rise or fall
Vref nominal voltage when the battery module has charged to full capacity
T̄Min the minimum command to spin up the rotor
T̄Range the range of the motor command
Rint battery internal resistance
Cm momentum drag coefficient
Cbxy horizontal ballistic coefficient vector [Cbx, Cby, 0]

T , s.t. Cbx and Cby

are the forward and right direction of airframe, respectively

the control module switches to the reference states for
flight control, thus ensuring continuous operation under
attack.

3.1. Nonlinear Physical Model

The drone’s airframe type impacts the concrete design
of the physical model. However, different physical models
generally follow the same development process. This work
uses a quadcopter as the demonstration platform. Without
loss of generality, we follow the common assumptions of
prior works on physical model design [17], [22], [29], [34]:
1) The airframe is rigid and symmetrical. 2) All motors and
propellers are rigid and produce the same thrust and torque.
Each motor has the same distance to the airframe’s center
of gravity (CoG), leading to a coincidence of CoG with the
center of thrust. 3) The Coriolis force and the aerodynamic
torque are negligible due to the quadcopter’s low flight speed
and limited attitude changes.

Our nonlinear physical model is instantiated by deciding
the following physical parameters:

P :={M, l, I, CT , CQ, CQ,r, tDC, T̄Min, T̄Range, Vref, Rint,

Cm,Cbxy} (1)

Table 1 presents their definitions in detail. Specifically, CT ,
CQ, CQ,r, tDC, T̄Min, T̄Range, Vref, and Rint are related to
the propulsion system. Cm and Cbxy are related to the
aerodynamic drag. The parameters for each drone type are
determined by the measuring and learning procedure in
Appendix A.

The nonlinear physical model F specifies the relations
between the physical parameters P , the system state x(t),
and the control input u(t). With the relation

x(t+ 1) = FP(x(t),u(t)) (2)

we can predict the runtime system states x(t). A precise
physical model can accurately predict the drone’s motion,
improving the effectiveness of attack detection and recovery.
Compared with SAVIOR’s physical model [22], our physical
model specifies the thrust estimation and the aerodynamic
drag on the airframe more accurately. To illustrate our phys-

ical model, we concretize x(t) and u(t) into the following
states and control inputs:

x = [p,v,a,R, ω, Vload, iload,vw, ρ]
T (3)

u = [T̄1, T̄2, T̄3, T̄4]
T (4)

All the states in x and inputs in u are timestamped. The
system position p is the Cartesian coordinates of the CoG. v
is the linear velocity. a is the linear acceleration. The system
attitude R is a 3-axis rotation matrix, and ω = [ωϕ, ωθ, ωψ]

T

is the angular velocity specifying how fast the attitude
changes along the roll(ϕ), pitch(θ), and yaw(ψ) axes.

The relationships between p, v, a, R, and ω are well-
defined in the rigid body model [29]. To bridge the relation-
ship between x(t) and u(t), we summarize the rigid body
equations as follows:

a = ge3 +R(ac + ad) (5)
ω̇ = I−1([Iω]×ω +mc) (6)

In (5), the linear acceleration a is composed of the grav-
itational acceleration g, the acceleration from the control
wrench (ac), and the aerodynamic drag (ad). The unit vector
e3 = [0, 0, 1]T at the z-axis combines g into a, which
is located in the North-East-Down (NED) inertial frame.
However, both ac and ad are located in a different reference
frame, the Forward-Right-Down (FRD) body frame. There-
fore, they are multiplied by R to align with the NED frame.
In (6), the angular acceleration ω̇ = [ω̇ϕ, ω̇θ, ω̇ψ]

T is decided
by the angular momentum from the airframe ([Iωt]×ωt) and
the control torque from the actuators (mc). [·]× is the skew-
symmetric matrix operator. ac, ad, and mc capture the non-
gravitational wrenches applied on the airframe. ac and mc

are not measurable during the flight, but they are correlated
with the measurable rotor speed ϖi and rotor acceleration
ϖ̇i, i ∈ [1...4], as shown in [29]. Specifically, we estimate
ac and mc with the following equations:

ac =
CT
M

(
ϖ2

1 +ϖ2
2 +ϖ2

3 +ϖ2
4

)
e3 (7)

mc =


CT l

(
ϖ2

2 +ϖ2
3 −ϖ2

1 −ϖ2
4

)
,

CT l
(
ϖ2

1 +ϖ2
3 −ϖ2

2 −ϖ2
4

)
,

CQ
(
ϖ2

1 +ϖ2
2 −ϖ2

3 −ϖ2
4

)
+

CQ,r (ϖ̇1 + ϖ̇2 − ϖ̇3 − ϖ̇4)

 (8)

Measuring ϖi requires extra sensors. Therefore, we use the
estimated relative thrust T̂ i ≥ 0 as the approximation of
ϖi. Given the actuator setpoint T̄i of u(t), we adjust T̄i by
the battery voltage [3] and update T̂ i [19]:

T̄
′

i (t) =
T̄i(t)− T̄Min

T̄Range
· Vload(t) +Rint · iload(t)

Vref
(9)

T̂i(t) = αT̂i(t− 1) + (1− α)T̄
′

i (t) (10)

where T̂i(0) = T̄
′

i (0). α = exp(−∆t
tDC

). ∆t is the system
control interval. Vload and iload are the voltage and current
measured by the battery power module. Equations (9) and
(10) provide a more accurate estimation on actual thrust by
compensating the voltage drop, mechanical frictions, and the
time delay in rotor speed changes.

Normal

Estimator
Detector

Sensor

(Normal)

Sensor

(Attacked)

Estimator
Detector

Alarm!

Measurement
Validated Measurement Corrupted Measurement

ReferenceSetpoint / Detection Statistic

Attack

Figure 2. Workflow of Anomaly Detection

We estimate the drag-induced acceleration ad based
on [29]:

ad = Cmvr +
1

2
ρCbxy∥vr∥vr (11)

where vr = RT (v− vw) is the relative airspeed. vw is the
estimated wind velocity in the NED frame and is obtainable
through multi-sensor fusion. ρ is the air density provided by
the barometer. ∥·∥ is the vector norm.

3.2. Online Anomaly Detection

Let x̂(t) and x̃(t) be the reference states and sensor
measurements, respectively. Given a sensor instance i of
type j that measures x̃ji (t) on a subset of system states
xj(t) ⊆ x(t), the residual rji (t) is defined as

rji (t) = x̃ji (t)− x̂j(t) (12)

If measurements from this instance significantly deviate
from the reference state, the detector raises the alarm to
block such a sensor instance from participating in sensor
fusion. State-of-the-art detection approaches [5], [6], [22]
take residuals as input and compute a detection statistic
Si(t) to quantify the deviation. For example, the statistic
is defined as the average of the squared residuals [6] or
the cumulative absolute residuals [5] within a fixed time
window. CUSUM [35] used by [22] tracks the historical
change in residuals and performs better than the time-
window detectors [5], [6] in detecting persistent threats [33].
For each residual ri(t), CUSUM calculates the detection
statistic Si(t) iteratively based on the following equation:

Si(t) = max(0, Si(t− 1) + |ri(t)| − bi) (13)

where Si(0) = 0, and bi > 0 is the mean shift to suppress
the increment of Si(t) when there is no attack. The detec-
tor raises the alarm upon Si(t) exceeding the predefined
threshold.

However, the specificity of CUSUM would deteriorate
when the monitored sensor exhibits intense measurement
noise (e.g., white noise, random walk). The measurement
noise affects the sensor data, and a significant presence
of noise expands the discrepancy between sensor measure-
ments and reference states (Equation (12)), leading to an in-
crement of the absolute residual |ri(t)| used in the CUSUM

algorithm. As a result, CUSUM requires a higher mean shift
to suppress the false alarm, allowing the adversary to bypass
the detection. For example, the gyroscope measurements are
prone to frequent fluctuations caused by airframe vibrations.
To avoid false alarms, the CUSUM detector on gyroscopes
has to be configured with a relatively loose mean shift bi,
allowing us to inject a deviation of only 0.04 rad/s to crash
the drone while maintaining |ri(t)| < bi. According to (13),
this deviation keeps the Si(t) below the detection threshold,
and the CUSUM detector will raise no alarm.

To achieve a more robust detection, we propose Cu-
mulative Sum-Exponential Moving Average (CS-EMA) as
our detection algorithm. CS-EMA extends CUSUM with
a residual-capped EMA detector, which filters white noise
from the input to exhibit the persistent component of devi-
ations:

Si(t) = |MAi(t)| (14)
MAi(t) = λ · r′i(t) + (1− λ) ·MAi(t− 1) (15)

r′i(t) = max(min(ri(t),+R),−R) (16)

where 0 < λ ≤ 1 scales the impact of newest deviation on
the moving average MAi(t). Smaller λ provides stronger
noise filtering ability but requires a longer time to detect
the attack. The cap R is a positive value greater than the
detection threshold, which defines a hard limit on how much
each deviation can impact on the moving average. Smaller R
boosts the relative importance of minor deviations, making
the detector focuses on deviations falling into the [−R,+R]
interval. CS-EMA raises the alarm if the Si(t) produced
by the CUSUM component (Equation (13)) or the EMA
component (Equation (14)) exceeds the alarm threshold.

Our detection approach (VIMU-AD) applies the CS-
EMA algorithm on each sensor instance. An instance may
measure more than one system state. For example, GPS
measures position and velocity (x̃GPS = {p̃, ṽ}). In that
case, each measured state will employ an independent detec-
tor. Any alarm from these detectors indicates a compromised
sensor instance, and the recovery monitor (VIMU-RM) will
discharge this instance from the sensor fusion. Fig. 2 depicts
the relationships between the detector, state estimator, and
the monitored sensor instance. This detection workflow is
neutral to sensor types. Each detector responds to every
update of its corresponding sensor measurements. Thus,
the update rate of Si(t) follows the sampling rate of the
monitored sensor instance.

