arXiv:2504.20436v1 [cs.CR] 29 Apr 2025

Network Attack Traffic Detection With Hybrid
Quantum-Enhanced Convolution Neural Network

Zihao Wang, Kar-Wai Fok, Vrizlynn L. L. Thing
Cybersecurity Strategic Technology Centre
ST Engineering
Singapore, Singapore
{zihao.wang, fok karwai}@stengg.com, vriz@ieee.org

1. Abstract

The emerging paradigm of Quantum Machine Learning
(QML) combines features of quantum computing and machine
learning (ML). QML enables the generation and recognition of
statistical data patterns that classical computers and classical
ML methods struggle to effectively execute. QML utilizes
quantum systems to enhance algorithmic computation speed
and real-time data processing capabilities, making it one
of the most promising tools in the field of ML. Quantum
superposition and entanglement features also hold the promise
to potentially expand the potential feature representation ca-
pabilities of ML. Therefore, in this study, we explore how
quantum computing affects ML and whether it can further
improve the detection performance on network traffic detec-
tion, especially on unseen attacks which are types of malicious
traffic that do not exist in the ML training dataset. Classical
ML models often perform poorly in detecting these unseen
attacks because they have not been trained on such traffic.
Hence, this paper focuses on designing and proposing novel
hybrid structures of Quantum Convolutional Neural Network
(QCNN) to achieve the detection of malicious traffic. The
detection performance, generalization, and robustness of the
QML solutions are evaluated and compared with classical
ML running on classical computers. The emphasis lies in
assessing whether the QML-based malicious traffic detection
outperforms classical solutions. Based on experiment results,
QCNN models demonstrated superior performance compared

to classical ML approaches on unseen attack detection.

Index Terms—quantum machine learning, encrypted malicious
traffic detection, traffic classification, deep learning, traffic anal-
ysis, 5G network.

II. Introduction

In recent years, the widespread adoption of emerging tech-
nologies such as the Meta-verse, augmented reality (AR),
virtual reality (VR), cloud computing, and the rapid and
constant evolution of connectivity has massively increased the
traffic demand. According to the new Nokia Global Network
Traffic 2030 report [1]], there is an expected compound annual
growth rate of 22% to 25% in the demand for global telecom
networks from 2022 to 2033. Even in a moderate scenario, the
numbers involved are still huge. Network traffic is expected
to grow between 4 to 9 times by 2030.

In order to safeguard the rapidly growing network environ-
ment, traditional Intrusion Detection Systems (IDS) that rely
on Deep Packet Inspection (DPI) techniques [2] are no longer
effective, especially with the advent of traffic encryption
mechanisms. As a result, machine learning methods have
been successfully used to detect security intrusions and ma-
licious activities as an alternative to traditional DPI detection
methods [3]. However, with the explosive growth of network
traffic data in recent years, machine learning technology has
also encountered new bottlenecks when dealing with massive
amounts of input traffic and increasing unseen malicious
traffic.

Massive amounts of network traffic data, diverse types of
malicious attacks, and the continuous emergence of unseen
malicious traffic have forced researchers to continuously ex-
pand the scale of classical machine learning datasets. This
leads to prolonged training and detection times for model
algorithms. Existing detection models struggle to promptly
identify malicious traffic and unseen traffic within large-scale
network data. On the other hand, using small datasets for fast
training and computation may lead to reduced model accuracy
and insufficient generalization capabilities. Both approaches
diverge from the characteristics of malicious activity, such as
the variability, intensity, and adaptability of intrusions [4].

Quantum Machine Learning (QML) represents the fusion of
quantum computing with machine learning solutions. Lever-
aging quantum resources like entanglement and state superpo-
sition, it holds promise as a potential solution to these chal-
lenges. QML utilizes quantum systems to enhance algorithmic
computation speed and real-time data processing capabilities,
addressing the detection of massive network data [S] [6] [7].
Moreover, by embedding network traffic data into a high-
dimensional quantum feature space for learning, models are
enabled to recognize patterns that classical methods might
overlook. Therefore, QML may have the potential to improve
the performance in identifying unseen malicious traffic.

However, there is limited research applying QML in the
field of malicious traffic detection. Existing QML in network
intrusion detection also suffers from several limitations, in-
cluding a lack of QML algorithm design, limited comparisons
between QML and classical machine learning counterpart
models, outdated datasets, and insufficient exploration of
classical-to-quantum data conversion.

Combining quantum computing and machine learning fea-
tures enables the generation and recognition of statistical data
patterns that cannot be effectively performed by classical
computers and classical machine learning. Thus, we proposed
to design hybrid quantum machine learning (QML) models
to study and evaluate the impact of quantum in improving
classical methods. The focus of this paper is on designing
a hybrid quantum convolutional neural network (Quantum
CNN) structure to achieve malicious traffic detection. The
contributions of this paper are as follows:

1. Design 5 different architectures of hybrid Quantum CNN
models with different quantum embedding methods, quantum
computing algorithms, and positions of quantum layers in
hybrid models.

2. Conduct comparative experiments among different hybrid
Quantum CNN models and classical CNN model.

3. Evaluate the detection capabilities of different hybrid
Quantum CNN models on unseen data so as to test the
generalization and robustness of the model.

The organization of the rest of this paper is as follows: Sec-
tion II presents the literature review of different detection tech-
niques for malicious traffic detection and analysis including
quantum machine learning based traffic detection approaches.
Then the methodology of the hybrid quantum CNN model is
proposed in Section III. In Section IV, we present the setup of
our experiments and conduct the performance evaluations. We
conclude the paper in Section V, by discussing the remaining
challenges and future directions.

III. Literature Review
A. Classical Malicious Traffic Detection

Bader et al. [9] proposed MalDIST based on the extension
of the DISTILLER model [14] to encrypted malicious traffic
detection and classification. The proposed framework consists
of several deep learning models, including 1D CNN and 2D
CNN. 99.7% accuracy, precision, recall, and F1 are achieved.
A network traffic graph neural network model (NT-GNN) is
proposed by Liu et al. [10] The model considers the node and
edge aspects of the graph, capturing the connections between
various traffic flows and individual traffic features. The model
achieves 97% accuracy in the CICAndMal2017 and AAGM
datasets. Zheng et al. [11] pointed out that the statistical
feature-based method focuses on the internal information of
the network flows and the graph-based method focuses on
the external connections between network flows. The authors
considered both internal information and external connections
to propose a graph convolutional network model (GCN-ETA).
GCN-ETA consists of a modified GCN based feature ex-
tractor and a decision tree classifier to effectively improve
the effectiveness and speed of encrypted malicious traffic
detection. The experiment shows the method can perform
98% higher accuracy, AUC, and F1 scores, and achieve more
than 1300 traffic flows per second. Liu et al. [[12] combines
spatial-temporal features with a dual-attention mechanism. The
proposed model contains four parts: spatial feature learning
by using ID-CNN and BiGRU, attention mechanism based

on encrypted packet, flow temporal feature learning between
encrypted streams, and attention mechanism based on flow.
The approach provides rich encrypted traffic characteristics
and insights for encrypted malicious traffic detection and
classification.

Classical machine learning has achieved excellent results
in malicious traffic detection. However, there are still two
unsolved issues. First, most experiments in research rely on
a limited number of publicly available offline training and
testing datasets [[10] [[11] [12]] [13]]. When dealing with a large
amount of continuous online traffic, both the training time
and the detection time increase. The second issue is related
to the poor performance on unseen attacks. Existing models
may lack sufficient detection capabilities [3] when faced with
emerging malicious activities. Many previous studies even
did not conduct unseen malicious traffic detection evaluation.
Therefore, the researchers introduced QML to overcome the
challenges posed by big data and classical model detection
to ensure high-performance malicious traffic detection while
maintaining accuracy in detecting unseen malicious traffic.

B. Quantum Machine Learning (QML) based Network
Traffic Detection

Payares et al. [26] present three quantum models to detect
distributed denial of service attacks. They compare Quantum
Support Vector Machines, hybrid Quantum Classical Neural
Networks, and ensemble above two models as an ensemble
detection model. The comparative experiment for these three
models is conducted with CIC-DDo0S2019 dataset. The experi-
ment result shows that detecting DDoS type threats is possible
using QML with high accuracy. Kadry et al [18] proposed
a QNN with Wale Optimization algorithm(WOA) intrusion
detection system framework. The authors selected KDD-CUP
99 dataset and achieved 98.5% accuracy. The results of the
simulation indicated that the WOA based feature selection
technique is suitable for the IDS in QNN.

Gong et al. [25] proposed a network attack detection scheme
based on Variational Quantum Neural Network (VQNN),
which consists of Variational Quantum Circuit (VQC) and
classical ML strategies to simulate continuous probability
distributions. Comparative experiments were conducted using
the VQNN model and some classical machine learning models
(such as artificial neural networks, support vector machines,
K-Nearest Neighbors, Naive Bayes, and decision trees). The
results indicate that the proposed IDS model based on VQNN
achieved an accuracy of 97.21%, surpassing other classical
IDS models on the KDD-cup 1999 dataset they chose to use.

Akter et al. [16] utilized QSVM for malware classification
by using penny-lane QML framework on the drebin 215
dataset. The proposed model achieved 95% accuracy. The
authors also conducted comparative experiment between QNN
and NN on software supply chain attacks [[17]]. PCA is applied
to reduce the dimension of the ClaMP dataset from 108
features to 16 principal components. Classical NN is directly
applied to the reduced dataset. QNN model required the
reduced dataset to be encoded first. They compared the fl

score, recall, precision, accuracy, and execution time. The
comparative experiment indicates that QNN is slower than NN
with a higher percentage of datasets. And no matter QNN
or NN, both performances are below 80% F1 score. The
limitations of this research are that it is limited in the software
supply chain attack and not consider other types of attack.
The authors compare the performance of basic conventional
neural network model with NN’s quantum version. They did
not consider other further implemented NN networks.

