2504.20536v1 [cs.CR] 29 Apr 2025

arxXiv

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

Starfish: Rebalancing Multi-Party Off-Chain Payment Channels

Minghui Xu, Member, IEEE, Wenxuan Yu, Guangyong Shang, Guangpeng Qi, Dongliang Duan, Shan Wang, Kun
Li, Yue Zhang, and Xiuzhen Cheng, Fellow, IEEE

Abstract—Blockchain technology has revolutionized the way
transactions are executed, but scalability remains a major chal-
lenge. Payment Channel Network (PCN), as a Layer-2 scaling
solution, has been proposed to address this issue. However,
skewed payments can deplete the balance of one party within
a channel, restricting the ability of PCNs to transact through
a path and subsequently reducing the transaction success rate.
To address this issue, the technology of rebalancing has been
proposed. However, existing rebalancing strategies in PCNs are
limited in their capacity and efficiency. Cycle-based approaches
only address rebalancing within groups of nodes that form a cycle
network, while non-cycle-based approaches face high complexity
of on-chain operations and limitations on rebalancing capacity.
In this study, we propose Starfish, a rebalancing approach that
captures the star-shaped network structure to provide high re-
balancing efficiency and large channel capacity. Starfish requires
only N-time on-chain operations to connect independent channels
and aggregate the total budget of all channels. To demonstrate the
correctness and advantages of our method, we provide a formal
security proof of the Starfish protocol and conduct comparative
experiments with existing rebalancing techniques.

Index Terms—Blockchain, payment channel network, rebal-
ancing.

I. INTRODUCTION

VER the past decade, blockchain technology [1] has ex-

perienced a rapid development as a trusted and decentral-
ized means of executing transactions. However, its scalability
remains a significant challenge. As a response, the research
community and industry have proposed a number of Layer-
2 scaling solutions to handle transactions off the Mainnet
(Layer 1) [2], [3], [4], [5]. Payment channel is an innovative
layer-2 scaling technique that enables transaction processing
off-chain and final settlement on-chain. The collaboration of
interconnected payment channels forms a payment channel
network (PCN) [6], [7], 81, [O0, [10], [L1], [12]. However,
the channel depletion problem, which refers to the scenario
where a payment channel within the network runs out of funds,
has a strong impact on the scalability of a PCN [13], [14],
[15]. Such a phenomenon occurs when a significant number
of transactions flow through a particular channel, exhausting
its available balance. These transactions, known as skewed
ones, render the channel temporarily unusable for further
transactions until it is replenished with funds.

Minghui Xu, Wenxuan Yu, Dongliang Duan, Kun Li, Yue Zhang, and
Xiuzhen Cheng are wih the Schoole of Computer Science and Technology,
Shandong University, Qingdao 266237, China. (e-mail: mhxu@sdu.edu.cn,
haitengseat@gmail.com, 2201546691 @qq.com, kunli@sdu.edu.cn, zyuein-
fosec@gmail.com, xzcheng @sdu.edu.cn)

Guangyong Shang and Guangpeng Qi are with Inspur Yunzhou Industrial
Internet Co., Ltd, Jinan 250101, China (e-mail: shangguangyong @inspur.com;
qigp@inspur.com).

Shan Wang is with the Department of Computing, The Hong Kong Poly-
technic University, Hong Kong, China (e-mail: shanwangsec @gmail.com).

Corresponding author: Wenxuan Yu

Researchers have proposed two types of approaches to
address the issue of channel depletion: routing-based and
rebalancing-based. Routing-based solutions [16], [17], [L8],
[19], [20], [21] aim to balance and facilitate transactions within
a payment channel network by selecting appropriate routing
strategies. Rebalancing-based solutions [22], [23[], [24], [25],
on the other hand, realize the goal of rebalancing channels
with depleted funds by transferring balances between channels.
These two techniques complement each other, with the former
helping to choose appropriate payment paths, while the latter
reviving payment routes that were previously unusable. We
focus on rebalancing-based methods in this paper, and address
their limitations with a live example first.

20%

137%

Proportion
3
x
&

(a) (b)

Fig. 1: (a) Visualization of the Bitcoin lightning network
by displaying nodes with a degree up to 32. Color nodes
according to their degrees: white for 1, green for 2, orange
for 3-4, blue for 5-8, purple for 9-16, and red for 17-32. Each
gray edge represents a payment channel. (b) The distribution
of the node degree.

Fig. [T(a) presents a visual representation of the real-world
Bitcoin lightning networ exhibiting its mesh topology. Each
gray edge represents a payment channel. Fig. [T(b) illustrates
the dense nature of the Bitcoin lightning network, wherein
approximately 70% of the intermediary nodes possess a degree
exceeding two. Nodes characterized by high degrees may
experience heightened transactional throughput, thereby ele-
vating the risk of channel depletion in the presence of skewed
transactions. However, such nodes also benefit from enhanced
opportunities to effectively rebalance channels, consequently
mitigating depletion risks. Current solutions are inadequately
tailored for rebalancing within such a dense network topology,
impeding their ability to achieve optimal rebalancing efficiency
and accommodate large channel capacities.

Two categories of rebalancing approaches exist: cycle-based
[22], [23], [24] and non-cycle-based [6], [26], [25]. The
cycle-based approach, exemplified by the Revive protocol

'We get the snapshot of the lightning network topology on 2021-03-31,
which contains 10,529 nodes and 38,910 channels.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

[22], leverages nodes organized in a cyclic network topology
for rebalancing. Cycle [23] further augments the efficacy of
Revive. However, cycles take resources (time and bandwidth)
to identify, and PCNs frequently feature non-cyclic structures,
e.g., star-shaped ones, rendering such methods inefficient and
ineffective. Close-Open [6] and LOOP [26] are two non-cycle-
based solutions that achieve channel balancing by reopening a
new channel. These solutions are simple but require frequent
on-chain operations, resulting in significant time and finan-
cial expenses. Shaduf [25], as a non-cycle-based rebalancing
approach, rebalances channels by binding (each costs 2x
on-chain operations) adjacent channels and enabling balance
transferring between them. When using the common “All
Bind” or “All to One” binding strategies, the required number
of on-chain operations to bind N channels are respectively
N(N —1) or 2(N — 1). Additionally, the channel capacity in
Shaduf is limited by the highest capacity among the channels
bound together.

In this study, we present Starfish, a rebalancing technique
that improves rebalancing efficiency and channel capacity
compared to existing approaches. Starfish is applicable to any
node as it takes only the one-hop local topology of the node
(the node is called a hub in the Starfish protocol to differentiate
it from other nodes), a starfish-style structure centered at
the hub, and rebalances among the channels associated with
the hub to overcome the balance depletion of any channel
associated with the hub. Moreover, all the nodes in a PCN
can run Starfish independently and simultaneously, as each
node rebalances only the amounts it allocates to its associated
channels. In a nutshell, major contributions of this paper can
be summarized as follows:

« High rebalancing efficiency. Starfish offers an effective
solution for rebalancing multiple channels associated with
a node. We use a unique merge contract that requires only
N on-chain operations to connect several independent
channels, resulting in a cost-effective rebalancing process.
The traditional approach balances only two adjacent
channels at a time. In contrast, our Starfish protocol can
simultaneously merge and rebalance multiple channels
based on their specific needs and channel connection
conditions, thereby enhancing the efficiency of multi-
channel rebalancing.

« Large channel capacity. Starfish improves channel scal-
ability and efficiency by combining the capacities of
multiple merged channels. This allows for the largest
rebalancing capacity by utilizing the total budget of all
channels. Additionally, Starfish promotes liquidity among
merged channels, which is more effective than the tra-
ditional approach of assigning a fixed budget to each
channel. These features enable the system to handle a
significant volume of off-chain transactions with a high
rate of success.

« Formal security proof and comparison study. In order
to validate the safety and liveness properties of Starfish
when facing potential malicious channel participants, we
formalize the protocol and use the universally composable
framework to prove that Starfish satisfies all the necessary

security requirements for rebalancing. By experiments,
Starfish has shown superior performance in various typi-
cal conditions when compared to other similar protocols.

II. RELATED WORK

In a payment channel network, channel rebalancing refers
to the process of adjusting the distribution of funds within a
payment channel to ensure optimal liquidity and functionality.
Table [I] presents a comprehensive comparative analysis on
Starfish and other prevailing methods for rebalancing.

Close-Open [6] rebalances a channel by reopening it
through two on-chain operations, while LOOP [26] reduces
two to one. This implies that for a n-time refunding, 2n and
n on-chain transactions are respectively required. Note that
these two approaches do not depend on cycles, and their on-
chain consensus waiting time is O(A), where A is the latency
of transaction confirmation on a blockchain. Revive [22]’s
rebalancing process does not require on-chain operations but
relies on a cycle formed by payment channels. It sends a
series of off-chain transactions with equal amounts in a cycle
to rebalance channels that have been depleted. A drawback
of Revive is that when rebalancing through transactions,
normal transactions on the cycle should be stopped. Cycle [23]]
breaks this limitation, allowing the rebalancing process to
be performed simultaneously with normal transactions. Cycle
categorizes the rebalancing states into global and local ones,
and relies on a smart contract to record the global state and
arbitrate conflicts. For a n-time refunding, Cycle requires one
on-chain operation and waits for O(A) on-chain consensus
time.

Shaduf [25], through one on-chain binding operation, af-
ter waiting for O(A) on-chain consensus time, allows two
channels to perform refunding n times through off-chain
signatures without relying on any cycle. For a mutual binding
of multiple channels, Shaduf takes different binding strate-
gies to determine the number of Bind/Unbind operations on-
chain. Particularly, three typical binding strategies are adopted:
(1)“High to Low”: users bind the channel with the highest
balance to the one with the lowest balance, followed by the
second-highest balance to the second-lowest balance, and so
on, resulting in N/2 Bind/Unbind operations for N channels
and thus involving N on-chain operations; (2) “All to One”:
all channels are bound to the same channel, resulting in N —1
Bind/Unbind operations and 2(N — 1) on-chain operations; (3)
“All Bind”: each channel is bound to every other channel, re-
sulting in V(N —1)/2 Bind/Unbind operations and N (N —1)
on-chain operations. Note that Close-Open, LOOP, Revive,
and Cycle cannot rebalance multiple channels while Shaduf
supports such a feature. With different binding strategies, each
channel’s capacity varies. However, the average capacity that
can be used by each channel for any strategy cannot exceed
Cmaz- In comparison, Starfish consistently elevates the average
transaction capacity per channel to . C; and requires only N
on-chain operations.