3.3. Sensor Isolation and State Recovery

The recovery monitor (VIMU-RM) handles the compro-
mised sensor instance identified by the anomaly detectors
(VIMU-AD). The monitoring procedure comprises two steps
in each iteration: sensor isolation (SI) and system state
recovery (SSR). When any anomaly detector updates its
detection result, the SI step formulates a validated sensor
list by filtering out the compromised sensor instances. Then,
based on a predefined policy, the SSR step picks the best
sources from the validated sensor measurements and the

({BAR1,BAR2},_,{VIMU-SE})

({BAR1},_,{VIMU-SE}) ({BAR2},_,{VIMU-SE})

(^,{GPS},{VIMU-SE})

(^,^,{VIMU-SE})

{BAR1,BAR2}

{BAR1} {BAR2}

^

{IMU1,IMU2}

{IMU1} {IMU2}

^

{GPS}

^

• {VIMU-SE}

(a)

(c)

(b)

(d)

(f)

({IMU1,IMU2},{VIMU-SE})

({IMU1},{VIMU-SE}) ({IMU2},{VIMU-SE})

(^,{VIMU-SE})
(e)

Figure 3. Lattice-based Recovery Policy for Flight Altitude (pz) and
Angular Velocity (ω). “ ” Stands for Any Possible Cases and “⊥” Stands
for Sensor Instances are Compromised

reference state. After that, the recovery monitor sends the
selected data to the control module and state estimators.

For each system state, the validated sensor measure-
ments determined in the SI step combine with the reference
state from VIMU-SE to form an available data source list.
The reference state is always treated as an available data
source to prevent the interruption of state estimation and
flight control. For example, on a drone with two redundant
IMUs, the default available source list of angular veloc-
ity ω is {ω̃IMU

1 , ω̃IMU
2 , ω̂VIMU} with ω̂VIMU as the reference

state from VIMU-SE. When VIMU-AD detects the instance
IMU1 is under attack, VIMU-RM will remove the source
ω̃IMU
1 in the SI step, and the available altitude source list

becomes {ω̃IMU
2 , ω̂VIMU}.

The SSR step determines which data source in the
available data source list is the most reliable and accurate.
Since the quality of data sources varies by the sensor type
and the physical model, we propose a lattice-based recovery
policy for recovering each system state. For each system
state x(t), we formulate a partial order (Rx(t), <) to define
the sensor type priority. For example, (Rpz , <) for the
flight altitude pz is VIMU-SE<GPS<BAR, and (Rω, <)
for the angular velocity is VIMU-SE<IMU. Thus, (p̃z)BAR

and ω̃IMU have the highest priority in respective case. We
define the compromise lattice of each sensor type, e.g.,
Fig. 3(a)-(d). Following the priority order relation, we make
the ordered multiplications over the compromise lattices to
build our lattice-based recovery policy.

The recovery policy lattices for ω and pz are abstracted
in Fig. 3(e) and (f), respectively. Each element in Fig. 3(e)
and (f) represents a data source list status under potential
sensor attacks. In each status, VIMU-RM chooses the sensor
instance from the leftmost valid sensor type (i.e., in best
quality). The recovery monitor is initialized at the uppermost
data source list status and will do its best to stay within an
upper status in the lattice as long as possible unless the
attack identified by VIMU-AD forces VIMU-RM change
to a less qualified status in the lattice. Finally, VIMU-
RM could reach a status with only VIMU-SE’s reference
state as the valid data source. For example, when all IMUs
are compromised, VIMU-RM follows the recovery policy
of ω to reach the status (⊥,{VIMU-SE}) of Fig. 3(e),
which means the control module receives the uninterrupted
reference angular velocity (ω̂)VIMU for flight control.

Thrust Model

Front-End EKF

FIFO Buffer

Rigid-body model
on Angular Velocity

Alarm Signal

Control Module

Reference before/after fusion
State SetpointReference StateMeasurement

Validated Measurement

Back-End EKF

Detectors &
Recovery Mon.

FIFO BufferFIFO BufferFIFO Buffer

Sensor
Sensor
IMUs

Figure 4. Workflow of Front-End EKF of VIMU-SE

3.4. State Estimator and Buffer Safeguard

Our fine-grained physical model can accurately capture
the transition of the system states. However, due to the
model bias and external perturbation, the model prediction
could still slightly deviate from the actual system state.
Such deviation can accumulate over time during the flight.
Therefore, VIMU’s state estimator (VIMU-SE) uses a pair
of Extended Kalman Filters (EKF) in a cascaded pattern to
periodically rectify the deviation with benign measurements
from the operational sensors. The front-end EKF fuses the
current angular velocity ω̂− (predicted by (6)) with IMU
measurements ω̃ to produce the corrected estimate ω̂+.
Then, the back-end EKF updates the reference states with
ω̂+ and available measurements of position, speed, and
attitude. This process further rectifies ω̂+ with other sensor
data to derive the reference angular velocity ω̂ given to the
anomaly detectors and recovery monitor.

The back-end EKF uses a structure similar to the vanilla
state estimator in the autopilot. However, to address IMU at-
tacks, the design of the front-end EKF is nontrivial (Fig. 4).
An advanced adversary can delay the alarm to several
hundred milliseconds after the attack. Considering the high
sampling rate of IMU sensors (from a hundred to thousands
hertz), such a time delay allows the attacker to inject a
remarkable bias into the reference state, rendering detection
and recovery inoperable [10], [13]. To address this threat,
we develop first-in-first-out (FIFO) buffers in the front-end
EKF as the safeguard between the recent measurements
and angular velocity estimates: 1) Measurement buffers:
The front-end EKF holds one measurement buffer for each
IMU instance to introduce a time delay to the sensor mea-
surements. 2) Estimate buffer: The estimate buffer raises a
similar time delay to align the timing of estimates with the
delayed sensor measurements for a correct sensor fusion.

Even if the alarm has been delayed, such buffers can
prevent the faulty data from being immediately fused into
the estimation. At each iteration of state estimation, the
front-end EKF first checks the detection report from VIMU-
RM. If VIMU-RM reports a compromised IMU instance,
the EKF will remove all IMU measurements stored in the
corresponding buffer to prevent the potential attack. Then,

the EKF updates the estimation with (6), pushes the newest
estimate into, and pops the oldest estimate from the estimate
buffer. After that, the EKF iterates over the measurement
buffers to find a validated and time-aligned IMU measure-
ment. Such a measurement can be unavailable due to the
sensor attack. In that case, the front-end EKF will output
ω̂− to the back-end EKF and let it correct the estimate with
other sensors. Otherwise, it pops the IMU measurement out
from the buffer to perform sensor fusion. The sensor fusion
in each iteration proceeds as follows: the EKF calculates
a residual between the delayed estimate and measurement,
adds the residual to the newest estimate ω̂−(t), and outputs
the corrected estimate ω̂+(t). The same residuals are also
added to the estimates in the estimate buffer to cumulate the
corrections over time. The buffer size is determined by:

sizebuffer := 1 + ⌈Tbuf ·H⌉ (17)

where Tbuf is the desired time to hold the received measure-
ments, and H is the output rate of the stored data.

With the FIFO buffer safeguard, we can further
strengthen the integrity of reference states even under
stealthy IMU attacks. However, using our buffer safeguard
could increase the bias in reference angular velocity be-
cause of the delayed sensor fusion. Such bias causes a
modest reduction in the detector specificity, especially for
CUSUM. Our CS-EMA algorithm does not rely on the
CUSUM component to identify stealthy attacks. Therefore,
we add an extra reference angular velocity for the CS-EMA
detectors that monitor the gyroscope. This reference state
is received by the CUSUM component of CS-EMA and is
corrected by the newest IMU measurements to shorten the
detection delay towards overt attacks. As both improvements
work independently, the extra reference improves the overall
performance of the CS-EMA detector while maintaining its
robustness towards stealthy attacks.

4. Implementation

4.1. Security-Enhanced Autopilot

We implement VIMU on PX4 v1.13.3. We add new
message formats to the PX4 architecture for reference state
and sensor health status. Then, we implement the detection
algorithms as a library, including CS-EMA, CUSUM, and
the time-window detections [5], [6]. We insert VIMU-AD
into the sensor middlewares and modules to ensure the
detection covers all received measurements. The detector
location depends on the sensor type. For example, we insert
the detectors for the gyroscope and accelerometer into the
middleware PX4Gyroscope and PX4Accelerometer.
For other sensors, we implement detectors in their data pro-
cessing modules (e.g., vehicle_gps_position). We
implement VIMU-RM in the state estimation (EKF2) and
estimator selector (EKF2Selector) modules. The recov-
ery monitor receives the runtime detection results. Its IMU-
related component in EKF2Selector applies the IMU-
related recovery policies (e.g., Fig. 3(e)) to isolate com-

TABLE 2. SENSOR ATTACKS USED IN OUR EVALUATION

Category Notation Description

Overt

OAGPS Injecting spoofed GPS positions [5], [6], [22]

OAGPS-PV
Combines position and velocity spoofing to deviate a
hovering drone with faked GPS signal [23]

OA2/3
Gyro Modulated acoustic attacks injecting controlled fixed

deviation to target gyroscopes or accelerometers [10].
The gyroscope attacks follow the scenarios in [5].

OA3/3
Gyro

OA3/3
Accel

OA3/3
ICM20602

OA3/3
ICM20689

Unmodulated acoustic attacks injecting sinusoidal at-
tack signal into gyroscope measurements of two IMU
models: ICM20602 and ICM20689 [14], [31]

OA2/2
Baro Injecting fixed deviations to all barometers [5]

OA2/2
Mag Injecting fixed deviations to all magnetometers [20]

Stealthy
SAGPS Stealthy position spoofing [22]

SA3/3
Gyro Stealthy gyroscope attack [10] following the scenario

of [22]

Multi-Type MA*

A combination of multiple overt attacks [5], [16], [20]
for testing recovery effectiveness. Especially, attack
MAMag|Accel|Gyro is equivalent in impact to the EMI
attack of [13] according to the implementation of [16]

promised IMUs by orderly responding to the angular ve-
locity, acceleration, and attitude errors. Similarly, VIMU-
RM’s IMU-unrelated component in EKF2 applies the IMU-
unrelated policies (e.g., Fig. 3(f)) to isolate other sensors
by orderly responding to the horizontal position, altitude,
and velocity errors. We incorporate the physical model into
the two cascaded EKFs of VIMU-SE. For angular velocity
estimation, we add a new module (VirtualIMU) to the
autopilot. This module integrates the front-end EKF and
the nonlinear physical model. It uses actuator setpoints
from the actuator_outputs message to update current
acceleration and angular velocity. For the back-end EKF,
we reuse the existing EKF2 module as it already provides
estimation and sensor fusion in the position, velocity, and
attitude states. When all hardware IMUs are compromised,
EKF2Selector will switch to the VIMU-SE for state
estimation, thus preventing the in-flight control loss leading
to drone crashes.

