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Abstract
Java deserialization gadget chains are a well-researched critical
software weakness. The vast majority of known gadget chains rely
on gadgets from software dependencies. Furthermore, it has been
shown that small code changes in dependencies have enabled these
gadget chains. This makes gadget chain detection a purely reactive
endeavor. Even if one dependency’s deployment pipeline employs
gadget chain detection, a gadget chain can still result from gadgets
in other dependencies. In this work, we assess how likely small code
changes are to enable a gadget chain. These changes could either
be accidental or intentional as part of a supply chain attack. Specif-
ically, we show that class serializability is a strongly fluctuating
property over a dependency’s evolution. Then, we investigate three
change patterns by which an attacker could stealthily introduce
gadgets into a dependency. We apply these patterns to 533 depen-
dencies and run three state-of-the-art gadget chain detectors both
on the original and the modified dependencies. The tools detect
that applying the modification patterns can activate/inject gadget
chains in 26.08% of the dependencies we selected. Finally, we verify
the newly detected chains. As such, we identify dormant gadget
chains in 53 dependencies that could be added through minor code
modifications. This both shows that Java deserialization gadget
chains are a broad liability to software and proves dormant gadget
chains as a lucrative supply chain attack vector.

CCS Concepts
• Software and its engineering → Software defect analysis;
Software libraries and repositories; • Security and privacy→ Soft-
ware reverse engineering.

Keywords
Java, Deserialization, Serializable, Gadget Chain, Software Supply
Chain, Dependency, Bug Injection

1 Introduction
The native Java serialization API has a long history of being error-
prone and vulnerable. By now it has been ten years since Frohoff
[16] first addressed the inherent security cost induced to Java ap-
plications by the Serializable API. Specifically, being able to ex-
ploit the object-oriented nature of Java’s native serialization in

code reuse attacks, i.e., gadget chains, has garnered much atten-
tion from the research community. Starting with Serianalyzer [2]
and GadgetInspector [21], numerous gadget chain detection tools
[5–8, 10, 29, 32, 34, 36, 37, 51, 54, 60, 67] and remediation strategies
[11, 12, 52, 70] have been developed.

Yet, despite substantial efforts and initiatives to replace the Seri-
alizable API with a more secure data-driven mechanism [1, 17–19],
it seems to be here to stay. For instance, Android’s inter-app commu-
nication continues to rely on native Java serialization [29] and since
2020, 55 new critical vulnerabilities were published in the National
Vulnerability Database1[40]. All the while, Ysoserial [15] – the point
of reference for Java deserialization gadget chains – has grown
stale (last gadget chain added in February 2021). With continuous
software evolution, Ysoserial is loosing relevance regarding gadget
chains in current software. It has been shown that the occurrence
of deserialization gadget chains is related to minor code changes
[27, 55], such as adding the Serializable interface to a class. Over a
Java dependency’s evolution, these small changes make a gadget
chain appear or disappear. Thus, if a gadget chain detection tool
fails to find a gadget chain in the latest version of a dependency,
it is no guarantee that gadget chains will not surface in the future.
Neither that it may already exist through a combination of depen-
dencies. This makes gadget chain detection in its current state a
reactive process. In this work, instead of asking whether a depen-
dency contains gadget chains, we analyze how close a dependency
is to containing a gadget chain.

First, we highlight the volatility of Java class serializability over
a dependency’s evolution by downloading 1 475 widely used de-
pendencies fromMaven, constituting 111 275 versions. We compare
how many classes are serializable in each version and whether
changes in serializability occur through direct addition of the seri-
alizable interface or transitively through a supertype. In particular,
the latter case provides valuable insights into the use of gadget
chains in a supply chain attack. While it may be obvious in code re-
views that a concrete class containing sensitive method calls should
not become serializable, a maintainer could miss that making an
interface serializable also impacts subtypes.

This is one of the three modification patterns we investigate,
through which either an attacker could stealthily inject or a devel-
oper unintentionally add gadgets into a dependency.We apply these

1Using the Common Weakness identifier CWE-502, ’Java’ as a keyword and a CVSS V3
score of ≥ 9.
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changes to the 533 dependencies from the dataset above, which
contain at least one serializable class. On both the original and
modified dependencies, we run three recent representative gadget
chain detection tools: Tabby [10], Crystallizer [60] and AndroChain
[29]. This allows us to map gadget chains reported in the modified
version, but not the original, as related to the applied modifica-
tions. As such, we find that for 26.08% of the dependencies, the
modifications lead to more gadget chain detections. Then, through
manual analysis, we confirm dormant gadget chains in 53 of these
dependencies. 49.06% of the true positives required only one of our
modification patterns.

Our work highlights that even if Java deserialization gadget
chains are not a liability to software dependencies in their current
state [29], in many cases, it is feasible to activate these dormant
gadget chains either by accident or through a targeted supply chain
attack. To make matters worse, maintainers have no control over
gadgets from other dependencies, which can be leveraged as a dese-
rialization gadget chain in conjunction with their artifact. It implies
the necessity to be aware of partial (dormant) gadget chains so one
can remediate these weaknesses before they become a vulnerability.
Our main contributions are:
• A study of Java serializability usage over dependency evolution.

This also leads us to define four dependency datasets as a basis
for future research on Java gadget chains.

• The concept of dormant gadget chains as a novel supply chain
attack vector (and technical debt) with three attack patterns by
which gadgets can be injected into dependencies.

• A feasibility analysis of this attack on 533 dependencies, using
three gadget chain detection tools to locate injected chains and
manual analysis for verification.

• A ground truth of 53 dependencies with dormant gadget chains,
verified through manual analysis.

2 Background
2.1 Java Deserialization Gadget Chains
A Java deserialization gadget chain describes a sequence of method
calls leading from a deserialization entry point to a security-sensitive
method. To be clear, the term entry point is overloaded. It first repre-
sents an insecure ObjectInputStream calling readObject() which
triggers deserialization of an arbitrary object. For instance, in CVE-
2024-45772 [39] (see Listing 1), Apache Lucene’s HTTP client2 im-
plementation would, on receiving a bad response code, attempt to
recover the cause from the failed response. One could assume that
the object being reconstructed from the stream at line 5 must be
of the type Throwable to not violate the cast. However, the entire
reconstruction, i.e., deserialization, occurs before the cast. This is
precisely where a gadget chain payload is triggered.

Research [26, 29, 47] and recent vulnerabilities (e.g., Listing 1)
show that such entry points continue to exist in software. Given
the existence of deserialization entry points, we shift our attention
for the remainder of this work to entry points for deserialization
gadget chains. Serializable Java objects may override any of the
default deserialization methods readObject, readResolve, and
readObjectNoData to implement custom deserialization logic. A
2https://github.com/apache/lucene/commit/b4b153f64fb0420c6e28ddea4c442e119458
756c

1 protected void throwKnownError(HttpResponse res, StatusLine s){
2 ObjectInputStream in = null;
3 in = new ObjectInputStream(res.getEntity().getContent());
4 try {
5 Throwable t = (Throwable) in.readObject();
6 } catch (Throwable th) { /*...*/ }
7 }

Listing 1: CVE-2024-45772 [39]: insecure deserialization entry
point in Apache Lucene’s HttpClientBase.

prime example of this is Java’s hashed dictionaries, e.g., HashMap
and HashTable. Serialized instances of these types are inherently re-
quired to recalculate the hash values of their keys since the hashing
implementation depends on native code on the operating system
a Java Virtual Machine (JVM) is running on. Consider Listing 2,
where from readObject() (line 2), keys and values are read from
the stream (lines 7 and 8), and then the keys’ hashes are calculated
before placing them in the table (line 12). The resulting call to an
arbitrary Object.hashCode() is no reason for concern in itself.
However, it unlocks numerous additional gadgets to integrate into
the chain.

1 class HashTable<K,V> implements Map<K,V>, Serializable {
2 private void readObject(ObjectInputStream s) {
3 readHashTable(s);}
4 void readHashTable(ObjectInputStream s) {
5 int elements = s.readInt();
6 for (; elements > 0; elements--) {
7 K key = (K)s.readObject();
8 V value = (V)s.readObject();
9 reconstitutionPut(table, key, value);
10 }}
11 private void reconstitutionPut(Entry[] t, K key, V value) {
12 int hash = key.hashCode();
13 // put value/hash in table ...
14 }}

Listing 2: Java’s HashTable [42] deserialization. The high-
lighted lines show the gadget chain to Object.hashCode().

Gadgets like Object.hashCode(), which both open up many fur-
ther polymorphic call sites and are reachable through classes in
the Java Class Library (JCL), are commonly referred to as tram-
poline gadgets [51]. In Ysoserial 22 of 34 deserialization gadget
chain payloads rely on a trampoline gadget [15, 29]. This is an
important observation to make, as it shows that already making
more trampoline gadgets reachable can activate currently dormant
gadget chains. We demonstrate this with a motivating example.

2.2 Motivating Example
Consider the DisposableBeanAdapter [58] in the spring-beans
dependency in Listing 3. The Method.invoke() (line 25) is
a security-sensitive sink as it allows invoking an arbitrary
method via reflection. A gadget chain .run() → .destroy()
→ .invokeCustomDestroyMethod()→ Method.invoke() is not
found by gadget chain detection tools since run() is not reachable
for an arbitrary subtype of Runnable.

However, this dormant gadget chain can be activated by introduc-
ing a new gadget either into the spring-beans dependency itself or
into any other dependency being used by a software project relying
on spring-beans. Listing 4 shows a gadget deliberately crafted for

https://github.com/apache/lucene/commit/b4b153f64fb0420c6e28ddea4c442e119458756c
https://github.com/apache/lucene/commit/b4b153f64fb0420c6e28ddea4c442e119458756c
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1 package org.springframework.beans.factory.support;
2 class DisposableBeanAdapter implements Runnable, Serializable {
3 private final Object bean;
4 private final String beanName;
5 private String [] destroyMethodNames;
6
7 @Override
8 public void run() { destroy(); }
9
10 public void destroy() {
11 // irrelevant lines omitted
12 else if (this.destroyMethodNames != null) {
13 for (String destroyMethodName : this.destroyMethodNames){
14 Method destroyMethod =
15 determineDestroyMethod(destroyMethodName);
16 if (destroyMethod != null)
17 invokeCustomDestroyMethod(destroyMethod);
18 }
19 }}
20
21 private void invokeCustomDestroyMethod(Method destroyMethod){
22 int paramCount = destroyMethod.getParameterCount();
23 Object[] args = new Object[paramCount];
24 ReflectionUtils.makeAccessible(destroyMethod);
25 Object returnValue = destroyMethod.invoke(this.bean, args);
26 // remaining lines omitted
27 }
28 }

Listing 3: Dormant deserialization gadget chain in spring-
beans’ DisposableBeanAdapter [58]. Given the reachability
of Runnable.run() through any serializable class on the class-
path, the gadget chain can be activated.

this cause. With hashCode() being a trampoline gadget, the call
to Runnable.run() at line 7 can be invoked through deserializa-
tion. An attacker could assign a DisposableBeanAdapter (Listing
3) to the hashCodeGen field of the gadget in Listing 4 and serialize
it to create a malicious payload. Note how the gadget is further
concealed since the Runnable property hashCodeGen is declared
as final, thus suggesting the field cannot be arbitrarily assigned.
Yet, Java deserialization bypasses default constructors and thereby
allows setting final fields during deserialization [18].

