
ar
X

iv
:2

50
4.

20
43

2v
1

 [
cs

.P
L

]
 2

9
A

pr
 2

02
5

An Algebraic Approach to Asymmetric Delegation
and Polymorphic Label Inference

(Technical Report)

Silei Ren1[0000−0002−4182−0211], Coşku Acay2[0000−0002−0487−1167], and
Andrew C. Myers1[0000−0001−5819−7588]

1 Cornell University, Ithaca NY 14850, USA
{sr2262,andru.cs}@cornell.edu

2 Observe, Inc., San Mateo CA 94402, USA
coskuacay@gmail.com

Abstract. Language-based information flow control (IFC) enables rea-
soning about and enforcing security policies in decentralized applications.
While information flow properties are relatively extensional and composi-
tional, designing expressive systems that enforce such properties remains
challenging. In particular, it can be difficult to use IFC labels to model
certain security assumptions, such as semi-honest agents.
Motivated by these modeling limitations, we study the algebraic semantics
of lattice-based IFC label models, and propose a semantic framework
that allows formalizing asymmetric delegation, which is partial delegation
of confidentiality or integrity. Our framework supports downgrading of
information and ensures their safety through nonmalleable information
flow (NMIF).
To demonstrate the practicality of our framework, we design and imple-
ment a novel algorithm that statically checks NMIF and a label inference
procedure that efficiently supports bounded label polymorphism, allowing
users to write code generic with respect to labels.

1 Introduction

Information Flow Control (IFC) [23, 37] is a well-established approach for en-
forcing security in decentralized applications. Using labels, IFC systems specify
fine-grained policies on information flow that can be fully or partly enforced
through compile-time analysis. These policies articulate the confidentiality and
integrity goals of IFC systems, which are security conditions [23]: hyperproper-
ties [12] that constrain the set of system behaviors.

The most prominent security condition in IFC systems is noninterference [18],
but it is too restrictive in practice. A major challenge for adopting language-
based IFC is providing developers with expressive yet intuitive ways to specify
their intended security policies. To capture more nuanced security policies, the
expressiveness of IFC systems is enhanced by downgrading mechanisms such as

https://arxiv.org/abs/2504.20432v1

declassification of confidential information and endorsement of untrusted informa-
tion. Misuse of these mechanisms is further mitigated by enforcing nonmalleable
information flow [9] (NMIF), a security condition controlling downgrading.

Delegation is another common mechanism for specifying security. Delegation
allows one principal to grant (delegate) power to another, expressing that the first
principal trusts the second. Delegation can compactly represent important aspects
of the system’s security policy: when there is delegation between two principals,
ensuring the delegator’s security also necessitates enforcing the delegatee’s security.
Delegation is commonly supported not only in information flow control systems [4,
5, 30, 34], but also in a wide range of enforcement mechanisms, including access
control [7, 13, 38] (where delegation is often referred to as a principal or role
hierarchy), authorization logics [1, 2, 4, 20, 21], and capability systems [25, 27].

The expressive power of delegation can be increased through what we call
asymmetric delegation: fine-grained delegation of either confidentiality or integrity.
Intuitively, when a principal Alice delegates her confidentiality to another principal
Bob, she allows Bob to observe all information visible to her. When Alice delegates
her integrity to Bob, she trusts that all information accepted by Bob has not
been maliciously modified. With asymmetric delegation, we can model security
settings like the semi-honest trust assumption in cryptographic applications and
the security setting of blockchains. In the semi-honest setting, principals trust
each other to follow the protocol (trust each other with integrity), but do not
trust each other with their secrets (but not confidentiality). In the blockchain
setting, principals do not trust each other to follow protocols, but all information
is public: they effectively trust each other with respect to confidentiality.

While asymmetric delegation increases the expressive power of IFC systems,
its precise role—particularly in the presence of downgrading—remains poorly
understood. We address this gap by presenting a general and expressive semantic
framework for IFC labels that formalizes both asymmetric delegation and its
interaction with downgrading. Although prior work [5, 43] develops IFC systems
that support certain forms of asymmetric delegation, these systems lack sound and
complete NMIF enforcement. Building on our framework, we develop algorithms
for verifying the associated semantic security conditions.

Experience with language-based security highlights the importance of IFC
label inference to reduce the burden on programmers [3, 34]. In addition, allowing
programmers to write code that is generic with respect to labels enhances
modularity and code reuse. We support such generic programming through an
efficient label inference procedure that supports bounded label polymorphism.

To evaluate our approach, we update the label model of the Viaduct com-
piler [3] and extend its static information flow analysis. Our implementation
features a more concise and modular syntax for specifying trust assumptions, as
well as a more efficient label inference procedure.

The rest of the paper is structured as follows:

– Section 2 motivates asymmetric delegation using a semi-honest secure multi-
party computation (MPC) program.