Fioravanti et al. [[15] proposed an open-source framework
to simplify the process of simulation of quantum algorithms
(fault-tolerant quantum computer). The authors conducted
several experiments to observe an advantage of using quantum
instead of classical machine learning algorithms, such as the
comparison between Q-PCA and PCA. Their experiments
show that QML may not outperform their classical counterpart
in three selected public datasets, the more important point is
to find a trade-off between approximation error and running
time. They also found that for small datasets, they do not
have an advantage in using quantum machine learning in
terms of running time. As the dimensionality of the traffic
dataset increases, the advantage of quantum machine learning
becomes increasingly clearer.

Rahman et al. [[19] proposed a hybrid quantum-classical
algorithm called Quantum Generative Adversarial Network
(QGAN). In this approach, the authors leverage the interac-
tion between a quantum generator (ansatz) and a classical
discriminator (neural network) to learn from the training NSL-
KDD dataset. The training process involves adjusting the
parameters of the quantum generator until it can produce
output states that accurately represent the target distribution.
Utilizing a quantum generator proves to be an effective means
of generating samples that adhere to complex probability
distributions, a task that is challenging to model using classical
methods. The authors have introduced a novel perspective
that integrates hybrid quantum machine learning with network
intrusion detection.

Gouveia et al. [20] proposed a QSVM model with auto-
encoder model that uses a quantum kernel estimator and op-
timizer. A comparable experiment between QSVM and SVM
is conducted under NSK-KDD and UNSW-NB 15 datasets.
The experimental results demonstrate that QSVM performs
comparably to SVM.

Thirumalairaj et. [21]] proposed a Perimeter Intrusion Detec-
tion system with a multilayer perceptron (PID-MLP) to specify
an adaptive feature that shows any number of layers can be
reduced to a two-layer input-output mode. After that, a novel
quantum classifier technique is used to perform the final clas-
sification. The comparative experiments with CICIDS dataset
proved that the selected algorithms (PID/PID with MLP) plus a
final Quantum classifier layer outperforms PID/PID with MLP
without Quantum classifier.

Mercaldo et al. [22] provided a comparison between five
state of-the-art CNN models (i.e., AlexNet, MobileNet, Effi-
cientNet, VGG16, and VGG19), one network developed by the
authors (called Standard-CNN), and two quantum models (i.e.,

a hybrid quantum model and a fully quantum neural network)
to classify malware. However, the authors use different image
sizes, batch numbers, epoch numbers, and learning rate to
do the comparison, which is unfair to certain levels. The
proposed QNN and hybrid QCNN models do not outperform
the classical ML models.

QSVM and QCNN as concurrent methods are discussed
and evaluated in Kalinin et al. [23]] [24]. The quantum version
models are compared to the conventional intrusion detectors
running on the classical computer with a private dataset. The
comparison between ML classifiers and QML classifiers on
large stream datasets has revealed the significant superiority
of the quantum approach. We have summarized the above
state-of-the-art (SOTA) in Table I with their proposed quan-
tum models, datasets, comparison among different quantum
models, and comparison between quantum model and classical
model.

Current research in this area has some limitations. Firstly,
most studies have utilized existing conventional built-in QML
structures from several open-sourse QML platforms while the
exploration of further optimization and enhancement of these
QML is limited [27]. There are also insufficient comparative
experiments between the designed QML models and their clas-
sical ML counterparts. More often, in some studies, QMLs are
compared with ML models that have low structural relevance,
such as comparing a quantum CNN model with EfficientNet,
rather than conducting corresponding comparisons with CNN
structures [22]. The generalization and robustness of QML
for new emerging types of traffic data are not considered as
well. Secondly, many of these studies utilize outdated datasets.
For example, older datasets (e.g., the KDD dataset) do not
adequately represent the characteristics of contemporary net-
work traffic. In our study, we designed five different quantum
CNN models based on the underlying CNN model, utilizing
custom quantum circuits, bespoke quantum layers, and various
architectures of QCNN. One of the latest datasets, SG-NIDD,
is selected to conduct a comprehensive experimental analysis
of the QCNN models with the corresponding CNN models.
The different attack classes of this dataset are also applied to
perform unseen traffic attack detection evaluation, to compare
QML and Classical ML performance.

IV. Methodology

We conduct an in-depth exploration of the structure and
principles of QCNN. Our plan includes designing various
types of QCNN models. Additionally, we will analyze and
investigate the impact of different proportions and architec-
tures of quantum layers in hybrid QCNN on the detection
performance.

A. Standard Convolutional Neural Network:

Convolutional neural network is a deep learning model. It
is mainly used for tasks such as image recognition, computer
vision, and image processing. It has also been successfully
applied in the field of malicious traffic monitoring and has
performed well [29] [30] [31]. The CNN model can accurately

TABLE I
THE SUMMARY OF SOTA RESEARCHES

Comparison amon, Comparison between
No. Paper Year Quantum Model Datasets differentp quantum mo%iels quantﬂm and classical
1 Kadry et al [18] 2023 QNN KDDCUP99 NO YES
2 Akter et al [16] 2023 QSVM drebin215 NO NO
3 Rahman et al. [19] 2023 QGAN NSL-KDD NO NO
4 Kalinin et al. [23][24] 2023 QSVM, QCNN Private Dataset YES YES
5 Akter et al [17] 2022 QNN ClaMP NO YES
6 Fioravanti et al. [15] 2022 QPCA KDDCUP99, CICIDS-17, DART-NET YES YES
7 Gong et al. [25] 2022 QNN KDDCUP99 NO YES
8 Mercaldo et al. [22] 2022 QCNN Malware Software Dataset YES YES
9 Payares et al. [26] 2021 QSVM,QCNN CIC-DDo0S2019 YES NO
10 Thirumalairaj et. [21] 2020 QMLP CICIDS-17 NO YES
11 Gouveia et al. [20] 2020 QSVM NSL-KDD, UNSW NB 15 NO YES

detect image-like arrays generated by network traffic data
processing. CNN usually consists of a series of different image
processing layers; in each layer, the previous layer produces
an intermediate array of pixels, i.e., a feature map [28]. CNN
is composed of different types of layers, including convolution
layers and pooling layers forming a convolution block, as well
as fully connected layers forming a fully connected block.
The convolution block, comprising alternating convolution and
pooling layers, forms an input feature vector for the fully
connected block. CNN gradually extracts the abstract features
of the input data by stacking these different types of layers
and finally outputs a high-level representation of the input.

Baseline Model: Standard CNN model (Basic CNN)

The initial model is a classical CNN. We keep it simple for
comparison with its quantum counterparts which ensures that
extensive classical parameters do not skew the comparison.
Despite its simplicity, it is crucial that the classical CNN
achieves comparable standards of accuracy to its quantum
counterparts, ensuring a fair evaluation. This comparative
accuracy will be detailed in the experimental section. The
CNN’s convolution block comprises two convolution layers,
each followed by max pooling. The fully connected block
consists of one internal dense layer and a final prediction
layer for making the ultimate prediction. The structure of the
model is shown in Figure 1. More channels in CNN can extract
more features. Our dataset contains 28 initial features, thus,
we choose to use 32 channels to extract more internal features.
And 32 channels are not large, thus, it will not consume lots
of computation resources and running time. The following
QCNN models are designed based on this standard CNN
model.

Convolution Block Fully Connection Block

© Convolution Convolution

)

a [32|33r<e’ 1‘ [8Iar¥er2| Flatten Dense Final

= channels, [| channels, | P
g. kernel size = 5, kernel size = 3 Iayer 1 Prediction
= Max Pooling(3)] Max Pooling(3)]

Fig. 1. The structure of the baseline CNN model

B. Quantum Computing and Machine Learning

Quantum Computing is a computing method that processes
information based on the principles of quantum mechanics.
Quantum circuit is a model to implement quantum computing
which consists of quantum gates (operate on qubits) and
measurement operations. Qubit is considered as the basic unit
for constructing a quantum circuit. It is used to represent and
process high-dimensional data. Unlike a classical bit that has
0 and 1 two states to process information, the corresponding
qubits in quantum computing possess additional properties,
such as superposition and entanglement.

Quantum entanglement refers to the fact that the state of one
qubit can depend on the states of other qubits. Superposition,
on the other hand, refers to a qubit that can be in a linear
combination of |0) and |1) states simultaneously. The state of
a qubit can be expressed as:

|¥) =]0) + BI1)

We can also obtain a visual representation of a qubit on the
surface of the Bloch sphere:

1) = cos (£)|0) + e sin (§) [1)

It is easy to analyze various operations and transformations
of qubits by using Bloch sphere. Thus, complex problems in
classical computing can be presented in new ways in multi-
dimensional computational spaces which are created by the
superposition and entanglement of qubits. QML relies on the
properties of qubits and quantum circuits to enhance classical
ML algorithms, making them more effective in solving com-
plex problems. QML can be quantum versions of classical ML
or quantum-classical hybrid algorithms. Currently, QML has
become a new trend in quantum computing applications.

C. Quantum Convolutional Neural Network:

QML integrates quantum algorithms into the field of clas-
sical machine learning models. Hybrid-QCNN consists of
functional blocks based on both quantum and classical neural
networks. It can be interpreted as incorporating a certain
number of quantum layers into a classical convolutional neural
network. Different quantum layers can be designed to have
various functions (e.g., data quantum embedding, quantum
convolution, or quantum pooling). The overall objective is
to use transformations in quantum circuits to simulate the

behavior of quantum computers on classical computers. In this
paper, we designed five QCNN structures based on classical
CNN models to investigate the impact of quantum embedding
methods, the complexity of quantum layers, and the positions
of quantum layers in the QCNN model by using the Pennylane
software framework [32].