1 class HypocriteSerializable implements Serializable {
2 private int hashCode = 0;
3 private final Runnable hashCodeGen = new Runnable() {
4 public void run() { /*...*/ }
5 };
6 public int hashCode() {
7 if (this.hashCode == 0) hashCodeGen.run();
8 return this.hashCode;
9 }}

Listing 4: Gadget making Runnable.run() reachable.

This example gives evidence of why dormant Java deserialization
gadget chains make for a lucrative supply chain attack target. An
attacker has ample opportunities to hide code that activates the
chain. Moreover, the code additions are in a class or dependency
unrelated to the vulnerable gadget that is being targeted.

2.3 Software Supply Chain Threats
The software supply chain comprises all dependencies, tools, and
deployment infrastructure to build and deliver a piece of software.
High-profile incidents like SolarWinds [46], Log4Shell [14] or XZ

Utils [38] showed how such supply chain components can compro-
mise many downstream targets. Specifically, when looking at the
two recent cases, Log4Shell and XZ Utils, it highlights (1) widely
used dependencies as the weak link in the supply chain and (2) that
a compromise may occur accidentally or deliberately. In the same
way, an exploitable deserialization gadget could be introduced with
or without intention. Either way, the closer a dormant gadget chain
is to becoming a real chain, the more likely a code change activating
it is going to be unnoticed.

A previous work [68] assessed the feasibility of adding small
code changes to turn immature into real vulnerabilities. While we
distance ourselves from their research3, we acknowledge that its
concept is instructive to our work. In [68], the authors searched the
Linux kernel for immature Use-After-Free (UAF) vulnerabilities and
showed how to activate those through stealthy code changes. By
analogy, we search for incomplete (dormant) gadget chains (as in
Listing 3) and evaluate the effort to turn those into a full deserializa-
tion gadget chain. Of course, these changes should also be stealthy.
Java’s Serializable API has been criticized as being opaque [18, 19],
which has some potential to hide gadgets. Further, one viable way
of creating more gadgets is to introduce the Serializable inter-
face to existing classes, thus turning them into gadgets [55]. For
this reason, we investigate how the usage of Java’s Serializable
evolves in dependencies over time.

3 Evolution of Java’s Serializable Interface
We describe our analysis pipeline towards a representative and com-
prehensive view for Java’s Serializable API usage in dependencies
over time and versions. To this end, we build a two-stage pipeline
(see Figure 1) to first obtain a clean mapping of dependency down-
load URLs, versions, and release dates. Then, we forward the URLs
by dependency to static analysis to both analyze Serializable usage
over time and versions as well as the reasons for these changes.
The first stage is implemented in Python in 550 lines of code and
the second stage in Java on top of SootUp [25] in 201 lines of code.

3.1 Data Collection and Cleaning
3.1.1 Data Source Definition. The naive approach to collecting a
dataset of Java dependencies would be to crawl the Maven Central
repository root. However, this practice leads to an unrepresentative
dataset and is also wasteful:
• The repository listing gives no indication of dependency usage.
• It is hard to filter out dependencies that are unlikely to be in-

cluded during runtime (e.g., test and build dependencies).
• Dependencies can get relocated within the repository listing.

For instance, servlet-api is moved to javax.servlet-api and later
jakarta.servlet-api. Such relations are crucial to produce a co-
herent dependency evolution history. This information is also
not stored in the now six-year-old Maven Dependency Graph by
research [3].

• The Maven Central repository alone comprises 51.9 TB. Taking
into account all repositories listed through Maven, it is 202 TB.

Instead, we start from the mvnrepository.com web interface, which
provides usage statistics, relocation information, and a dependency

3The publication was retracted due to unapproved human-subject research [22].
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Figure 1: Serialization evolution dependency download and analysis pipeline. The blue letters (a-c) refer to intermediary
artifacts: (a) all downloadable dependencies, (b) cleaned and remapped relocations, and (c) enriched with serializable changes.

categorization. To our knowledge, there is no convenient API to
retrieve this data, so we must resort to scraping it from the user-
oriented web front. As such, we compromise with two further chal-
lenges: request rate limiting and an incomplete query mechanism
for dependency popularity. The latter is caused by the /popular
endpoint (see Figure 1) only paginating to page 20. Given that each
page contains 10 dependency entries, this would limit us to only
the 200 most used dependencies. Therefore, we additionally query
all category based listings, setting a minimum usage of 100 as a
threshold to filter out less popular dependencies4.

3.1.2 Web Scraping. We preliminarily filter version tags indicating
non-release versions (e.g., beta, alpha, rc). Note that during data
cleaning we will more thoroughly remove such versions. At this
stage, however, we only want to reduce the number of web requests.
Further, we cannot retrieve the exact download URL by visiting all
the version links on mvnrepository.com due to the website’s request
rate limiting. Instead, we construct a download URL (see Appendix
A) where the repository is one of eleven repository base URLs. Most
artifacts are hosted on theMaven Central repository. The remaining
ten repositories are fallbacks for certain categories. For instance, the
Google Maven repository hosts many Android dependencies that are
not stored on Maven Central. For each dependency (-version), we
probe whether a dependency is hosted with a HEAD request starting
from Maven Central and then iterating through the fallback reposi-
tories. We also try to download the dependency in AAR (Android
Archive) format if no JAR is available.

Some listings refer to the same dependency, which is indicated
by the relocated tag. We can extract this information from scraping
mvnrepository.com and add a reference column to point to the new
location of the dependency. This allows us to merge instances such
as java-servlet-api, javax.servlet-api, and jakarta.servlet-api to a
single coherent dependency. Unfortunately, the relocation tag is a
single-linked list. If only the newer dependencies are contained in
the popularity listing, the older versions cannot be retrieved.

Through the web scraping, we retrieve 1 435 unique dependency
names with 119 202 version entries (see Figure 1 (a)). From here,
we identify dependencies that reference a dependency relocation,
but this dependency does not exist in our dataset. We resolve the
missing 40 dependency relocations, adding another 6 428 versions
to the dataset. Thus, the pre-data-cleaning dataset comprises 1 475
unique dependency names with 125 630 versions.
4The reason we cannot solely rely on the category-based listings is because a select
few popular dependencies (e.g., org.renjin.stats) are not categorized at all.

3.1.3 Data Cleaning. We recursively map dependency relocations
to the latest dependency relocation’s name. This way, we can query
the complete version history across relocations. Then, since our
aim is to analyze Java’s Serializable usage over version and time, we
must rigorously clean the version identifiers into a sortable scheme.
Ideally, this scheme would adhere to semantic versioning [50]. How-
ever, some dependencies ignore semantic versioning entirely. For
instance, org.json strictly uses a date format (e.g., 20250107) as a
version number, which, for our purposes, is fine since it ensures
correct version-based sorting. If this scheme is used only occa-
sionally, as in the Apache Commons Collections, then we remove
these version entries (see Table 1, row 4). After mapping relocations
and version identifier cleaning, the dataset contains 1 100 unique
dependencies and 111 275 version entries (see Figure 1, (b)).

Rule Example

Release Tags 5.2.25.FINAL→ 5.2.25
Alpha Tags 1.6.0-dev01→ (remove)
Char Separators 1.5R4→ 1.5.4
Date Versions ≤ 20% [3.2.2, 3.2.1, ..., 20040616]→ [3.2.2, 3.2.1, ...]
Undefined Postfix 2686.v7c37e0578401→ 2686

Table 1: Version identifier cleaning rules.

For each dependency, we iterate over all versions in the dataset and
load these pairwise into two SootUp views. Tribute to the version
name cleaning enabling correct sorting; we can not only collect
the number of serializable classes in the view but also determine
changes to the previous version. Specifically, we determine the
cause of an in/decrease of Serializable classes. The three causes
are depicted in Figure 2. Going from the current version 𝑣𝑛 , its
successor 𝑣𝑛+1 could have (1) added a new serializable class or
(2) implemented the Serializable interface to an existing class,
which could (3) indirectly render child classes serializable. A de-
crease in serializable classes occurs through the inversion of the
three scenarios. We enrich the cleaned dataset with the number of
such change events in each dependency version.

3.2 Measuring Serialization Usage
In the following, we measure the trend for Serializable usage
in Java dependencies over their evolution. First, we remove depen-
dencies for which, over the entire version evolution, not a single
class was serializable. This halves the dependencies to 533. For sta-
tistical analysis, we further trim dependencies that have no release
in 2024 or 2025. This is especially important for evaluating the



Sleeping Giants - Activating Dormant Java Deserialization Gadget Chains through Stealthy Code Changes

Figure 2: Causes (1-3, change in green) for an increase in
serializable classes.

correlation of serializable class count over dependency evolution.
A correlation coefficient for a dependency with only releases up to,
e.g., 2016 would pollute the current trend. Hence, the dependency
dataset relevant to analyzing Serializable evolution comprises
352 dependencies (32% of the original 1 100).

In Table 2, we investigate serialization evolution over time and
dependency version separately. That is because version numbers
are not necessarily congruent with the release date. For instance,
the Spring framework will create a new major release but continue
to release new minor releases for older major release versions. As
an example, spring-core v6.0.0 was released in November 2022, and
thus earlier than v5.3.39 (August ’24) and v5.2.25 (July ’23).

𝜌 ∈ [0.5, 1] [0, 0.5] [0, −0.5] [−0.5, −1] n.a.

Date 174 (49.43%) 33 (9.38%) 39 (11.08%) 37 (10.51%) 71
Version 182 (51.70%) 28 (7.95%) 34 (9.66%) 39 (11.08%) 71

Table 2: Correlation of class serializability with dependency
evolution over time/version. For 71 of 352 dependencies the
standard deviation is 0, i.e., no correlation can be calculated.

Table 2 shows that for dependencies which use Java’s
Serializable interface and have recent releases, the ma-
jority has a strong Pearson-correlation for Serializable class
count over time (49.43%) and version (51.70%). This set contains
prominent dependencies such as Google’s Guava core Java libraries
(Figure 3a), Apache Dubbo (Figure 3b), or Spring Core (Figure 3d).
Yet, even for dependencies with a weak or negative correlation,
serializable classes can fluctuate to a degree that makes it feasible
to introduce new gadgets (see Figures 3e to 3j).

We also calculate the overall correlation of Java’s Serializable
usage across dependencies. To do so, we normalize the amount of
data points by year, removing dependencies that do not contain
at least one dependency release for every year from 2015 to 2024.
133 dependencies satisfy this condition. For dependencies with
multiple releases within one year, we select a random sample. This
step is mandatory to avoid skewing the overall correlation towards
dependencies with many releases (e.g., the aws-core dependency
contains 3 407 releases). Due to random sampling, we calculate the
overall correlation 100 times and take the mean of this value. As
such, we find a weak positive correlation of 𝜌𝑎𝑙𝑙 = 0.1925.

In addition to the number of serializable classes in each dependency
version, we also track the causes for an increase/decrease in serial-
izable classes. We categorize the changes in Table 3. The addition
or removal of a serializable class is by far the most common type
of change (86.83%). Still, we find 9.36% of change events to be re-
lated to implementing the Serializable interface – directly or
indirectly (as shown in Figure 2). These changes occur in 190 or 108
dependencies, respectively. These are also the dependencies where
a change in serializability is most likely to remain unnoticed.

Change Events (242 919) Dependencies (352)

Add Remove Add Remove

Class 124 424 (51.22%) 86 497 (35.61%) 275 237
Direct 14 640 (6.01%) 6 367 (2.62%) 190 109
Indirect 8 090 (3.33%) 2 901 (1.19%) 108 74

Table 3: Changes responsible for increase/decrease of serial-
izable class count in dependencies with releases in 2024/25.