2

– Section 3 studies the effects of asymmetric delegation on security conditions
using a novel semantic framework.

– Section 4 presents algorithms that statically enforce the security conditions.
– Section 5 introduces an inference procedure supporting bounded label poly-

morphism.

1 host Alice : {A ∧ B←}
2 host Bob : {B ∧ A←}
3
4 val a: {A ∧ B←} = Alice.input
5 val b: {B ∧ A←} = Bob.input
6 val w: {A ∧ B} = a > b
7
8 Alice.output(
9 declassify w to {A ∧ B←})

10 Bob.output(
11 declassify w to {B ∧ A←})

Fig. 1. Yao’s Millionaires’ problem in
Viaduct [3]. The programmer must manu-
ally assign labels to hosts.

1 host Alice , Bob
2 assume Alice = Bob for integrity
3
4 val a: {Alice} = Alice.input
5 val b: {Bob} = Bob.input
6 val w: {Alice ⊔ Bob} = a > b
7
8 Alice.output(
9 declassify w to {Alice})

10 Bob.output(
11 declassify w to {Bob})

Fig. 2. Yao’s Millionaires’ problem imple-
mented with delegation. Alice ⊔ Bob is
shorthand for ⟨Alice ∧ Bob,Alice ∨ Bob⟩.

2 A Case for Delegation

2.1 Semi-Honest Attackers in Cryptography

Asymmetric delegation can capture a wide variety of security settings. Already
mentioned is the semi-honest threat model, widely studied in the cryptography
literature [44]. In this model, principals correctly follow the protocol, but attempt
to improperly learn other principals’ secrets. Modeling the semi-honest setting
in IFC systems remains a challenge. We first give an example of modeling
semi-honest security in Viaduct [3], a state-of-the-art compiler that translates
information flow policies to cryptographic protocols. We then illustrates how
delegation improves usability and modularity.

Consider Yao’s well-known Millionaires’ Problem [44], where Alice and Bob
wish to compare their wealth without revealing actual numbers. Figure 1 shows a
Viaduct implementation. Lines 1 and 2 declare the hosts Alice and Bob and assign
them information flow labels that capture the security assumptions. The hosts
are assigned different and incomparable confidentiality labels (A for Alice and B

for Bob) but the same integrity label (A ∧ B) to reflect the trust relation in the
semi-honest model. Lines 4 and 5 gather input from the hosts; input from a host
has the same label as that host. Line 6 stores the result of the comparison in w,
which has a label following standard IFC rules: the result of a computation is more

3

secret and less trusted than all of its inputs. Specifically, w has a confidentiality of
A ∧ B since it is derived using secret data from both hosts, and has an integrity
of A ∧ B since that is the integrity of both inputs. Finally, lines 9 and 11 output
w to Alice and Bob, respectively. Note that sending w to Alice leaks information
about Bob’s secret data (b), which violates noninterference. Viaduct requires an
explicit declassify statement to indicate that information leakage is intentional.

2.2 Modeling Security with Delegation

Viaduct models security by encoding trust into labels, but this approach has
problems. First, programmers must encode security assumptions by carefully
crafting host labels, which becomes tricky in large systems with many assumptions.
Second, this encoding pollutes the entire program. In fig. 1, every label annotation
must acknowledge the semi-honest assumption by carrying around additional
integrity (i.e., A← or B←). And third, the encoding breaks modularity. For example,
to add a new host Chuck to the program, we would need to edit every label
annotation to carry an extra integrity component of C←, requiring changes
throughout the program even though Chuck is not involved in this portion of the
computation. Delegation addresses all of these issues.

Figure 2 implements Yao’s Millionaires’ Problem using delegation. Hosts are no
longer assigned cryptic information flow labels; instead, line 2 directly states the
security assumption: Alice and Bob trust each other for integrity. Variables have
intuitive labels that do not need to repeat the semi-honest security assumption:
input from Alice has label Alice. Finally, adding a new host Chuck requires no
edits to existing code; we only need to add the following lines:3

1 host Chuck
2 assume Alice = Chuck for integrity

2.3 Nonmalleable Information Flow

Downgrading statements (declassify and endorse) deliberately violate noninter-
ference, so their unrestricted use poses a threat to security. Prior work [33, 46]
identifies cases where the attacker can exploit downgrading to gain undue in-
fluence over the execution, and proposes robust declassification and transparent
endorsement to limit such cases.

Robust declassification requires that untrusted data is not declassified, and
transparent endorsement requires that secret data is not endorsed. NMIF combines
these two restrictions, which are key to enabling the Viaduct compiler to securely
instantiate programs with cryptography [3].

Here, “secret” and “trusted” are relative to a given attacker, and NMIF
must hold for all attackers. In practice, the program cannot be type-checked
3 In fact, we could even support separate compilation as the program need not be

type-checked again: a program considered secure with fewer assumptions is secure
with more assumptions.