III. PRELIMINARIES

Payment Channel. A payment channel is a type of off-
chain solution that allows two parties to establish a temporary

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

TABLE I: Comparison of Starfish with Other Approaches

#OPTs for Wait Time for Usability of #OPTs for Capacity

n-Time Refunding n-Time Refunding C/NC Cases N-channel Bind (Merge) Bound
Close-Open [6] 2n o(A) () - Crnaz
LOOP [26] n O(A)) - Crnaz
Revive [22] 0 O(1) () - Crmasx
Cycle [23]] 1 o(Aa) ') - Crnax
Shaduf [23] 1 o(1) ° 2(N — 1)t Conaz
Starfish 1 o(1)) N e,

#OPT The number of required on-chain operations
CNC Cycle-based / Non-cycle-based

A The latency of transaction confirmation on a blockchain

T “All to One” binding strategy. Note that the “All Bind” binding strategy leads to N (N — 1) OPTs; while the “High
to Low” binding strategy leads to N OPTs but cannot rebalance every pair of channels.

Cmaz The highest channel capacity.

channel for exchanging balances, conduct transactions within

the channel, and record the final balances on the underlying

blockchain. Such a channel does not require recording each
transaction on the blockchain, and its lifecycle consists of three
operations.

e Open. The process of opening a payment channel involves
each party creating a smart contract that locks a certain
amount of fund as its initial balance on the blockchain.

e Update. Once the channel is open, the participants can
transact off-chain by signing transactions between them-
selves.

e Close. To close the channel, the participants must publish
the final balances on the blockchain. This allows each party
to receive the leftover of the fund that has been locked in
the smart contract.

Payment Channel Networks. A payment channel network
is composed of interconnected payment channels, allowing
two nodes in the network to complete transactions off-chain
through a path formed by multiple adjacent channels. In such
a network, nodes along a payment path can be categorized
into two types: endpoint nodes and routing nodes. The two
endpoint nodes act as the initiator and the receiver of a
transaction, while routing nodes are responsible for facilitating
transaction routing and may charge fees for this service. The
network often exhibits a mesh topology, with many nodes
having high degrees. Such nodes typically serve as routing
nodes without actively initiating transactions. As a result, they
are referred to as payment hubs. Payment hubs may frequently
face channel depletion issues due to the presence of numerous
skewed payments in a payment channel network.

IV. THE DESGIN OF STARFISH

We demonstrate the design of Starfish protocol via a four-
channel example illustrated in Fig. 2] Assume a node H (also
called hub in Starfish) has established four off-chain channels
with users A, B, C, and D, denoted as (H,A), (H,B),
(H,C), and (H, D), respectively. The node H has deposited
0, 5, 10, and 21 units respectively in these channels. There

exist two issues in this payment network: (1) H is unable to
transfer money to A because H has depleted its deposit in
(H, A); (2) even though there is a total balance of 36 owned
by H in the payment network, H cannot initiate a transaction
of 36 because the balances in these channels are not shared.
Starfish aims to rebalance these channels to allow the node
H to transact freely with any of the parties A, B, C, and
D using its total balance of 36. It primarily involves four
procedures: Open Merge, Update Edge, Update Merge, and
Close Merge, along with three procedures related to channels:
Open Channel, Update Channel and Close Channel.

A. Open Merge: Creating Starfish from Scratch

Open Merge initiates to merge the balances of all channels
associated with a single node (i.e., hub), into a single funding
pool whose capacity is defined to be the sum of all the
involved channel balances. Such a merge operates over a
starfish-like structure as depicted in Fig. 2] (Open Merge).
It can rebalance the channels to avoid channel depletion and
increase liquidity to lift the restrictions on fund transfer. The
merge is performed through a smart contract called MERGE,
and the collective capacity of the starfish structure after merge
remains constant during off-chain trading. For example, in
Fig.] (Open Merge), to merge the channels, H initiates a
merge procedure to pledge all its balances in (H, A), (H, B),
(H,C), and (H, D) to the MERGE contract. As all balances are
merged, the hub H possesses a collective capacity of 36, which
remains constant during the subsequent off-chain trading. By
traditional approaches, merging N channels with the “All to
One” strategy necessitates /N —1 instances of binding, resulting
in 2(N — 1) on-chain operations since each binding operates
two channels. The issue with this method is that the hub
is redundantly operated N — 2 times. In Starfish, the merge
contract only operates one time on each channel to extract its
balance.

After collecting all balances to the MERGE contract, off-
chain trading can be enabled. Nevertheless, two prominent
challenges commonly emerge in this context. (1) Excessive
payment: It is necessary to ensure that each newly issued

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

Open merge

[> ‘*3;,

ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ *

update 5 [> '(%?) 5
I - ©

umerge

Remerge and
unmerge

Update merge

Fig. 2: Procedures of Starfish.

transaction does not exceed the remaining balance of the
payment account. Such a scenario can occur due to network
delay or errors in balance counting. Each member of the group
must confirm to this requirement. In this case, a smart contract
should be able to determine which transaction to reject and
finish final settlements safely. (2) Double spending: Starfish
should avoid double-spending attacks, especially when the hub
colludes with end-users. For example, if the hub H transacts
with A and D for amounts of 18 and 19, respectively, the sum
is more than the total balance it possesses (i.e., 36), a double-
spending attack occurs. A commonly used approach to counter
such an attack is to apply consensus algorithms. However, if
we adopt a consensus protocol to ensure the full order of all
off-chain transactions, it would lead to high communication
overhead and the hub that orderly deals with transactions can
be a bottleneck.

To solve these challenges, we partition the overall capacity
of the funding pool into smaller allocations during the open
merge procedure. As depicted in Fig. [2] (Open Merge), the
total capacity of 36 is apportioned into 21, 5, 6, and 4 units,
with each being assigned to a specific edge, facilitating the
connection between the hub and an individual end user. For
instance, the capacity of 21 is allocated to the edge identified
as €x7_ 4, thereby establishing the initial merge balances of H
and A on ey _ 4 as 21 and O units, respectively. The allocation
of capacity to individual edges is mainly determined by the
preceding transaction volumes. In cases where the transaction
volume between entities H and A is substantial, the capacity
of the ey 4 edge should be considerable. After this capacity
partitioning, each edge in the starfish structure is allocated with
certain amount of balance (the result of rebalancing), namely
the capacity of the edge, with which the associated users can
trade off-chain. Furthermore, to counter the double-spending
attack, each edge is associated with a version number termed
versionE.

B. Update Edge: Treatment to Double Spending

The update edge, functioning as an off-chain process, is
responsible for modifying the merge balances of the desig-
nated users. As depicted in Fig. 2] (Update Edge), H transfers
2, 1, and 3 units to A, B, and C on e€g_,, €g_p, and
€—c, respectively. Following three update edge operations,
the versionE associated with each edge is incremented. The
transactional flow is capable of being bidirectional, with the

stipulation that the capacity of each edge remains conserved
during off-chain transactions. Both parties involved in a trans-
action are required to sign it. These signatures, along with the
corresponding versionE values, are leveraged to establish a full
order of transactions on the edge and provide evidence to smart
contracts to carry out final settlements correctly. Consequently,
the Starfish protocol effectively mitigates internal conflicts
arising from excessive payments or double-spending attacks.

Moreover, such a design prioritizes efficiency by organizing
multiple users into two-party groups based on edges. This
strategic partitioning mitigates the need for cumbersome multi-
party consensus mechanisms in addressing aforementioned
double-spending attacks, while also enabling swift transaction
processing in parallel across all edges through the update
Merge process.

C. Update Merge and Close Merge: Rebalancing Capacity for
Improved Availability

In the Starfish protocol, the facilitation of capacity transfers
occurs seamlessly through an off-chain update merge opera-
tion that is straightforward to implement. This operation is
initiated by a request, prompting two edges to transfer their
capacities. Subsequently, this transfer is recorded in an off-
chain transaction necessitating the signatures of the hub and
the two involved end users. Upon broadcast, the transaction re-
quires global consensus for approval. To ensure the sequential
integrity of all update merge transactions, an atomic broadcast
involving all users is employed. Upon successful completion
of the atomic broadcast, indicating unanimous consensus, the
update merge transaction is validated and assigned a version
number denoted as versionM. This methodology ensures the
security of the update merge process while circumventing
costly on-chain operations. Given the expediency of atomic
broadcasts and the infrequent occurrences of update merge
transactions compared to standard off-chain transactions, the
associated overhead remains acceptable. For instance, as de-
picted in Fig. 2| (Update Merge and Close Merge), €7 4 trans-
fer the capacity of 4 to ey _p by a update merge operation.

Additionally, the close merge operation safeguards against
the potential disruption of the nodes or the dissolution of
merge structures upon the departure of end users. It involves
disentangling merged channels and is initiated by a request for
unmerging, requiring the involvement of the end-users of the
affected edges. Throughout the close merge procedure, users

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

within the edge verify the update edge and merge states by
inspecting versionE and versionM, addressing any inconsisten-
cies through challenges. The combined utilization of versionE
and versionM ensures the full ordering of transactions. In
Fig. 2}(Update Merge and Close Merge), D exits the merge,
decreasing the total capacity from 36 to 32. The close merged
users retain ownership of the off-chain channels. Furthermore,
initiating the closure of channels is within the purview of any
user and involves the termination of a channel. The closure
process can present complexities, especially when channels are
integrated into a merge structure, requiring prior close merge
procedure.

V. FORMAL MODELING OF STARFISH

This section outlines the formal model used to analyze the
Starfish protocol, covering the network assumptions, security
objectives, and the specific notations for channels, merges, and
edges.

A. Model

The network has a fixed set of parties P = {Py,..., P,},
where all parties are rational non-myopic players [27]. A
message (m,op) is deemed valid if op constitutes a valid
signature of party P on m. Similar to Perun [3]], we con-
sider a synchronous network where messages are exchanged
in a round-based manner. Each message between parties is
delivered within one round. For instance, a message sent by
A in round r can be received by B before the beginning
of round r 4+ 1. Communications between the parties and
the environment £ as well as the ideal functionality F are
instantaneous, with messages sent through secure channels
that prevent tampering. The adversary A can see the messages
from honest parties but cannot alter them. We model a static
adversary A that corrupts arbitrary parties before the protocol
begins. Corruption means that A gets all internal states of the
corrupted parties and takes full control of them. We denote the
transaction confirmation delay as A. We use 7 to represent the
time points related to on-chain contract operations, and ¢ to
denote the time points of off-chain operations.