4.2. Sensor Attack Simulation

Following [5], [6], [22], we simulate sensor attacks by
instrumenting attack code into the sensor middleware and
modules of the autopilot. These middlewares and modules
convert raw sensor readings (e.g., pressure, currents, and
magnetic field strength) into measurements of system states
(e.g., position, acceleration, and attitude) before delivering
them to the state estimators and control module. Modifying
those measurements within the autopilot to imitate the im-
pact of injected attack signals has also been adopted in [8],
[37], [38]. These software-based attacks also allow us to
efficiently apply attacks on various sensors with diverse
attack amplitudes.

The number and kinds of victim sensors vary by the
attack type. Table 2 presents the sensor attacks used in
our evaluations, including all sensor attacks from baseline
approaches [5], [6], [22] and several recent popular attacks
[10], [13], [20], [23], [31]. We denote the attack in the
form of attack category#compr/#avail

sensor type (deviation). Specifically,

we implement overt attacks (OA), stealthy attacks (SA), and
multi-type attacks (MA) on different sensor types (GPS,
Gyro, Accel, Baro, or in combination). #compr and #avail
respectively represent the number of compromised and avail-
able sensor instances, which are omitted if only one instance
exists in the drone. The deviation specifies the amplitude
of injected deviation to the compromised instances, which
could be constant or time-dependent. More specifically,
the adversary of the modulated acoustic attacks spoofs
the majority (OA2/3

Gyro) or all (OA3/3
Gyro) of the gyroscopes,

misleading the drone’s majority voting to discharge the
operational gyroscope or even disabling all redundant IMUs.
The unmodulated acoustic attacks (OA3/3

ICM20602,OA3/3
ICM20689)

follow the principle of [31] to compromise our quadcopter’s
gyroscopes ICM20602 and ICM20689. The time-dependent
deviation is defined as Ai ·cos (2πFi · t), where t is the time
elapsed since the attack, Ai ∈ (0, Amax] is the induced am-
plitude (Amax is the maximum induced amplitude), and Fi
is the induced acoustic frequency. Amax and Fi are decided
by the targeted sensor model. According to [14], we have
Amax= 0.927 rad/s and Fi= 19.7 Hz for OA3/3

ICM20602; Amax=
1.899 rad/s and Fi= 205.9 Hz for OA3/3

ICM20689, respectively.
The overt attacks represent the common attack scenarios.

However, the most threatening attacks against PBAD are
the stealthy attacks [22], [33]. Stealthy attackers know the
victim drone’s characteristics, e.g., mission plan, reference
states, detection algorithm and parameters. Since VIMU and
the related PBAR approach [5] require a prior detection
alarm to initialize the recovery procedure, stealthy attacks
can prevent or delay the recovery effects, causing more
significant damage. The stealthy attacks SAGPS and SA3/3

Gyro
in Table 2 adaptively inject a minor deviation to all target
sensor instances, maximizing the attack effect without trig-
gering the alarm. Specifically, the attacker tries injecting
a series of attack signals x̃∗i (t) into the targeted sensor
instance i to maximize the deviation misleading the system
behaviors while holding the detection statistic Si(t) under
the alarm threshold τ :

r∗i (t) = x̃i(t) + x̃∗i (t)− x̂i(t) (18)
argmax
x̃∗
i (t)

|r∗i (t)| s.t. Si(t) ≤ τi (19)

where r∗i (t) is the residual that includes x̃∗i (t). The most
effective x̃∗i (t) depends on the detector parameters and the
difference between measurement x̃i(t) and reference state
x̂i(t). Finally, the multi-type attacks in Table 2 apply all-
instance overt attacks on multiple sensor types simulta-
neously. Following the setup of [16], we use the attack
MAMag|Accel|Gyro to simulate the impact of the EMI at-
tack [13] on the simulator.

5. Evaluation

5.1. Experimental Setup

5.1.1. Testbed. We evaluate VIMU with quadcopters in
simulation and real-world flight. We use the default simula-

TABLE 3. LIST OF SENSORS OF REAL WORLD DRONE

Sensor Type Product Type Number Measurement
GPS Module Neo V2 1 Position and Velocity

ICM20602 1 Acceleration
IMU ICM20689 1 and

BMI055 1 Angular Velocity
Magnetometer IST8310 2 Attitude

Barometer MS5611 2 Vertical Position

tor of PX4 autopilot, i.e., jMAVSim, and its default quadro-
tor as the simulation testbed. Wind is a common external
disturbance in flight. Thus, we evaluate the robustness of
VIMU with the wind simulation enabled (more results in
Appendix C.3). We also activate all the detectors throughout
experiments rather than only those of the sensors under
attack. This setting can reveal how the recovery performance
is affected by detection delay and false alarms. For the
real-world evaluations, we assemble a quadcopter with a
ZD550 airframe. The autopilot board is a CUAV V5+, with
a 216MHz Arm Cortex-M7 CPU and 512 kB RAM for
runtime memory. We calibrate all sensors before real-flight
tests, and Table 3 lists the sensors used by this drone.
Throughout the evaluation, we use QGroundControl as the
ground control station and communicate with the drone
through the Mavlink v2.0 protocol.

5.1.2. Baselines. We compare VIMU with the following
approaches, including the variants of VIMU and the state-
of-the-art PBAD [6], [22] and PBAR [5] approaches.
- Control Invariant1 (CI) [6] uses a linear state-space model

to obtain the expected system state and applies a squared
error time-window detector (denoted as L2TW).

- Software-based Real-time Recovery2 (SRR) [5] reuses the
linear model for recovery and applies a time-window
detector based on the absolute error (denoted as L1TW).

- SAVIOR3 [22] predicts system states with a nonlinear
physical model and applies CUSUM for detection.

- SAVIOR-Buffer3 is a PBAR approach that extends SAV-
IOR with the recovery monitor (Section 3.3) and FIFO-
buffer guarded state estimation (Section 3.4). It also de-
livers the estimated state as an available data source for
the SSR step in Section 3.3.

- VIMU-CS4 is a variant of VIMU that replaces CS-EMA
with the CUSUM detector to demonstrate the contribution
of our detector.

- VIMU-NoBuffer5 is a variant of VIMU that discharges
FIFO buffers to demonstrate the contribution of buffer
safeguard. This variant’s reference state is corrected with
the newest IMU measurements.

The original implementations of [5], [6], [22] are on dif-
ferent autopilots and simulators. Therefore, we reimplement
these baselines on PX4 autopilot v1.13.3 to ensure a fair

1https://github.com/wangwwno1/Project-VIMU/tree/baseline/CI
2https://github.com/wangwwno1/Project-VIMU/tree/baseline/SRR
3https://github.com/wangwwno1/Project-VIMU/tree/baseline/SAVIOR
4https://github.com/wangwwno1/Project-VIMU/tree/baseline/

Virtual-IMU+CUSUM-Detector
5https://github.com/wangwwno1/Project-VIMU

comparison. We obtain CS-EMA detector parameters and
follow the procedures described in [5], [6], [22] to obtain the
model and detector parameters (Appendix B). Comparing
VIMU with machine-learning-based approaches, i.e., [7],
[8], [14], is out of our scope due to their high computational
overheads and the difficulty of deployment over low-end
drones.

5.1.3. Data Collection. We design three missions to repre-
sent the most common flight states of drones. 1) Hovering:
Taking off to an altitude of 15m before flying horizontally
to a preset waypoint located 10m north and 10m east of
the launch point. Then, hovering for 300 seconds before
returning to the home. 2) Moving: Taking off to an altitude of
50m before flying horizontally to the same preset waypoint.
Then, flying horizontally to the northeast for a distance of
1,000m before returning to the home. 3) Maneuver: Taking
off to an altitude of 15m. Then, flying horizontally in an
equilateral-triangle route with an edge length of 2.5m. On
this route, the drone changes its direction between clockwise
and counter-clockwise for ten times whenever reaching the
initial hovering point. In the flight, we randomly pick one
waypoint from the flight direction changing point or the
triangle vertices, as the preset waypoint. In Section 5, we
mainly present VIMU’s effectiveness with the Hovering and
Moving scenarios. We discuss the impact of drastic maneu-
vers (e.g., rapid acceleration and sharp turns in the Maneuver
scenario) on VIMU’s effectiveness in Appendix C.2. We
combine the mission scenarios with the attacks listed in
Table 2, in terms of Mission[Attack], to represent the attack
test cases. For example, Hovering[OAGPS(10.0)] is an overt
GPS attack test case with the attack deviation set to 10.0
meters in the Hovering scenario.

We compare VIMU with the baselines on various attack
test cases. For each candidate approach, we collect 50 flight
records per attack test case. In the test case, the drone
initializes the system, takes off, and activates the detectors
before reaching the preset waypoint. After the drone reaches
the waypoint, we activate the attack and record the attack-
beginning timestamp tAtk. The anomaly detectors will exam-
ine received measurements to decide whether the monitored
sensor instance s(i) is under attack. If the detector of s(i)
alarms (including false alarms), we record the first-alarm
timestamp on instance s(i), i.e., ts(i)Alarm. We define the earliest
t
s(i)
Alarm of all sensor instances as the first-alarm timestamp of

this flight, i.e., tAlarm. Regardless of the detection results,
the drone continues the flight until it completes its mission,
crashes, or the position deviation between the estimate p̂(t)
and the actual position p(t) has reached 5 meters. We group
the collected records by sensor type after the flight ends.

5.1.4. Metrics. We evaluate detection effectiveness with
true positive rate (TPR), false positive rate (FPR), and
time to detect (TTD). TPR and FPR are classical metrics
in anomaly detection. They measure the sensitivity and
specificity of the detectors. The attacks targeting IMUs
can cause irreparable damage within tens to hundreds of
milliseconds [13], [14], and GPS spoofing requires several

https://github.com/wangwwno1/Project-VIMU/tree/baseline/CI
https://github.com/wangwwno1/Project-VIMU/tree/baseline/SRR
https://github.com/wangwwno1/Project-VIMU/tree/baseline/SAVIOR
https://github.com/wangwwno1/Project-VIMU/tree/baseline/Virtual-IMU+CUSUM-Detector
https://github.com/wangwwno1/Project-VIMU/tree/baseline/Virtual-IMU+CUSUM-Detector
https://github.com/wangwwno1/Project-VIMU

seconds to become effective [23], [25]. Therefore, we define
an upper time-bound TAlarm on the detection delay, e.g.,
TGPS

Alarm = 20 s and TGyro
Alarm = 1 s. When deciding the detection

metrics, we consider the alarm effective in attack mitigation
if and only if tAtk ≤ t

s(i)
Alarm ≤ tAtk + TAlarm. Given a sensor

instance participated in a flight mission, TPR and FPR are
decided on the following detection result classification:
- True positive (TP): The detector raises an effective alarm

when the monitored instance is compromised.
- False positive (FP): The detector raises the alarm despite

the instance being operational.
- True Negative (TN): The detector correctly raises no alarm

on an operational instance.
- False Negative (FN): The detector fails to raise an effec-

tive alarm on a compromised instance, i.e., either raising
no alarm or raising an ineffective alarm later than the
upper time-bound TAlarm.