4

separately for every possible attacker, so a conservative condition is enforced:
downgraded data must be at least as trusted as it is secret. For our example
program, this condition means w must have integrity stronger than or equal
to its confidentiality. This condition is immediate in Viaduct since w has label
⟨Alice ∧ Bob, Alice ∧ Bob⟩ in fig. 1. On the other hand, the same variable w in
fig. 2 has label ⟨Alice ∧ Bob, Alice ∨ Bob⟩, which seemingly has weaker integrity
than confidentiality (logically, Alice ∨ Bob does not imply Alice ∧ Bob). However,
Alice = Bob for integrity, so this label is equivalent to ⟨Alice ∧ Bob, Alice ∧ Bob⟩
using the following derivation:

Alice ∨ Bob = Alice ∨ Alice = Alice = Alice ∧ Alice = Alice ∧ Bob

Delegation necessitates equational reasoning under assumptions, and NMIF
creates an interaction between confidentiality and integrity. The combination of
these two features is what makes asymmetric delegation tricky: the cleaner syntax
comes at the cost of additional technical complexity. The following sections tame
this complexity by developing a semantic framework for labels, and algorithms
that follow the semantics.

3 Semantic Framework

3.1 The Lattice of Principals

We build our semantic framework upon the lattice of principals, used in prior
work in authorization logics and information flow systems [3–5, 31, 34, 41, 43].

A principal p ∈ P refers to an entity in decentralized systems that can be either
concrete, such as users or server machines, or abstract, such as RBAC roles [38]
or quorums [50]. In IFC systems, they are often used as labels to annotate policies
on use of information [4]. For example, a: Alice in fig. 2 requires the variable a

to only be written by principals that can influence Alice’s data, and to remain
secret to principals who cannot observe Alice’s information.

Principals are ordered by authority. When q delegates trust to p, we say p
acts for q, written as p ⇒ q. Conjunction (the “and” logic connective) between
principals p∧q represents the least combined authority of p and q, and disjunction
(“or”) p ∨ q represents greatest common authority. The maximal authority ⊥
acts for all other authorities, and the minimal authority ⊤ trusts all other
authorities. More authority is associated with elements lower in the lattice:
⊥ ⇒ p ∧ q ⇒ p ⇒ p ∨ q ⇒ ⊤. 4

Additionally, we use a delegation context, with the form θ = p1 ⇒ q1, · · · , pn ⇒
qn, to specify delegations that are not implied by the logical structure of the
principal lattice. The declaration assume Alice = Bob for integrity from fig. 2 is
an example of a delegation context, specifying both Alice ⇒ Bob and Bob ⇒ Alice.
4 It might seem odd to represent maximal authority as ⊥ and minimal authority

with ⊤, since some prior work (e.g., [4]) makes the opposite choice. An intuitive
justification: the “false” proposition entails everything, so no real principal can have
authority ⊥, but all are trusted with ⊤.

5

Using the delegation context is compatible with much prior work in IFC. For
example, the trust configuration from FLAM [4], meta-policies from the Rx
model [43], interpretation function from DLM [29], and authority lattice from
label algebra [28] are all delegation contexts written differently.

The lattice of principals can be interpreted as an authorization logic [1, 17]
where each principal is a proposition about authorization policy. As authorization
logics are often built upon propositional intuitionistic logics, whose algebraic
models are Heyting algebra [36], we assume P is distributive. 5

3.2 Delegation and Attackers

In the MPC example, a delegation context makes some principals equivalent. In
this subsection, we give delegation a precise semantics.

In systems with decentralized trust, all principals see other principals as
potential attackers. In the extreme case where no principal trusts another, the
attacker with respect to each principal controls all other principals. Formally, we
characterize an attacker A ∈ 2P by the set of principals it controls.

To trust a principal is to disregard the case where it is the attacker. Conversely,
when a principal is attacker-controlled, so are the principals it acts for. Formally:

Definition 1 (Consistent Attackers). A is consistent with θ (A |= θ) when:

∀p, q ∈ P � ((p ⇒ q) ∨ (p ⇒ q) ∈ θ) =⇒ (p ∈ A =⇒ q ∈ A)

The set of consistent attackers is an attacker model : A|θ = {A ∈ A | A |= θ}.
The semantic trust levels of principals can be compared based on the set of

consistent attackers that control the principals. Formally:

Definition 2 (Acts-for Semantics). p acts for q (written θ |= p ≤ q) when:

∀A ∈ A|θ � p ∈ A =⇒ q ∈ A

We use “≤” to denote the semantics of the acts-for relation “⇒”. When viewing
principals as authorization propositions, “acts-for” stands for “implies”, and a
delegation context is a theory (list of propositions). Each consistent attacker is a
consistent interpretation (truth assignment) of the principals and the delegation
context, where 1 is assigned to the principals the attacker controls.