B. Security Goals

Our primary security goal is to ensure the protection of the
balances of honest parties, guaranteeing that their funds re-
main uncompromised. More specifically, our protocol requires
a unanimous consent from both parties when opening and
updating channels; a collective agreement from all involved
parties during the open merge; mutual consent from the parties
involved in the update edge and update merge; the processes
of closing merge and channel should be completed within a
reasonable time, and it is imperative to ensure that the coin
shift is conducted based on the latest state of the honest parties.
The detailed properties are delineated below:

o Consensus on Open Channel and Update Channel:
Within a channel, both opening and updating require mu-
tual agreements from the involved parties. The opening of
a channel can be completed within O(A) time, whereas
updating the channel’s state is achieved in a constant time.

o Consensus on Open Merge and Update Edge: The
open merge process involves multiple channels associated
with an intermediate party, requiring the consent of all
parties involved. The open merge process requires O(A)
time to complete. For the update edge, both parties must
confirm each merge state, which takes constant time to
complete.

« Consensus on Update Merge: The update merge pro-
cess entails the transfer of capacity between two edges,
necessitating the confirmation of state updates among all
honest parties. The entire update merge operation should
take constant time.

o Guaranteed Close Merge and Close Channel: A party
associated with an edge can request to close merge and
conduct a coin shift for the channel. The close merge
process takes O(A) time. Any party in the channel can
request to close the channel, which also takes O(A) time.

« Guaranteed balance payout for users: The process to
close merge and close a channel must settle accounts
according to the latest state involving the honest party.

C. Notations

This section defines the core components and operations
within our payment channel network model. We describe
the properties of individual channels, merge operations that
involve multiple connections, and the edges within those
merges.

1) Payment Channel ($3): A fundamental element is the
payment channel, denoted by [, which facilitates transactions
directly between two parties. Each channel 3 is characterized
by:

o Unique identifier: 8.id € {0,1}*. A unique string that

distinguishes this channel from all others in the network.

« Participating parties: [S.users = (A, B). The ordered pair
identifying the two parties authorized to transact using
this channel.

« Channel balances: f(.balanceC : SB.users — RZC. This
function maps each party (A or B) to their current non-
negative balance within the channel. The total funds
remain constant within the channel during internal pay-
ments.

o Channel Payment (6): A payment operation within the
channel is represented by a function 6 : S.users — R.
This function specifies the amount transferred, satisfying
the conservation property 0(A) + 6(B) = 0. Apply-
ing the payment # updates the balances such that the
new balance for each party X € {A, B} becomes
B.balanceC(X) + 6(X). We denote this update collec-
tively as (3.balanceC «+ (.balanceC + 6.

o Channel version number: .versionC. An integer that in-
crements with each update to the channel’s state (e.g.,
after a payment), used for state synchronization and
conflict resolution.

o Merge set: .mergeSet. This set contains all the merge
contracts associated with the channel 5.

2) Merge (p): A merge, denoted by ¢, represents a higher-
level construct, potentially involving multiple users connected

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

through a central point or hub via individual edges. A merge
is defined by:

« Unique identifier: @.id € {0,1}*. A unique string iden-
tifying this specific merge instance.

e Merged Users: ¢.users. The set containing all users par-
ticipating in this merge, typically connected to a common
hub.

o Merged edges: .edges = (e1,...,€,). A tuple listing
all the individual edge connections (defined below) that
constitute this merge contract.

o Merge version number: ¢.versionM. An integer that in-
crements when the merge state itself is updated (e.g.,
through a re-merge or capacity reallocation), tracking the
evolution of the merged structure.

3) Edge within a Merge (¢): Each edge ¢ within a merge’s
edge list (e € p.edges) represents a specific bilateral relation-
ship, usually between a hub and one user within the merge
context. An edge has the following attributes:

« Participating users: e.users = (hub, user). An ordered
pair identifying the two endpoints of this edge, typically
the central hub and a specific user from .users.

« Edge capacity: e.capacity € RZ%. A non-negative value
representing the total capacity locked into this specific
edge connection.

« Edge balances: e.balanceE c.users — RZ9 This
function maps the hub and the user to their respective
non-negative balances within this edge. The sum of
these balances must always equal the edge’s capacity:
e.balanceE(hub) + e.balanceE(user) = e.capacity.

« Edge Payment (?): A payment along the edge is defined
by a function ¢ : e.users — R, satisfying 0(hub) +
O(user) = 0. Applying 6 updates the edge balances:
e.balanceE < e.balanceE + 6.

« Edge version number: e.versionE. An integer that incre-
ments after each update specific to this edge (e.g., after
an edge payment 0), tracking the state progression of the
individual edge.

4) Merge Update (6): An update merge operation, denoted
0, facilitates the reallocation of capacity between two edges,
say €; and ey, that are part of the same merge . This
operation is defined as a function: 0 : p.edges — R. This
function specifies the change in capacity for edges within
the merge. For a reallocation between €; and e, it must
satisfy: A(e;) + 6(es) = 0 and (¢;) = 0 for all
other edges €; € p.edges \ {1, e2}. Applying 6 updates the
capacities of the involved edges as follows: ¢;.capacity <
¢;.capacity + 0(e;), fori € {1,2}. For brevity, we may
denote this collective capacity update for the affected edges
e € {e1, €2} simply as e.capacity + 0.

VI. DETAILED STARFISH PROTOCOL

This section provides a detailed description of the Starfish
protocol’s implementation, including the functioning of the
channel and merge smart contracts, the definition of the
ideal functionality for security analysis, and the step-by-step
execution of the real-world protocol.

A. Channel Contract and Merge Contract

We have used the UC security model [28] to demonstrate
the security of our protocol. This model defines two worlds:
the ideal world and the real world. In the real world, parties
execute the protocol II while facing an adversary A and
interacting with the contract functionality C. In the ideal world,
the idealized protocol, known as ideal functionality F, is
executed through interactions with parties and a simulator S,
which simulates the behaviors of the adversary. All parties
receive inputs from and send outputs to the environment .
The protocol II is considered UC-secure if the environment
& cannot computationally distinguish whether it is interacting
with the protocol in the real world or the one in the ideal
world. We define A\ as the security parameter, and EXEC?”S‘
(M) denotes the output of environment £ executing the real
world protocol II with adversary A in the C-hybrid world.
IDEAL£ s(A) denotes the output of environment £ executing
the ideal functionality F with simulator S in the ideal world.
The formal security definition is as follows:

Definition 1. Protocol 11 executing in the C-hybrid world
UC-realizes the ideal functionality F with respect to the
global ledger L and with blockchain delay A, if for any PPT
adversary A there exists a simulator S such that

EXECE S (\) ~ IDEALZ 5()) (1)

where = denotes the computational indistinguishability.

—(Ledger Functionality E} \

Initialization: The ledger functionality is initialized by a
message (1, ...,Tn) € RTZLO from the environment &£, where x;
denotes the coins of party P; in £; the tuple is stored in the
ledger.

Adding coins: Upon receiving a message (add, P;,y) (where
P; € P and y € RZY), the ledger functionality updates

T =T + Y.

Removing coins: Upon receiving a message (remove, P;,y)
(where P; € P and y € RZY), the ledger functionality updates
xz; = x; —y if ©; > y; otherwise, ignores the message and stops.

\ J

Fig. 3: Ledger Functionality

Ledger and contract functionalities: The ledger functional-
ity £ is designed as a foundational, transparent, and immutable
record of the balances x; for each party P; in the system. The
core design principle is to establish a single, publicly observ-
able source of truth for asset ownership. A key design choice
is the indirect manipulation of balances: parties cannot directly
alter the ledger. Instead, all updates (adding or removing
coins) are exclusively triggered by the contract functionality
C (in the real world) or its ideal counterpart F (in the ideal
world). This ensures that all ledger modifications adhere to the
predefined logic embedded within smart contracts, enhancing
security and control. The ledger itself maintains a simple state
as a tuple of balances (z1,...,2,) and supports two basic
operations: add (always successful for non-negative amounts)
and remove (only successful if sufficient balance exists),
thereby preventing negative balances at the base layer. The

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

ledger operates passively, responding only to commands from
other functionalities.

,—(Contract Functionality C} \

(A) The contract execution of channel 5
Wait for the following messages:

1) Upon receiving (open, 3) from A in 7, send
(remove, A, B.balanceC(A)) to ledger £ and send
(opening, 8) to B in 7. Wait for one of the following
messages:

a) Upon receiving (open, 8) from B within 71 < 7+ A,
send (remove, B, 5.balanceC(B)) to £ in 71, output
(opened) to [S.users.

b) Otherwise, send (add, A, 5.balanceC(A)) to L after
T2 > 7+ A and close the contract. Output
(not-opened) to A.

2) Upon receiving (chan-merge, ¢) from C(¢.id) in 7, add ¢
to B.mergeSet, set J.balanceC(hub) := j.balanceC(hub)
— e.capacity and stop. _

3) Upon receiving (chan-closeM, ¢, msgE) from C(p.id) in
T, remove ¢ from [.mergeSet. Set 3.balanceC :=
B.balanceC + e.balanceE, and stop.

4) Upon receiving (closeC, id, msgC) from A in 7, if msgC
is valid, store msgC. Send (closeC, id) to B. Upon
receiving (closeC, id, msgC) from B within 71 < 7
+4A, if msgC of B is valid and 8 versionC >
B versionC, store B’s msgC and discard the old one.
Send (add, A, 5.balanceC(A)) and (add, B,
B.balanceC(B)) to L, output (closedC) to [.users.

(B) The contract execution of merge ¢

Wait for the following messages:

1) Upon receiving (merge, ¢,) from hub in 7, let 3 be the
underlying channel for each edge € € ¢.edges. If
B.balanceC(hub) > e.capacity, set e.balanceE(hub) :=
e.capacity. Send (chan-merge,) to C(f.id) in T, output
(merged) to all users and stop. Otherwise, output
(not-merged) to all users and stop.
2) Upon receiving (closeM, id, €, msgM, msgE) from hub in
7, if msgM and msgE are valid states, store them, and send
(closingM, id, €) to user. Wait for the following messages:
a) Upon receiving (closeM, id, e, msgM, msgE) from user
in T <74 A, if msgM and msgE of user are valid,
0= versionM > ") versionM and =" versionE
> (") versionE, store user’s msgM and msgE and
discard old ones. Send (closeM-check, id, msgM) to
users. ~

b) Upon receiving (timeout,id) after 72 > 7 + A from
hub, send (closeM-check, id, msgM) to users.

¢) Upon receiving (closeM-challenge, ¢d, msgM) from
R within 73 < 7 4 2A, if R’s msgM is a valid state and
ap(R).versionM is the highest, keep R’s msgM, discard
the old one, set e.balanceE of msgE to be equal to
e.capacity of msgM.

Remove user from ¢.users. Remove ¢ from ¢.edges. Send

(chan-closeM, ¢, msgE) to C(8.id). Output (closedl, id,

€) to all users and stop.