QCNNI1: QCNN with Angle Embedding (QCNNARE)

The first hybrid QCNN model introduces quantum layers
with angle embedding applied to the fully connected block,
creating a hybrid quantum fully connected block. Angle em-
bedding refers to a technique for representing classical data
as quantum states. It involves encoding the information of
features or classical data points into the angles of quantum
states, thereby mapping them onto quantum states. It can
encode N features or data points into the rotation angles of n
qubits, where N < n. Rotation gates R, (), R; (), and R,(0)
in a quantum circuit encode classical feature information into
rotation angles to achieve a quantum state representation:

[v)) = R4 (6)]0)

) = R, (0)|0)

) = R=(0)[0)

The angle 6 is determined based on the value of classical
feature input and R,(f) means the rotation gate rotates the
state around D-axis (x-axis, y-axis, z-axis) on the Bloch sphere
by an angle 6.

Classical input data undergoes angle embedding to transi-
tion into a quantum state, subsequently passing to the quantum
layer. In order to facilitate a fair comparison of the various
QCNN models we designed, we ensured a consistent approach
in the design of the quantum circuits. The circuit will always
consist of one-parameter single qubit rotations on each qubit,
followed by a closed chain of Controlled NOT (CNOT)
gates. CNOT gates link each qubit with its adjacent neighbor,
including the last qubit, which is treated as a neighbor to the
first qubit. This type of quantum circuit structure is called a
Parameterized Quantum Circuit (PQC) [13]]. It is a widely used
quantum circuit structure in quantum machine learning. This
circuit design ensures the efficient entanglement of qubits. It
also promotes the exploration of the full range of quantum
states.

CNOT gate is a quantum gate that has two qubits. The first
qubit refers to as the control qubit, |c), and the other qubit
refers to as the target qubit, |¢). The operation of the CNOT
gate can be introduced as follows:

If |¢) = |0), |t) remains unchanged.

If |¢) = |1), NOT gate applied to |t).

The quantum circuit design manner is shown in Figure 2. In
Figure 2, there are 4 qubits in the circuit and the chain of gate
connects every qubit with its neighbor. These 4 qubits can
encode 4 features onto quantum state. We can use classical
layers (convolution, pooling, and fully connected layers) to
reduce the initial number of feature set to four features that
match the requirements of this quantum circuit. The structure
of the QCNNARE can be found in Figure 3.

In Figure 3, we illustrate the process using a sample input
with 28 features. As an illustrative example, upon traversing

R
qo = °

g1 — ¢

g2 - B

g3 = %

Fig. 2. The structure of quantum circuit design manner. D refers to the rotation
dimension. @ refers to the angle value

Convolution Block Fully Connection Block (Hybrid Quantum)

Convolution
layer2
[8 channels,
kernel size =3
Max Pooling(3)]

[Convolution |
layer1
[32 channels,
kernel size = 5,
Max Pooling(3)]

Quantum Final
Layer | | Prediction

[4 features [4->1

- 4 qubits] sigmoid]

Dense
layer1 [
[16>4]

Flatten

-

Fig. 3. The structure of QCNNAnE

Angle
Embedding

Input Data

the convolution layers and dense layer 1, all features of the
input sample are encoded into a quantum state. Following this,
the input data, now represented in a quantum state, is directed
to the quantum layer. Several quantum operations are applied
to process and extract information from the quantum state.
Subsequently, the final expectation values from the quantum
layer are measured and incorporated into the final prediction.

QCNN2: QCNN with Amplitude Embedding (QCN-
NAmE)

The difference between QCNNAME and QCNNAnRE is the
embedding method used in converting classical input data to
quantum state. In QCNNAmE, amplitude embedding method
is applied in the QCNN model. The amplitude embedding is
employed to encode classical data to probability amplitudes of
quantum state. A quantum state can exist simultaneously in a
superposition of multiple states, with each state associated with
an amplitude. By manipulating these amplitudes, quantum
algorithms can perform various computations more efficiently
than classical algorithms. A normalized classical data x with
N-dimension can be represented by the amplitudes of an n-
qubits quantum state |¢):

[y = Zfil x;|1), where x; means the i-th data, and |i)
refers the i-th computational basis state.

The structure of QCNNAmME is shown in Figure 4, it closely
resembles the second model, with the quantum layer integrated
into the fully connected block. The key difference is the
data embedding method changes from angle embedding to
amplitude embedding. The disparity between angle embedding
and amplitude embedding lies in the qubits requirements for
representing a data point. Amplitude embedding demands a

smaller number of qubits to represent a data point, whereas
angle embedding requires the same number of qubits as the
features of the data point in QCNN model design. We conduct
a comparative analysis between QCNNAmE and QCNNAnE
to study the effect of different quantum embedding methods
in QCNN models.

Due to the properties of amplitude embedding, we can
utilize n qubits to encode 2" features. Consequently, the model
eliminates the need for Dense Layer 1 to reduce dimensions
like QCNNANE. This is beneficial for encoding large datasets
onto quantum states because it reduces the resource overhead.
However, it may also reduce the robustness to noise and errors
in some data because it relies on the amplitude rather than the
relative phase angle.

Convolution Block Fully Connection Block (Hybrid Quantum)

o] Convolution Convolution o :

© 3 uantum Final

3 layer 1 layer 2 Flatten | |55 a ot
23 Layer Prediction

5 [32 channels, [8 channels, 52 41

a kernel size = 5, kernel size = 3 £ £|| [16 features 4>

< < uwj > 4 qubits] sigmoid]

Max Pooling(3)] Max Pooling(3)]

Fig. 4. The structure of QCNNAmE

QCNN3: QCNN with Multi-quantum Layers in Parallel
(QCNNMlayer)

The structure of QCNNMlayer is shown in Figure 5.
QCNNMlayer is designed with the aim of augmenting the
quantum structure’s proportion and complexity within the
hybrid QCNN model. To achieve this, we design an architec-
ture that incorporates a classical convolution block alongside
multiple parallel quantum layers, effectively combining them.
This architecture draws inspiration from hybrid convolution
function with multiple quantum filters [31f]. The difference
is that the hybrid convolution function performs quantum
convolution by replacing parallel classical convolutional filters
with quantum filters. In contrast, parallel quantum layers of
QCNNMlayer play the role of a fully connected layer, which
are not responsible for the convolution of the input data.

Following the classical convolution of the data, it is flattened
into an array containing 16 features. Subsequently, the model
partitions these 16 features into four sets, with each set
forwarded to a dedicated quantum layer. The final measured
expectation values are then combined and passed on to the
final prediction layer.

Convolution Block Fully Connection Block (Hybrid Quantum)

ry

Final

In|aa,erzl \ Flatten | ‘Angle Embedding | Quantum Layer [4 features = 4 qubits |¥ ored mm
channels
kemel sge=3 | 6 aures!| [Angle Ebecing | Quantam Layer|4 features > 4 qubits| /| | 1

s\gmo\d]

layer 1
[32 channels
kemel size = 5,
Max Pooling(3)]

ﬂ{ < - [Angle Embedding | Quantum Layer [4 features - 4 qubits

Max Pocling(3)]

Angle Embedaing | Quantum Layer [4 features > 4 gubits]

[input Data

Fig. 5. The structure of QCNNMlayer

QCNN4: QCNN under Quantum Convolution (Quan-
ConvCNN)

Starting from Quan-ConvCNN, we shift our focus to in-
troducing quantum computing into the convolution block.
Our objective is to make quantum layers emulate the effects

of classical convolution. Thus, We decided to optimize the
quantum computing process by systematically reducing the
measurements of qubits. This optimization involves perform-
ing operations on each qubit until reaching a predefined stage.
At this point, we decided to selectively disregard specific
qubits in specified layers of the quantum circuit. This strategic
approach aims to increase the efficiency of quantum computa-
tion while ensuring that computational resources are utilized
appropriately. It is these layers where we stop performing
operations on certain qubits that we call our ‘convolution
layer’. The structure of the quantum convolution circuit is
shown in Figure 6.

qU_RD_

g - Re — A
g2 = Ro
gs Re — ——E
ge = B — __.2]
9 T

gs — Ro

Fig. 6. The structure of quantum circuit design manner in QuanConvCNN

In Figure 6, in order to achieve a similar performance of
classical convolution and pooling (discard some features to
reduce input feature dimension), we randomly disregard two
qubits (in the Figure 6 example, g4 and q5 are disregarded)
and only consider outputs of remaining 4 qubits. This approach
incorporates quantum computing into the convolution block,
expanding the quantum influence in our models.

Convolution Block (Hybrid quantum)

Convolution
layer 2
[8 channels,
kemel size = 3
Max Pooling(3)]

Fig. 7. The structure of Quan-ConvCNN

Fully Connection Block

Quantum-Convolution | AggLraeg:rtlon | Final
layer Y Prediction

[similar effect of 1 channel, 41
Kernel size = 3] sigmoid]

Convolution
layer 1
[32 channels,
kemel size = 5,
Max Pooling(3)]

Angle
Embedding

Input Data

Figure 7 illustrates the structure of Quan-ConvCNN. With
this quantum-convolution layer, it can achieve a similar perfor-
mance of 1 channel filter with kernel size =3. After aggregating
expectation values from quantum convolution layer, the output
data can be passed to the final prediction layer directly.
Algorithm 1 illustrate the training process of Quan-ConvCNN.