Note that each detection result and its classification are
defined on the flight mission. Then, the time to detect is
the time a detector takes to identify the presence of the
attack. A shorter TTD implies a faster response in attack
detection and isolation. As the recovery procedure starts
with attack isolation, the TTD estimates the attack damage
before detection and affects the recovery performance. For
a sensor instance s(i) under attack, if the detection result
is TP, we calculate TTD with (t

s(i)
Alarm − tAtk). Otherwise, we

label TTD as ≥ TAlarm to indicate that the detector failed to
report the attack within a reasonable time.

Following SRR [5], we use the effective recovery dura-
tion as the metric of recovery performance. We regard the
recovery procedure as in effect if any detector raises the
alarm and, since then, the distance d(t) between the current
position estimate p̂(t) and the actual position p(t) never
exceeds the error threshold ϵ.

d(t) = ||p(t)− p̂(t)|| ≤ ϵ, t ∈ [1, ..., k] (20)

where t is the timestamp of each position state, k is the first
timestamp of d(t) > ϵ or the end of the flight. Thus, we
define effective recovery duration as the time from the first
alarm (tAlarm) to the above timestamp k. We set ϵ as 3 meters
throughout the evaluations. Due to the flight time constraint,
we cannot always measure the maximum recovery duration
since in several attack categories, the recovery approaches
can sustain the flight for a long time. We set an upper time
bound Trec = 300 s for the effective recovery duration, and
label the result as ≥ Trec if the approach has an effective
recovery duration longer than Trec.

5.2. Detection Effectiveness

We first evaluate the detection effectiveness of the can-
didate approaches using overt attacks, including GPS spoof-
ings (OAGPS, OAGPS-PV) and gyroscope attacks (OA2/3

Gyro,
OA3/3

Gyro, OA3/3
ICM20602, OA3/3

ICM20689). Then, we evaluate the
resilience of different approaches toward stealthy attacks
(SAGPS, SA3/3

Gyro). The measurements affected by GPS spoof-
ing are the north-axis position (in meters) and velocity (in

CI

SRR

SAVIOR

VIMU-CS

VIMU

0.00 0.00 0.17 0.62 1.00 1.00

0.00 0.40 0.83 1.00 1.00 1.00

0.02 0.05 0.72 0.80 1.00 1.00

0.00 0.02 0.50 0.72 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00

Hovering

0.00 0.01 0.18 0.56 1.00 1.00

0.04 0.47 0.87 1.00 1.00 1.00

0.00 0.08 0.67 0.86 1.00 1.00

0.00 0.05 0.35 0.64 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00

O
A

2/3
G

yro

Moving

CI

SRR

SAVIOR

VIMU-CS

VIMU

0.00 0.03 0.19 0.39 1.00 1.00

0.01 0.38 0.76 0.98 1.00 1.00

0.00 0.07 0.49 1.00 1.00 1.00

0.00 0.00 0.07 0.94 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00

0.00 0.00 0.16 0.55 1.00 1.00

0.00 0.29 0.83 1.00 1.00 1.00

0.00 0.09 0.56 1.00 1.00 1.00

0.00 0.04 0.17 0.89 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00

O
A

3/3
G

yro

CI

SRR

SAVIOR

VIMU-CS

VIMU

0.99 0.99 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00

0.99 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00

O
A

3/3
ICM

20602

0.04 0.06 0.08 0.1 0.3 0.6
Gyro Deviation (rad/s)

CI

SRR

SAVIOR

VIMU-CS

VIMU

0.00 0.09 0.93 1.00 1.00 1.00

0.00 0.00 0.00 0.00 1.00 1.00

0.00 0.00 1.00 1.00 1.00 1.00

0.00 0.00 1.00 1.00 1.00 1.00

0.00 1.00 1.00 1.00 1.00 1.00

0.04 0.06 0.08 0.1 0.3 0.6
Gyro Deviation (rad/s)

0.00 0.18 1.00 1.00 1.00 1.00

0.00 0.00 0.00 0.00 1.00 1.00

0.00 0.00 1.00 1.00 1.00 1.00

0.00 0.00 1.00 1.00 1.00 1.00

0.00 0.99 1.00 1.00 1.00 1.00

O
A

3/3
ICM

20689

0.0 0.2 0.4 0.6 0.8 1.0

Figure 5. TPR Heatmap on Overt Gyro Attacks

0.0
0.2
0.4
0.6
0.8
1.0

TP
R

OA2/3
Gyro OA3/3

Gyro OA3/3
ICM20602

Hovering

OA3/3
ICM20689

0.0 0.1
FPR

0.0
0.2
0.4
0.6
0.8
1.0

TP
R

0.0 0.1
FPR

0.0 0.1
FPR

0.0 0.1
FPR

M
oving

L2TW (CI)
L1TW (SRR)

CUSUM (SAVIOR)
CUSUM (VIMU-CS)

CS-EMA (VIMU)

Figure 6. ROC Curves on Overt Gyro Attacks

m/s, only for OAGPS-PV). For gyroscope attacks, the injected
signal applies to the three-axis angular velocity (in rad/s).

5.2.1. Effectiveness on Overt Attacks. Fig. 5 shows that
the TPR positively correlates with the attack deviation of
overt gyroscope attacks. All the approaches achieve 100%
TPR when the attack deviation reaches 0.3 rad/s. In almost
all attack test cases, VIMU has the highest TPR and the
largest area under the ROC curves (Fig. 6). Our CS-EMA
detector successfully detects most attacks with minor de-
viations (0.04 rad/s and 0.06 rad/s), whereas the CUSUM
detectors of SAVIOR and VIMU-CS achieve lower TPRs.
Such attacks have deviations considerably smaller than the
angular velocity encountered in quadcopter’s flight maneu-
vers (up to 2.0 rad/s [5]), but can lead to control loss within
hundreds of milliseconds. Therefore, our CS-EMA detector

Figure 7. Time to Detect on Overt Gyro Attacks in Moving Mission (Red
Line: TGyro

Alarm; Green Line: Tbuf)

Figure 8. TTD on GPS Spoofing OAGPS-PV

is more suitable for identifying threats targeting the gyro-
scope. Compared with OA3/3

ICM20602, detecting OA3/3
ICM20689 is

more challenging because its attack signal operates at a
frequency (Fi = 205.9 Hz) closer to the angular velocity
control (250 Hz in our evaluation), which makes it more
similar to the measurement noise described in Section 3.2.
We further compare the AUC of VIMU-CS and SAVIOR
in Fig. 6 to determine the contribution of the physical
model to detection effectiveness. As the FPR is calculated
on attack-free flight records, it will not be affected by the
FIFO buffer (Section 3.4). Meanwhile, both solutions use the
same CUSUM detector. Thus, the difference in AUC mainly
comes from the fine-grained physical model (Equations (8)
to (11)), indicating that the fine-grained physical model has
contributed to attack detection. GPS data is less affected by
the airframe vibration than the gyroscope data. Therefore,
our CS-EMA detector performs similarly to the CUSUM of
SAVIOR and VIMU-CS in detecting OAGPS. The implemen-
tation of OAGPS-PV does not have a constant deviation setting
to elaborate on the TPRs on various attack deviations. We
observed that VIMU, SAVIOR, and VIMU-CS can detect
OAGPS-PV in 100% TPR with an AUC=0.98∼1.00, while CI
and SRR can only achieve an AUC less than 0.15.

Fig. 7 presents the log-scaled TTD of different ap-
proaches against overt gyroscope attacks. We omit the TTD
on OA2/3

Gyro because they are similar to OA3/3
Gyro. VIMU has

a TTD similar to SAVIOR and VIMU-CS in most attack

Figure 9. TTD on Stealthy Attacks. N/A = No Alarm

cases and maintains a steady TTD in small attack deviation,
which is favorable in the FIFO buffer design. Besides, we
test with gyroscope attacks at extremely large deviations,
as they can disrupt the system state within one sampling
interval [14]. Based on our quadcopter’s sensor specifica-
tion, we measure the TTD of CS-EMA on OA3/3

ICM20602 and
OA3/3

ICM20689 executed at their maximum induced amplitude
Amax (Section 4.2). Results show that our CS-EMA detector
detects the attacks within one sampling interval (4 ms),
thus preventing damage to the flight control. In the hov-
ering flights, we observed the same comparative advantages
of the CS-EMA detector in TTD on the overt gyroscope
attacks. Fig. 8 shows the TTD under the real-world GPS
spoofing OAGPS-PV. VIMU, SAVIOR, and VIMU-CS have
similar TTDs (7∼9 seconds), indicating that OAGPS-PV is
more complex to detect than the constant-deviation spoofing
OAGPS (with TTD ≤ 1 second, shown in Fig. 16).

5.2.2. Resilience towards Stealthy Attacks. We evaluate
the robustness of detectors by analyzing the maximum
|r∗i (t)| of (19) that the adversary can achieve while remain-
ing stealthy. A larger |r∗i (t)| means the adversary can inject
more deviation x̃∗i (t) in (18) with the same measurement
and reference state. Fig. 9 shows three SAGPS and four
SA3/3

Gyro attacks. These attacks are stealthy because at least
one detector under evaluation raises no alarm. We use TTD
to indicate the effectiveness of the alarm. In Fig. 9, our CS-
EMA detector identifies more attacks within the time bound
than other detectors. Moreover, the CS-EMA detector has
the tightest bound on stealthy attack deviation. Both results
show that the CS-EMA detector is more robust against
stealthy attacks targeting GPS or gyroscope.