\ J

Fig. 4: Contract functionality C: (A) The contract execution
of channel ; (B) The contract execution of merge ¢.

The essence of C’s design lies in its role as a neutral inter-
mediary ensuring the consistent state transitions of channels
and merges by interacting with the underlying ledger £ and the

involved parties. For channel establishment, it enforces mutual
agreement within a defined timeframe. For merges, it facili-
tates the linking and unlinking of separate contracts, adjusting
balances accordingly. During channel closure, it guarantees
that both parties agree on the final state before the funds
are released back to them, providing a secure and reliable
mechanism for managing these collaborative agreements.
The contract functionality C is designed to manage the
lifecycle of two primary types of agreements: channels and
merges. For a channel [, the contract oversees its opening
by coordinating the removal of initial balances of participants
A and B from the ledger £ upon receiving respective open
requests. If both parties agree within a time bound A, the
channel is marked as opened; otherwise, A’s initial balance
is returned. During the channel’s operation, C handles merge
requests (chan-merge) by adding a merge contract ¢ to
B’s set and decreasing the hub’s balance, and it manages
the closure of merges (chan-closeM) by removing ¢ and
adjusting balances. Channel closure (closeC) involves a two-
phase commit process where both participants exchange and
validate closing messages before their final balances are added
back to the ledger, and the channel is marked as closedC.

B. Ideal Functionality and Real Protocol

The ideal functionality / communicates with the party set
P, the simulator S, and the ledger £. To simplify the protocol
description without compromising its security, we impose
certain restrictions on the inputs provided by the environment
E. Specifically, the environment £ should not provide illogical
inputs, such as requesting the activation of a channel that is
already open or requesting a channel balance that exceeds the
user’s actual coins in the ledger.

Our ideal functionality F comprises seven procedures, as
shown in Fig.[5] (A) Open Channel ensures channel activation
only upon mutual agreements of both involved parties. (B)
Update Channel enables any party to request a state update of
the channel, typically for executing payments. This procedure
is completed only upon receiving the consent of the channel’s
other party. (C) Open Merge, initialed by the hub of the
channels that require merging, is successfully concluded only
after obtaining unanimous agreement from all end users. (D)
Update Edge, initiated by a party within an edge, facilitates
the transfer of the merged balances and is finalized only
with the approval of the other involved parties. (E) Update
Merge is designed to shift merged balances between two edges,
commencing with the intermediate party and concluding upon
unanimous consent from all parties involved in the merge. (F)
Close Merge, which any party within an edge can initiate,
results in returning the capacity back to the channel balance
upon its completion. (G) Close Channel, open to initiation by
either party of a channel, leads to the transfer of the channel
balance to the ledger £ at the end of the process.

Next, we provide an analysis regarding how the ideal
functionality F achieves the security properties.

Consensus on Open Channel and Update Channel. A
channel can only be opened when A initiates the request and B
agrees, requiring a mutual consensus between the two parties.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

,—[Ideal Functionality]-'}

2) After completing step 1, send (opening, 3) to B in t1.

Upon receiving (updateC,id, 8) from A in ¢, proceed as follows:
sending the message.

output (not-updated) to A, then stop.

Upon receiving (merge,) from hub in ¢, proceed as follows:

(merge-req, ¢) to P in t;.

(not-merged), then stop.
Upon receiving (updatek, z‘~d7 é, €) from hub in ¢, proceed as follows:

1) Send (updateE-req, id,) to user in ¢ := ¢ + 1.

stop.

hub in ¢, proceed as follows:

(updateM-req,id, 0, €1, €2) to P in ¢1, and similarly for Q.

Upon receiving (closeM, id, €) from hub in ¢, proceed as follows:

(closedM,id, €) to p.users and user within ¢1 < ¢ + 3A and stop.

Upon receiving (closeC,id) from A in ¢, proceed as follows:

Output (closedC) to SB.users, and stop.

(A) Open Channel
Upon receiving (open, 8) from A in ¢, let B := [.other-party(A), proceed as follows:

1) Within ¢t; <t + A, send (remove, A, B.balanceC(A)) to ledger L.

3) Upon receiving (open, 3) from B in t1, send (remove, B, 8.balance(B)) to £ within ¢ < ¢; + A, output (opened) to 3.users and simulator
S, then stop; otherwise, send (add, A, B.balance(A)) to L after t2 > t1 + A, output (not-opened) to A, then stop.

(B) Update Channel

1) Send (updateC-req,id, @) to B in t1 := ¢ + 1. To maintain synchronization with the rounds of our protocol, F waits for one round before

2) Upon receiving (updateC-ok) from B in ¢1, set 8.balance := .balance + 6, output (updated) to A in t2 := ¢; + 1, then stop; otherwise,

(C) Open Merge

1) If hub is honest, send (merge-req, p) to P € p.users in t1 := ¢ + 1; otherwise, upon receiving (send-req, P) from S in ¢, send
2) Upon receiving (merge,) from all users in ¢1, send (merge-confirm, ¢) to hub in to :=t1 + 1.

3) Upon receiving (merge-confirmed,) from hub in ¢2, let 3 be the underlying channel for each edge € € ¢.edges. Add ¢ to B.mergeSet. Set
B.balanceC(hub) := S.balanceC(hub) — ¢.capacity(e). Output (merged) to all users and S within ¢t3 < ¢t + A, then stop; otherwise, output

(D) Update Edge

2) Upon receiving (updateE-ok) from user in ¢1, output (updatedE) to hub in ¢2 := t1 + 1, then stop; otherwise, output (not-updatedE), then

(E) Update Merge
Let €1 and €2 be the edges involved, connecting to end-users P and @, respectively. Let R € .users. Upon receiving (updateM, id, é, €1, €2) from
1) If hub is honest, send (updateM-req, i~d, é, €1,€2) to P and Q in ¢ := t 4 1; otherwise, upon receiving (send-req, P) from S in ¢, send
2) Upon receiving (updateM-ok) from P and @ in t1, send (updatel‘@—ccznfirm,ill, é, €1,€2) to hub in t2 := 1 + 1. Upon receiving
(updateM-confirmed) from hub in t2, send (updateM-pending,id, 0, €1, €2) to users in t3 := to + 2.

3) Upon receiving (updateM-wrong) from R and R is honest in ¢3, output (not-updatedM) to ¢.users, and stop. Otherwise, update the capacity
and balanceE of €; and €2, respectively. Output (updatedM) to .users, and stop.

(F) Close Merge

1) Assume user is the end party, remove user from .users, remove € from p.edges.
2) Let B denote the underlying channel corresponding to ¢, remove ¢ from 3.mergeSet, set B.balanceC := 3.balanceC + ¢.balanceE. Output

(G) Close Channel

1) If B.mergeSet = @, within round ¢; < ¢t + 2A, send (add, A, 3.balanceC(A)) to ledger £, and send (add, B, 3.balanceC(B)) to ledger L.

2) Otherwise, for each merge ¢ in [5.mergeSet, execute procedure (F). Let ¢2 be the current round. Within ¢t3 < to + 2A, send
(add, A, B.balanceC(A)) to ledger £, and send (add, B, 8.balanceC(B)) to ledger £. Output (closedC) to S.users, and stop.

Fig. 5: Ideal Functionailty of Starfish

The time interval from the initiation of the open channel
request to the actual opening is 2A. Similarly, an update of
the channel also requires a consensus between both parties.
Under the premise of both parties being honest, updating the
channel takes 2 rounds.

Consensus on Open Merge and Update Edge. The procedure
of open merge requires initiation by a hub and consent from
all end users. The entire merging process is expected to take
A+ 2 rounds. The update edge process is similar to the update

channel, necessitating consensus among the edge parties. If
both parties remain honest, the operation is expected to take
2 rounds.

Consensus on Update Merge. The update merge process
mandates initiation by the hub, followed by confirmations from
all the end users. In this procedure, the parties associated with
the edges involved in the update merge are required to reach a
consensus regarding the update merge request. Subsequently,
the hub executes an atomic broadcast to synchronize the

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

current update merge state. If all parties are honest, the
procedure is expected to take 4 rounds.
Guaranteed Close Merge and Close Channel. Within any
merge edge, any party can issue a close merge request to
remove its channel from the merge contract. The procedure is
expected to be completed within 3A time. Any party within a
channel can issue a close channel request to close the channel.
Should the channel not be integrated into a merge contract, it
is expected to close within 2A time; otherwise, it first requires
3A time to close merge the channel before the closure can be
executed.
Guaranteed balance payout for users. Once a channel has
been close merged, the current merge balance is transferred
to the channel balance. When the channel is closed, the latest
state of the channel balance is stored in the parties’ account
in the ledger L.

Then we provide a comprehensive description on the real-
world Starfish protocol as depicted in Fig. [6] and Fig.

Initially, we outline the procedure for opening a channel,
as shown in Procedure (A), with the corresponding contract
functionalities illustrated in Fig. E} Upon receiving (open, [3)
from the environment £, A sends a request to the contract
instance C(.id) for channel activation. Subsequently, C(5.id)
informs B about the initiation of the channel. If B agrees to
open the channel within A time, C(8.id) records the opening
of channel §3, reallocates the channel balances from ledger £
into the contract, and outputs (opened) to both A and B.
Otherwise, C(f3.id) outputs (not-opened) to A.

The process of channel updating is depicted in Procedure
(B). Updating the channel does not require interaction with
the contract. Upon receiving (updateC,id,#) from &, A first
increments its local version number (i.e., (5.versionC), and
updates the latest balance allocation based on 6. A then sends
the updated state along with its signature to B, requesting
a channel state update. After verifying the correctness of the
signature and the state version number, B seeks approval from
& for the channel update. If £ approves the update, B responds
to A with an updated state signed by its signature. If B does
not respond, A outputs (not-updatedC) and terminates the
update channel process.

The procedure for open merge is shown in Procedure (C),
with the corresponding contract functionalities detailed in
Fig.] The open merge process requires initiation by the hub.
To prevent replay attacks, the hub first signs the open merge
message (,t) and sends this signed open merge request to the
end users. Upon receiving the request, each end user verifies
the validity of the signature and then requests permission to
merge from £. Once permission is granted, each end user
forwards the merge message along with its own signature back
to the hub. The hub aggregates all the signatures and sends
the complete merge message, now containing the collective
signatures, to the contract C(i.id). Subsequently, C(y.id)
invokes the relevant channel instances to record the merge
information and outputs (merged) to all users.