QCNNS: Alternative Strategy for Quantum Convolution
Based NN (QuanvolutionNN)

QuanvolutionNN represents an alternative strategy for
achieving quantum convolution, drawing inspiration from Hen-
derson et al. [33]. The key difference in this hybrid QCNN,
compared to previous models, lies in the approach of embed-
ding a small region of the input image into a quantum circuit

Algorithm 1 The algorithm of quantum convolution in Quan-

ConvCNN model

Require:

1: w(weight) + define weights

b(bias) < define bias

Qbits(no. of qubits) < define the number of qubits

x(input data) < Reshape < [Dimension, channels]

function QCNN(x)
convl < ReLU(Conv1D(x, w[0] + b[0]))
convl < Max_Pooling(Conv1D(convl))
conv2 + ReLU(Conv1D(convl, w[1] + b[1]))
conv2 + MaxPooling(Conv1D(conv2))

10: geonvl + Angle_embedding(conv2)

quantum_eval < gconvolution(Qbits, gconvl)

12: if qubit is not a disregarded qubit then

R A A S o

—
—_

13: measure_expectation_value(Pauli_Z(qubit))
14: else

15: disregard

16: quantum_eval < Aggregate(quantum_eval)
17: flatten()

18: fully_connect < ReLU(quantum_eval, w[3] + b[3])
19: Output < Sigmoid(fully_connect)

“mom o
fmm-m

Fig. 9. Example where 30 traffic instances pass through the quanvolution
layer

shown in Figure 10.

Convolution Block (Hybrid quantum) Fully Connection Block

at a time. The quantum convolution procedure can be found
in Figure 8. Analogous to a classical convolution layer, each
expectation value resulting from this quantum convolution
is mapped to a distinct channel of a single output pixel.
Figure 9 illustrates an example where 30 traffic instances pass
through the quanvolution layer, generating two new channel
images with halved dimensions. In essence, this quantum
convolution algorithm achieves a similar effect to employing
2 channel filters with a kernel size of 1 and a pooling size
of 2. This innovative approach provides a unique perspective
on incorporating quantum principles into convolutional neural
networks.

Step 1 Step 2

1{of1]o]1fo 1|of1 == |
oj1]1fjo]2]2 - of1]1]| == 1 ~
1|0f{1)o1]0 1101 e]

EIKIEIET RY Image patch il

of1|l1]o1}|1 Circuit OUtpUt
1{o|1]o]1]0

Input

Fig. 8. The procedure of quanvolution

In QuanvolutionNN, the quanvolution layer is positioned
ahead of all classical convolution layers. By configuring the
parameters in the quanvolution layer as non-trainable, it can
be regarded as a data processing step. This approach allows
for a flexible interpretation, considering the quanvolution layer
as either an integral part of the learning process or as a
predetermined data processing step based on the specific needs
of the model. The Structure of the QuanvolutionNN model is

Convolution
layer
[8 channels,
kernel size = 5,
Max Pooling(3)]

Final
| Prediction
[4->1
Sigmoid]

Quanvolution layer
[similar effectof 2 channel,
Kernel size = 1,

Max Pooling(2)]

Flatten Dense
= 1 layer1
[24>4]

Input Data
T
Angle
Embedding

Fig. 10. The structure of QuanvolutionNN

V. Experiment
A. Experiment Set-up

The experiment running: Intel(R) Core(TM) i7-10700K
CPU @ 3.8GHz 64.0GB of RAM. In order to construct our
models, Pytorch, Qiskit and Pennylane libraries for Python are
used. Pennylane provides an efficient QML framework for the
design of our quantum circuits and models, and seamlessly
integrates into machine learning models. It also offers a user-
friendly interface for quantum computers provided by industry
leaders such as IBM, Google, or Microsoft [8].

In this section, we conduct 3 experiments to evaluate the
performance of QCNNs and perform comparison of QCNNs
with classical CNN. For experiment 1, we perform the stan-
dard ML evaluation where random train and test set split
from the selected dataset is applied. In experiment 2, the train
set and test set are considered from different data collection
positions so as to conduct an unseen incoming traffic detection.
More details of unseen incoming traffic detection can be found
in Section V.D Experiment 2. Experiment 3 is to filter out one
specific attack type from the training set and not train on it,
only using this attack type in the test set. This is aimed to test
the generalization and robustness of the model.

In order to ensure the fairness of the comparative experi-
ments, it is imperative to maintain constancy in most control
variables. Key parameters such as learning rate, epoch number,
and optimizer configurations are standardized across all exper-
iments. For instance, we set the epoch number as 30 across all

experiments to ensure the fairness of comparison. 30 epochs
are sufficient for training the model to achieve comparable
performance as well. In the domain of quantum computing,
meticulous efforts are undertaken to uphold uniformity in the
number of qubits and wires, either by maintaining consistency
or within a small range of qubits number change. Moreover,
the quantum circuit adheres consistently to a predefined design
methodology, as mentioned in Section 3, irrespective of the
chosen number of qubits.

Based on the results of multiple experiments, we have
observed that the performance of QCNN models is highly
dependent on the randomly generated weights of the quantum
layers before model training. This randomness introduces
a stochastic element issue, and if the randomly generated
quantum layer weights are well-suited for detection, the model
exhibits excellent convergence speed and accuracy. However,
if the randomly generated quantum weights are not appropri-
ate, issues may arise in terms of detection accuracy, such as
gradient vanishing or getting stuck in a local minimum. In
order to solve this issue, we decide to conduct experiments
1 and 2 three times and calculate the average performance
result to ensure fair experiment results. The following exper-
iment results are the average result of each QCNN model.
Each individual QCNN experiment results are listed in the
Appendix.

B. Dataset and feature selection

As mentioned earlier, many of the datasets used in current
research are outdated, such as CTU-13 and KDD-CUP 99
datasets. In this paper, we decide to utilize one of the latest
publicly available datasets, 5G NIDD dataset. 5G-NIDD is a
fully labeled dataset created by Samarakoon et al. [30]] based
on the Finnish 5G Test Network [29] (5GTN). To create the
dataset, the authors selected the University of Oulu site in
the SGTN. Data collection took place on two different days
and captured both attack traffic and benign traffic passing
through the two base station networks. The 5G-NIDD dataset
is available in various versions, including packet-based and
traffic-based formats, which greatly improves the dataset’s
mineability. Data from each attack session from both base
stations is provided separately in pcapng format. With the
removal of the Generic Packet Radio Service Tunneling Pro-
tocol (GTP) layer, the same files are available in packet-based
pcapng, argus, and csv feature formats. The traffic-based files
after the removal of the GTP layer are combined to form a
single file containing all attacks from both base stations as
well. Table II is the statistical summary of the 5G NIDD
dataset.

Table III is the feature set we selected in the experiment.
There are 28 features selected based on Pearson correlation
and expert selection. We keep selected features consistent in all
experiments. After feature selection, the numerical ranges of
different features may vary greatly. Thus, data normalization
needs to be applied. Data normalization can normalize the
traffic data to a range of zero to one to reduce data redundancy.

TABLE II
THE STATISTICAL ANALYSIS OF 5SGNIDD DATASET
No Type of Base No. of Mal;crmus
: Traffic Station | Flow Session .

Benign

1 Legitimate traffic BS1 406959 Benign

BS2 70778 Benign
5 UDPFlood BS1 175811 Malicious
BS2 281529 Malicious
3 HTTPFlood BS1 76121 Malicious
BS2 64691 Malicious
4 SlowrateDoS BS1 36092 Malicious
BS2 37032 Malicious
5 TCPConnectScan BS1 10022 Malicious
BS2 10030 Malicious
6 SYNScan BS1 10019 Malicious
BS2 10024 Malicious
7 UDPScan BS1 7887 Malicious
BS2 8019 Malicious
3 SYNFlood BS1 4792 Malicious
BS2 4929 Malicious
9 ICMPFlood BS1 613 Malicious
BS2 542 Malicious

The normalized dataset enhances the integrity and efficiency
of model training.

TABLE III
FEATURE SET SELECTION

No. | Feature Name | No. | Feature Name
1 Dur 2 ST
3 dTtl 4 TotPkts
5 SrcPkts 6 DstPkts
7 TotBytes 8 SrcBytes
9 DstBytes 10 | Offset
11 sMeanpktSz 12 | dMeanPktSz
13 Load 14 SrcLoad
15 DstLoad 16 Loss
17 SrcLoss 18 DstLoss
19 SrcWin 20 DstWin
21 TcpRitt 22 | SynAck
23 AckDat 24 Rate
25 SrcRate 26 DstRate
27 SrcTCPBase 28 DstTCPBase

C. Experiment 1:

Experiment 1 is designed to validate the performance of
various QCNN models and classical CNN counterpart in
traditional offline ML training and testing. This is also a
common ML experiment in the field of traffic detection
research. Without considering that the trained model would
be applied to the detection of unknown traffic type or new
incoming network traffic, the whole dataset is partitioned into
851,123 train set and 364,747 test sets (7:3 ratio). Given the
substantial variation in numerical ranges among different fea-
tures, data normalization needs to be applied. The utilization of
a normalized dataset contributes to the integrity and efficiency
of model training. The average Experiment 1 performance
results of each model are recorded in Table IV and plotted
in Figure 11. Each individual experiment result is recorded as
well in the Appendix.

TABLE IV
AVERAGE ACCURACY PERFORMANCE OF QCNN & CNN MODELS IN
EXPERIMENT 1

Detection Model | Accuracy (average)
CNN 99.61%
QCNNARE 99.62%
QCNNAmME 99.65%
QCNNMlayer 98.89%
Quan-ConvCNN 99.71%
QuanvolutionNN 98.67%

Accuracy of QCNN & CNN Models in Experiment 1

.98 N

- N

12 34 5 6 7 8 9 10 11 1% 13 14 15 16 17 18 19 20 71 3F 23 4 25 26 27 28 23 30

— CNN QOCNNANE = QCNNAIE OCNNMIzyer

Quarn-ConvChN

CuarwolulionNN

Accuracy of QCNN & CNN Madels in Experiment 1 (zoom in)

Y

g2
s \
ne
1 2 3 4 5 & 4 B 9 1011 1213 14 15 16

17018 19 20 21 22 X324 25 26 27 28 M 50

—— (NN QLNNANE —— LCNMAINE

OUNMMayer Quan-ComvENN Quanvalulion N

Fig. 11. Average Accuracy Performance of QCNN & CNN Models in
Experiment 1

Based on the experimental results, we can find that most Hy-
brid QCNN models outperform the Classical CNN. According
to the above graphs drawn in 30 epochs, we find that QCN-
NAmE has the fastest convergence speed, reaching over 97.5%
accuracy in the 5th epoch, while classical CNN reaches over
98% only in the 13th epoch. QCNNANE and Quan-ConvCNN
have a slower convergence speed than QCNNAmME, but are still
better than classical CNN, and the model improvement during
the training process is smooth without violent oscillations.