5.3. Recovery Effectiveness

5.3.1. Comparison with SRR. We compare VIMU’s re-
covery performance with the state-of-the-art PBAR ap-
proach SRR [5] in the attacks OAGPS, OA2/2

Baro, OA3/3
Gyro,

and MA*. Both approaches require a detection alarm to
initialize the recovery procedure, which means the TTD
affects their recovery performance. For a fair comparison,
we use the attacks that ensure the immediate initialization
of the recovery procedure at the attack-activation moment,
e.g., the attack cases of OA3/3

Gyro(0.60) with TTD≈0 in Fig. 7.
Fig. 10 shows the effective recovery duration of VIMU

and SRR. The durations depend on the type of compromised

3
10

100
300

OA2/2
Baro OAGPS OA3/3

Gyro MAGPS|Baro MAGPS|Gyro MAGPS|Baro|Gyro

Hovering
MAMag|Accel|Gyro

0 10 20 30 40 50
#Record

3
10

100
300

Solution
SRR
VIMU

0 10 20 30 40 50
#Record

0 10 20 30 40 50
#Record

0 10 20 30 40 50
#Record

0 10 20 30 40 50
#Record

0 10 20 30 40 50
#Record

0 10 20 30 40 50
#Record

M
oving

Du
ra

tio
n

(s
)

Figure 10. Recovery Duration Histogram on Flight Records

sensors. If only the barometers are unavailable (OA2/2
Baro), the

autopilot replaces the altitude source with GPS, and both
approaches can achieve a recovery duration close to the
upper bound Trec. In contrast, the autopilot of the testbed
drone has to rely on the reference states provided by the
physical model (or SRR’s linear model) in the attack OAGPS
and OA3/3

Gyro because no other replacement is available for
these compromised sensors. Therefore, the recovery dura-
tions in OAGPS and OA3/3

Gyro depend heavily on the precision
of the physical model. Specifically, VIMU and SRR have
similar recovery durations in OAGPS. The GPS primarily
measures the position and velocity states. Both our physical
model and SRR’s linear model are sufficient to predict
their changes over time. However, the recovery durations
diverge in OA3/3

Gyro and multi-type sensor attacks involving
gyroscopes, because the attitude changes measured by the
gyroscope are nonlinear and cannot be accurately predicted
by a linear model. To reduce the error in attitude and angular
velocity, SRR employs a supplementary compensation (SC)
mechanism that derives the system attitude from the mea-
surements of the accelerometer and magnetometer [5]. SRR
activates SC when all gyroscopes are under attack (OA3/3

Gyro).
Despite this effort, its effective recovery duration in OA3/3

Gyro
remains less than 3 seconds. In contrast, VIMU succeeds in
much longer recovery durations without the SC mechanism,
even surpassing the upper bound Trec in many flight records.

To further investigate the effect of SRR’s SC mechanism,
we analyze the attitude estimation and its ground truth
before and after the activation of OA3/3

Gyro attack. Fig. 11
presents the roll and pitch angle estimated by SRR (with and
without SC) and VIMU. The roll estimate of SRR without
SC diverges immediately since the attack starts (red area),
indicating that the linear model of SRR is insufficient to cap-
ture the non-linearity in attitude changes. The estimations
given by SC also deviate from the ground truth to a certain
extent. Such deviation could be due to the acceleration-based
estimation requiring several seconds to approach a steady
estimate [17]. In contrast, the attitude estimated by VIMU
is closer to the ground truth, even without the supplementary
compensation.

5.3.2. Comparison with SAVIOR on Physical Model.
Our physical model retrofits SAVIOR’s nonlinear physical
model [22] with a more accurate specification in estimating
motor thrust and aerodynamic drag on the airframe. Fig. 6
has depicted the physical model’s contribution to the detec-

10

0

10

Ro
ll

(D
eg

)

SRR w/o SC SRR VIMU

1 0 1
Time to Attack (s)

10

0

10

Pi
tc

h
(D

eg
)

1 0 1
Time to Attack (s)

1 0 1
Time to Attack (s)

SRR w/o SC SRR VIMU Ground Truth

Figure 11. Effect of Supplementary Compensation in Attitude Recovery

0.08
0.1
0.2
0.3
0.6

SAVIOR-Buffer

Hovering

VIMU-CS

Duration (s)
< 10
10~60
60~300
> 300

0 10 20 30 40 50
#Record

0.08
0.1
0.2
0.3
0.6

01020304050
#Record

M
ovingDe

vi
at

io
n

(ra
d/

s)

Figure 12. Recovery Durations (VIMU-CS vs. SAVIOR-Buffer)

tion effectiveness. Here, we further investigate its contribu-
tion to recovery effectiveness. Considering the effect of the
FIFO buffer, we compare SAVIOR-Buffer with VIMU-CS
regarding the recovery duration in attack OA3/3

Gyro. Fig. 12
presents the results. We exclude the deviation settings at
0.04 and 0.06 rad/s because neither approach can detect
these attacks to launch the recovery. For the rest deviation
settings, we observed that VIMU-CS outperforms SAVIOR-
Buffer in the average recovery duration by 8%∼123%,
w.r.t. different attack deviations. Since SAVIOR-Buffer and
VIMU-CS have the same detector (and parameters) and
FIFO buffers, the differences in recovery duration reflect
the discrepancy between the physical models.

5.3.3. Real World Test. We demonstrate VIMU’s recovery
effect on the real-world quadcopter by injecting an OA3/3

Gyro
attack. In the test, the drone took off from home and hovered
at the preset altitude. Then, we launched the OA3/3

Gyro attack
on all three gyroscopes by injecting constant deviation (0.60
rad/s) to disrupt the gyroscopes’ roll rate measurements.
The drone with VIMU’s detection and recovery prevented
the immediate crash and maintained the flight attitude for

TABLE 4. RUNTIME OVERHEADS WITH ONBOARD CPU

Armed Hover Moving
PX4 VIMU PX4 VIMU PX4 VIMU

CPU (%)
Mean 51.34 65.24 50.94 69.77 51.61 69.10
Peak 57.00 68.54 52.46 70.67 52.65 69.84

RAM (%) Peak 57.73 67.68 71.96 82.66 71.96 82.66

around 26.1 seconds6. As a comparison, we conducted
another flight with VIMU but disabled VIMU’s recovery.
Without the recovery, the drone immediately deviated from
its hovering position and crashed7.

Comparison on TTD. The real-world IMU data quality
causes longer TTD in attack detection as the detector needs
more sampling periods to distinguish the attack from sensor
noises. To investigate CS-EMA’s advantage over other detec-
tors, e.g., CUSUM, we compare VIMU with VIMU-CS in
TTD with the attack OA3/3

Gyro to real-world flights. We did not
use SAVIOR because we cannot properly tune SAVIOR’s
physical model on our quadcopter. The results show that the
CS-EMA detector takes 19.4∼20.7 ms to raise the alarm,
while the CUSUM detector fails to identify the attack in
1 second, i.e., TGyro

Alarm. Moreover, in the same mission flight
without applying attack, CS-EMA reports no false positive.

Energy Consumption and Runtime Overhead. We per-
form real flights with our quadcopter. We use the
battery_status message to evaluate the power con-
sumption during the flight. The gross power of our drone
is around 350 watts, mostly (>340 watts) consumed by the
actuators. The onboard ARM CPU consumes 0.85 watts at
100% usage. We then evaluate the performance overhead
of VIMU with onboard CPU and memory usage. We use
the cpuload message to record the runtime overhead at
the armed, hover, and moving conditions. Table 4 presents
the runtime overhead of the autopilot with and without the
VIMU deployment. On average of the flight maneuvers, the
CPU usage has increased by 15.65% (peak) and 16.74%
(mean), and the overall memory has increased by 54 KB.
As a result, the energy overhead of VIMU is around 0.15
watts (0.043%), which is negligible compared with the total
power consumption.

6. Discussion

Our CS-EMA detector alerts sensor attacks faster and
has a tight TTD. Although our evaluation mainly focuses
on spoofing attacks, these results can generalize to sensor
attacks that aim for a denial of service, e.g., [13]. These
attacks will introduce large deviations to the sensor measure-
ments, which makes them easily identified by our detector
(Section 5.2.1). Besides, such an advantage also benefits
the development of the FIFO buffer (Section 3.4), as TTD
positively correlates with Tbuf in (17). By the definition of
sizebuffer in (17), lower TTD results in a reduced memory
cost to implement the buffers. Given the results in Fig. 7, we

6https://www.youtube.com/watch?v=IVZsC0wPPA8
7https://www.youtube.com/watch?v=WAuYQXz tIE

set Tbuf = 500 ms for VIMU, which is sufficient to cover
the TTD in most cases. For the related PBAR approach
SRR [5], a much larger FIFO buffer is needed (4x to 10x
per IMU compared with VIMU) because SRR’s detector
encounters numerous ineffective alarms (TTD ≥ TAlarm).
For SAVIOR-Buffer used in OA3/3

Gyro(≥ 0.08), its FIFO
buffer size can generally equal to VIMU’s buffer size, since
the detectors of SAVIOR and VIMU have their respective
merit on these attack cases in Fig. 7. We have examined
the FIFO buffer’s contribution to the recovery duration.
After using the buffer safeguard, the average recovery du-
ration increases by 66%∼746%, w.r.t. different TTDs (Ap-
pendix C.1). Moreover, the effectiveness of EMA as a low-
pass filter offers the potential for applying other forms of
low-pass filter, e.g., wavelet transform [4], to our detection
scenario to distinguish persistent deviation from the high-
frequency measurement noise.

7. Conclusion

As an effective and efficient PBAR approach against
sensor attacks, VIMU uses an accurate nonlinear physi-
cal model to estimate the system states for the sensor-
compromised autopilot. VIMU’s anomaly detector deploys
a CS-EMA detector to improve detection effectiveness and
reduce the detection time delay on high-rate gyroscope
attacks. With a properly learned physical model and selected
detector parameters, VIMU outperforms the state-of-the-art
PBAD and PBAR approaches regarding the effectiveness
and efficiency of detection and system-state recovery.

References

[1] E. Aggarwal, M. Karimibiuki, K. Pattabiraman, and A. Ivanov,
“CORGIDS: A correlation-based generic intrusion detection system,”
in CPS-SPC@CCS ’18. ACM, 2018, pp. 24–35.

[2] W. Aoudi, M. Iturbe, and M. Almgren, “Truth will out: Departure-
based process-level detection of stealthy attacks on control systems,”
in CCS ’18. ACM, 2018, pp. 817–831.

[3] M. Bangura and R. E. Mahony, “Nonlinear dynamic modeling for
high performance control of a quadrotor,” in Australasian Conference
on Robotics and Automation, 2012.

[4] C. Callegari, S. Giordano, M. Pagano, and T. Pepe, “WAVE-CUSUM:
improving CUSUM performance in network anomaly detection by
means of wavelet analysis,” Comput. Secur., vol. 31, no. 5, pp. 727–
735, 2012.

[5] H. Choi, S. Kate, Y. Aafer, X. Zhang, and D. Xu, “Software-
based realtime recovery from sensor attacks on robotic vehicles,” in
RAID’20. USENIX Association, 2020, pp. 349–364.