Following the merge process, parties can transact using the
edge balances, as shown in Procedure (D). Upon receiving
(updateE, id, f) from &, the hub first increments its local edge

version number e.versionE by 1 and adjusts the edge balance
allocation according to 6. The hub then sends the updated
edge state, along with its signature, to the corresponding end
user. After verifying the correctness of the updated merge state
number and signature, the end user requests confirmation from
& for the state update. Once the confirmation is received,
the end user replies to the hub with a signed update edge
message. If the end user does not respond, the hub outputs
(not-updatedE) and terminates the process.

The update merge process, depicted in Procedure (E), en-
ables the transfer of capacity between different edges. Initiated
by the hub, this procedure typically reallocates capacity from
edge €; to €, where P and @ are the respective end users of
these edges. Upon receiving (updateM, id, 0, 1, ;) from the
environment £, the hub increments its local merge version
number (i.e., ¢.versionM), updates the capacity allocation
according to 0, and disseminates the updated merge state
and signatures to P and @). Once P and () validate these
updates and obtain approval from &, they return their signed
confirmations to the hub. Subsequently, the hub initiates an
atomic broadcast to synchronize all users within the merge
group to the latest merge version number. During this broad-
cast, each user verifies the proposed capacity update and the
merge version number. If any user detects inconsistencies,
it ignores the message; otherwise, it votes to accept the
broadcast. If the atomic broadcast succeeds, all users update
their local p.versionM and the capacities of the involved edges.
Specifically, for the users directly connected to €; and es
(i.e., P, @, and the hub), they additionally update their local
e.versionE and e.balanceE values to reflect the new edge states.
Upon completing these updates, each user outputs (updatedM)
and terminates the process. If the atomic broadcast fails, all
users output (not-updatedM).

The procedure for close merge is shown in Procedure (F),
with the associated contract functions detailed in Fig. |4} Any
user within a merge edge can submit a request to close
merge, thereby removing its edge from the merge contract.
Specifically, suppose the hub submits a close merge request;
then, C(i.id) notifies the corresponding user and waits for a
response within A time. If the user responds with a valid close
merge state, namely by providing its local edge and merge
version numbers that are higher than those of the hub, C(go.fd)
records this state. Otherwise, if the user does not respond
within A time, C ((p[gl) defaults to the state provided by the
hub. Thereafter, C(p.id) sends a close merge check message,
containing the current highest valid merge version number,
to all other users in the merge. If any user challenges by
submitting its local merge version number, C(gp.fd) adopts the
highest valid merge version number. Finally, letting S denote
the underlying channel corresponding to the edge €, C(i.id)
invokes C(f.id) to reallocate the channel balances based on
the finalized highest valid edge and merge version numbers.

The procedure for close channel is illustrated in Procedure
(G), with the related contract functions detailed in Fig. []
Either party of the channel has the capability to initiate its
closure. Upon receiving input from &£, A sends a close channel
request to C(B.id). If at this time channel § is still part of
a merge contract, procedure (F) is invoked to close merge

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 10

(€]
(@)

(3)
@

@)

(@)

(3)

(1

,—'Starﬁsh Protocol} \

Assume A is the caller and B is the responder. Let B4 denote the channel state form A’s perspective, and similarly for B.

(A) Open Channel

[A] Upon receiving (open, 3) from the environment £ in ¢, A initializes a new channel contract instance C(3.id) and sends a A-bounded
contract construction message (open, 3), then proceeds to step (4).

[B] Upon receiving (opening, 3) from C(3.id) within 7 < ¢t + A, B sends (opening, §) to £. B sends (open, 3) to C(S.id) after receiving
(open) from £ in 7, then proceeds to step (3).

[B] Upon receiving (opened) from C(S.id) within 71 < 7+ A, B outputs (opened) and stops.

[A] Upon receiving (opened) from C(8.id) within 72 < ¢t 4+ 2A, A outputs (opened) and stops. If receiving (not-opened) from C(8.id) after
T3 >t + 2/, A outputs (not-opened) and stops.

(B) Update Channel

[A] Upon receiving (updateC,id, §) from & in ¢, A sets msgC = (8(41) .versionC + 1, 3(4) balanceC + 6) and signs it with o 4. A sends
(updateC,id, msgC, 0 4) to B and proceeds to step (3).

[B] Upon receiving (updateC,id, msgC = (v,b),04) from A in ¢t1 :=t+ 1, B checks v z B(B) versionC + 1. If the condition holds, B sends
(updateC-req, id, b — 8(B) balanceC) to £. Upon receiving (updateC-ok) from &£, B generates the signature o on msgC and sends
(updateC,op) to A in t1. If the condition does not hold, B ignores the message.

[A] Upon receiving (updateC,op) from B in t2 :=t; + 1, A outputs (updatedC) and stops; otherwise, A outputs (not-updatedC) and stops.

(G) Close Channel

[A] Upon receiving (closeC,id) from £ in ¢, if B.mergeSet # (), A executes procedure (F) for each ¢ € S.mergeSet. After closing all merges,
A sets msgC = (8(4) versionC, 8(4) balanceC, S¢), where S¢ is the signature set of the current channel state. A sends (closeC, id, msgC)

to C(B.id) and goes to step (3).

(2) [B] Upon receiving (closingC,id) from C(3.id) in 7, if S.mergeSet # (), B executes procedure (F) for each ¢ € B.mergeSet. After closing all
merges, B generates msgC like A and sends (closeC, id, msgC) to C(8.id) and goes to step (3).
(3) [A, B] Upon receiving (closedC) from C(S.id) within 71 < 7+ 4A, A and B output (closedC) and stops.

Fig. 6: Channel Operations

the channel; otherwise, C(8.id) notifies B and waits for the
response within A time. If B responds, C(8.id) allocates the
channel balance based on the highest valid channel version
number agreed upon by both parties; if B does not respond
within A time, the allocation is based on the valid channel ver-
sion number provided by A. Ultimately, the contract refunds
the users’ coins and closes the channel.

Theorem 1. The protocol Starfish executing in the C-hybrid
world UC-realizes the ideal functionality F with respect to
the global ledger L and blockchain delay A.

Proof. The formal proof is provided in the supplementary
material. O

VII. EVALUATION

To demonstrate the practicality of Starfish, we implemented
a functional prototype leveraging the Ethereum platform. We
then conducted a simulation study on the Lightning Network
dataset to evaluate its performance within a payment channel
network, contrasting our findings with those reported for
Revive and Shaduf.

A. Implementation

Our Starfish implementation is built on the Ethereum plat-
form and comprises two contracts, namely the merge contract
and the channel contract. The Starfish, Shaduf, and Revive
projects have about 320, 440, and 260 LOCs, respectively.
To use the Starfish protocol, users need to deploy only one

merge contract, which serves them permanently, and con-
sumes minimal on-chain resources. However, when creating
new channels or making functional calls while running the
protocol, there will be on-chain expenses. These expenses are
calculated in gas, which is a unit of measurement used for
quantifying the computational cost of transactions and smart
contract executions on the Ethereum network. The initiator
of a transaction needs to provide enough gas feeﬂ Deploying
the merge and channel contracts requires 1.8 million and 1.4
million gas, respectively.

B. Gas Cost

1) Settings: We vary the number of channels involved
in rebalancing from 2 to 10, measuring the total gas cost
of on-chain operations for Starfish, Shaduf and Revive. The
implementation of Starfish requires Open/Close channels and
Merge/Close merge contracts while that of Shaduf involves on-
chain operations such as Open/Close channels and Bind/Un-
bind; but Revive only deals with Open/Close channel oper-
ations. Therefore, in our context, we compare Starfish with
Shaduf and Revive, but won’t include Revive’s figures to save
space.

In Starfish, we calculate the total gas cost involved in per-
forming various operations such as opening, merging, closing
the merge contract, and closing N channels. It is important to
note that N channels require only one Merge operation and
one Close Merge operation. In Shaduf, the binding strategy

2The gas fee is calculated by multiplying the gas price, measured in Gwei,
by the amount of gas required for the transaction or smart contract execution.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 11

,—'Starﬁsh Protocol} \

(C) Open Merge

(1) [Hub] Upon receiving (merge, ¢) from & in ¢, hub generates opyp for (¢, t), sends (merge, v, ohyp) to P € ¢.users in ¢, and goes to step (3).

(2) [Users] Upon receiving (merge, ¢, opyp) from hub in ¢1 := ¢ + 1, P sends (merge-req, ¢) to £. Upon receiving (merge-ok) from &, P
generates op for (p,t), sends (merge, ¢, op) to hub, and goes to step (5).

(3) [Hub] Upon receiving all (merge, ¢, op) in t2 := t1 + 1, hub sends (merge-confirm, ¢,) to £, where X collects signatures from all users.
Upon receiving (merge-confirmed) from &, hub creates a merge contract C(¢.id) and sends a A-bounded message (merge, ,) to C(p.id).
Then hub goes to step (4).

(4) [Hub] Upon receiving (merged,) from C(¢.id) within 7 < t2 + A, hub updates balanceC and balanceE according to the contracts. hub
outputs (merged,) and stops. Otherwise, hub outputs (not-merged) and stops.

(5) [Users] Upon receiving (merged, ¢) from C(go.fd) within round 7 < ¢1 + A + 1, P updates balanceC and balanceE according to the contracts.
P outputs (merged), then stops; otherwise, P outputs (not-merged) after receiving (not-merged) from C(¢p.id), and stops.

(D) Update Edge

(1) [Hub] Upon receiving (updateE, id, 0, €) from & in ¢, hub sets msgE = (5<h“b).versionE + 1, e(hub) palanceE + é) and signs it with opyp. hub
sends (updateE, id, msgE, opp) to user and proceeds to step (3).

(2) [User] Upon receiving (updateE, id, msgE =(v, b), ohup) from hub in ¢; := ¢ + 1, user checks v = e(“se') .versionE+1. If the condition holds,
user sends (updateE-req, id, b — e<”5e') balanceE) to £. user updates e(use) versionE := v and €(“s*") balanceE := b after receiving
(updateE-ok) from £. user generates ouser on MsgE and sends (updateE, ouser) to hub, and stops. Otherwise, user ignores the message.

(3) [Hub] Upon receiving (updateE, oyser) from user in to := t1 + 1, hub outputs (updatedE), and stops; otherwise, hub outputs (not-updateE).

(E) Update Merge

Let €1 and ez be the edges involved, connecting to end-users P and @, respectively. Let cap denote the set of all edge capacities, and let R € (.users.

[€)] [Hub] Upon receiving uEdateM id, 0, e1, €2) from £ in ¢, hub sets msgM = (gp“‘“b) versionM + 1, cap<h“b)) and msgE =
(4 (hub) \ersionE +1, 5 versionE + 1, e("ub) capacity + 6, e(hub) balanceE(hub) + 6), and generates oy, on them. hub sends
(updateM id, msgM, mng Ohub) to P, Q, and goes to step (3).