It is worth noting that although QCNNAmME converges
faster and achieves the second highest accuracy, its oscillations
during the training process are very obvious, for example, at
the 6th epoch, its accuracy drops from over 97.8% to around
92%. This may be due to the fact that we embedded 16 features
into only 4 qubits, which caused the model to lose some
useful information, resulting in significant oscillations when

updating the model. Quan-ConvCNN achieves the highest ac-
curacy without significant oscillations, but a relatively slower
convergence speed than QCNNAmE.

In addition, our QCNNMlayer has a worse convergence per-
formance, its experimental results do not exceed the classical
CNN. The reason may be that the number of parameters in
quantum layers of QCNNMlayer is larger than that of other
QCNN models. For the QCNNMlayer model, following the
classical convolution of the data, it is flattened into an array
containing 16 features. Subsequently, the model partitions
these 16 features into four sets, with each set forwarded to
a dedicated quantum layer with 4 qubits. Thus, there are total
16 qubits are utilized in this model. Thus, there are more
complicated quantum weights to be computed and updated.
This leads to the slow convergence of the model and needs
to be trained more than 30 epochs. The detailed architecture
and qubit number used for QCNNMlayer are described in
Section IV.B. For QuanvolutionNN, the experiment results
indicate that the process of halving the dimensions of images
using quanvolution method leads to a significant loss of data
information. This results in both slower convergence speed
and inferior accuracy.

In Quan-ConvCNN, the quantum layer is designed to per-
form convolution that achieves a higher result than other
QCNN models, such as using quantum layer as fully connected
layer in the hybrid CNN model. Quan-ConvCNN also shows a
relatively better performance convergence speed and stability
than other QCNN models. Such results indicate that designing
quantum layer to perform convolution in Quan-ConvCNN
algorithm may be better than designing quantum layer as fully
connected layer or quanvolution layer of QuanvolutionNN.

We also found that QCNN model easily falls into the
local minimum point and without any further improvement
in accuracy performance (i.e., the model stack at 91.5% and
does not improve anymore.) in experiments. Such unsuccessful
experiments are disregarded.

D. Experiment 2:

Experiment 2 is purposed to perform unseen incoming
traffic data detection so as to evaluate the robustness of models.
After model training, the model will test with new traffic data
from another data base station but with identical malicious
traffic types. For the selected SG NIDD dataset, it is collected
from two base stations. 728,316 traffic sessions are collected
from Base Station 1 and 487,574 traffic sessions are collected
from Base Station 2. Due to differences in location, traffic
purposes, and collection time, traffic data collected at two base
stations may exhibit different distributions even though the
types of traffic are identical. Thus, one base station’s data of
the 5G NIDD dataset is selected as the train set and the other
one is selected as test set. We use this train and test set to
simulate new incoming unseen data detection situation to test
the robustness of the model.

Experiment 2 is divided into 2 sub-experiments. Sub-
experiment 2.1 is to use base station 1 as the train set and

TABLE V
AVERAGE ACCURACY PERFORMANCE OF QCNN & CNN MODELS IN
SUB-EXPERIMENT 2.1

Detection Model | Accuracy (average)
CNN 78.23%
QCNNARE 78.30%
QCNNAmE 78.81%
QCNNMlayer 78.54%
Quan-ConvCNN 78.93%
QuanvolutionNN 78.66%

TABLE VI

AVERAGE ACCURACY PERFORMANCE OF QCNN & CNN MODELS IN
SUB-EXPERIMENT 2.2

Detection Model | Accuracy (average)
CNN 74.28%
QCNNARE 59.36%
QCNNAmE 81.57%
QCNNMlayer 69.70%
Quan-ConvCNN 64.07%
QuanvolutionNN 57.18%

base station 2 as the test set. Sub-experiment 2.2 is to exchange
both data base stations.

For the sub-experiment 2.1, performance results are shown
in Figure 12 and Table V. Firstly, compared with experiment
1 results, the experiment results in experiment 2 indicate that
All models’ performance dropped from above 98% to around
78% due to such unseen traffic from different base station.
This further proves that two base stations have different traffic
patterns.

The performance results of all models in sub-experiment 2.1
are close. The Quan-ConvCNN achieves the highest 78.93%
accuracy performance again. All QCNN models outperform
the classical CNN model. Therefore, except for QCNNMlayer,
the performance of other models remains consistent with that
of Experiment 1. In sub-experiment 2.1, the performance
of QCNNMlayer exceeds that of classical CNN, indicating
that it has better robustness. QCNNAmE achieved the second
highest performance, but it still has a large oscillation in this
experiment. This experiment proves again that QCNNAmE
which uses fewer qubits to embed more information would
make the model training process unstable.

For the sub-experiment 2.2, this experiment is slightly
different from the above sub-experiment 2.1. The reason is
the size of data in base station 2 is smaller than base station
1, especially after down sampling the base station 2 train set
for data balance. This experiment can be viewed as we are
using a small size dataset to train the hybrid quantum model
and test it with a large size dataset that contains much more
unseen traffic data distribution. the performance results are
shown in Figure 13 and Table VI

From the above experimental results, in the case of a small
training dataset, all QCNN models using angle embedding
exhibit inferior performance compared to the classical CNN
model. For instance, the previously best-performing Quan-
ConvCNN model, when faced with a small dataset, gets a

Accuracy of QCNN & CNN Models in Experiment 2.1

~

EY

T2 3 4 % 6 7 R 9 I0 1T 12 1% 14 15 W 17 1R 19 20 21 22 2 M 24 3G 27 A 29 30

——CHN OCNNANE —— QCNNAmE QCNMMIayer

Quan-ConvCNN

QuanvalutivnMN

Accuracy of QCNN & CNN Models in Experiment 2.1 (zoom in)

55.88%
1 2 2 4 5 & 7 ¥ 9 101112 13 14 1v 16 1/ 18 19 20 21 22 23 24 1% 20 2/ 26 10 20

UUNNATE

CUMNAME

QUNNMIyer Quan-CunviNN QuanvolulivnNy

Fig. 12. Average Accuracy Performance of QCNN & CNN Models in Sub-
Experiment 2.1

Accuracy of QCNN & CNN Models in Experiment 2.2

123 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

—— CNN —— QCNNARE —— QCNNAmE (QCNNMIayer —— Quan-ConvCNN —— QuanvolutionNN

Fig. 13. Average Accuracy Performance of QCNN & CNN Models in Sub-
Experiment 2.2

10.21% lower performance than the classical CNN. QCN-
NAmE using amplitude embedding continues to demonstrate
the fastest convergence speed and achieves the highest ac-
curacy of 81.57%. This may suggest that in the case of a
small dataset, amplitude embedding has a higher probability
of capturing important features compared to angle embedding.
However, it is noteworthy that QCNNAmE exhibits the most
pronounced oscillations during the training process. Its per-
formance variations are also significantly higher than other
models.

Based on the results of sub-experiments 2.1 and 2.2, in the
case of non-small dataset sizes, QCNNs demonstrate better

TABLE VII
THE STATISTICAL SUMMARY OF EACH ATTACK TYPES IN 5G NIDD
DATASET
No. Attack Type Sample Size | Percentage
1 UDPFlood 457340 37.61%
2 HTTPFlood 140812 11.58%
3 SlowrateDoS 73124 6.01%
4 TCPConnectScan 20052 1.65%
5 SYNScan 20043 1.65%
6 UDP Scan 15906 1.31%
7 SYNFlood 9721 0.8%
8 ICMPFlood 1155 0.09%
TABLE VIII
THE STATISTICAL SUMMARY OF NEW ATTACK CATEGORIES
No. Attack Type | Sample Size | Percentage
1 UDPFlood 457340 37.61%
2 HTTPFlood 140812 11.58%
3 SlowrateDoS 73124 6.01%
4 Remain Type 66877 5.50%

robustness compared to classical CNNs. However, in terms
of training process stability, classical CNNs typically feature
a stable training process for classical data. This stability can
lead to faster convergence and better robustness performance
on small size datasets. In contrast, QCNN models may be more
affected by insufficient training data.

E. Experiment 3:

The third experiment is to process the data based on the type
of malicious traffic. The 5G NIDD dataset contains 8§ types of
malicious traffic, we select one type as the test set and train
with all remaining data so as to test the generalization of the
model. Generalization of a detection model is crucial because
it reflects how well the detection model can perform on unseen
traffic types out of the training data, such as zero-day attack
detection. The statistical analysis of each attack type in the
5G-NIDD dataset is shown in Table VII:

Based on the attack type percentage in Table VII, UDP
Scan, ICMPFlood, SYNFlood, TCPConnectScan, and SYN-
Scan in the dataset that have a very small proportion (less
than 2%). Therefore, in order to simplify the experiment, we
decided to combine all attack types that make up less than
2% of the total dataset as one test set to conduct model
evaluation. This means that the model will train with benign,
HTTPFlood, SlowrateDos, and UDP Flood traffic data and
test the remaining attack types at one time. The new attack
category table is shown in Table VIII.

In addition, in this experiment, QCNNMlayer was excluded
from consideration. This decision was motivated by the struc-
ture of QCNNMlayer is similar to that of QCNNAnE but is
more complex and requires much longer training time than
QCNNAnRE. Furthermore, the experimental performance of
QCNNMlayer demonstrated limited improvement over QCN-
NAnE, and in some instances, it even exhibited inferior results
such as experiment 2.1.