[6] H. Choi, W. Lee, Y. Aafer, F. Fei, Z. Tu, X. Zhang, D. Xu, and
X. Deng, “Detecting attacks against robotic vehicles: A control
invariant approach,” in CCS’18. ACM, 2018, pp. 801–816.

[7] P. Dash, G. Li, Z. Chen, M. Karimibiuki, and K. Pattabiraman, “Pid-
piper: Recovering robotic vehicles from physical attacks,” in DSN’21.
IEEE, 2021, pp. 26–38.

[8] F. Fei, Z. Tu, D. Xu, and X. Deng, “Learn-to-recover: Retrofitting
uavs with reinforcement learning-assisted flight control under cyber-
physical attacks,” in ICRA’20. IEEE, 2020, pp. 7358–7364.

[9] K. Fu and W. Xu, “Risks of trusting the physics of sensors,” Commun.
ACM, vol. 61, no. 2, pp. 20–23, 2018.

https://www.youtube.com/watch?v=IVZsC0wPPA8
https://www.youtube.com/watch?v=WAuYQXz_tIE

[10] M. Gao, L. Zhang, L. Shen, X. Zou, J. Han, F. Lin, and K. Ren,
“Exploring practical acoustic transduction attacks on inertial sensors
in mdof systems,” IEEE Transactions on Mobile Computing, 2023.

[11] J. Giraldo, D. I. Urbina, A. A. Cárdenas, J. Valente, M. A. Faisal,
J. Ruths, N. O. Tippenhauer, H. Sandberg, and R. Candell, “A survey
of physics-based attack detection in cyber-physical systems,” ACM
Comput. Surv., vol. 51, no. 4, pp. 76:1–76:36, 2018.

[12] I. Griva, S. G. Nash, and A. Sofer, Linear and Nonlinear Optimization
2nd Edition. SIAM, 2009.

[13] J. Jang, M. Cho, J. Kim, D. Kim, and Y. Kim, “Paralyzing drones
via EMI signal injection on sensory communication channels,” in
NDSS’23. The Internet Society, 2023.

[14] J. Jeong, D. Kim, J. Jang, J. Noh, C. Song, and Y. Kim, “Un-
rocking drones: Foundations of acoustic injection attacks and recovery
thereof,” in NDSS’23. The Internet Society, 2023.

[15] A. J. Kerns, D. P. Shepard, J. A. Bhatti, and T. E. Humphreys,
“Unmanned aircraft capture and control via GPS spoofing,” J. Field
Robotics, vol. 31, no. 4, pp. 617–636, 2014.

[16] H. Kim, R. Bandyopadhyay, M. Ozmen, Z. Celik, A. Bianchi, Y. Kim,
and D. Xu, “A systematic study of physical sensor attack hardness,”
in IEEE S&P’24. IEEE, 2024, pp. 142–142.

[17] R. C. Leishman, J. C. Macdonald, R. W. Beard, and T. W. McLain,
“Quadrotors and accelerometers: State estimation with an improved
dynamic model,” IEEE Control Systems Magazine, vol. 34, no. 1, pp.
28–41, 2014.

[18] Y. Liu, P. Ning, and M. K. Reiter, “False data injection attacks against
state estimation in electric power grids,” ACM Trans. Inf. Syst. Secur.,
vol. 14, no. 1, pp. 13:1–13:33, 2011.

[19] K.-Y. Nam, W.-T. Lee, C.-M. Lee, and J.-P. Hong, “Reducing torque
ripple of brushless dc motor by varying input voltage,” IEEE Trans-
actions on Magnetics, vol. 42, no. 4, pp. 1307–1310, 2006.

[20] S. Nashimoto, D. Suzuki, T. Sugawara, and K. Sakiyama, “Sensor
con-fusion: Defeating kalman filter in signal injection attack,” in
AsiaCCS’18. ACM, 2018, pp. 511–524.

[21] J. Noh, Y. Kwon, Y. Son, H. Shin, D. Kim, J. Choi, and Y. Kim,
“Tractor beam: Safe-hijacking of consumer drones with adaptive GPS
spoofing,” ACM Trans. Priv. Secur., vol. 22, no. 2, pp. 12:1–12:26,
2019.

[22] R. Quinonez, J. Giraldo, L. E. Salazar, E. Bauman, A. A. Cárdenas,
and Z. Lin, “SAVIOR: securing autonomous vehicles with robust
physical invariants,” in 29th USENIX Security Symposium. USENIX
Association, 2020, pp. 895–912.

[23] H. Sathaye, M. Strohmeier, V. Lenders, and A. Ranganathan, “An
experimental study of GPS spoofing and takeover attacks on uavs,”
in 31st USENIX Security Symposium. USENIX Association, 2022,
pp. 3503–3520.

[24] T. Setati, N. Botha, and J. M. Roux, “Experimental approach to
calculate the moments of inertia of a hexacopter unmanned aerial
vehicle,” in MATEC Web of Conferences, vol. 370. EDP Sciences,
2022, p. 05001.

[25] J. Shen, J. Y. Won, Z. Chen, and Q. A. Chen, “Drift with devil:
Security of multi-sensor fusion based localization in high-level au-
tonomous driving under GPS spoofing,” in 29th USENIX Security
Symposium. USENIX Association, 2020, pp. 931–948.

[26] M. D. Shuster, “A survey of attitude representations,” Navigation,
vol. 8, no. 9, pp. 439–517, 1993.

[27] Y. Son, H. Shin, D. Kim, Y. Park, J. Noh, K. Choi, J. Choi, and
Y. Kim, “Rocking drones with intentional sound noise on gyroscopic
sensors,” in 24th USENIX Security Symposium. USENIX Associa-
tion, 2015, pp. 881–896.

[28] N. O. Tippenhauer, C. Pöpper, K. B. Rasmussen, and S. Capkun, “On
the requirements for successful GPS spoofing attacks,” in CCS’11.
ACM, 2011, pp. 75–86.

[29] T. Tomic, P. Lutz, K. Schmid, A. Mathers, and S. Haddadin, “Simul-
taneous contact and aerodynamic force estimation (s-cafe) for aerial
robots,” Int. J. Robotics Res., vol. 39, no. 6, 2020.

[30] T. Trippel, O. Weisse, W. Xu, P. Honeyman, and K. Fu, “WALNUT:
waging doubt on the integrity of MEMS accelerometers with acoustic
injection attacks,” in EuroS&P’17. IEEE, 2017, pp. 3–18.

[31] Y. Tu, Z. Lin, I. Lee, and X. Hei, “Injected and delivered: Fabricating
implicit control over actuation systems by spoofing inertial sensors,”
in 27th USENIX Security Symposium. USENIX Association, 2018,
pp. 1545–1562.

[32] Z. Tu, F. Fei, M. Eagon, D. Xu, and X. Deng, “Flight recovery of
mavs with compromised IMU,” in IROS’19. IEEE, 2019, pp. 3638–
3644.

[33] D. I. Urbina, J. A. Giraldo, A. A. Cárdenas, N. O. Tippenhauer,
J. Valente, M. A. Faisal, J. Ruths, R. Candell, and H. Sandberg,
“Limiting the impact of stealthy attacks on industrial control systems,”
in CCS’16. ACM, 2016, pp. 1092–1105.

[34] C. Wang, B. Song, P. Huang, and C. Tang, “Trajectory tracking
control for quadrotor robot subject to payload variation and wind
gust disturbance,” J. Intell. Robotic Syst., vol. 83, no. 2, pp. 315–
333, 2016.

[35] W. H. Woodall and B. M. Adams, “The statistical design of cusum
charts,” Quality Engineering, vol. 5, no. 4, pp. 559–570, 1993.

[36] M. H. Wright, “Direct search methods: Once scorned, now re-
spectable,” Pitman Research Notes in Mathematics Series, pp. 191–
208, 1996.

[37] L. Zhang, X. Chen, F. Kong, and A. A. Cárdenas, “Real-time attack-
recovery for cyber-physical systems using linear approximations,” in
RTSS’20. IEEE, 2020, pp. 205–217.

[38] L. Zhang, P. Lu, F. Kong, X. Chen, O. Sokolsky, and I. Lee, “Real-
time attack-recovery for cyber-physical systems using linear-quadratic
regulator,” ACM Trans. Embed. Comput. Syst., vol. 20, no. 5s, pp.
79:1–79:24, 2021.

Appendix A.
Physical Parameters Determination

The physical model described in Section 3.1 applies
to any commercial quadcopter. Although the parameters of
the physical model may vary by the airframe specification,
the learning process usually only needs once for each air-
frame type, and the specific parameters will be deployed
as default drone product settings. This section determines
the physical parameters P in (1). Specifically, we divide
P into Pmeasure = {M, l, I, CT , CQ, T̄Min, T̄Range, Vref, Rint}
and Plearn = {CQ,r, tDC, Cm,Cbxy}.

Determination of Pmeasure. The drone mass M and the
distance l between the motor and the airframe’s CoG are
directly measured on the specific drone airframe. We de-
termine the diagonal inertia terms Ixx, Iyy, and Izz of
the inertia matrix I through torsional pendulum tests [24].
We omit the non-diagonal elements in I by assuming the
airframe is symmetrical [22], [29]. To ensure the model
precision, we measure CT , CQ, and T̄Min with a static test
stand8. Our drone uses PWM-based motor controllers, which
give us T̄Range = 1000 us. We read Rint from a RadioLink
CB86-PLUS balance charger. For the 6-cell LiPo battery
used by our drone, the full capacity voltage of each cell is
4.05 V, and we have Vref = 24.3 V.

8https://www.youtube.com/watch?v=O6upmU9ubPQ

https://www.youtube.com/watch?v=O6upmU9ubPQ

TABLE 5. PHYSICAL PARAMETERS IN SIMULATION AND REAL-WORLD

Param VIMU (Simulation) VIMU (Real-world) Unit
M 0.80 2.64 kg
l 0.165 0.288 m
I diag{5.0, 5.0, 9.0} ·10−3 diag{5.17, 5.50, 7.62} ·10−2 kg·m2

CT 4.0 23.0 N
CQ 0.05 0.44 N·m
CQ,r 0.0 0.061 N·m/s
tDC 0.005 0.035 s
T̄Min 1000 840 us
T̄Range 1000 1000 us
Vref N/A 24.3 V
Rint N/A 0.072 Ω

Cm 0.001 0.031 1/s
Cbxy [0.022, 0.022, 0] [0.161, 0.145, 0] m2/kg

Determination of Plearn. Based on (2), we fit the phys-
ical parameters with known system states x(t) and control
inputs u(t) from the normal flight records. We learn CQ,r,
tDC, Cm, Cbx and Cby of Cbxy through the Nelder-Mead
[36] searching over the nonlinear least squares data fitting
problem [12].