2) [Users] Upon receiving (updateM, id, msgM =(vM, c¢), msgE =(vE1, vEs, ¢, b) Ohub) In t1 :=1t+ 1, P (or Q) checks
vM= cp(P) versionM—+1, UElfe() .versionE+1. If the condition holds, P sends (updateM-req, zd, ¢ — e<P>.capaC|ty, €1, €2) to £. Upon
receiving (updateM-ok) from &, P generates op for msgM and msgE, sends (updateM, op) to hub, and goes to step (4). Otherwise, P ignores
the message.

(3) [Hub] Upon receiving (updateM, o p(q)) from both P and Q in t2 :=#1 + 1, hub sends (updateM-confirm) to £. Upon receiving
(updateM-confirmed) from &, hub runs AtomicBroadcast(updateM, id, msgM, msgE, X) to ¢.users, where X collects the above signatures. If
the AtomicBroadcast succeeds, hub outputs (updatedM) in ¢3 := t2 + 2 and stops; otherwise, hub outputs (not-updatedM), and stops.

(4) [Users] Upon receiving (updateM, i~d, msgM =(vM, c), msgE =(vE1, vEa, ¢, l;), Y)), R checks vM z <p<R).versionM + 1. If the condition
holds, R broadcasts the message; if not, R sends (updateM-pending) to £. Upon receiving (updateM-wrong) from &, R ignores the message. If
the AtomicBroadcast succeeds, R updates both the capacity of each edge and versionM to remain consistent with hub. If R is either P or Q, R
then updates versionE and balanceE of the corresponding edge to remain consistent with hub. R outputs (updatedM) in ¢3 and stops; otherwise,
R outputs (not-updatedM), and stops.

(F) Close Merge

Assume hub is the caller and user is the responder. Let cap denote the set of all edge capacities. Let users denote p.users\{user}, and R € users.

(1) [Hub] Upon receiving (closeM, i;i, €) from £ in ¢, hub sets msgM = (cp(h“b).versionM, cap<h“b), > Rr), where X is the signature set of the
current merge state. hub sets msgk = (e(h“b) versionE, e(""b) balanceE, ¥), where S is the signature set of the current edge state. hub sends
(closeM, id, €, msgM, msgE) to C(. id) in ¢, then _goes to step (3).

(2) [User] Upon receiving (closingM, id, €) from C(¢p. zd) in 7, user generates msgM and msgE like hub. user sends (closeM, id, €, msgM, msgE)
to C(p.id) in 7, and goes to step (5). _ ~

(3) [Hub] If not receiving (closedM, id, €) within 2A time, hub sends (timeout,id) to C(.id), and goes to step (5).

(4) [Users] Upon receiving (closeM-check, id, msgM = (v, ¢)) from C(e. zd) in7 <74 A, R checks if gp(R) versionM > v. If the condition
holds, R generates msgM like hub. R sends (closeM-challenge, id, msgM) to C(. zd) and goes to step (6); otherwise, R goes to step (6).

(5) [Hub, User] Upon receiving (closedl, id, €) from C(¢p. zd) within 79 < 7 4 2A, hub and user remove ¢, update balanceC based on the
contracts, output (closedM, id, €) and then stop. ~

(6) [Users] Upon receiving (closedM, id, €) from C(¢.id) in T2, R updates o based on the contracts. R outputs (closedM, id, €) and then stops.

Fig. 7: Merge Operations

determines the number of on-chain operations required by
Bind and Unbind. Therefore, we explore three different bind-
ing strategies: “High to Low”, “All to One”, and “All Bind”.
We respectively denote the Shaduf corresponding to these
three strategies as HL-Shaduf, AO-Shaduf, and AB-Shaduf.
In Revive, a globally impartial node oversees the rebalancing
process. Only when there is a dispute over the rebalancing
outcome while closing channels, on-chain operations related
to rebalancing are needed. Therefore, we estimate the possible

maximum consumption of gas in Revive when opening and
closing N channels.

2) Results and Discussion: We analyze the assessment
outcomes from two different angles.

Gas Cost of Starfish. There are four types of on-chain
operations for Starfish: Open Channel, Merge, Close Merge,
and Close Channel. Fig. illustrates that the gas cost for
opening and closing all channels is directly proportional to the
number of channels. This is because the gas cost for a single

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

x 1e7.

Open channel —e— Open channel
Merge —o— Bind

Unmerge 16[o Unbind
Close channel —=— Close channel

tede

Gas cost
Gas cost

2 4 6 8 10 2 4 6 8 10

The number of channels The number of channels

(a) Starfish (b) HL-Shaduf

2.021e7 200167
"] o~ Open channel | o~ Open channel I
—o— Bind —— Bind
16F o Unbina 16F o Unbina /'/
- —=— Close channel - —=— Close channel
73
o 12 212
o o
@ @
T 038 T 0.8
(U] (U]
04 J— 04
| e o
0.0 2 4 6 8 10 o 2 4 6 8 10

The number of channels The number of channels

(c) AO-Shaduf (d) AB-Shaduf

Fig. 8: The gas cost comparison of Starfish and Shaduf (using three different strategies).

o o 0.8
=] =]
© ©
o X 0.6}
» »
» »
@ - IN 2 0.4 - N
3 —— Revive 8 : —— Revive
"3, —e— HL-Shaduf ”3’ —o— HL-Shaduf
—=— AO-Shaduf 0.2 —=— AO-Shaduf
~%— AB-Shaduf —%— AB-Shaduf
0.0 —a— Starfish 0.0 —a— Starfish
5 10 15 20 25 : 1.2 3 4 5 6 7 8
Channel Capacity Skewness

(a) Uniform small payments (b) Skew small payments

o IN
—o— Revive
o 08 o 08 —o— HL-Shaduf
= = —=— AO-Shaduf
~9— AB-Shaduf
ﬁ 0§ % 0.6 —a— Starfish
8 o]
8 0.4 —o— Revive 8 0.4
= —e— HL-Shaduf =
A 0.2 —=— AO-Shaduf 9 92
~%- AB-Shaduf
—&— Starfish
0.0 0.0
5 10 15 20 25

Channel Capacity Channel Capacity

(c) Fixed Skewness for small payments (d) Uniform large payments

Fig. 9: The success ratio of Starfish when varying the channel capacity, payment skewness and payment values.

Open Channel or Close Channel operation remains unchanged,
but the number of channels impacts the total gas cost. The gas
cost for merging and unmerging all channels also increases
linearly with the number of channels. Although N channels
only require one Merge and Close Merge operation, with
each additional channel added, every Merge and Close Merge
operation necessitates storing the state of the new channel and
performing an extra signature verification. Consequently, the
gas cost increases at a constant rate with the addition of one
channel.

Cost Comparison. We first compare Shaduf’s Bind/Unbind
operations with Starfish’s Merge/Close Merge operations. The
gas cost for binding and unbinding all channels scales linearly
with the number of channels in HL-Shaduf (Fig. [8(b)) and AO-
Shaduf (Fig. B(c)), while in AB-Shaduf (Fig. 8(d)), it follows
a quadratic relationship with the number of channels. This is
because the gas cost for Bind and Unbind operations remains
constant, while noting that for HL-Shaduf, AO-Shaduf, and
AB-Shaduf, N channels respectively require N, 2N, and
N(N — 1) On-chain operations. It’s important to highlight
that, in HL-Shaduf and AO-Shaduf, the slope of the two lines
is respectively 1.6x and 3.3x that of Starfish. This is because
the linear growth in Shaduf is due to multiple Bind/Unbind op-
erations, which result in higher gas cost compared to Starfish,
because of the additional storage and computation required.
When the number of channels reaches 10, the gas cost for
Bind/Unbind operations in HL-Shaduf, AO-Shaduf, and AB-
Shaduf is approximately 1.4x, 2.5%, and 12.6x, respectively,
compared to Starfish’s Merge/Close Merge.

C. Success Ratio

1) Settings: To enhance simulation realism, we use the
real-world Lightning Network topology for performance eval-
vation. It is worth noting that Starfish is adaptable to any
blockchain supporting Turing-complete smart contracts. As the
initial balance allocation in channels is invisible, we evenly
distribute the total balances among all channels. We use
two methods for sampling payment initiators and receivers:
uniform sampling, where each user has an equal chance of
initiating or receiving a payment, and skewed sampling, where
a subset of users who are more likely to initiate payments is
selected. Transaction values are randomly sampled from Bit-
coin transaction data from 2021-03-01 to 2021-03-31, resulting
in a dataset of 2.65 million small payments and 6.65 million
large payments. For Revive, if a channel (referred to as the
target channel) of a node along the payment path is depleted,
it is rebalanced using other channels (referred to as the source
channels) of the same node. Specifically, we select the shortest
circle that concurrently includes both the target channel and
the source channel. We evaluate three methods for Shaduf: HL-
Shaduf, AO-Shaduf, and AB-Shaduf, and merge all balances
across all channels for each node in Starfish. To mitigate the
impact of randomness, we evaluate the success ratio of 50,000
payments ten times and average the results for the final success
ratio.

2) Results: We investigate how the success rates of six off-
chain payment methods, with LN (Lightning Network) as a
baseline, are affected by their respective capacity, skewness,
and payment size.

The impact of channel capacity. From Fig.s
and it is apparent that as the channel capacity increases,
the success rate of each protocol tends to rise. This is expected

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

since a larger channel capacity enables the handling of a
greater volume and size of transactions. However, notably,
throughout the range of channel capacity from 1x to 25X,
Starfish consistently maintains a superior success ratio com-
pared to other protocols.

The impact of payment skewness. We explore the im-
pact of payment skewness on the success ratio as shown in
Fig. It can be observed that under different skewness
levels, Starfish consistently exhibits the highest success ratio.
Specifically, compared to LN with an average success ratio,
Revive increases by around 9%, HL-Shaduf, AO-Shaduf,
and AB-Shaduf show enhancements of around 15%, 14%,
and 18%, respectively, while Starfish sees an increase of
approximately 22%. We fix the skewness at 8 and evaluate
the success ratio when channel capacities varying from 1x
to 25x. The results are presented in Fig. One can see
that compared to LN’s average success rate, Revive shows
an increase of around 8%, while HL-Shaduf, AO-Shaduf, and
AB-Shaduf demonstrate increases of around 12%, 12%, and
15%, respectively. Additionally, Starfish exhibits an increase
of around 19%.