Due to the nature of Experiment 3, two performance results
will be recorded. One is the performance of the model after

fixed 30 epochs. The other one is the trade-off point of
train set and test set accuracy. The decision to set the model
training epoch at 30 was determined through experimentation.
We conducted tests with epoch values of 30, 50, and 100,
observing that within the first 30 epochs, the model sufficiently
identified an optimal trade-off point. The criteria of the trade-
off point are based on the intersection point of train set
accuracy and test set accuracy (in the condition that the model
initially predicts all test set as malicious). If there is no
intersection point, we first calculate the absolute difference
value in between train and test set accuracy. Then the epoch
with the minimum difference value will be considered as
the trade off point. Figure 14 is an illustrative example of
this observation. The Figure 14 experiment is the QCNNAnE
trained in the Remain Type test.

QCNNANE in Remain Type test with 100 epochs

0.9
0.85

0.8

0.7

0.65

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100

— trainingEpoch_acc — validationEpoch_acc

Fig. 14. QCNNA=E in Remain Type test with 100 epochs

The reason we need to record the trade-off point of the
train and test set accuracy is that all data in the test set is
malicious and belong to only one type. It means the test set
has a similar data pattern, thus, the whole data in the test set
has high possibility to be recognized as malicious or benign.
As a consequence, there is a probability of encountering
extreme scenarios where the validation performance during the
initial epoch may reach either 100% or 0%. However, as the
model learned from the training set, this led to interference
in the predictions for the test set. This interference became
increasingly evident as the model delved deeper into the data
structure of the training set (over-fitting). This kind of situation
is more likely to occur when there is low data correlation
between the test set and the training set. Thus, to record the
trade-off accuracy between train and test set is worth to be
analyzed.

Based on Figure 14, we found that as the number of
epochs increases from 30 to 50, the accuracy of test set is
still decreasing, and the accuracy of train set is gradually
increasing. To find out whether the accuracy of train set and
test set will keep steady in certain accuracy range finally,
we continue to increase the number of epochs. We further
extended the number of epochs from 50 to 100 so as to check
whether the test accuracy will stop decreasing after certain

epochs. we found that after 100 epochs, the performance
of the model was unchanged already. Specifically, after 80
epochs, the test accuracy keeps steady at around 70% and train
accuracy keeps at around 93.5%. Validation loss and training
loss of this experiment is also plotted in Figure 15. After 20
epochs, the model has started to over-fit (the validation loss
started to increase). If we select to early stop at trade-off point
before 20 epochs, we can keep both training accuracy and test
accuracy above 90%.

Validation and Training Loss of QCNNAnE

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100

— trainingEpoch_loss — validationEpoch_loss
Fig. 15. Validation and training loss of QCNNARE in Remain Type test

Each model of each attack type is tested in 5 times, the
average experiment results are recorded in Table IX and
detailed results can be found in Appendix Experiment 3.

The experiment results presented in Table IX reveal substan-
tial variations in the performance of different models across
various test scenarios. Our evaluation of model performance
encompasses two key aspects: the detection efficacy of known
attack types and the ability to discern novel attack types. In
Table IX, the Unseen Attack Type refers to the attack type
out of the training set. Existing Attacks Type refers to attack
types that appear in the model training set. Regarding the
performance of existing attack types, as indicated by Table
IX and Table X, virtually all models demonstrated a detection
accuracy exceeding 83%.

1) Experimental performance in the final 30 epoch: For
the Remain Type test, except QCNNARE model, other QCNN
models outperform the classical CNN model. Quan-ConvCNN
models achieved 87.84% accuracy which is 4.12% higher than
the accuracy of classicial CNN.

In the context of the SlowrateDoS test, QCNNAnE, QCN-
NAmE, and QuanvolutionNN outperformed the classical CNN,
with QuanvolutionNN achieving an 8% higher performance.
Although QuanvolutionNN attained the highest performance in
the SlowrateDoS Test, its performance on existing attacks in
Table IX and trade-off performances in Table X are all lower
than other QCNN models.

In the HTTPFlood test, QCNNARE and QuanvolutionNN
demonstrated superior performance when compared to the
CNN model. QCNNARE model achieved a 3.3% higher than
the classical CNN model.

For the UDPFlood test, concerning the experimental perfor-
mance in the final epoch (30th) in Table IX, all QCNN models
demonstrated superior results compared to the classical CNN
in the UDPFlood test.

However, it is noteworthy that none of the models at-
tained a detection rate exceeding 50% in the UDPFlood test.
Conversely, in both the Remain Types test and SlowrateDoS
test, certain models exhibited performance levels above 85%,
such as Quan-ConvCNN and QuanvolutionNN models. This
variability in performance can be attributed to differences in
the volume and data structure of traffic associated with distinct
attack types.

2) Experimental performance at the trade-off point:
Regarding the results obtained at the trade-off point in Table X,
QCNNAmME and QuanvolutionNN exhibit the top two highest
accuracy performances in the UDPFlood test.

For the Remain Type Test, all QCNN models outperform
the performance of the classical CNN model. QCNNAmME
achieves the highest performance result which is 2.2% higher
than the classical CNN.

While QuanvolutionNN achieved the highest performance
in the HTTPFlood test, the margin is only 0.22% higher than
QCNNAnRE. Notably, its performance on existing attacks is
2.1% lower than QCNNANE and 1.86% lower than classical
CNN. Consequently, QCNNARE emerges as the most balanced
and optimal trade-off model in the context of the HTTPFlood
test.

In the SlowrateDoS test, QCNNANE achieved 92.45% ac-
curacy which is the highest performance among other models.

Based on all the above comprehensive experimental results
in experiment 3, the QCNN model demonstrates superior
detection capabilities for unknown attack types compared to
the classical CNN.

F. Final Summary:

The results from Experiment 1 indicate that most Hybrid
QCNN models outperform the Classical CNN in traditional
offline ML. The experiment 1 also shows QCNN model
with amplitude embedding method often exhibits significant
oscillations during training, especially when embedding a large
amount of information into a small number of qubits, leading
to instability. In contrast, the classical CNN demonstrates a rel-
atively more stable training process. A careful management of
qubits allocation and embedding methods to mitigate training
instabilities is required. For experiment 2, experiment results
indicate that QCNN models have better robustness in facing
unseen incoming traffic data. However, the experiment also
shows that most QCNN models perform worse than classical
CNN on small size datasets. The impact of insufficient training
data is more pronounced on QCNN models compared to the
classical CNN. The extensive experimental results in Experi-
ment 3 indicate that the QCNN model has better generalization
and detection capabilities in the face of emerging attack types
compared to the classical CNN. Although the optimal QCNN
models varied across different tests, this demonstrates the

TABLE IX
THE ACCURACY PERFORMANCE OF DIFFERENT ATTACK TYPES IN THE FINAL EPOCH IN 5G NIDD DATASET.

Unseen Attack Type: | Unseen Attack Type: | Unseen Attack Type: | Unseen Attack Type:
UDP Flood Remain Type HTTPFlood Slowrate DoS
Unseen Existing Unseen Existing Unseen Existing Unseen Existing
Attack Attack Attack Attack Attack Attack Attack Attack
CNN 9.52% 99.70% 83.72% 92.07% 55.63% 92.08% 79.85% 92.76%
QCNNARE 15.19% 99.68% 76.28% 92.41% 59.33% 91.15% 82.90% 92.47%
QCNNAmE 36.38% 95.36% 84.10% 91.00% 45.14% 91.61% 82.05% 91.30%
Quan-ConvCNN | 13.62% 99.61% 87.84% 92.29% 51.64% 91.66% 75.00% 92.21%
QuanvolutionNN | 24.52% 99.20% 87.27% 90.76% 58.88% 90.14% 88.30% 90.12%
TABLE X

THE ACCURACY PERFORMANCE OF DIFFERENT ATTACK TYPES TEST AT THE TRADE-OFF POINT IN 5G NIDD DATASET.

Unseen Attack Type: | Unseen Attack Type: | Unseen Attack Type: | Unseen Attack Type:
UDP Flood Remain Type HTTPFlood Slowrate DoS
Unseen Existing Unseen Existing Unseen Existing Unseen Existing
Attack Attack Attack Attack Attack Attack Attack Attack
CNN 32.82% 92.05% 91.44% 91.46% 65.78% 87.63% 91.82% 91.78%
QCNNAnRE 18.47% 98.55% 91.75% 91.59% 67.56% 87.87% 92.45% 92.32%
QCNNAmE 48.55% 96.40% 93.64% 90.73% 58.90% 83.51% 90.86% 90.17%
Quan-ConvCNN | 30.12% 96.08% 92.31% 91.82% 66.44% 87.19% 91.08% 90.99%
QuanvolutionNN | 41.83% 85.93% 91.85% 90.58% 67.78% 85.77% 90.15% 90.05%
potential of QCNN in this domain and points to the direction REFERENCES
of further research into optimizing QCNN models. i
[1] Nokia: Global Network Traffic 2030 Report. OneStore.

Overall, Hybrid QCNN models outperform the classical
CNN in terms of accuracy and convergence speed during
model training, particularly in handling unseen traffic and new
emerging attack types.

VI. Conclusion

The study investigates the potential of hybrid QML in
the domain of malicious traffic detection. To this end, we
first provide a literature review of the current developments
in QML in the field of malicious traffic detection. Subse-
quently, we assess whether the performance of hybrid QML in
malicious traffic detection outperforms that of classical ML.
Various architectures of QCNN models are designed, each
employing distinct quantum embedding methods, quantum
computing algorithms, and positions of quantum layers within
the hybrid model. Following this, experimental comparisons
are conducted to validate and contrast the performance of
QCNN models against classical CNN models. Finally, an
evaluation is conducted on the generalization and robustness of
QCNN models on unknown traffic data from new data sources
and new attack types. The experimental results demonstrate
that QCNN models exhibit better performance in terms of
detection accuracy, generalization, and robustness compared to
classical CNN models. However, it is acknowledged that QML
still requires further in-depth research in various aspects. For
example, the initialization of parameters on qubits significantly
impacts the convergence speed and final performance of the
model. This will be our future research direction.