Given the input data X , the fitting target Y , the differ-
ential equations F (·) describing the physical model, and the
parameter set P , the nonlinear least squares method decides
the optimal parameters by minimizing the squared error:

min
P

T∑
t=1

(Ft (Xt;P)− Yt)
2 (21)

where Ft (Xt;P) is the state at time t predicted by F (·). Yt
is the estimated state or sensor measurement from the flight
record w.r.t. the prediction result Ft (Xt;P).

Before deciding the specific parameters of P , we first
follow the guides9,10 to obtain the following data: 1) sensor
measurements ρ̃, ω̃, and body acceleration ãB , 2) estimated
states q̂, v̂, and v̂w, 3) u(t) and 4) Vload and iload. This data
collection process is conducted for one time on the standard
instance of the airframe model. Here, we used the quaternion
form of system attitude, i.e., q = [qw, qi, qj , qk]

T , as the sub-
stitute of the rotation matrix R in Section 3.1. The conver-
sion between the quaternion and R is straightforward [26].
Using q instead of R can reduce the computational cost of
learning because it is commonly used by the autopilots, e.g.,
PX4 and ArduPilot.

According to [17], the accelerometer measures the spe-
cific acceleration ãB = [ãx, ãy, ãz]

T . Indeed, ãB stands for
the difference between the vehicle’s acceleration (a in (5))
and gravitational acceleration (ge3). This measurement is al-
ready located in the FRD frame and thus requires no rotation
to align with ac and ad. From that, we have ãB = ac+ ad.
Since ac is generally vertical to the x-axis and y-axis, ãx and
ãy are dominated by the drag acceleration ad. Therefore, we
use ãx and ãy to solve Cm, Cbx, and Cby with (11). We
first derive the relative airspeed vr from the estimated q̂, v̂,
and v̂w. Then, we calculate the vector norm ∥vr∥ in (11).
After that, we replace ad with [ãx, ãy] of ãB and use ∥vr∥,
ρ̃, and the x-axis and y-axis components of vr to solve the

9https://docs.px4.io/main/en/advanced config/tuning the ecl ekf.html
10https://docs.px4.io/main/en/config/autotune.html

0.5 1.0 1.5 2.0
Normalized Threshold

0.00

0.25

0.50

0.75

1.00

FP
R

L2TW (CI)

Lw=10
Lw=20
Lw=30
Lw=40
Lw=50
Lw=60

0.5 1.0 1.5 2.0
Normalized Threshold

L1TW (SRR)

Lw=10
Lw=20
Lw=30
Lw=40
Lw=50
Lw=60

0 1 2 3 4
Normalized Threshold

0.00

0.25

0.50

0.75

1.00

FP
R

CUSUM (SAVIOR)

b=0.25
b=0.3
b=0.4
b=0.5
b=0.75

0 1 2 3 4
Normalized Threshold

CUSUM (VIMU-CS)

b=0.25
b=0.3
b=0.4
b=0.5
b=0.75

0 1 2 3 4
Normalized Threshold

0.00

0.25

0.50

0.75

1.00

FP
R

CUSUM (VIMU)

b=0.25
b=0.3
b=0.4
b=0.5
b=0.75

0.2 0.4 0.6
Normalized Threshold

EMA (VIMU)

|R=0.01|0.52
|R=0.01|0.85
|R=0.02|0.52
|R=0.02|0.85
|R=0.05|0.52
|R=0.05|0.85

Figure 13. FPR-Threshold Curves of Gyroscope Detectors at Different
Parameters

equation. In short, we consider X1 = {q̂, v̂, v̂w, ρ̃} as input
data and Y1 = {ãx, ãy} as the fitting target in (11) to resolve
Cm, Cbx, and Cby. We compute the estimate of ad and use
it to derive ac = ãB −ad. Then, we solve (7), (9), and (10)
to obtain tDC with X2 = {u(t), Vload, iload} as input data
and Y2 = ac as the fitting target. Finally, we solve CQ,r in
(8) with the input data X3 = {u(t), ω̃, Vload, iload} and the
fitting target Y3 = ω̇(t), where ω̇(t) is estimated from the
angular velocity ω̃ at timestamp t and t− 1.

Appendix B.
Detector Parameter Selection

We select the most suitable detector parameters based on
two criteria: 1) the FPR in the survey mission of QGround-
Control or real flight, and 2) the theoretical TTD at possible
attack deviations. The survey mission contains multiple
waypoints in its task route. It covers flight maneuvers that
any drone will encounter in common flight scenarios, e.g.,
takeoff, hover, cruise, and turn. The diversity in flight ma-
neuvers qualifies the survey mission for parameter selection,
as the detector performance in attack-free flight is mainly
affected by the measurement noise and modeling error.

We first collect the flight data for parameter selection.
For each approach, we use the survey mission to collect 100
attack-free flight records. During this process, we turn off
the isolation and recovery functionality to ensure the autopi-
lot can complete the mission. For each sensor instance, we
calculate the in-flight residuals to construct the validation
dataset. Then, we determine the candidate detector parame-
ter settings (e.g., different value pairs of (λ,R) for VIMU’s

https://docs.px4.io/main/en/advanced_config/tuning_the_ecl_ekf.html
https://docs.px4.io/main/en/config/autotune.html

TABLE 6. DETECTOR PARAMETERS
Detector L1TW L2TW CUSUM CS-EMA

Measurement τ Lw τ Lw τ bi τcs bi τema λ R

GPS Position 1.15 10 1.402 10 3.0 0.50 3.0 0.50 0.45 0.01 0.85
GPS Velocity 3.10 10 4.42 10 3.5 1.00 3.5 1.00 0.50 0.01 1.10

Barometer 0.10 10 0.02 10 3.0 0.25 3.0 0.25 0.15 0.05 0.52
Magnetometer 0.35 10 0.2 10 3.0 0.25 3.0 0.25 0.30 0.01 0.52

Gyroscope 0.464 10 0.65 20 3.0 0.50 3.0 0.50 0.25 0.01 0.85
Accelerometer 5.20 10 30.25 10 3.0 1.00 3.0 1.00 0.95 0.01 1.10

TABLE 7. IMPACT OF FPR STANDARD ON PARAMETER SELECTION
τ (Actual FPR CUSUM (SAVIOR) CUSUM (VIMU)

under τ) 1% 3% 5% 1% 3% 5%
b = 0.25 N/A N/A N/A N/A N/A N/A
b = 0.3 N/A N/A N/A 4.5 (2%) 4.5 (2%) 4.5 (2%)
b = 0.4 N/A N/A 5.5 (5%) 3.0 (0%) 3.0 (0%) 3.0 (0%)
b = 0.5 N/A 5.5 (3%) 3.0 (4%) 3.0 (0%) 3.0 (0%) 3.0 (0%)

b = 0.75 3.0 (1%) 3.0 (1%) 3.0 (1%) 3.0 (0%) 3.0 (0%) 3.0 (0%)

EMA detector) and use the validation dataset to decide their
corresponding detection threshold (e.g., τema for VIMU’s
EMA detector). The specific steps are as follows.
1) For each setting of candidate detector parameters, we use

the validation set of each flight to figure out the minimum
false-alarm-avoidance threshold (τavoid) of the flight. We
rank the τavoid of the 100 flights in ascending order to
obtain one curve in a subfigure of Fig. 13. Due to the
ascending order of τavoid, the vertical axes of Fig. 13
represent the FPR of the gyroscope detector configured
with one flight’s τavoid and the specific candidate detec-
tor parameters when applied on other flights. We call
this curve FPR-Threshold curve w.r.t. specific candidate
detector parameters.

2) We define the fifth largest τavoid on each FPR-Threshold
curve as the reference detection threshold (τref) of each
candidate detector parameter setting. In other words, the
detector equipped with τref should cause no more than
five false alarms in the 100 missions.

3) We take different candidate detector parameter settings
and the corresponding τref to configure the gyroscope
detector and figure out the TTDs under these detector
configurations at various attack deviations. Then, we
confirm the most appropriate detector parameter setting
(e.g., (λ,R) = (0.01, 0.85) for the EMA detector) and
the corresponding τref. We add a safety margin to this
τref to obtain the final detection threshold τ . Specifically,
τ = 1.05 · τref.

Following the above procedure, Table 6 presents the detector
parameters used in the experiments in Section 5. Note that,
to conform with the autopilot implementation, we scale the
residual defined in (12), detection thresholds τ , mean shifts
bi, and R to the standard deviation by dividing them by the
noise parameters.

Rationality of 5%-FPR standard to decide τref. The
safety margin added onto the reference threshold τref ensures
that the final detection threshold τ has an FPR much lower
than τref. Since the detector’s sensitivity could be affected
by this FPR standard used to decide τref, we discuss how the
variation of this FPR standard can affect the final τ . Taking
the CUSUM gyroscope detectors as an example, Table 7
presents the final detection thresholds τ decided by different
FPR standards (1%, 3%, and 5%). N/A means the obtained
threshold is ineffective in identifying overt attacks, thus not

applicable for attack detection. Compared with SAVIOR,
most thresholds of VIMU’s CUSUM component can achieve
an actual FPR of 0.

Deciding Detector Parameters for Maneuver Scenario
and Real-World Drone. The Maneuver scenario involves
several drastic attitude changes. Therefore, we estimate the
impact on detector parameter selection. We confirmed that
only the parameters of gyroscope detectors need to be
reconfigured. Compared with Fig. 13, the FPR-Threshold
curves in Fig. 14 show higher FPR at the same threshold,
indicating that drastic maneuvers cause more false alarms
during the attack-free flight. Meanwhile, Fig. 14 shows
VIMU’s CUSUM component keeps an FPR lower than
SAVIOR at the same detector parameters (τavoid, bi), which
means our solution has fewer false alarms than the SAVIOR.
Following the same selection procedure, we adjust the τema
of gyroscope detectors from 0.25 to 0.32. The detection
effectiveness in this scenario is presented in Appendix C.2.
On the other hand, we take this procedure to decide the
detector parameters for the real-world quadcopter. We fly
the quadcopter to collect 100 attack-free flight logs and
use these logs to decide the detector parameter. For the
gyroscope detector, the specified parameters are τcs = 3.0,
bi = 0.75, τema = 0.22, R = 0.52, and λ = 0.075.
Such parameters of the CS-EMA and CUSUM detectors are
deployed on our quadcopter to obtain the real-world TTD
evaluation results in Section 5.3.3.