The impact of payment size. We explore the impact of
payment size on the success ratio. Fig.s and illus-
trate that Starfish consistently outperforms in both small and
large payment scenarios. Specifically, we compare the average
success rates with LN. Under the uniform small payment
scenario, Revive shows an increase of around 8%, HL-Shaduf,
AO-Shaduf, and AB-Shaduf demonstrate increases of around
15%, 14%, and 19%, respectively, while Starfish exhibits an
increase of around 23%. Under the uniform large payment
scenario, Revive shows an increase of around 3%, HL-Shaduf,
AO-Shaduf, and AB-Shaduf demonstrate increases of around
11%, 7%, and 15%, respectively, while Starfish exhibits an
increase of around 23%.

VIII. CONCLUSION

In conclusion, our research introduces Starfish, a novel pay-
ment network addressing scalability challenges in blockchain
Payment Channel Networks (PCNs). Starfish enhances re-
balancing efficiency by allowing channels to borrow funds,
demonstrating optimal performance in simulations. The
Ethereum-based implementation proves practical feasibility.
Compared to existing protocols, Starfish consistently outper-
forms in success ratios for off-chain payments, making it
a promising solution for scalable and efficient blockchain
transactions.

REFERENCES

[1] Y. Chen, H. Chen, Y. Zhang, M. Han, M. Siddula, and Z. Cai, “A survey
on blockchain systems: Attacks, defenses, and privacy preservation,”
High-Confidence Computing, vol. 2, no. 2, p. 100048, 2022.

[2] M. Hearn, “Micro-payment channels implementation now in bitcoinj,”
Bitcointalk. org, 2013.

[3] S. Dziembowski, L. Eckey, S. Faust, and D. Malinowski, “Perun: Virtual
payment hubs over cryptocurrencies,” in 2019 IEEE Symposium on
Security and Privacy (SP). 1EEE, 2019, pp. 106-123.

[4] R. Network-Fast, “cheap, scalable token transfers for ethereum,” Ac-
cessed: Jul, vol. 7, p. 2020, 2018.

[51 M. Xu, Y. Guo, Q. Hu, Z. Xiong, D. Yu, and X. Cheng, “A trustless
architecture of blockchain-enabled metaverse,” High-confidence comput-
ing, vol. 3, no. 1, p. 100088, 2023.

[6]
[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

(21]

[22]

[23]

[24]

[25]

[26]
[27]

J. Poon and T. Dryja, “The bitcoin lightning network: Scalable off-chain
instant payments,” 2016.

L. Aumayr, M. Maffei, O. Ersoy, A. Erwig, S. Faust, S. Riahi,
K. Hostdkovd, and P. Moreno-Sanchez, “Bitcoin-compatible virtual
channels,” in 2021 IEEE Symposium on Security and Privacy (SP).
IEEE, 2021, pp. 901-918.

A. Miller, I. Bentov, S. Bakshi, R. Kumaresan, and P. McCorry, “Sprites
and state channels: Payment networks that go faster than lightning,” in
International conference on financial cryptography and data security.
Springer, 2019, pp. 508-526.

C. Egger, P. Moreno-Sanchez, and M. Maffei, “Atomic multi-channel
updates with constant collateral in bitcoin-compatible payment-channel
networks,” in Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, 2019, pp. 801-815.

P. McCorry, S. Bakshi, I. Bentov, S. Meiklejohn, and A. Miller, “Pisa:
Arbitration outsourcing for state channels,” in Proceedings of the Ist
ACM Conference on Advances in Financial Technologies, 2019, pp. 16—
30.

W. Yu, M. Xu, D. Yu, X. Cheng, Q. Hu, and Z. Xiong, “Zk-pcn:
A privacy-preserving payment channel network using zk-snarks,” in
2022 IEEE International Performance, Computing, and Communications
Conference (IPCCC). IEEE, 2022, pp. 57-64.

Y. Guo, M. Xu, D. Yu, Y. Yu, R. Ranjan, and X. Cheng, “Cross-
channel: Scalable off-chain channels supporting fair and atomic cross-
chain operations,” IEEE Transactions on Computers, vol. 72, no. 11, pp.
3231-3244, 2023.

P. Li, T. Miyazaki, and W. Zhou, “Secure balance planning of off-
blockchain payment channel networks,” in IEEE INFOCOM 2020-1EEE
conference on computer communications. 1EEE, 2020, pp. 1728-1737.
X. Luo and P. Li, “Learning-based off-chain transaction scheduling in
prioritized payment channel networks,” IEEE Journal on Selected Areas
in Communications, vol. 40, no. 12, pp. 3589-3599, 2022.

G. Avarikioti, G. Janssen, Y. Wang, and R. Wattenhofer, “Payment net-
work design with fees,” in Data Privacy Management, Cryptocurrencies
and Blockchain Technology: ESORICS 2018 International Workshops,
DPM 2018 and CBT 2018, Barcelona, Spain, September 6-7, 2018,
Proceedings 13. Springer, 2018, pp. 76-84.

V. Sivaraman, S. B. Venkatakrishnan, K. Ruan, P. Negi, L. Yang,
R. Mittal, G. Fanti, and M. Alizadeh, “High throughput cryptocurrency
routing in payment channel networks,” in 17th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 20), 2020, pp.
777-796.

L. Yang, X. Dong, S. Gao, Q. Qu, X. Zhang, W. Tian, and Y. Shen,
“Optimal hub placement and deadlock-free routing for payment channel
network scalability,” arXiv preprint arXiv:2305.19182, 2023.

X. Wang, R. Yu, D. Yang, G. Xue, H. Gu, Z. Li, and F. Zhou, “Fence:
Fee-based online balance-aware routing in payment channel networks,”
IEEE/ACM Transactions on Networking, 2023.

Y. Liu, Y. Wu, F. Zhao, and Y. Ren, “Balanced off-chain payment
channel network routing strategy based on weight calculation,” The
Computer Journal, p. bxad029, 2023.

S. Jiang, J. Wu, F. Zuo, and A. Mei, “Balance-aware cost-efficient
routing in the payment channel network,” in 2023 IEEE/ACIS 21st In-
ternational Conference on Software Engineering Research, Management
and Applications (SERA). 1EEE, 2023, pp. 8-15.

S. Lin, J. Zhang, and W. Wu, “Fstr: Funds skewness aware transaction
routing for payment channel networks,” in 2020 50th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN).
IEEE, 2020, pp. 464-475.

R. Khalil and A. Gervais, “Revive: Rebalancing off-blockchain payment
networks,” in Proceedings of the 2017 acm sigsac conference on
computer and communications security, 2017, pp. 439-453.

Z. Hong, S. Guo, R. Zhang, P. Li, Y. Zhan, and W. Chen, “Cycle:
Sustainable off-chain payment channel network with asynchronous re-
balancing,” in 2022 52nd Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN). 1EEE, 2022, pp. 41-53.
W. Ni, P. Chen, L. Chen, P. Cheng, C. J. Zhang, and X. Lin, “Utility-
aware payment channel network rebalance,” Proceedings of the VLDB
Endowment, vol. 17, no. 2, pp. 184-196, 2023.

Z. Ge, Y. Zhang, Y. Long, and D. Gu, “Shaduf: Non-cycle payment
channel rebalancing,” in 29th Annual Network and Distributed System
Security Symposium, NDSS 2022, San Diego, California, USA, April
24-28, 2022.

L. Labs, “Loop,” https://lightning.engineering/loop/, 2019.

I. Tsabary, M. Yechieli, A. Manuskin, and I. Eyal, “Mad-htlc: because
htlc is crazy-cheap to attack,” in 2021 IEEE Symposium on Security and
Privacy (SP). 1EEE, 2021, pp. 1230-1248.

https://lightning.engineering/loop/

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

[28] R. Canetti, “Universally composable security: A new paradigm for
cryptographic protocols,” in Proceedings 42nd IEEE Symposium on
Foundations of Computer Science. 1EEE, 2001, pp. 136-145.

Minghui Xu (Member, IEEE) received the BS degree in physics from
Beijing Normal University, Beijing, China, in 2018, and the PhD degree in
computer science from George Washington University, Washington DC, USA,
in 2021. He is currently an associate professor with the School of Computer
Science and Technology, Shandong University, China. His research focuses
on blockchain, distributed computing, and applied cryptography.

Wenxuan Yu received the B.E. degree in School of Computer Science and
Technology from Harbin Engineering University, Harbin, China, in 2021.
He is currently a Ph.D. candidate in the School of Computer Science
and Technology, Shandong University, Qingdao, China. His current research
interests include applied cryptography, secure multiparty computation, and
blockchain.

Guangyong Shang is currently with Inspur Yunzhou Industrial Internet Co.,
Ltd, Jinan, China. His research interests include blockchain and artificial
intelligence.

Guangpeng Qi is currently with Inspur Yunzhou Industrial Internet Co., Ltd,
Jinan, China. His research interests include cloud computing, blockchain, and
industrial internet systems.

Dongliang Duan received the M.S. degree in school computer science
and technology from Shandong University, Qingdao, China, in 2024. He is
currently an engineer at ByteDance, Beijing, China. His research interests
include blockchain and privacy.

Shan Wang received the B.S. and Ph.D. degrees in computer science
from Southeast University, Nanjing, China, in 2016 and 2022, respectively.
She is currently a Postdoctoral Fellow with the Department of Computing,
The Hong Kong Polytechnic University, Hong Kong, China. Her current
research interests include permissioned blockchain systems, blockchain user
anonymity, and applied cryptography.

Kun Li received the B.S. degree in information science and technology from
Beijing Normal University, Beijing, China, in 2017, and the Ph.D. degree in
artificial intelligence from the School of Artificial Intelligence, Beijing Normal
University, in 2023. She is currently an Assistant Professor at Shandong
University. Her research interests include mobile computing, and blockchain.

Yue Zhang received the Ph.D. degree in computer science from Jinan
University, Guangzhou, China, in 2020. He is currently a Professor with the
School of Computer Science and Technology, Shandong University, Qingdao,
China. His current research interests include cybersecurity, program analysis,
mobile security, IoT security, and blockchain.

Xiuzhen Cheng (Fellow, IEEE) received the MS and PhD degrees in
computer science from the University of Minnesota - Twin Cities, in 2000
and 2002, respectively. She is a professor with the School of Computer
Science and Technology, Shandong University. Her current research interests
include wireless and mobile security, cyber physical systems, wireless and
mobile computing, sensor networking, and algorithm design and analysis.
She has served on the editorial boards of several technical journals and the
technical program committees of various professional conferences/workshops.
She also has chaired several international conferences. She worked as a
program director for the US National Science Foundation (NSF) from April
to October in 2006 (full time), and from April 2008 to May 2010 (part time).
She received the NSF CAREER Award in 2004. She is a member of ACM.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

APPENDIX

Theorem 2. The protocol Starfish executing in the C-hybrid
world UC-realizes the ideal functionality F with respect to
the global ledger L and blockchain delay A.