DECLARATIONS

The author(s) received no financial support for the research,
authorship, and/or publication of this article.

(2]

(3]

(4]
(5]

(6]
(71

(8]

[9]

[10]

[11]

[12]

[13]

https://onestore.nokia.com/asset/213660?_ga=2.47625255.1818131869.17

06604193-40357497.1703928402

El-Maghraby, R. T., Abd Elazim, N. M., & Bahaa-Eldin, A. M.
(2017, December). A survey on deep packet inspection. In 2017
12th International Conference on Computer Engineering and Systems
(ICCES) (pp.188-197). IEEE

Wang, Z., Fok, K. W., & Thing, V. L. (2022). Machine learning
for encrypted malicious traffic detection: Approaches, datasets and
comparative study. Computers & Security, 113, 102542

Kalinin, M., Zegzhda, P.: Al-based Security for the Smart Networks.
(2020)

Zhaokai, L., Xiaomei, L., & Nanyang, X. (2014). Experimen-
tal realization of quantum artificial intelligence. arXiv preprint
arXiv:1410.1054.

Schuld, M., Sinayskiy, I., & Petruccione, F. (2015). An introduction
to quantum machine learning. Contemporary Physics, 56(2), 172-185
Adcock, J., Allen, E., Day, M., Frick, S., Hinchliff, J., Johnson, M.,
...& Stanisic, S. (2015). Advances in quantum machine learning. arXiv
preprint arXiv:1512.02900

S. J. Nawaz, S. K. Sharma, S. Wyne, M. N. Patwary and M. Asaduzza-
man, "Quantum Machine Learning for 6G Communication Networks:
State-of-the-Art and Vision for the Future,” in IEEE Access, vol. 7,
pp. 46317-46350, 2019, doi: 10.1109/ACCESS.2019.2909490
Bader, O., Lichy, A., Hajaj, C., Dubin, R., & Dvir, A. (2022, January).
MalDIST: From encrypted traffic classification to malware traffic
detection and classification. In 2022 IEEE 19th Annual Consumer
Communications & Networking Conference (CCNC) (pp. 527-533).
IEEE.

Liu, T, Li, Z., Long, H., & Bilal, A. (2023). NT-GNN: Network Traf-
fic Graph for 5G Mobile IoT Android Malware Detection. Electronics,
12(4), 789

Zheng, J., Zeng, Z., & Feng, T. (2022). GCN-ETA: high-efficiency
encrypted malicious traffic detection. Security and Communication
Networks, 2022, 1-11

Liu, J., Wang, L., Hu, W., Gao, Y., Cao, Y., Lin, B., & Zhang, R.
(2023). Spatial-Temporal Feature with Dual-Attention Mechanism for
Encrypted Malicious Traffic Detection. Security and Communication
Networks, 2023.

Benedetti, M., Garcia-Pintos, D., Perdomo, O., Leyton-Ortega, V.,
Nam, Y., & Perdomo-Ortiz, A. (2019). A generative modeling ap-
proach for benchmarking and training shallow quantum circuits. npj
Quantum Information, 5(1), 45.

http://arxiv.org/abs/1410.1054
http://arxiv.org/abs/1512.02900

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]
[30]

[31]

[32]

(33]

Aceto, G., Ciuonzo, D., Montieri, A., & Pescap e, A. (2021).
DISTILLER: Encrypted traffic classification via multimodal multitask
deep learning. Journal of Network and Computer Applications, 183,
102985.

Fioravanti, Tommaso. “Evaluation of quantum machine learning al-
gorithms for cybersecurity.” (2022).

Akter, Mst Shapna, et al. "Case Study-Based Approach of Quan-
tum Machine Learning in Cybersecurity: Quantum Support Vector
Machine for Malware Classification and Protection.” arXiv preprint
arXiv:2306.00284) (2023).

Akter, M. S., Faruk, M. J. H., Anjum, N., Masum, M., Shahriar, H.,
Sakib, N., ... & Cuzzocrea, A. (2022, December). Software supply
chain vulnerabilities detection in source code: Performance compar-
ison between traditional and quantum machine learning algorithms.
In 2022 IEEE International Conference on Big Data (Big Data) (pp.
5639-5645). IEEE.

Kadry, H., Farouk, A., Zanaty, E. A., & Reyad, O. (2023). Intrusion
detection model using optimized quantum neural network and ellip-
tical curve cryptography for data security. Alexandria Engineering
Journal, 71, 491-500.

Rahman, M. A., Shahriar, H., Clincy, V., Hossain, M. F., & Rahman,
M. (2023, June). A Quantum Generative Adversarial Network-based
Intrusion Detection System. In 2023 IEEE 47th Annual Computers,
Software, and Applications Conference (COMPSAC) (pp. 1810-
1815). IEEE.

Gouveia, A., & Correia, M. (2020, November). Towards quantum-
enhanced machine learning for network intrusion detection. In 2020
IEEE 19th International Symposium on Network Computing and
Applications (NCA) (pp. 1-8). IEEE.

Thirumalairaj, A., & Jeyakarthic, M. (2020, January). Perimeter intru-
sion detection with multi layer perception using quantum classifier.
In 2020 Fourth International Conference on Inventive Systems and
Control (ICISC) (pp. 348-352). IEEE.

Mercaldo, F., Ciaramella, G., Iadarola, G., Storto, M., Martinelli, F., &
Santone, A. (2022). Towards Explainable Quantum Machine Learning
for Mobile Malware Detection and Classification. Applied Sciences,
12(23), 12025.

Kalinin, M. O., & Krundyshev, V. M. (2021). Analysis of a huge
amount of network traffic based on quantum machine learning.
Automatic Control and Computer Sciences, 55(8), 1165-1174.
Kalinin, M., & Krundyshev, V. (2023). Security intrusion detection
using quantum machine learning techniques. Journal of Computer
Virology and Hacking Techniques, 19(1), 125-136.

Gong, C., Guan, W., Gani, A., & Qi, H. (2022). Network attack
detection scheme based on variational quantum neural network. The
Journal of Supercomputing, 78(15), 16876-16897.

Payares, E. D., & Martinez-Santos, J. C. (2021). Quantum machine
learning for intrusion detection of distributed denial of service attacks:
a comparative overview. Quantum Computing, Communication, and
Simulation, 11699, 35-43.

Li, M., Zhang, H., Fan, L., & Han, Z. (2022, October). A Quantum
Feature Selection Method for Network Intrusion Detection. In 2022
IEEE 19th International Conference on Mobile Ad Hoc and Smart
Systems (MASS) (pp. 281-289). IEEE.

Cong, I., Choi, S., Lukin, M.D.: Quantum convolutional neural
networks. Nat. Phys. 15(12), 1273-1278 (2019)

SGTN. [Online]. Available: https://Sgtnf.fi/

Samarakoon, S., Siriwardhana, Y., Porambage, P., Liyanage, M.,
Chang, S. Y., Kim, J., ... & Ylianttila, M. (2022). 5G-NIDD: A
Comprehensive Network Intrusion Detection Dataset Generated over
5G Wireless Network. arXiv preprint arXiv:2212.01298|

Quantum Convolutional Neural Network: tensorflow quantum. Ten-
sorFlow. (n.d.). https://www.tensorflow.org/quantum/tutorials/qcnn
Bergholm, Ville, J. Izaac, M. Schuld, C. Gogolin, M. Sohaib Alam,
Shahnawaz Ahmed, Juan Miguel Arrazola, Carsten Blank, Alain
Delgado, Soran Johangiri, Keri McKieman, Johannes Jakob Meyer,
Zeyeu Niu, Antal Szava, and Nathan Killoran. (2018) “Pennylane:
Automatic differentiation of hybrid quantum-classical computations.”
arXiv preprint arXiv:1811.04968.

Henderson, M., Shakya, S., Pradhan, S., & Cook, T. (2020). Quanvo-
lutional neural networks: powering image recognition with quantum
circuits. Quantum Machine Intelligence, 2(1), 2.

http://arxiv.org/abs/2306.00284
http://arxiv.org/abs/2212.01298
http://arxiv.org/abs/1811.04968