3.3 Key Observations
We analyzed the usage of Java’s Serializable interface over time
and version in a dataset of 1 100 widely used dependencies. It leads
us to (a) formulating a key challenge to a comprehensive view
on deserialization gadget chain research and (b) implications for
gadget-chain-based supply chain attacks. To do so, we first define
four dependency datasets (𝐷 ⊂ 𝐶 ⊂ 𝐵 ⊂ 𝐴):

𝐴 Gadget Providers (533) – dependencies containing at least
one serializable class.

𝐵 Active Gadget Providers (352) – Gadget Providers with a re-
cent release in 2024/25.

𝐶 Volatile Gadget Providers (283) –Active Gadget Providerswith
a fluctuating amount of serializable classes over the dependency
evolution (due to all causes outlined in Figure 2).

𝐷 Volatile Stealthy Gadget Providers (208) – Volatile Gadget
Providers with at least one change event related to implement-
ing/removing the Serializable interface to/from a class.

To increase visibility of deserialization gadget chains in Java, we
must be able to search for gadget chains in the entirety of set 𝐴
across dependencies and also across versions if dependencies are
contained in set 𝐶 . Since we continue to focus on dormant gadget
chains, solving this challenge is out of scope for this work. However,
we provide the datasets to the research community as an open
research challenge (see Section 8). Although such an analysis does
not eliminate gadget chains within downstream software projects,
it solidifies the supply chain by providing visibility to gadget chains
caused by dependencies. Also, with it, Ysoserial [15] can be brought
to an up-to-date version.

In this work, focusing on gadget-chain-based supply chain at-
tacks, we continue to work on dependencies in datasets𝐴, 𝐵, and 𝐷
individually. These are the datasets that directly map to our three
gadget injection patterns. Dataset 𝐶 is irrelevant because it would
only apply to a pattern for adding new serializable classes to a
target dependency. However, it is hard to formulate a universal
pattern for the addition of a functionally independent class.
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Figure 3: Visualization examples for serializable class count over dependency version. The x-axis represents the version index;
the y-axis the number of serializable classes.

4 Activating Dormant Gadget Chains
We aim to activate currently dormant deserialization gadget chains
through three modification patterns. Our approach is inspired by
FixReverter [71] and Hypocrite Commits [68]. However, this work
is, to the best of our knowledge, the first bug injection research
dedicated to Java deserialization gadget chains.

Figure 4 outlines our process for gadget injection and evaluation
of success rate. For each dependency in the dataset, we detect
injection sites and apply the three patterns (1-3, further detailed in
Section 4.1). We then run gadget chain detectors on the original and
modified JAR files which results in two possibly distinct outputs.
The delta of detections between these outputs is a soft proof of the
injection patterns’ success.

Figure 4: Deserialization Gadget Injection Framework.

From there, we provide hard evidence by manually analyzing 1 990
detected (dormant) gadget chains in 126 dependencies (Section 4.4).
In Section 4.5, we illustrate the interplay of our three injection
patterns with one of the true positives we identified as a case study.

4.1 Injection Patterns
4.1.1 Transitive Serializability. While direct changes to class se-
rializability may occur over a dependency’s evolution, from an
attacker’s point of view, making a superclass or interface seri-
alizable is a more desirable, hidden approach. A good example

of this is the Apache Commons Collections’ InvokerTransformer
and InstantiateTransformer. As the notorious enablers of seven
Ysoserial gadget chains, their serializability was removed in one
patch5, leaving a warning comment to never make these classes
serializable again. Under these circumstances, re-implementing the
Serializable interface in the two classes is unlikely. However, what if
the Transformer interface were to become serializable? Given the
history of Commons Collections gadget chains, such a patch being
accepted may still be contrived – albeit, much less than adding the
Serializable interface directly. Now, let us consider the dependency
set of volatile stealthy gadget providers (Section 3.3, 𝐷), which have
had transitive serializability changes in the past and have not been
subject to gadget chain detection. A maintainer might consider the
consequences of serializability to the applied class/interface itself
but miss the implications to inheriting components. An attacker
can leverage this to conceal their target.

We apply the transitive serializability pattern by implementing
the Serializable interface to all abstract classes and interfaces in
a dependency.

4.1.2 Final Properties. A property declared as final may only
be assigned once [43]. Taking Listing 5 as an example, one could
assume the classes NotVuln and Vuln to be semantically equivalent.
Yet, Java deserialization bypasses the default constructor [18], which
otherwise would set methodClass and methodName (lines 7 and 8)
to the given constants. This allows arbitrarily setting both final
properties, leading to arbitrary method invocation at line 11. Note
that methodName should not be defined as a simple string literal
because, if final, it is considered a compile-time constant that cannot
be modified [43]. A maintainer unfamiliar with the potential of
setting final fields through deserialization could easily miss a
malicious refactoring as in Listing 5.

For gadget injection, an attacker can specifically target String
and Class constants used inmethods and transform those into prop-
erties. We replace the LDC bytecode instruction for loading from the
constant pool with an equivalent ALOAD 0 (0 refers to this) and

5https://github.com/apache/commons-collections/commit/e585cd0433ae4cfbc56e5
8572b9869bd0c86b611#diff-2d13b1592fb865090f134fe9d88dee2cb2e24170a5338d5df7
9a495b34b207a9

https://github.com/apache/commons-collections/commit/e585cd0433ae4cfbc56e58572b9869bd0c86b611#diff-2d13b1592fb865090f134fe9d88dee2cb2e24170a5338d5df79a495b34b207a9
https://github.com/apache/commons-collections/commit/e585cd0433ae4cfbc56e58572b9869bd0c86b611#diff-2d13b1592fb865090f134fe9d88dee2cb2e24170a5338d5df79a495b34b207a9
https://github.com/apache/commons-collections/commit/e585cd0433ae4cfbc56e58572b9869bd0c86b611#diff-2d13b1592fb865090f134fe9d88dee2cb2e24170a5338d5df79a495b34b207a9
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1 class NotVuln implements Serializable{
2 public void method(Object o) {
3 Method method = OtherClass.class.getMethod("m");
4 method.invoke(o);
5 }}
6 class Vuln implements Serializable{
7 private final Class methodClass = OtherClass.class;

8 private final String methodName = new String("m");
9 public void method(Object o) {
10 Method method = methodClass.getMethod(methodName);
11 method.invoke(o);
12 }}

Listing 5: Extracting constant pool values into private final
properties.

GETFIELD, which refers to the newly added final field [44]. The mod-
ification essentially allows an attacker to control constant values,
opening up a broad range of security-sensitive sink methods requir-
ing a tainted String or Class. Therefore, while we primarily target
common usage patterns of the Java reflection API [33, 66], we also
cover String constants used in, e.g., Runtime.exec(<String>) or
custom ClassLoaders. Any dependency that is active in development
(i.e., 𝐵 - Active Gadget Providers) is an injection target.

4.1.3 Interface Method Reachability. Of all three change patterns,
this modification is the stealthiest. The aim is to introduce new
trampoline gadgets into software so that a multitude of further
gadgets become reachable. The change is difficult for maintainers
to detect, especially since the caller of the new trampoline gadget
could be in a different dependency. Consider a subtype of Iterator
with an implementation of Iterator.next() that leads to a gadget
chain. An attacker (or a developer unintentionally) could create
a serializable class with a generic Iterator property. As long as
this class coexists with the dependency containing the Iterator-
gadget on an application’s classpath, this application now contains
a full deserialization gadget chain. For this reason, this pattern is
applicable to all Gadget Providers (dataset 𝐴).

For each serializable class in the dependency, we extract all im-
plemented interfaces. Then, we add all interface methods related to
the Java SDK API to a caller gadget (e.g., Listing 6). For an attacker,
this ensures that no other dependencies must be present in the de-
pendency they use as an injection target. We consider interfaces to
be part of the Java SDK API if they reside in the java.* or javax.*
packages (similar to [35]). Note that we add all interface methods
even if a serializable class does not explicitly implement those due
to inheritance scenarios as in Listing 7. Also, the Caller gadget
contains a constructor to set all properties as well as hashCode as a
trampoline deserialization entry point. This is specifically necessary
for one of the tools we use during experimentation – Crystallizer
[60] as its static analyzer uses a trampoline heuristic, and the fuzzer
only sets properties via available constructors [28]. Finally, we
repackage the Caller gadget into the original dependency JAR file.

4.2 Experimentation
4.2.1 Gadget Injection Framework. We implement the gadget in-
jection in Java using ASM [4] and SootUp [25] (736 LoC). With this
setup, we can apply modifications to bytecode-compiled dependen-
cies. For the transitive Serializable pattern, we detect abstract and
interface classes in a dependency with SootUp and then use a

1 class Caller implements Serializable {
2 public Iterator iterator; public Runnable runnable;
3 public Object object; public Function function;
4 // additional interface properties ...
5 public Caller(Iterator _iterator, Runnable _runnable, ... ) {
6 this.iterator = _iterator;
7 this.runnable = _runnable;
8 // ...
9 }
10 @Override
11 public int hashCode() {
12 iterator.next();
13 function.apply(object);
14 // additional interface method calls ...
15 }}

Listing 6: Arbitrary JCL interfacemethod reachability gadget.

1 class Base implements java.lang.Runnable {
2 @Override
3 public void run() { /*...*/ }
4 }
5 class Child extends Base implements Serializable {}

Listing 7: The method Base.run() is a gadget despite Base
not being serializable as it is inherited to Child.run().

simple ASM class visitor to append the Serializable interface.
Swapping constants (pattern 2) requires a combination of a class
and method visitor to first add property fields and then, in the meth-
ods themselves, replace LDC instructions to retrieve the original
constant pool value from the newly defined fields. Finally, for the
Interface Method Reachability pattern, we implement a helper Java
SootUp program to identify implemented interfaces of serializable
classes and generate the source code of the Caller gadget. We
then compile the source code and repackage it with the original de-
pendency JAR. Table 4 provides the minimum, maximum, average
amount, and standard deviation of modifications per dependency.
Observe that for pattern (3), which is applicable to all datasets, for
the larger datasets 𝐵 and𝐴, the average amount of interfaces added
to the Caller gadget is declining. This indicates how dataset 𝐷
(Volatile Stealthy Gadget Providers) is the most lucrative target
for injection, regardless of the pattern.

Pattern and Dataset min max 𝑥 𝜎

(1) - classes modified 𝐷 1 5 139 233.84 483.18

(2) - classes modified 𝐵 0 11 704 308.51 832.72
𝐷 2 11 704 414.86 1 038.77

(3) - interfaces in Caller
𝐴 0 42 2.47 5.73
𝐵 0 42 2.62 6.02
𝐷 0 42 3.38 6.65

all - interfaces in Caller
𝐵 0 88 5.10 9.97
𝐷 0 88 7.69 11.98

Table 4: Statistics for applying patterns (1) - (3)

We also build a dependency containing all modifications. Pattern
(1) leads to more classes becoming serializable, which can increase
the number of interfaces added by the Caller gadget in pattern (3).
Therefore, we proceed in two stages, creating an intermediary JAR
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with patterns (1) and (2) applied, followed by the pertaining analysis
and gadget construction of (3). As seen in Table 4 (last row), this
more than doubles the average number of interfaces being called
from the Caller gadget.