Proof. Simulator S facilitates interaction with the environment
& and the ideal functionality . To achieve indistinguishability
between the real and ideal worlds, S is required to simulate
the behavior of the predefined adversary 4. This involves
corrupting the same parties in the ideal world as adversary
A does in the real world. S also needs to generate public-
private key pairs for all parties, distributing the public keys to
the corrupted parties. For each corrupted party, S sends the
corresponding private key individually. S observes the actions
of adversary A in the real world and the instructions given to
the corrupted parties, then selects identical inputs to submit
to the ideal functionality . Furthermore, S represents the
contract function C and honest parties (i.e., dummy parties)
to send messages to the corrupted parties. It is important
to note that S does not simulate scenarios where all parties
are either honest or corrupt. In cases involving two-party
channels or edges, our simulation considers scenarios where
either one party is honest or the other is corrupt. For multi-
party interactions within the merge operations, we differentiate
scenarios based on the hub being either honest or corrupt.
Additionally, we simulate situations where the end users,
according to this categorization, is portrayed as either honest
or corrupt.

O

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

,—' Simulation }

(A) Open Channel
Case: A is honest and B is corrupt

Upon A sending (open, 3) to ideal functionality F in round ¢, send (open, 3) to contract instance C(f3.id) on behalf of A in the same round. Assume
the message reaches the ledger £ within 7 < ¢ + A. If B sends (open, 8) to C(5.id) in 7, send (open, 8) to F on behalf of B in the same round.

Case: A is corrupt and B is honest

Upon A sending (open, 8) to contract instance C(f.id) in round ¢, send (open, 3) to ideal functionality F on behalf of A in the same round. Assume
the message reaches the ledger £ within 7 < ¢t + A. If B sends (open, 3) to F in 7, send (open, 3) to C(8.id) on behalf of B in the same round.

(B) Update Channel
Case: A is honest and B is corrupt

Upon A sending (updateC, id, §) to ideal functionality F in round ¢, sign o4 on msgC = (8(4) .versionC + 1, 3(4) balanceC + 6) and send
(updateC,id, msgC,o 4) to B on behalf of A in the same round. If B sends (updateC,op) to A in t; := t + 1, send (updateC-ok) to F on
behalf of B in the same round.

Case: A is corrupt and B is honest

Let msgC = (v, b). Upon A sending (updateC, id, msgC,0 4) to B in round ¢, if v = B(B) versionC + 1, send (updateC, id, b — ,8.balanceC)
to F on behalf of A in the same round; otherwise, ignore the message and stop. If B sends (updateC-ok) to F in ¢1 := ¢t + 1, send (updateC,op)
to A on behalf of B in the same round.

(C) Open Merge
Case: hub is honest

Upon hub sending (merge, ¢) to ideal functionality F in round ¢, send (merge, ¢, o0hyp) to P € ¢.users on behalf of hub in the same round. Proceed
as follows:
1) If P is corrupt and sends (merge, ¢,op) to hub in t; :=t 4 1, send (merge, ¢) to F on behalf of P in the same round. If P is honest and
sends (merge,) to F in t1, send (merge, ¢, op) to hub on behalf of P in the same round._
2) Upon hub sending (merge-confirmed, ¢) to F in t2 := t1 + 1, send (merge, ¢, %) to C(p.id) on behalf of hub in the same round, where 2
represents the set of signatures from all users.

Case: hub is corrupt

Upon hub sending (merge, ¢, ohyp) to P € ¢.users and P is honest in round ¢, send (merge, ¢) to F on behalf of hub and send (send-req, P) to
F in the same round. Proceed as follows:
1) If P is corrupt, send (merge, ¢) to F on behalf of P in ¢; := ¢+ 1. If P is honest and sends (merge,) to F in t1, send (merge, p,op) to
hub on behalf of P in the same round. _
2) Upon hub sending (merge, ¢, ¥) to C(p.id) in t2 := t1+ 1, where X represents the set of signatures from all users, send (merge-confirmed, ¢)
to F on behalf of hub in the same round.

(D) Update Edge
Case: hub is honest and user is corrupt

Upon hub sending (updatek, id, 6, €) to ideal functionality F in round ¢, sign opy, on msgE = (e(h“b).versionE +1, e(hub) balanceE + 5) and send
(updateE, id, msgE, onhyp) to user on behalf of hub in the same round. If user sends (updateE, ouser) to hub in ¢1 := ¢ + 1, send (updateE-ok)
to F on behalf of user in the same round.

Case: hub is corrupt and user is honest

Let msgE = (v,b), upon hub sending (updateE, i;i, msgE, ohup) to user in round ¢, if v = e(user) versionE + 1, send (updatek, 'i~d,b —
¢(user) .balanceE) to F on behalf of hub in the same round; otherwise, ignore the message and stop. If user sends (updateE-ok) to F in ¢t1 :=t+1,
send (updateE, ouser) to hub on behalf of user in the same round.

(E) Update Merge
Case: hub is honest

Upon hub sending (updatel, id, é, €1, €2) to ideal functionality F in round ¢, sign opyp on msgM = (o("ub) versionM + 1, cap(")) and msgE =
(egh”b) .versionE + 1, eghum.versionE +1, e(hub) capacity + 0, 5<h”b).ba|anceE(hub) +6), send (updateM, id, msgM, msgE, opyp) to P and Q (the
end-users of €1 and ez, respectively) on behalf of hub in the same round. Proceed as follows:
1) If P (or Q) is corrupt and sends (updateM,op) to hub in ¢1 := ¢+ 1, send (updateM-ok) to F on behalf of P (or Q) in the same round. If
P (or Q) is honest and sends (updateM-ok) to F in t1, send (updateM,op) to hub on behalf of P (or Q) in the same round.
2) If hub sends (updateM-confirmed) to F in tg := ¢1 + 1, run AtomicBroadcast(updateNM, id, msgM, msgE, 3) to ¢.users on behalf of hub
in the same round, where X collects the above signatures.

Case: hub is corrupt

Let msgM = (vM, c) and msgE = (vE1,vE2, ¢, I;), upon hub sending (updateM, i~d, msgM, msgE, o) to P (or Q) and P is honest in round ¢,
send (updateM, id, 0, €1, €ea) to F on behalf of hub and send (send-req, P) to F in the same round. Proceed as follows:
1) If P (or Q) is corrupt, send (updateM-ok) to F on behalf of P in t; := t + 1. If P is honest and sends (updateM-ok) to F in t1, send
(updateM,op) to hub on behalf of P in the same round.
2) If hub runs AtomicBroadcast(updateM, id, msgM, msgE,¥) to p.users in to := t; + 1, where X collects the above signatures. Send
(updateM-confirmed) to F on behalf of hub in the same round.
3) If R € p.users is honest, and sends (updateM-wrong) to F in t3 := t2 + 2, ignore the AtomicBrodcast messages on behalf of R.

(F) Close Merge
Case: hub is honest and user is corrupt

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

Upon hub sending (closel, id, €) to ideal functionality F in round ¢, set msgM = (p(hub) versionM, cap(ib)|), where S is the signature
set of the current merge state. Set msgE = (e(hub) versionE, e("P) balanceE, L), where X is the signature set of the current edge state. Send
(closel, id, €, msgM, msgE) to C(p.id) on behalf of hub in the same round. Proceed as follows:
1) Assume the message reaches ledger £ within round 7 < ¢t + A. If user does not send any message, send (timeout, 'L~d) to C (apfd) on behalf
of hub in round 7, > 7+ A. B
2) Let R € p.users\{user}. If R is corrupt and does not send message to C(¢.id) within round 72 < 7+ 2A. Send confirmation to F on behalf
of R in the same round.

Case: hub is corrupt and user is honest

Upon hub sending (closeM, id, e, msgM, msgE) to C(ap.fd) in round ¢, send (closel, id, €) to ideal functionality 7 on behalf of hub in the same
round. Proceed as follows:
1) Assume the message reaches ledger £ within round 7 < ¢ + A, send (closeM, z~d €, msgM, msgE) to C(ap.[d) on behalf of user in 7.
2) Let R € o.users\{user}. If R is honest and sends confirmation to F within round 72 < 7 4 2A, send (closeM-challenge, id, msgM) to
C(y.id) on behalf of R in the same round.

(G) Close Channel
Case: A is honest and B is corrupt

Upon A sending (closeC,id) to ideal functionality F in round ¢, generates msgC = (8™ versionC, B(4) balanceC,), where S¢ denotes
the signatures of A and B for the current channel state. Sends (closeC, id, msgC) to C(f.id) on behalf of A in the same round. Assume the
message reaches ledger £ within round 7 < ¢ + A. If B.mergeSet = () and B sends (closeC, id, msgC) to C(B.id) in round 7, where msgC =
(ﬂ(B).versionC, B(B)AbalanceC, ¥.¢), sends confirmation to F on behalf of B in the same round. Otherwise, for each merge in 3.mergeSet, A
executes Procedure (F) in round 7.

Case: A is corrupt and B is honest

Upon A sending (closeC, id, msgC) to C(8.id) in round ¢, where msgC = (v, b, ¥¢), sends (closeC,id) to ideal functionality F on behalf of A
in the same round. Assume the message reaches ledger £ within round 7 < t + A. If B.mergeSet = (), sends (closeC, id, msgC) to C(S3.id) on
behalf of B in round 7, where msgC = (8(5) .versionC, 8(B) balanceC, 3¢). Otherwise, for each merge in 3.mergeSet, B executes Procedure (F)
in round 7.

	Introduction
	Related Work
	Preliminaries
	The Desgin of Starfish
	Open Merge: Creating Starfish from Scratch
	Update Edge: Treatment to Double Spending
	Update Merge and Close Merge: Rebalancing Capacity for Improved Availability

	Formal Modeling of Starfish
	Model
	Security Goals
	Notations
	Payment Channel (beta)
	Merge (phi)
	Edge within a Merge (epsilon)
	Merge Update (theta-hat)

	Detailed Starfish Protocol
	Channel Contract and Merge Contract
	Ideal Functionality and Real Protocol

	Evaluation
	Implementation
	Gas Cost
	Settings
	Results and Discussion

	Success Ratio
	Settings
	Results

	Conclusion
	References
	Biographies
	Minghui Xu (Member, IEEE)
	Wenxuan Yu
	Guangyong Shang
	Guangpeng Qi
	Dongliang Duan
	Shan Wang
	Kun Li
	Yue Zhang
	Xiuzhen Cheng (Fellow, IEEE)

	Appendix