APPENDIX

TABLE XI
EXPERIMENT 1
Detection Model 1st 2nd 3rd Average
CNN 99.62 % 99.52 % 99.33 % 99.49 %
QCNNARE 99.69 % 99.60 % 99.57 % 99.62 %
QCNNAmME 99.73 % 99.69 % 99.52 % 99.65 %
QCNNMlayer 99.54 % 97.59 % 99.54 % 98.89 %
Quan-ConvCNN 99.73 % 99.76 % 99.66 % 99.71 %
QuanvolutionNN 98.82 % 98.67 % 98.53% 98.67 %
TABLE XII
EXPERIMENT 2.1
Detection Model 1st 2nd 3rd Average
CNN 78.94 % 78.71 % 77.05 % 78.23 %
QCNNARE 77.66 % 78.66 % 78.59 % 78.30 %
QCNNAmE 78.49 % 78.96 % 78.98 % 78.81 %
QCNNMlayer 78.37 % 78.67 % 78.57 % 78.54 %
Quan-ConvCNN 79.04 % 7891 % 78.86 % 78.94 %
QuanvolutionNN 77.96 % 79.25 % 78.76 % 78.66 %
TABLE XIIT
EXPERIMENT 2.2
Detection Model Ist 2nd 3rd Average
CNN 75.23 % 69.91 % 7771 % 74.28 %
QCNNARE 58.47 % 58.53 % 61.08 % 59.36 %
QCNNAmE 84.06 % 81.66% 78.98 % 81.57 %
QCNNMlayer 74.82 % 63.07 % 71.21 % 69.70 %
Quan-ConvCNN 69.60 % 58.28 % 64.07 % 64.07 %
QuanvolutionNN 57.44 % 57.07 % 57.02% 57.18 %
TABLE XIV
EXPERIMENT 3: REMAIN TYPES (30 EPOCHS)
CNN QCNNANE QCNNAmME Quan-ConvCNN QuanvolutionNN
Test Train Test Train Test Train Test Train Test Train
1 88.24% 91.94% 73.41% 92.14% 78.89% 91.99% 93.78% 92.28% 91.81% 90.41%
2 75.36% 92.07% 81.36% 91.90% 82.67% 91.06% 89.49% 92.08% 92.69% 90.61%
3 77.20% 92.83% 68.32% 93.73% 66.53% 91.88% 87.32% 92.39% 74.47% 90.72%
4 87.51% 92.61% 77.34% 92.21% 98.16% 89.51% 93.53% 92.34% 84.50% 91.01%
5 90.30% 90.92% 80.95% 92.09% 94.24% 90.58% 75.06% 92.37% 92.90% 91.04%
Average 83.72% 92.07% 76.28% 92.41% 84.10% 91.00% 87.84% 92.29% 87.27% 90.76%
Median 87.51% 92.61% 77.34% 92.21% 82.67% 91.06% 89.49% 92.08% 91.81% 90.41%
TABLE XV
EXPERIMENT 3: REMAIN TYPES (TRADE-OFF)
CNN QCNNAnE QCNNAmME Quan-ConvCNN QuanvolutionNN
Test Train Test Train Test Train Test Train Test Train
1 91.16% 91.35% 91.56% 91.58% 91.97% 90.75% 93.78% 92.28% 91.81% 90.41%
2 91.14% 91.83% 91.48% 90.83% 95.35% 90.66% 91.94% 92.01% 92.69% 90.61%
3 91.95% 91.41% 92.04% 91.75% 91.86% 91.72% 91.68% 92.00% 91.46% 90.08%
4 91.65% 91.77% 92.17% 92.01% 98.16% 89.51% 93.53% 92.34% 90.41% 90.76%
5 91.32% 90.95% 91.50% 91.77% 90.88% 91.00% 90.60% 90.46% 92.90% 91.04%
Average 91.44% 91.46% 91.75% 91.59% 93.64% 90.73% 92.31% 91.82% 91.85% 90.58%
Median 91.32% 90.95% 91.56% 91.58% 91.97% 90.75% 91.94% 92.01% 91.81% 90.41%

TABLE XVI

EXPERIMENT 3: UDP FLOOD (30 EPOCHS)

CNN QCNNAnE QCNNAmE Quan-ConvCNN QuanvolutionNN
Test Train Test Train Test Train Test Train Test Train
1 11.11% 99.65% 16.16% 99.64% 6.46% 97.61% 12.01% 99.51% 19.52% 99.59%
2 7.85% 99.88% 14.56% 99.72% 34.91% 99.51% 10.72% 99.65% 9.69% 98.98%
3 8.42% 99.51% 11.69% 99.80% 69.56% 80.58% 19.93% 99.66% 12.50% 98.92%
4 11.94% 99.58% 16.90% 99.47% 62.90% 99.40% 7.90% 99.66% 36.28% 99.52%
5 8.26% 99.86% 16.66% 99.76% 8.05% 99.71% 17.52% 99.58% 44.60% 98.98%
Average 9.52% 99.70% 15.19% 99.68% 36.38% 95.36% 13.62% 99.61% 24.52% 99.20%
Median 8.42% 99.51% 16.16% 99.64% 34.91% 99.51% 12.01% 99.51% 36.28% 99.52%
TABLE XVII
EXPERIMENT 3: UDP FLOOD (TRADE-OFF)
CNN QCNNAnE QCNNAmME Quan-ConvCNN QuanvolutionNN
Test Train Test Train Test Train Test Train Test Train
1 35.05% 93.61% 19.88% 97.30% 9.35% 97.55% 53.04% 92.74% 28.00% 80.90%
2 21.86% 85.04% 14.56% 99.72% 59.39% 96.90% 31.85% 94.41% 35.12% 77.09%
3 16.49% 94.38% 13.23% 96.77% 87.49% 91.86% 19.93% 99.66% 45.63% 84.82%
4 43.30% 92.79% 26.40% 99.29% 76.62% 96.00% 27.26% 94.02% 55.78% 93.36%
5 47.42% 94.45% 18.27% 99.69% 9.90% 99.68% 18.50% 99.58% 44.61% 93.48%
Average 32.82% 92.05% 18.47% 98.55% 48.55% 96.40% 30.12% 96.08% 41.83% 85.93%
Median 35.05% 93.61% 18.27% 99.69% 59.39% 96.90% 27.26% 94.02% 44.61% 93.48%
TABLE XVIII
EXPERIMENT 3: SLOWRATEDOS (30 EPOCHS)
CNN QCNNAnE QCNNAmE Quan-ConvCNN QuanvolutionNN
Test Train Test Train Test Train Test Train Test Train
1 69.70% 92.23% 90.48% 93.29% 80.57% 90.70% 85.96% 92.87% 80.93% 91.02%
2 84.56% 92.99% 94.90% 93.84% 85.24% 92.10% 51.30% 92.15% 88.99% 89.81%
3 68.37% 93.86% 72.42% 90.97% 78.11% 91.78% 85.11% 91.54% 90.89% 90.00%
4 91.83% 91.92% 62.78% 90.96% 76.70% 90.91% 68.76% 92.21% 90.92% 89.71%
5 84.78% 92.82% 93.92% 93.31% 89.63% 91.03% 83.84% 92.29% 89.79% 90.04%
Average 79.85% 92.76% 82.90% 92.47% 82.05% 91.30% 75.00% 92.21% 88.30% 90.12%
Median 84.56% 92.99% 90.48% 93.29% 80.57% 90.70% 83.84% 92.29% 89.79% 90.04%
TABLE XIX
EXPERIMENT 3: SLOWRATEDOS (TRADE-OFF)
CNN QCNNAnE QCNNAmME Quan-ConvCNN QuanvolutionNN
Test Train Test Train Test Train Test Train Test Train
1 92.06% 91.39% 91.96% 92.79% 89.35% 90.68% 92.53% 92.14% 90.18% 90.69%
2 92.53% 92.44% 93.70% 93.75% 91.73% 91.44% 90.27% 90.15% 88.99% 89.81%
3 91.23% 91.64% 91.15% 90.85% 91.23% 88.49% 91.25% 91.21% 90.89% 90.00%
4 91.83% 91.92% 91.52% 90.91% 90.87% 89.96% 89.21% 89.65% 90.92% 89.71%
5 91.45% 91.47% 93.92% 93.31% 91.11% 90.26% 92.13% 91.81% 89.79% 90.04%
Average 91.82% 91.78% 92.45% 92.32% 90.86% 90.17% 91.08% 90.99% 90.15% 90.05%
Median 91.83% 91.92% 91.96% 92.79% 91.11% 90.26% 91.25% 91.21% 90.18% 90.69%
TABLE XX
EXPERIMENT 3: HTTPFLOOD (30 EPOCHS)
CNN QCNNANE QCNNAmME Quan-ConvCNN QuanvolutionNN
Test Train Test Train Test Train Test Train Test Train
1 60.83% 92.26% 68.27% 90.46% 49.13% 93.27% 49.11% 91.69% 51.16% 91.18%
2 57.24% 91.50% 45.56% 90.46% 30.91% 92.10% 54.48% 91.63% 61.69% 89.24%
3 61.11% 92.80% 57.52% 91.49% 32.97% 91.64% 58.02% 91.64% 58.16% 89.93%
4 59.51% 92.39% 63.56% 91.50% 51.82% 90.46% 51.45% 91.37% 61.71% 90.10%
5 39.46% 91.43% 61.75% 91.84% 60.85% 90.58% 45.15% 92.00% 61.68% 90.23%
Average 55.63% 92.08% 59.33% 91.15% 45.14% 91.61% 51.64% 91.66% 58.88% 90.14%
Median 59.51% 92.39% 61.75% 91.84% 49.13% 93.27% 51.45% 91.37% 61.68% 90.23%

TABLE XXI

EXPERIMENT 3: HTTPFLOOD (TRADE-OFF)

CNN QCNNAnE QCNNAmE Quan-ConvCNN QuanvolutionNN
Test Train Test Train Test Train Test Train Test Train
1 66.51% 87.66% 70.72% 90.29% 57.87% 88.21% 66.81% 87.36% 68.82% 86.68%
2 62.23% 87.96% 66.07% 87.31% 51.43% 64.71% 65.95% 87.47% 75.14% 81.43%
3 66.78% 87.32% 66.85% 87.23% 49.97% 91.53% 67.18% 86.67% 66.21% 84.00%
4 66.40% 87.66% 67.22% 87.32% 67.01% 85.95% 66.22% 86.98% 61.71% 90.10%
5 66.99% 87.57% 66.96% 87.21% 68.23% 87.14% 66.03% 87.49% 67.02% 86.65%
Average 65.78% 87.63% 67.56% 87.87% 58.90% 83.51% 66.44% 87.19% 67.78% 85.77%
Median 66.51% 87.66% 66.96% 87.21% 57.87% 88.21% 66.22% 86.98% 67.10% 76.60%

	Abstract
	Introduction
	Literature Review
	Classical Malicious Traffic Detection
	Quantum Machine Learning (QML) based Network Traffic Detection

	Methodology
	Standard Convolutional Neural Network:
	Quantum Computing and Machine Learning
	Quantum Convolutional Neural Network:

	Experiment
	Experiment Set-up
	Dataset and feature selection
	Experiment 1:
	Experiment 2:
	Experiment 3:
	Experimental performance in the final 30 epoch
	Experimental performance at the trade-off point

	Final Summary:

	Conclusion
	References