Sensitivity of λ. The value of λ in (15) affects the
detector performance. We discuss the sensitivity of λ with
real-world flight. With fixed τema and R, Fig. 15 presents
the real-world impact of λ selection on the FPR and the
TTD of OA3/3

Gyro(0.60). It indicates that the λ selection is a
trade-off between TTD and FPR. We also observed that a
larger τema results in a lower FPR and a longer TTD. Note
that in Fig. 15, both the FPR and TTD remain relatively
stable when λ ∈ [0.05, 0.10], which means in this range of
λ, the detector performance is less sensitive to λ, justifying
our choice of λ = 0.075.

Appendix C.
Evaluation Results Supplementary

C.1. Detection and Recovery Effectiveness

Fig. 16 presents the TTD under OAGPS. VIMU, SAV-
IOR, and VIMU-CS have similar TTD performance on this
attack. The TTDs are generally less than one second; thus,
detecting OAGPS is much simpler than detecting OAGPS-PV,
as can be compared with Fig. 8.

We also evaluate the impact of TTD and FIFO buffer
on recovery duration with attack Hovering[OA3/3

Gyro(0.60)]. In
Fig. 17, the recovery duration of VIMU without the FIFO
buffer generally reduces as the TTD increases, indicating
that the adversary can cause more damage to the system
state in the detections with longer TTD. When evaluating
the complete VIMU (with the FIFO buffer), we observed
that the average recovery duration increases by 66%∼746%,

0 1 2 3 4
Normalized Threshold

0.00

0.25

0.50

0.75

1.00

FP
R

CUSUM (SAVIOR)

b=0.25
b=0.3

b=0.4
b=0.5

b=0.75

0 1 2 3 4
Normalized Threshold

CUSUM (VIMU)

b=0.25
b=0.3

b=0.4
b=0.5

b=0.75

0.25 0.30 0.35 0.40 0.45 0.50 0.55
Normalized Threshold

EMA (VIMU)

|R=0.01|0.52
|R=0.01|0.85
|R=0.02|0.52

|R=0.02|0.85
|R=0.05|0.52
|R=0.05|0.85

Figure 14. FPR-Threshold Curves of Gyroscope Detectors at Different Parameters in Maneuver Mission

0.0 0.1 0.2 0.3 0.4 0.5
 with ema = 0.22, R = 0.52

0

25

50

75

100

125

TT
D

 (E
st

. m
s)

0.0

0.2

0.4

0.6

0.8

1.0

FP
R =

 0
.0

75

FPR 5%

Figure 15. λ’s Sensitivity in Real-World

Figure 16. Time to Detect on OAGPS (Red Line: TGPS
Alarm)

020406080100
#Record

8
12
20
30
40
50
80

120
160
200Ti

m
e

to
 D

et
ec

t (
m

s)

VIMU-NoBuffer

Duration (s)
< 10
10~60
60~300
> 300

0 20 40 60 80 100
#Record

VIMU

Figure 17. Recovery Duration of VIMU in Different TTDs

w.r.t. different TTDs. The distribution of recovery duration
becomes insensitive to TTD with the buffer deployed. These
results showed that the FIFO buffer effectively mitigates
high-rate sensor attacks.

C.2. Impact of Drastic Flight Maneuvers

We investigate VIMU’s detection effectiveness in the
Maneuver scenario by comparing it with SAVIOR under
the gyroscope attacks. Fig. 18 shows the log-scaled TTDs

Figure 18. TTD on Overt Gyro Attacks in Maneuver Mission

Figure 19. TTD on Stealthy Gyro Attack in Maneuver Mission

0 10 20 30 40 50
#Record

0.08
0.1
0.2
0.3
0.6

SAVIOR

Duration (s)
< 4
4~10
10~60
60~300
> 300

01020304050
#Record

M
aneuver

VIMU

De
vi

at
io

n
(ra

d/
s)

Figure 20. Recovery Duration in Maneuver Mission

against overt attacks, while Fig. 19 presents the results
against stealthy attacks. In Fig. 18, both approaches exhibit
similar TTDs in the Maneuver scenario as in the Mov-
ing scenario. Due to the relaxed detection threshold τema,
VIMU’s TTD in the Maneuver scenario is slightly longer
than in the Moving scenario. Such threshold relaxation also
makes VIMU hard to detect the stealthy attack SA3/3

Gyro(0.03)

Figure 21. TTD on SA3/3
Gyro at Different Wind Speeds

01020304050
#Record

Default

1.0

2.0

5.0

Hovering

Duration (s)
< 10
10~60
60~300
> 300

0 10 20 30 40 50
#Record

SA
3/3
G

yro

Moving

W
in

d
Sp

ee
d

(m
/s

)

Figure 22. Recovery Duration at Different Wind Speeds

in the Maneuver scenario, as shown in Fig. 19. In general,
VIMU’s advantage in detection effectiveness remains un-
affected despite the maneuvers. We also observed similar
comparative advantages in recovery duration. The original
SAVIOR does not contains a recovery component, so we
extends SAVIOR with the recovery monitor described in
Section 3.3. As presented in Fig. 20, even with the ma-
neuvers, VIMU outperforms SAVIOR in recovery duration,
which validates the contribution of our fine-grained physical
model and proposed buffer safeguard.

C.3. External Disturbance

External disturbances, e.g., wind gusts, disturb the drone
in different ways [29], and they can raise false alarms that
will disrupt the recovery of the system states. Although the
autopilot can compensate on these disturbances, it relies
upon a precise state estimate, which validates our usage of
the wind velocity term in our aerodynamic drag model (vw
in (11)). The wind speed data required to calculate this term
is measurable by an anemometer [22] or estimated by the
drag acceleration [17]. However, we encounter difficulties
in equipping the quadcopter with a wind-speed sensor and
integrating it with the autopilot board to measure the wind
in flight. Therefore, we use simulation to evaluate VIMU’s
performance in the presence of wind disturbances.

We configure jMAVSim with different wind speeds
and compare the results with the default wind setting. In
jMAVSim, the wind velocity starts from a base vector µ and
follows a random walk process subjected to N (0, σ2). By
default, µ = [0.0, 0.0, 0.0] m/s and σ = [6.0, 8.0, 0.0] m/s
in the NED frame. We inject the north-axis wind with µ′ =
[1.0/2.0/5.0, 0.0, 0.0] m/s for the wind speeds of 1 m/s,
2 m/s, and 5 m/s, respectively. Then, we evaluate how the
wind disturbance impacts the TTD and the effective recovery
duration in stealthy attack SA3/3

Gyro. Fig. 21 shows that the
TTD in SA3/3

Gyro remains steady at different wind speeds.
In Fig. 22, we only observed a slight decrease in average
recovery duration (177.8 s at default setting, 178.0 s at 1.0
m/s, 145.8 s at 2.0 m/s, and 163.4 s at 5.0 m/s). In Moving

0.0 1.0 2.0 3.0 4.0
Normalized Threshold

0.00

0.25

0.50

0.75

1.00

FP
R

CUSUM (VIMU)

Default
1.0
2.0
5.0

0.0 0.1 0.2 0.3 0.4
Normalized Threshold

G
PS (Position)

EMA (VIMU)

Default
1.0
2.0
5.0

0.0 1.0 2.0 3.0 4.0
Normalized Threshold

0.00

0.25

0.50

0.75

1.00

FP
R

Default
1.0
2.0
5.0

0.0 0.2 0.4
Normalized Threshold

G
PS (Velocity)

Default
1.0
2.0
5.0

0.0 1.0 2.0 3.0 4.0
Normalized Threshold

0.00

0.25

0.50

0.75

1.00

FP
R

Default
1.0
2.0
5.0

0.00 0.25 0.50 0.75 1.00
Normalized Threshold

Accelerom
eter

Default
1.0
2.0
5.0

0.0 1.0 2.0 3.0 4.0
Normalized Threshold

0.00

0.25

0.50

0.75

1.00

FP
R

Default
1.0
2.0
5.0

0.0 0.1 0.2 0.3
Normalized Threshold

G
yroscope

Default
1.0
2.0
5.0

Figure 23. FPR-Threshold Curves at Different Wind Speeds (Red Line: 5%
FPR ; Blue Line: Optimal Threshold w.r.t. Optimal Detector Parameters)

missions, VIMU even achieves a longer recovery duration
in the higher wind speeds, indicating wind disturbance is
not a dominant factor in the recovery of these tasks.

Because adapting different detector parameters to var-
ious wind speeds is challenging, we examine the gener-
alizability of the optimal detector parameters obtained at
the default wind setting to the wind disturbance environ-
ments. Specifically, we use these parameters to plot the
FPR-Threshold curves at different wind speeds (following
Appendix B). Fig. 23 presents the FPR-Threshold curves
for GPS and IMU. The FPRs on the gyroscope and GPS
position detectors demonstrate that for both CUSUM and
EMA detectors, the optimal detector parameters at the de-
fault wind setting can tolerate the windy environments, i.e.,
all curves meet the 5% FPR requirements specified in the
parameter selection (Appendix B). In contrast, the FPRs on
the accelerometer and GPS velocity detectors show that the
false positives increase drastically with wind disturbance. At
2.0 m/s and 5.0 m/s wind speeds, only the EMA detector for
GPS velocity can tolerate the wind. The detection parame-
ters of two CUSUM detectors and the EMA detector for the
accelerometer need to be reconfigured for wind disturbance.

	Introduction
	Adversary Model
	Design of VIMU
	Nonlinear Physical Model
	Online Anomaly Detection
	Sensor Isolation and State Recovery
	State Estimator and Buffer Safeguard

	Implementation
	Security-Enhanced Autopilot
	Sensor Attack Simulation

	Evaluation
	Experimental Setup
	Testbed
	Baselines
	Data Collection
	Metrics

	Detection Effectiveness
	Effectiveness on Overt Attacks
	Resilience towards Stealthy Attacks

	Recovery Effectiveness
	Comparison with SRR
	Comparison with SAVIOR on Physical Model
	Real World Test

	Discussion
	Conclusion
	References
	Appendix A: Physical Parameters Determination
	Appendix B: Detector Parameter Selection
	Appendix C: Evaluation Results Supplementary
	Detection and Recovery Effectiveness
	Impact of Drastic Flight Maneuvers
	External Disturbance