4.2.2 Gadget Chain Detection Tools. We run the three state-of-
the-art gadget chain detectors, Tabby [10], Crystallizer [60], and
AndroChain [29], on the untouched and modified dependencies.
Thereby, we aim to identify whether the tools report surplus gadget
chains with the injection patterns applied. We specifically choose
these three tools due to their availability, recency, and diverse
methodology. We exclude the state-of-the-art tool JDD [8] from our
study due to its fuzzer module not being available [9]. Instead, we
take Crystallizer as the next-recent dynamic gadget chain detector.
The tool employs a fuzzer to prune false positive gadget chains
from the initial static analysis, which makes it the most precise of
the three tools in our study. Conversely, AndroChain puts a strong
emphasis on soundness. It is not constrained by a maximum gadget
chain depth, which heavily affects Crystallizer [28], and partially
Tabby [10]. Tabby is the currently most popular gadget chain de-
tector (1 400 GitHub star rating [65]). This is likely due to the high
degree of reusability from its Deserialization-Aware Call Graph (DA-
CG) in a Neo4J database. In fact, two further closed-source research
projects leveraged Tabby to improve gadget chain detection [6, 7].

AndroChain is provided as a standalone executable JAR file. Thus,
the analysis workload can be efficiently distributed with GNU Par-
allel [61] onto the 128 CPUs of the experimentation server6. Since
both Crystallizer and Tabby’s Neo4J database are docker-contained,
we can parallelize by launching multiple containers and orchestrat-
ing the dependency analysis tasks to those. Moreover, Crystallizer
is recommended to run 25 hours on each dependency – one hour
for dynamic sink identification and 24 hours for fuzzing gadget
chains. We can speed up the analysis by first running Crystallizer
only for one hour in dynamic sink analysis and static gadget chain
detection. If this part yields no results7, there is no reason to run
the full 24-hour fuzzing campaign. For Tabby, we configure the
toolchain described by the maintainers: tabby [65] for generating
the DA-CG, tabby-path-finder [63] as the custom Neo4J procedure
plugin, and tabby-vul-finder [64] to load the DA-CG and execute
queries. Once a cluster of Neo4J containers is launched with the
path-finder plugin, we again leverage GNU Parallel for DA-CG
generation, database import, and querying.

The tool instrumentation, container orchestration, and result
parsing is implemented in 590 lines of Python code.

4.3 Results
Table 5 shows the results of running Tabby, Crystallizer, and An-
droChain on the three datasets andwith the individualmodifications
applied. It represents how many of the modified dependencies con-
tained additional gadget chains in comparison to the unmodified
dependency, according to the respective gadget chain detectors.
These additional detections are a soft proof for dormant gadget
chains. Even though it does not indicate whether these are true
positives, it shows that further execution paths were considered

6Debian Linux 5.10.218 OS with a 64-core AMD EPYC 7713P (2.00GHz) processor and
995GB RAM
7I.e., the intermediary results/concretization/gadgetDB.store file is missing.

by the tools during analysis. Overall, the tools found potential dor-
mant gadget chains in 139 (26.08%) dependencies for dataset 𝐴, 114
(32.39%) for dataset 𝐵, and 99 for dataset 𝐷 (47.60%).

Crystallizer’s results are underwhelming for a few reasons. Recall
that Crystallizer starts with a dynamic identification of potential
sink methods. This preliminary fuzzing stage shrunk the number
of eligible dependencies to 92 (17.3%) in dataset 𝐴, 67 (19.0%) in
𝐵, and 49 in 𝐷 (23.6%). Further, Crystallizer detects chains only
up to a length of five gadgets [28, 59]. The gadget chain fuzzer
uses constructors and setter methods to set properties 8. While we
specifically accommodated for this constraint in our modification
patterns (see Section 4.1.3), Crystallizer still fails to set all possible
properties (i.e., using Java Reflection) in the gadgets contained by
the dependency as is. Also note that due to the non-determinism
of fuzzing, Crystallizer reported alleged additional gadget chains
in two more dependencies when applying only modification (1) as
opposed to applying all modifications (Table 5, row D). For all the
above-mentioned reasons, we do not consider Crystallizer’s results
representative for the success rate of our injection patterns. We fur-
ther prove this by manual verification of Tabby’s and AndroChain’s
gadget chains in Sections 4.4 and 4.5.

Considering Tabby’s and AndroChain’s results, all three modifi-
cation patterns appear to be a viable strategy to activate dormant
gadget chains. AndroChainmay have a small delta to the detections
in the unmodified dependencies for pattern (2) due to it not filtering
outputs based on taint9. Here, it proves crucial to have the com-
parison to a different state-of-the-art tool, i.e., Tabby. For Tabby,
all patterns have approximately similar viability. One should not
be deceived by the declining relative amount of dormant gadget
chain detections in the larger datasets 𝐴 and 𝐵 with all modifica-
tions applied. This is likely due to not applying patterns (1) and
(2). However, when regarding pattern (3) in isolation, there is an
indication of diminishing returns for the larger datasets.

4.4 Verifying Gadget Chain Detections
Table 5 provides a soft proof of the individual patterns’ success rates.
This is backed by 830 new gadget chain detections by Tabby, 868 by
Crystallizer, and 2 785 by AndroChain. In this section, we provide
hard evidence for our gadget injection framework by manually
determining true positives from the tools’ results.

We start by filtering out gadget chains, leading to less promis-
ing sink methods. For instance, Tabby and AndroChain consider
Class.forName() and Class.getMethod() to be sinks. That is
likely because they may be succeeded by a call to Method.invoke()
– a typical usage pattern of Java Reflection [28, 33]. Yet, in isolation,
these methods have no strong security implication [15]. We also
disregard sink methods related to InputStreams. Verifying gadget
chains with these sinks is more time-consuming since it requires
not only verifying the gadget chains’ control flow but also the
subsequent usage of the InputStream in the program. Overall, we
restrict ourselves to 23 interesting sink methods (complete listing,
see Appendix B).

8[59] – /src/dynamic/Meta.java, line 850ff. and line 1088ff.
9The tool still outputs the propagated taint value in its results, which we could use to
calculate a delta [29].



Sleeping Giants - Activating Dormant Java Deserialization Gadget Chains through Stealthy Code Changes

Tabby [10] Crystallizer [60] AndroChain [29]

(1) (2) (3) all (1) (2) (3) all (1) (2) (3) all

𝐴 (533) - - 45 (8.4%) 56 (10.5%) - - 0 (0.0%) 8 (1.5%) - - 48 (9.0%) 101 (18.9%)
𝐵 (352) - 42 (11.9%) 33 (9.4%) 44 (12.5%) - 7 (2.0%) 0 (0.0%) 8 (2.3%) - 9 (2.6%) 29 (11.1%) 82 (23.3%)
𝐷 (208) 33 (15.9%) 32 (15.4%) 27 (13.0%) 35 (16.8%) 8 (3.8%) 4 (1.9%) 0 (0.0%) 6 (2.9%) 66 (31.7%) 7 (3.4%) 23 (11.1%) 74 (35.6%)

Table 5: Dependencies with additional gadget chain detections in the datasets 𝐴 (Gadget Providers), 𝐵 (Active Gadget Providers),
and 𝐷 (Volatile Stealthy Gadget Providers), when applying the changes (1) - (3) in isolation, or all applicable changes combined.

This leaves us with 1 990 gadget chains in 126 dependencies after fil-
tering. We distribute the workload of verifying these gadget chains
on three researchers in our team. Each researcher receives a set of
42 dependencies with the respective tools’ gadget chain detections.
Upon confirming one true positive, we skip the remaining detected
gadget chains for this dependency. This is because we are inter-
ested in a measure of how many dependencies are susceptible to
our injection patterns. The manual analysis involves decompilers
(JADX [57]) and debugging tools (IntelliJ [24]) for PoC generation.
The latter is reserved for complex cases (e.g., Appendix B, Table
15) where we cannot be certain from static analysis whether the
conditions for a certain control flow can be met. We cannot do this
in every case since creating a PoC for a single gadget chain takes
around two hours. Overall, our analysis spans over a work week.

Our combined efforts yield verified gadget chains in 53 dependen-
cies. We list the gadget chains in Appendix C. Figure 5 shows how
many of these verified dormant gadget chains could be activated
by applying the change patterns individually or in combination.
Indeed, each pattern is viable on its own for at least one dependency.
More specifically, 26 (49.06%) of the dormant gadget chains require
only one of the three change patterns. It shows that for half of the
true positive cases, dependencies are on the verge of containing a
security-critical gadget chain. The most common missing prereq-
uisite is interface method reachability, which, as we discussed in
Section 4.1, is the easiest to satisfy from an attacker’s perspective.

(1) Transitive Serializable

(2) Final
Attributes

(3) Interface
Methods

1

3 22
2

163

6

Figure 5: Venn diagram of how many dependencies were
activated with which modification(s).

Table 6 zooms in on the dormant gadget chains, which can be
activated through interface method reachability. Many of the listed
method calls (e.g., AutoCloseable.close() or Iterator.next())
have a benign appearance. This drastically increases the odds of
such a call edge being introduced. Moreover, in the cases where no

further changes are required (✓in Table 6), one can actually assume
the interface methods as sink methods for a gadget chain detector.
Upon finding a chain to these interface sinks, the full gadget chain
can be constructed by combining it with an applicable dormant
gadget chain for interface method reachability (see Appendix C.3).

Interface Method Count Single

java.lang.Runnable.run() 10 ✓
java.util.concurrent.Callable.call() 1 ✓
java.awt.event.ActionListener.actionPerformed() 2 ✓
java.beans.PropertyChangeListener.propertyChange() 3 ✓
java.lang.reflect.InvocationHandler.invoke() 6 ✓
javax.sql.DataSource.getConnection() 3 ✓
javax.sql.XADataSource.getXAConnection() 1 ✓
java.lang.AutoCloseable.close() 6 ✓
javax.sql.RowSet.rollback() 3 ✓
javax.xml.transform.Transformer.newTransformer() 1 ✓
java.sql.Connection.isValid() 1
java.util.Iterator.hasNext() 4
java.util.Iterator.next() 2
java.lang.Iterable.iterator() 1
java.util.Map.put() 1
java.io.Flushable.flush() 1

Table 6: Java interface methods activating dormant gadget
chains. A tick (✓) in the single column signifies that the
activation requires no additional change patterns.

4.5 Case Study - Apache OpenJPA
We exemplify how to activate a dormant gadget chain in the Apache
OpenJPA [62] dependency. Apache OpenJPA is an alternate Java
Persistence API used by 327 downstream projects on the Maven
Repository. We specifically demonstrate this dormant gadget chain
(see Table 7) because it incorporates all three modification patterns.
While this makes the gadget chain more difficult to activate, it
highlights the relevance of all three patterns in a single coherent
example. For a dormant gadget chain requiring but a single modi-
fication, we refer to the motivating example in Section 2.2. In the
following, we first describe the dormant gadget chain and then list
the changes that were applied to activate it.

java.util.Iterator.hasNext()
↩→ org.apache.openjpa.jdbc.meta.strats.LRSProxyMap$ResultIterator.hasNext()
↩→ org.apache.openjpa.jdbc.sql.MergedResult.next()
↩→ org.apache.openjpa.jdbc.sql.LogicalUnion$ResultComparator.getOrderingValue(Result, int)
↩→ org.apache.openjpa.jdbc.sql.LogicalUnion$ResultComparator.getOrderingValue(Result, Object)
↩→ org.apache.openjpa.jdbc.sql.PostgresDictionary.getObject()
↩→ java.lang.reflect.Method.invoke()

Table 7: Apache OpenJPA [62] dormant gadget chain.

4.5.1 Gadget Chain Description. Listing 8 shows the entry point in
ResultIterator.hasNext(). This is a perfect target for a hidden
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Caller gadget calling hasNext() on a generic Java iterator. The
gadget chain continues by invoking Result.next() at line 9.

1 package org.apache.openjpa.jdbc.meta.strats;
2 class LRSProxyMap {
3 private class ResultIterator implements Iterator, Closeable {
4 private final Result[] _res;
5 private Boolean _next = null;
6 @Override
7 public boolean hasNext() {
8 if (_next == null)
9 _next = (_res[0].next()) ? Boolean.TRUE : Boolean.FALSE;
10 return _next;
11 }
12 }}

Listing 8: LRSProxyMap$ResultIterator.hasNext().

Then, using a MergedResult, one can divert the execution flow
to a ResultComparator (Listing 9, line 16). Take note of how an
attacker has control of the properties _status and _pushedBack
to satisfy the conditional statements at lines 10 and 13.

1 package org.apache.openjpa.jdbc.sql;
2 public class MergedResult implements Result {
3 private final Result[] _res;
4 private final byte[] _status;
5 private final ResultComparator _comp;
6 private boolean _pushedBack = false;
7
8 @Override
9 public boolean next() throws SQLException {
10 if (_pushedBack) { ... }
11 if (_comp == null) { ... }
12 for (int i = 0; i < _status.length; i++) {
13 switch (_status[i]) {
14 case NEXT:
15 if (_res[i].next())
16 _order[i] = _comp.getOrderingValue(_res[i], i);
17 break;
18 }
19 }
20 }
21 public interface ResultComparator extends Comparator {
22 Object getOrderingValue(Result res, int idx);
23 }
24 }

Listing 9: MergedResult.next()

In Listing 10, the gadget chain proceeds with the
ResultComparator implementation in the LogicalUnion
class. At line 10, it shows that the Result passed to the comparator
in MergedResult needs to be of type ResultSetResult. So, even
if it is not visible in the gadget chain (Table 7), we must ensure
this class is also serializable so it can be used during payload
construction. The ResultSet retrieved at line 10 is further passed
to a call to DBDictionary.getObject() via lines 12 and 16.

Finally, we use a PostgresDictionary’s implementation of
getObject() to achieve arbitrary method execution. In Listing
11, the string constants at lines 7 and 10 present themselves to be
extracted as final attributes according to the second modification
pattern. This bypasses both the class name constraint to the object
retrieved from the ResultSet (line 5) and the method name con-
straint. As popularized by Ysoserial gadget chains, we can supply a
TemplatesImpl instance to achieve arbitrary code execution from
the arbitrary method invocation [15].

1 package org.apache.openjpa.jdbc.sql;
2 private static class LogicalUnion.ResultComparator
3 implements MergedResult.ResultComparator {
4
5 private final List[] _orders;
6 private final DBDictionary _dict;
7
8 @Override
9 public Object getOrderingValue(Result res, int idx) {
10 ResultSet rs = ((ResultSetResult) res).getResultSet();
11 if (_orders[idx].size() == 1)
12 return getOrderingValue(rs, _orders[idx].get(0));
13 ...
14 }
15 private Object getOrderingValue(ResultSet rs, Object i) {
16 return _dict.getObject(rs, (Integer) i + 1, null);
17 }
18 }

Listing 10: LogicalUnion$ResultComparator

1 package org.apache.openjpa.jdbc.sql;
2 public class PostgresDitionary extends DBDictionary {
3 @Override
4 public Object getObject(ResultSet rs, int column, Map map) {
5 Object obj = super.getObject(rs, column, map);
6 if (obj.getClass().getName()
7 .equals("org.postgresql.util.PGobject")) {
8 try {
9 Method m = obj.getClass()
10 .getMethod("getType", (Class[]) null);
11 Object type = m.invoke(obj, (Object[]) null);
12 } catch (Throwable t) { ... }
13 }
14 return obj;
15 }
16 }

Listing 11: PostgresDitionary

4.5.2 Required Change Patterns. Figure 6 visualizes the payload
construction for the dormant OpenJPA gadget chain. Thereby, com-
ponents highlighted in green refer to the locations where one of
the modification patterns was applied. Overall, three interfaces
were made serializable, two string literals were extracted as final
properties in PostgresDicitionary, and a trampoline call edge to
Iterator.hasNext() was introduced.

Making LRSProxyMap$ResultIterator, MergedResult, and
ResultSetResult serializable requires only the addition of Seri-
alizable to OpenJPA’s Closeable since all three gadgets inherit
from it. It illustrates quite well how changing the serializability
of a single interface (or class) can have a substantial impact on
its descendants. Additionally, we provide transitive serializabil-
ity via Configurable and MergedResults$ResultComparator to
PostgresDictionary and LogicalUnion$ResultComparator, re-
spectively. The changes are not far-fetched considering that the
number of serializable classes in Apache OpenJPA has been steadily
increasing from 310 in its first release to 637 in the current version.

5 Discussion
5.1 Threats to Validity
5.1.1 Injection Patterns. In this work, we evaluated three specific
patterns to enable gadget chains in real-world dependencies. These
patterns were chosen due to their trivial injection conditions. This
enabled us to apply the changes automatically on a large scale.
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Figure 6: Payload visualization for dormant OpenJPA gadget
chain. Modifications are highlighted in green.

However, we do not claim that these are the only changes that en-
able dormant gadget chains. A study on 19 Ysoserial gadget chains
revealed that four change types led to the introduction of further
gadget chains: adding a class or method or changing class serializ-
ability or access modifiers [55]. Through the transitive serializable
pattern, we implemented an obfuscated class serializability change.
Also, the Caller gadget to invoke interface methods is, in essence,
the addition of a new class. There are definitely many more ways
to add a class or method such that it leads to a gadget chain in
the underlying dependency. Looking at the analysis in [55], it is
challenging to find clear patterns for these changes. The addition
of entirely new classes or methods, which also serve a functional
purpose within the dependency (e.g., TransformingComparator
in the commons-collections) requires domain-specific knowledge,
thus making it quite difficult to automate. Still, for further inves-
tigation, one could consider anonymous or generated classes as
in the Clojure gadget chain [15]. Such gadgets may only become
visible in the compiled dependency and would, thereby, slip under
the radar of a maintainer reviewing a malicious commit.

It is hard to empirically assess the stealthiness of our three injec-
tion patterns without compromising the integrity of open-source
software development (e.g., as in [68]). However, we can deduce
a hierarchy from the injection location in relation to the thereby
activated gadget. Pattern (2) - Final Properties is applied to the gad-
get class itself, making it the easiest to spot during review. Then,
while pattern (1) - transitive serializability is applied to a different
class but within the same dependency, pattern (3) - interface method
reachability has no constraints at all. By this logic, we argue that,
at the very least, patterns (1) and (3) meet the requirements of
stealthiness. Recall that we applied pattern (1) only to the dataset
of Volatile Stealthy Gadget Providers (𝐷), which have made changes
to class serializability over their evolution. Pattern (2) is tricky to
assess. It requires a developer knowing that by specification, Java
final attributes are invariant [43], while being unaware that Java
serialization ignores this property. According to Goetz, such a mis-
take is feasible [18], albeit our specific refactoring of String and
Class literals may still be suspicious. We should still consider that

an attacker would put more thought into hiding a gadget in final
attributes than our pattern can simulate. Regardless, patterns (1)
and (3) proved sufficient in the majority (73.58%, see Figure 5) of
cases to activate dormant gadget chains.

5.1.2 DependencyDataset Size. Weanalyzed popular dependencies
from the Maven repository. This led us to define four comprehen-
sive datasets (see Section 3.3) that we propose as a new baseline
for gadget chain detection research. They encompass dependencies
that, by containing serializable classes, have the potential to be
leveraged towards a deserialization gadget chain. Of course, our
analysis can be extended to all available dependencies and, further-
more, open-source software projects. Given that the baseline has
been the 41 dependencies in Ysoserial, we believe it is a reasonable
step to first focus on a comprehensive view of high-profile targets
in the supply chain. This is exactly what we aimed for by filtering
out the most popular dependencies from Maven.

5.1.3 Gadget Chain Detection. Our choice of gadget chain detec-
tors is motivated by the Gleipner publication [28], which tested all,
at that time, available gadget chain detection tools on a synthetic
benchmark. According to their work, Crystallizer [60] is the most
precise and Tabby [10] the most sound tool available. We excluded
JDD [8] from our study since their injection object construction
(IOCD) fuzzer is not available on their repository. However, we
included the recent gadget chain detector, AndroChain [29], which
detects more gadget chains than Tabby on Ysoserial as a benchmark.
In doing so, we cover a reasonable proportion of the state-of-the-
art in gadget chain detection. The omission of other gadget chain
detectors in this work should not deter us. If anything, it would
have led to even more detections of dormant gadget chains.

5.1.4 Single Dependency Analysis. The results of applying the three
modification patterns to single dependencies prove that it is possible
to activate dormant gadget chains with these changes. This was the
main objective of our study. However, the attack surface could be
drastically increased by incorporating cross-dependency analysis.
Indeed, in Ysoserial 15/34 (44.12%), gadget chain payloads rely on
more than one dependency [15]. For cross-dependency analysis, one
could extract commonly grouped dependency clusters from open-
source software build files and then search for gadget chains in these
clusters. Moreover, regarding the trampoline method reachability
pattern, instead of only considering interfaces in the JCL, one could
also include interfaces of upstream dependencies.

5.2 Implications and Future Work
Our work confirms that, despite its flaws and security risks, the Seri-
alizable API remains a widely used part of Java-based software. The
analysis in Section 3 proves that Serializable usage is, if anything,
increasing. This appears to be a predicament for the Java platform.
JVM providers (e.g., Oracle, OpenJDK, and IBM) cannot supersede
the current implementation of the Serializable API when its usage
is widespread, whereas users continue to rely on it because it is the
de facto serialization standard provided by JDK vendors.

Our three gadget injection patterns successfully reactivated dor-
mant gadget chains in a range of popular dependencies. This state-
ment is supported by (1) a high estimate of 139 dependencies, which
contained additional chains according to gadget chain detectors,
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and (2) a low estimate of 53 dependencies for which we could man-
ually verify dormant gadget chains. While the low estimate is a
solid ground truth, the high estimate gives a broader view of poten-
tial new execution paths. Either way, this proves dormant gadget
chains as a hidden liability to software. Moreover, 26 (49.06%) of
the verified dormant gadget chains required only one of our three
modification patterns to be activated. These chains are on the verge
of becoming a real vulnerability.

In light of these observations, we should direct our attention
to mitigation techniques against deserialization-based attacks. As
of now, we do not know to which extent software providers im-
plement ObjectInputFilters [52, 53]. For Android, it shows that app
developers have not fully caught upwith theAndroid-SDK-provided
type-safe deserialization methods [20, 29]. We also emphasize the
implications of our Interface Method Reachability pattern. In our
view, it is almost trivial for an attacker to hide a gadget calling
a new trampoline method (e.g., Iterator.hasNext()) in another
dependency. Maintainers have no control over such changes. More-
over, such a gadget may actually already exist in a dependency –
something we aim to search for in future work. Either way, under
these conditions, we believe a dormant gadget chain that can be
activated with this pattern necessitates remediation.

6 Related Work
6.1 Java Deserialization Gadget Chains
A wide range of gadget chain detection tools have been developed
with diverse methodologies. The main distinction between the
approaches is whether they purely rely on static analysis [2, 5, 7,
10, 21, 29, 32, 34, 36, 37, 54, 67] or additionally employ a fuzzer
for validation [6, 8, 51, 60]. The tools are almost exclusively used
on the dependencies in Ysoserial, which narrows the view on Java
deserialization gadget chains to an outdated subset of the entire
dependency landscape [28, 29]. The large-scale analysis of gadget
chains in theAndroid Open Source Project [29] stands as an exception.
While the authors did not find any exploitable gadget chains, they
observed two examples of dormant gadget chains in the RxJava
dependency. On this basis, they propose investigating the viability
of deserialization gadget chains as a supply chain attack.

By analyzing the evolution of Java’s Serializable interface usage
and deducing the relevant dependencies for gadget chain detection,
we set a target towards a holistic view (Section 3). It is thereby also
an extension to [27, 55], which show that the presence of deserial-
ization gadget chains is volatile over a dependency’s evolution.

6.2 Supply Chain Attacks
There is ample evidence for the increasing risk of software supply
chain attacks [14, 38, 46]. The Backstabber’s Knife Collection [41]
entails an analysis of 174 malicious packages on package reposito-
ries. Together with the work of Ladisa et al. [30] it has created a
solid understanding of attack types and targets in a software supply
chain. Specifically, our injection patterns for Java deserialization
gadget chains fall into the categories AV-100 Develop and Advertise
distinct Malicious Package from Scratch and AV-304 Make immature
Vulnerability Exploitable [30].

The concept of making immature vulnerabilities exploitable
directly relates to [68] and is adjacent to bug injection research

[13, 48, 49, 71]. Regarding Java, LEAP leverages bug injection to
create a benchmark of Java concurrency bugs [23], and Pan et al.
define 27 bug patterns for automatic program repair [45]. None of
these works cover Java deserialization gadget chains as a bug type.
Ladisa et al. injected malicious bytecode into benign JAR files to
evaluate different malicious package detection strategies [31]. In-
stead of using immature vulnerabilities, the authors inserted three
standalone payloads.

Wu et al. pointed out the high false alarm rate in supply chain de-
pendents. They showed that upstream dependencies in the Maven
ecosystem affect only 10.4% of downstream projects through us-
age of a vulnerable upstream function [69]. However, this rate is
not representative for our study since the insecure entry point
ObjectInputStream.readObject() is assumed to be present in
the downstream project while the choice of gadgets from the up-
stream project is unconstrained. The downstream project incor-
porates the gadgets in its classpath and is, thus, not required to
explicitly use any vulnerable function. This means that if the gadget
chain exists in a dependency, then it also exists within the user.
There are ways to mitigate the impact through tools like SBOM.EXE
[56], which restricts the set of permissible classes during runtime.

7 Conclusion
In this work, we investigated the usage of the Java Serializable
API in a large dataset of 1 100 popular Maven dependencies over
their evolution. It showed that in dependencies that use Serializable,
the number of serializable classes has a weak positive correlation
with time. This means, if anything, Serializable usage is increas-
ing. From here, we defined four dependency datasets, which we
propose as a baseline for future gadget chain detection research.
Then, for the dependencies in these datasets, we injected three bug
patterns to activate dormant gadget chains. We ran three gadget
chain detection tools on both the modified and untouched depen-
dencies and compared the results. For 139 dependencies, the tools
detected additional gadget chains. This provides a soft proof of the
patterns’ viability to activate dormant gadget chains. Furthermore,
we manually confirmed dormant gadget chains in 53 dependencies.
It corresponds to a success rate of 9.94% for our injection patterns.

Overall, our work showed that Java deserialization gadget chains
are a much broader liability to software than detecting full gad-
get chains could possibly capture. It makes awareness of dormant
gadget chains paramount to strengthen the software supply chain.

8 Data Availability
We anonymously share our experimentation data and toolchain
with the following URL:

https://zenodo.org/records/15039856?preview=1&token=eyJhbGciOiJIUzUxMiIsImlh
dCI6MTc0MjIxODg4MiwiZXhwIjoxNzY3MTM5MTk5fQ.eyJpZCI6ImY4YzQ1ZDk
wLTIwOGQtNDEzMy1iODVlLWFiYTc5ODljODQxNiIsImRhdGEiOnt9LCJyYW5kb
20iOiJjZWIwMWZhMTA5N2U3NTU4ZWQ0MGVlMTA1OGE4OTIwNSJ9.iGAqYq
Gv1_MdFHnd8QcXtuS4mFO5zVvFLI78OyiKHqLD1phW5sYDkH_aTIrDAWximJK4
WmlzN0KFp_bVCM-xVQ

We do not disclose the gadget chains detected by the tools in the un-
modified dependencies. It was not within this work’s scope to verify
these gadget chain detections, and, thus, by publishing the results,
we would risk unintentionally disclosing real vulnerabilities.

https://zenodo.org/records/15039856?preview=1&token=eyJhbGciOiJIUzUxMiIsImlhdCI6MTc0MjIxODg4MiwiZXhwIjoxNzY3MTM5MTk5fQ.eyJpZCI6ImY4YzQ1ZDkwLTIwOGQtNDEzMy1iODVlLWFiYTc5ODljODQxNiIsImRhdGEiOnt9LCJyYW5kb20iOiJjZWIwMWZhMTA5N2U3NTU4ZWQ0MGVlMTA1OGE4OTIwNSJ9.iGAqYqGv1_MdFHnd8QcXtuS4mFO5zVvFLI78OyiKHqLD1phW5sYDkH_aTIrDAWximJK4WmlzN0KFp_bVCM-xVQ
https://zenodo.org/records/15039856?preview=1&token=eyJhbGciOiJIUzUxMiIsImlhdCI6MTc0MjIxODg4MiwiZXhwIjoxNzY3MTM5MTk5fQ.eyJpZCI6ImY4YzQ1ZDkwLTIwOGQtNDEzMy1iODVlLWFiYTc5ODljODQxNiIsImRhdGEiOnt9LCJyYW5kb20iOiJjZWIwMWZhMTA5N2U3NTU4ZWQ0MGVlMTA1OGE4OTIwNSJ9.iGAqYqGv1_MdFHnd8QcXtuS4mFO5zVvFLI78OyiKHqLD1phW5sYDkH_aTIrDAWximJK4WmlzN0KFp_bVCM-xVQ
https://zenodo.org/records/15039856?preview=1&token=eyJhbGciOiJIUzUxMiIsImlhdCI6MTc0MjIxODg4MiwiZXhwIjoxNzY3MTM5MTk5fQ.eyJpZCI6ImY4YzQ1ZDkwLTIwOGQtNDEzMy1iODVlLWFiYTc5ODljODQxNiIsImRhdGEiOnt9LCJyYW5kb20iOiJjZWIwMWZhMTA5N2U3NTU4ZWQ0MGVlMTA1OGE4OTIwNSJ9.iGAqYqGv1_MdFHnd8QcXtuS4mFO5zVvFLI78OyiKHqLD1phW5sYDkH_aTIrDAWximJK4WmlzN0KFp_bVCM-xVQ
https://zenodo.org/records/15039856?preview=1&token=eyJhbGciOiJIUzUxMiIsImlhdCI6MTc0MjIxODg4MiwiZXhwIjoxNzY3MTM5MTk5fQ.eyJpZCI6ImY4YzQ1ZDkwLTIwOGQtNDEzMy1iODVlLWFiYTc5ODljODQxNiIsImRhdGEiOnt9LCJyYW5kb20iOiJjZWIwMWZhMTA5N2U3NTU4ZWQ0MGVlMTA1OGE4OTIwNSJ9.iGAqYqGv1_MdFHnd8QcXtuS4mFO5zVvFLI78OyiKHqLD1phW5sYDkH_aTIrDAWximJK4WmlzN0KFp_bVCM-xVQ
https://zenodo.org/records/15039856?preview=1&token=eyJhbGciOiJIUzUxMiIsImlhdCI6MTc0MjIxODg4MiwiZXhwIjoxNzY3MTM5MTk5fQ.eyJpZCI6ImY4YzQ1ZDkwLTIwOGQtNDEzMy1iODVlLWFiYTc5ODljODQxNiIsImRhdGEiOnt9LCJyYW5kb20iOiJjZWIwMWZhMTA5N2U3NTU4ZWQ0MGVlMTA1OGE4OTIwNSJ9.iGAqYqGv1_MdFHnd8QcXtuS4mFO5zVvFLI78OyiKHqLD1phW5sYDkH_aTIrDAWximJK4WmlzN0KFp_bVCM-xVQ
https://zenodo.org/records/15039856?preview=1&token=eyJhbGciOiJIUzUxMiIsImlhdCI6MTc0MjIxODg4MiwiZXhwIjoxNzY3MTM5MTk5fQ.eyJpZCI6ImY4YzQ1ZDkwLTIwOGQtNDEzMy1iODVlLWFiYTc5ODljODQxNiIsImRhdGEiOnt9LCJyYW5kb20iOiJjZWIwMWZhMTA5N2U3NTU4ZWQ0MGVlMTA1OGE4OTIwNSJ9.iGAqYqGv1_MdFHnd8QcXtuS4mFO5zVvFLI78OyiKHqLD1phW5sYDkH_aTIrDAWximJK4WmlzN0KFp_bVCM-xVQ
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Construction
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/slf4j-api-1.1.0.jar

Listing 12: General structure of Maven repository download
URLs.
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B Sink Method Filtering for Gadget Chain
Verification

Sink Method Count

java.lang.reflect.Method.invoke 608
java.lang.ClassLoader.defineClass 32
org.springframework.jndi.JndiTemplate.lookup 3
java.sql.PreparedStatement.execute 1
java.io.FileOutputStream.write 168
java.lang.ClassLoader.loadClass 77
java.net.URL.openConnection 142
java.sql.Statement.execute 1
javax.naming.InitialContext.lookup 1
java.lang.reflect.Constructor.newInstance 423
java.io.FileOutputStream.<init> 91
java.sql.PreparedStatement.executeQuery 3
java.io.File.delete 91
java.beans.Introspector.getBeanInfo 3
java.net.URL.openStream 119
java.sql.DriverManager.getConnection 1
java.sql.Connection.prepareStatement 4
java.nio.file.Files.newOutputStream 28
javax.naming.Context.lookup 900
java.lang.ProcessBuilder.<init> 11
java.lang.Runtime.exec 18
java.rmi.registry.Registry.lookup 1
java.nio.file.Files.newBufferedWriter 7

Filtered

java.io.FileInputStream.<init> 202
java.lang.Class.forName 239
java.lang.Class.getMethod 260
java.lang.Class.getDeclaredMethod 48
java.lang.ClassLoader.getSystemResourceAsStream 12
java.lang.Class.getResourceAsStream 5
java.nio.file.Files.readAllLines 7
java.io.FileReader.<init> 1
org.xml.sax.XMLReader.parse 4
java.io.RandomAccessFile.read 4
java.io.RandomAccessFile.readFully 2
java.nio.file.Files.newInputStream 81
java.nio.file.Files.newBufferedReader 5
java.nio.file.Files.readAllBytes 9
java.util.zip.ZipInputStream.<init> 1
com.esotericsoftware.kryo.Kryo.readClassAndObject 2

Table 9: Sink methods in dormant gadget chains. The sink
methods in the lower section are filtered out for the manual
verification. Note that we also disregard the dynamically
identified sinks by Crystallizer. The definition of considering
any method which operates on arbitrary objects produces a
high amount of false positive sink methods [60].

C Verified Dormant Gadget Chains
C.1 Transitive Serializability

java.util.Hashtable.readObject()
↩→ java.util.Hashtable.readHashtable()
↩→ java.util.Hashtable.reconstitutionPut()
↩→ com.github.jknack.handlebars.io.ReloadableTemplateSource.equals()
↩→ com.github.jknack.handlebars.io.URLTemplateSourc.lastModified()
↩→ com.github.jknack.handlebars.io.URLTemplateSource(URL)
↩→ java.net.URL.openConnection()

Table 10: com.github.jknack.handlebars-4.4.0

C.2 Final Attributes

org.apache.flink.api.common.state.StateDescriptor.readObject()
↩→ org.apache.flink.api.java.typeutils.runtime.kryo.KryoSerializer.deserialize()
↩→ org.apache.flink.api.java.typeutils.runtime.kryo.KryoSerializer.checkKryoInitialized()
↩→ org.apache.flink.api.java.typeutils.runtime.kryo.KryoSerializer.getKryoInstance()
↩→ java.lang.reflect.Method.invoke()

Table 11: org.apache.flink.flink-core-1.19.2

org.jfree.chart.plot.CombinedRangeCategoryPlot.readObject()
↩→ org.jfree.chart.axis.PeriodAxis.configure()
↩→ org.jfree.chart.axis.PeriodAxis.autoAdjustRange()
↩→ org.jfree.chart.axis.PeriodAxis.createInstance()
↩→ java.lang.reflect.Constructor.newInstance()

Table 12: org.jfree.jfreechart-1.5.5

org.rogach.scallop.SerializationProxy.readObject()
↩→ java.lang.reflect.Constructor.newInstance()

Table 13: org.rogach.scallop-5.2.0

C.3 Interface Method Reachability

java.lang.Runnable.run()
↩→ org.springframework.beans.factory.support.DisposableBeanAdapter.run()
↩→ org.springframework.beans.factory.support.DisposableBeanAdapter.destroy()
↩→ org.springframework.beans.factory.support.DisposableBeanAdapter.invokeCustomDestroyMethod()
↩→ java.lang.reflect.Method.invoke()

Table 14: org.springframework.spring-beans-6.1.17

java.beans.PropertyChangeListener.propertyChange()
↩→ org.htmlparser.beans.HTMLTextBean.propertyChange()
↩→ javax.swing.text.JTextComponent.setText()
↩→ javax.swing.text.AbstractDocument.replace()
↩→ javax.swing.text.DefaultFormatter$DefaultDocumentFilter.replace()
↩→ javax.swing.text.NumberFormatter.replace()
↩→ javax.swing.text.NumberFormatter.toggleSignIfNecessary()
↩→ javax.swing.text.NumberFormatter.toggleSign()
↩→ java.lang.reflect.Constructor.newInstance()

Table 15: org.htmlparser.htmlparser-2.1

javax.sql.DataSource.getConnection()
↩→ org.apache.commons.dbcp2.datasources.InstanceKeyDataSource.getConnection()
↩→ org.apache.commons.dbcp2.datasources.InstanceKeyDataSource.testCPDS()
↩→ javax.naming.InitialContext.lookup()
↩→ javax.naming.Context.lookup()

Table 16: org.apache.commons.commons-dbcp2-2.13.0

java.lang.AutoCloseable.close()
↩→ org.mapdb.BTreeMap.close()
↩→ org.mapdb.StoreTrivialTx.close()
↩→ java.io.File.delete()

Table 17: org.mapdb.mapdb-3.1.0

java.lang.reflect.InvocationHandler.invoke()
↩→ org.apache.openejb.threads.impl.ContextServiceImpl$CUHandler.invoke()
↩→ org.apache.openejb.threads.impl.ContextServiceImpl$CUHandler.lambda$invoke$0()
↩→ java.lang.reflect.Method.invoke()

Table 18: org.apache.tomee.openejb-core-10.0.0

java.lang.Runnable.run()
↩→ com.googlecode.aviator.runtime.function.AbstractVariadicFunction.run()
↩→ com.googlecode.aviator.runtime.function.AbstractVariadicFunction.call()
↩→ com.googlecode.aviator.runtime.function.ClassMethodFunction.variadicCall()
↩→ com.googlecode.aviator.utils.Reflector.invokeStaticMethod()
↩→ com.googlecode.aviator.utils.Reflector.invokeMatchingMethod()
↩→ java.lang.reflect.Method.invoke()

Table 19: com.googlecode.aviator.aviator-5.4.2
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javax.sql.RowSet.rollback()
↩→ oracle.jdbc.rowset.OracleCachedRowSet.rollback()
↩→ oracle.jdbc.rowset.OracleCachedRowSet.getConnectionInternal()
↩→ javax.naming.InitialContext.lookup()
↩→ javax.naming.Context.lookup()

Table 20: com.oracle.database.jdbc.ojdbcx-21.17.0.0 - this gad-
get chain is the same for ojdbc 11, 8 and 6

java.lang.reflect.InvocationHandler.invoke()
↩→ org.hibernate.validator.internal.util.annotation.AnnotationProxy.invoke()
↩→ java.lang.reflect.Method.invoke()

Table 21: org.hibernate.validator.hibernate-validator-8.0.2

java.util.concurrent.Callable.call()
↩→ org.redisson.mapreduce.CoordinatorTask()
↩→ java.lang.reflect.Constructor.newInstance()

Table 22: org.redisson.redisson-3.44.0

java.lang.Runnable.run()
↩→ weka.gui.experiment.RunPanel$ExperimentRunner.run()
↩→ weka.experiment.Experiment.initialize()
↩→ weka.experiment.RandomSplitResultProducer.preProcess()
↩→ weka.experiment.CSVResultListener.preProcess()
↩→ java.io.FileOutputStream.<init>()

Table 23: nz.ac.waikato.cms.weka.weka-dev-3.9.6

java.lang.reflect.InvocationHandler.invoke()
↩→ org.apache.bval.jsr.util.AnnotationProxy.invoke()
↩→ java.lang.reflect.Method.invoke()

Table 24: org.apache.bval.bval-jsr-3.0.1

java.awt.event.ActionListener.actionPerformed()
↩→ org.jdesktop.swingx.action.ServerAction.actionPerformed()
↩→ java.net.URL.openConnection()

Table 25: org.swinglabs.swingx-1.6.1

java.lang.reflect.InocationHandler.invoke()
↩→ org.apache.ibatis.logging.jdbc.ResultSetLogger.invoke()
↩→ java.lang.reflect.Method.invoke()

Table 26: org.mybatis.mybatis-3.5.19

javax.sql.XADataSource.getXAConnection()
↩→ com.alibaba.druid.pool.xa.getXAConnection()
↩→ com.alibaba.druid.pool.DruidDataSource.getConnection()
↩→ com.alibaba.druid.pool.DruidDataSource.getConnection()
↩→ com.alibaba.druid.pool.DruidDataSource.getConnectionDirect()
↩→ com.alibaba.druid.pool.DruidDataSource.getConnectionInternal()
↩→ com.alibaba.druid.pool.DruidDataSource.takeLast()
↩→ com.alibaba.druid.pool.DruidDataSource.pollLast()
↩→ com.alibaba.druid.pool.DruidDataSource$CreateConnectionThread.run()
↩→ com.alibaba.druid.pool.DruidAbstractDataSource.createPhysicalConnection()
↩→ com.alibaba.druid.pool.DruidAbstractDataSource.createPhysicalConnection()
↩→ java.sql.Driver.connect()

Table 27: com.alibaba.druid-1.2.24

java.lang.reflect.InvocationHandler.invoke()
↩→ org.springframework.core.SerializableTypeWrapper$TypeProxyInvocationHandler.invoke()
↩→ org.springframework.util.ReflectionUtils.invokeMethod()
↩→ java.lang.reflect.Method.invoke()

Table 28: org.springframework.spring-core-6.1.17

javax.naming.Context.lookup()
↩→ org.apache.activemq.jndi.ReadOnlyContext.lookup()
↩→ javax.naming.Context.lookup()

Table 29: org.apache.activemq.activemq-client-6.1.5. The in-
teresting part is that ReadOnlyContext is serializable

javax.naming.Context.lookup()
↩→ org.apache.camel.util.jndi.JndiContext.lookup()
↩→ javax.naming.Context.lookup()

Table 30: org.apache.camel.camel-core-2.25.4

javax.sql.DataSource.getConnection()
↩→ net.sourceforge.jtds.jdbcx.JtdsDataSource.getConnection()
↩→ net.sourceforge.jtds.jdbcx.JtdsDataSource.getConnection(String, String)
↩→ java.io.FileOutputStream.<init>()

Table 31: net.sourceforge.jtds.jtds-1.2.8

java.lang.reflect.InvocationHandler.invoke()
↩→ io.lettuce.core.dynamic.support.TypeWrapper$TypeProxyInvocationHandler.invoke()
↩→ java.lang.reflect.Method.invoke()

Table 32: io.lettuce.lettuce-core-6.5.4

javax.sql.DataSource.getConnection()
↩→ org.apache.derby.client.BasicClientDataSource.getConnection()
↩→ org.apache.derby.client.BasicClientDataSource.computeDncLogWriterForNewConnection()
↩→ org.apache.derby.client.BasicClientDataSource.computeDncLogWriterForNewConnection()
↩→ org.apache.derby.client.BasicClientDataSource.computeDncLogWriter()
↩→ org.apache.derby.client.BasicClientDataSource.computePrintWriter()
↩→ org.apache.derby.client.BasicClientDataSource.getPrintWriter()
↩→ java.io.FileOutputStream.<init>()

Table 33: org.apache.derby.derbyclient-10.17.1.0

javax.xml.transform.Transformer newTransformer()
↩→com.sun.org.apache.xalan.internal.xsltc.trax.TemplatesImpl.newTransformer()
↩→ com.sun.org.apache.xalan.internal.xsltc.trax.TemplatesImpl.getTransletInstance()
↩→ java.lang.reflect.Constructor.newInstance()

Table 34: xalan.xalan-2.7.3

C.4 Mixed

java.lang.Runnable.run()
↩→ org.apache.hadoop.security.UserGroupInformation$AutoRenewalForUserCredsRunnable.run()
↩→ org.apache.hadoop.security.UserGroupInformation$TicketCacheRenewalRunnable.relogin()
↩→ org.apache.hadoop.util.Shell.execCommand(java.lang.String[])
↩→ org.apache.hadoop.util.Shell.execCommand(java.util.Map, java.lang.String[], long)
↩→ org.apache.hadoop.util.Shell$ShellCommandExecutor.execute()
↩→ org.apache.hadoop.util.Shell.run()
↩→ org.apache.hadoop.util.Shell.runCommand()
↩→ java.lang.ProcessBuilder.<init>()

Table 35: org.apache.hadoop.hadoop-common-3.4.1

java.util.Hashtable.readObject()
↩→ java.util.Hashtable.readHashtable()
↩→ java.util.Hashtable.reconstitutionPut()
↩→ java.net.URL.equals()
↩→ org.eclipse.osgi.internal.url.MultiplexingURLStreamHandler.equals()
↩→ org.eclipse.osgi.internal.url.MultiplexingURLStreamHandler.findAuthorizedURLStreamHandler()
↩→ org.eclipse.osgi.internal.url.URLStreamHandlerFactoryImpl.findAuthorizedURLStreamHandler()
↩→ java.lang.reflect.Method.invoke()

Table 36: org.eclipse.platform.org.eclipse.osgi-3.22.0

java.lang.AutoCloseable.close()
↩→ java.util.Hashtable.readHashtable()
↩→ org.apache.poi.openxml4j.opc.OPCPackage.close()
↩→ org.apache.poi.openxml4j.opc.ZipPackage.closeImpl()
↩→ org.apache.poi.openxml4j.opc.OPCPackage.save()()
↩→ java.nio.file.Files.newOutputStream()

Table 37: org.apache.poi.poi-ooxml-5.4.0

java.awt.event.ActionListener.actionPerformed()
↩→ org.h2.tools.GUIConsole.actionPerformed()
↩→ org.h2.tools.GUIConsole.shutdown()
↩→ org.h2.util.Utils.callMethod()
↩→ org.h2.util.Utils.callMethod()
↩→ java.lang.reflect.Method.invoke()

Table 38: com.h2database.h2-2.3.232

java.lang.AutoCloseable.close()
↩→ org.apache.hadoop.fs.store.DataBlocks$DataBlock.close()
↩→ org.apache.hadoop.fs.store.DataBlocks$DiskBlock.innerClose()
↩→ org.apache.hadoop.fs.store.DataBlocks$DiskBlock.closeBlock()
↩→ java.io.File.delete()

Table 39: org.apache.hadoop.hadoop-common-3.4.1

java.lang.AutoCloseable.close()
↩→ org.apache.cassandra.io.util.RewindableDataInputStreamPlus.close()
↩→ org.apache.cassandra.io.util.RewindableDataInputStreamPlus.close(boolean)
↩→ java.io.File.delete()

Table 40: org.apache.cassandra.cassandra-all-3.0.32

java.lang.Runnable.run()
↩→ org.apache.logging.log4j.core.appender.rolling.action.AbstractAction.run()
↩→ org.apache.logging.log4j.core.appender.rolling.action.ZipCompressAction.execute()
↩→ org.apache.logging.log4j.core.appender.rolling.action.ZipCompressAction.execute()
↩→ java.io.File.delete()

Table 41: org.apache.log4j.log4j-core-2.24.3

java.util.Iterator.hasNext()
↩→ org.apache.openjpa.jdbc.meta.strats.LRSProxyMap$ResultIterator.hasNext()
↩→ org.apache.openjpa.jdbc.sql.MergedResult.next()
↩→ org.apache.openjpa.jdbc.sql.LogicalUnion$ResultComparator.getOrderingValue(Result, int)
↩→ org.apache.openjpa.jdbc.sql.LogicalUnion$ResultComparator.getOrderingValue(Result, Object)
↩→ org.apache.openjpa.jdbc.sql.PostgresDictionary.getObject()
↩→ java.lang.reflect.Method.invoke()

Table 42: org.apache.openjpa.openjpa-4.0.1
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java.lang.Runnable.run()
↩→ org.jgroups.protocols.MERGE3$InfoSender.run()
↩→ org.jgroups.protocols.PDC.down()
↩→ org.jgroups.protocols.PDC.writeNodeToDisk()
↩→ org.jgroups.protocols.PDC.writeToTempFile()
↩→ java.io.FileOutputStream.<init>()

Table 43: org.jgroups.jgroups-5.3.15

java.beans.PropertyChangeListener.propertyChange()
↩→ org.apache.catalina.core.NamingContextListener.propertyChange()
↩→ org.apache.catalina.core.NamingContextListener.processGlobalResourcesChange()
↩→ org.apache.catalina.core.NamingContextListener.addEnvironment()
↩→ org.apache.catalina.core.NamingContextListener.constructEnvEntry()
↩→ java.lang.reflect.Constructor.newInstance()

Table 44: org.apache.tomcat.embed.tomcat-embed-core-10.1.36
and org.apache.tomcat.tomcat-catalina-10.1.36

java.util.Iterator.hasNext()
↩→ org.python.core.WrappedIterIterator.hasNext()
↩→ org.python.modules.itertools.imap$1.__iternext__()
↩→ org.python.core.PyBuiltinMethodNarrow.__call__()
↩→ org.python.core.PyJavaType$14.__call__()
↩→ java.lang.reflect.Method.invoke()

Table 45: org.python.jython-standalone-2.7.4

java.lang.Runnable.run()
↩→ net.bytebuddy.ClassFileVersion$VersionLocator$Resolver.run()
↩→ java.lang.reflect.Method.invoke()

Table 46: net.bytebuddy.byte-buddy-1.17.1

java.util.Map.put()
↩→ org.apache.commons.beanutils.BaseDynaBeanMapDecorator.put()
↩→ org.apache.commons.beanutils.LazyDynaBean.get()
↩→ org.apache.commons.beanutils.LazyDynaBean.createProperty()
↩→ org.apache.commons.beanutils.LazyDynaBean.createOtherProperty()
↩→ java.lang.reflect.Constructor.newInstance()

Table 47: commons-beanutils-1.10.1

java.io.Flushable.flush()
↩→ org.springframework.integration.metadata.PropertiesPersistingMetadataStore.flush()
↩→ org.springframework.integration.metadata.PropertiesPersistingMetadataStore.saveMetaData()
↩→ java.io.FileOutputStream.<init>()

Table 48: spring-integration-core-6.3.8

java.util.Iterator.next()
↩→ com.mysql.cj.xdevapi.AbstractDataResult.next()
↩→ com.mysql.cj.protocol.ProtocolEntityFactory.createFromProtocolEntity()
↩→ com.mysql.cj.exceptions.ExceptionFactory.createException()
↩→ java.lang.reflect.Constructor.newInstance()

Table 49: com.mysql.mysql-connector-j-9.2.0

java.lang.AutoCloseable.close()
↩→ org.apache.sshd.agent.unix.AgentServerProxy.close()
↩→ org.apache.sshd.agent.unix.AgentServerProxy.removeSockerFile()
↩→ org.apache.sshd.agent.unix.AgentServerProxy.deleteFile()
↩→ java.io.File.delete()

Table 50: org.apache.sshd.sshd-core-2.14.0

java.lang.Runnable.run()
↩→ org.apache.calcite.adapter.druid.DruidConnectionImpl$1$1.run()
↩→ org.apache.calcite.adapter.druid.DruidConnectionImpl.request()
↩→ org.apache.calcite.runtime.HttpUtils.post()
↩→ org.apache.calcite.runtime.HttpUtils.executeMethod()
↩→ org.apache.calcite.runtime.HttpUtils.getURLConnection()
↩→ java.net.URL.openConnection()

Table 51: org.apache.hive.hive-exec-4.0.1

java.lang.reflect.InvocationHandler.invoke()
↩→ org.codehaus.groovy.runtime.ConversionHandler.invoke()
↩→ java.lang.reflect.Method.invoke()

Table 52: org.apache.groovy.groovy-4.0.25

java.lang.Iterable.iterator()
↩→ com.google.javascript.jscomp.jarjar.org.apache.tools.ant.types.resources.Files.iterator()
↩→ com.google.javascript.jscomp.jarjar.org.apache.tools.ant.types.ArchiveScanner.scan()
↩→ com.google.javascript.jscomp.jarjar.org.apache.tools.ant.types.resources.URLResource.isExists()
↩→ com.google.javascript.jscomp.jarjar.org.apache.tools.ant.types.resources.URLResource.isExists()
↩→ ↩→ com.google.javascript.jscomp.jarjar.org.apache.tools.ant.types.resources.URLResource.connect()
↩→ java.net.URL.openConnection()

Table 53: com.google.javascript.closure-compiler-20240317

java.lang.Runnable.run()()
↩→ io.undertow.server.handlers.resource.URLResource$1ServerTask.run()
↩→ java.net.URL.openStream()

Table 54: io.undertow.undertow-core-2.2.37

java.lang.Runnable.run()()
↩→ io.undertow.server.handlers.resource.URLResource$1ServerTask.run()
↩→ java.net.URL.openStream()

Table 55: io.undertow.undertow-core-2.2.37

java.sql.Connection.isValid()
↩→ com.clickhouse.jdbc.internal.ClickHouseConnectionImpl.isValid()
↩→ com.clickhouse.client.AbstractClient.ping()
↩→ com.clickhouse.client.http.ClickHouseHttpClient.checkHealth()
↩→ com.clickhouse.client.http.HttpUrlConnectionImpl.ping()
↩→ com.clickhouse.client.http.HttpUrlConnectionImpl.newConnection()
↩→ java.net.URLConnection.openConnection()

Table 56: com.clickhouse.clickhouse-jdbc-0.8.1

java.lang.AutoCloseable.close()
↩→ liquibase.database.core.DerbyDatabase.close()
↩→ liquibase.database.core.DerbyDatabase.shutdownDerby()
↩→ java.lang.reflect.Constructor.newInstance()

Table 57: org.liquibase.liquibase-core-4.31.1

java.util.Iterator.next()
↩→ edu.stanford.nlp.objectbank.ReaderIteratorFactory$ReaderIterator.next()
↩→ edu.stanford.nlp.objectbank.ReaderIteratorFactory$ReaderIterator.setNextObject()
↩→ java.net.URL.openStream()

Table 58: edu.stanford.nlp.stanford-corenlp-4.5.8

java.util.Iterator.hasNext()
↩→ org.eclipse.persistence.queries.ScrollableCursor.hasNext()
↩→ org.eclipse.persistence.queries.ScrollableCursor.loadNext()
↩→ org.eclipse.persistence.queries.ScrollableCursor.retrieveNextObject()
↩→ org.eclipse.persistence.internal.queries.JoinedAttributeManager.processDataResults()
↩→ org.eclipse.persistence.internal.descriptors.ObjectBuilder.extractPrimaryKeyFromRow()
↩→ org.eclipse.persistence.internal.descriptors.ObjectBuilder.extractPrimaryKeyFromObject()
↩→ org.eclipse.persistence.internal.descriptors.ObjectBuilder.extractPrimaryKeyFromObject()
↩→ org.eclipse.persistence.mappings.structures.NestedTableMapping.writeFromObjectIntoRow()
↩→ org.eclipse.persistence.internal.databaseaccess.DatasourceAccessor.incrementCallCount()
↩→ org.eclipse.persistence.internal.databaseaccess.DatasourceAccessor.reconnect()
↩→ org.eclipse.persistence.internal.databaseaccess.DatasourceAccessor.connectInternal()
↩→ org.eclipse.persistence.sessions.DatasourceLogin.connectToDataSource()
↩→ org.eclipse.persistence.sessions.JNDIConnector.connect()
↩→ javax.naming.Context.lookup()

Table 59: org.eclipse.persistence.eclipselink-4.0.5

java.util.Iterator.hasNext()()
↩→ org.hibernate.query.internal.ScrollableResultsIterator.hasNext()
↩→ org.hibernate.internal.FetchingScrollableResultsImpl.next()
↩→ org.hibernate.internal.FetchingScrollableResultsImpl.prepareCurrentRow()
↩→ org.hibernate.sql.results.internal.StandardRowReader.readRow()
↩→ org.hibernate.sql.results.internal.RowTransformerTupleTransformerAdapter.transformRow()
↩→ org.hibernate.jpa.spi.NativeQueryConstructorTransformer.transformTuple()
↩→ java.lang.reflect.Constructor.newInstance()

Table 60: org.hibernate.orm.hibernate-core-6.6.8
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