In fact, a delegation context determines a congruence relation6 over the lattice
of principals, where p ≡θ q is defined as (θ |= p ≤ q) ∧ (θ |= q ≤ p). As a result,
≡θ induces a quotient lattice P/≡θ where mutually delegating principals are in
the same equivalence class. This quotient lattice is precisely the Lindenbaum
algebra [8] of the theory θ: the “smallest” algebraic model P where θ hold.

Theorem 1 (Algebraic Model). The algebraic model of the principal lattice
P under delegation context θ is the quotient lattice P/≡θ.
5 A Heyting algebra is a distributive lattice that supports the relative pseudocomplement

(→) operation. We do not need the → operator until label inference.
6 A congruence is an equivalence relation that preserves the lattice structure.

6

The semantics of consistent attackers make them the prime filters of the
lattice of principals. This is a result of the Stone’s Representation Theorem of
Distributive Lattices [42], which says elements from distributive lattices can be
fully characterized by their prime filters.

Theorem 2 (Attacker Model). A|θ is the set of prime filters of P/≡θ.

Prime filters have intuitive interpretations, which abstracts and generalizes
attacker models from prior work [9, 22]. A ⊆ P is a prime filter when:

– ⊤ ∈ A: All attackers control the weakest authority;
– ⊥ ̸∈ A: No attacker controls the strongest authority;
– If p ⇒ q and p ∈ A, then q ∈ A: Attackers are consistent;
– If p ∈ A and q ∈ A, then p ∧ q ∈ A: An attacker controls the least combined

authority of principals it controls;
– If p ∨ q ∈ A, then either p ∈ A or q ∈ A: If two principals are not controlled

by an attacker, neither is their greatest common authority.

3.3 Labels

Information flow systems mainly consider two aspects of security: confidentiality
(read authority) and integrity (write authority). To express differing confidentiality
and integrity policies, we use the lattice of labels, which are pairs of principals
L = P × P. For a label ℓ = ⟨p, q⟩, p represents confidentiality and q represents
integrity. Like principals, each label reflects the authority required for a principal
to access information. For example, information labeled ⟨⊥,⊤⟩ can be read by
no principal but the strongest ⊥, but it can be influenced by any principal.

A label ℓ act for ℓ′ when both ℓ acts for ℓ′ for both confidentiality and integrity.
Similarly, conjunction/disjunction of labels is defined by the conjunction/disjunc-
tion of their confidential and integrity. An asymmetric delegation context is a
pair of different delegation contexts Θ = ⟨θc, θi⟩.

In general, asymmetric attackers A ∈ A = A × A may control different
principals for confidentiality and integrity. We write A = ⟨C ∈ A, I ∈ A⟩, where
C represents the principals A controls for confidentiality, and I those for integrity.
Consequently, the attacker model A is a pair of prime filters.

As visualized in fig. 3, each attacker defines secret (S), public (P), trusted
(T) and untrusted (U) sets over the lattice of labels.

P⟨C,I⟩ = {⟨p, q⟩ | p ∈ C} , U⟨C,I⟩ = {⟨p, q⟩ | q ∈ I},
S⟨C,I⟩ = {⟨p, q⟩ | p ̸∈ C} , T⟨C,I⟩ = {⟨p, q⟩ | q ̸∈ I}

3.4 Security Hyperproperties and Static Delegation

Our semantic framework formalizes a key insight relating the attacker model and
delegation: more delegation means fewer attackers. In turn, fewer attackers should
make it easier for programs to be considered secure. To formalize this intuition, we

7

⟨⊥,⊤⟩

⟨⊤,⊤⟩⟨⊥,⊥⟩

⟨⊤,⊥⟩

In
teg

rit
y

Confidentiality

S ∩ T P ∩ U

P ∩ T

S ∩ U

Authority (≤)

Inform
ation

flow
(⊑

)

Fig. 3. The lattice of labels (L,≤) and the lattice of information flow (L,⊑) share the
same underlying set, but use a different ordering. The dotted line depicts labels with
equal confidentiality and integrity: strictly above are compromised labels, and on or
below are uncompromised labels.

study security conditions in the framework of hyperproperties [12]. For generality,
we leave both the computation model and the system state abstract.

The simple system has states σ ∈ Σ, intentionally left unspecified. An
execution of the system emits a trace t, which is a sequence of states. Define
the behavior B ∈ B of a program to be the set of possible execution traces it
can emit. A hyperproperty HP ⊆ B is a set of behaviors. A program satisfies a
hyperproperty when its behavior is a member of the hyperproperty.

In decentralized IFC systems, hyperproperties HPA are parameterized by the
choice of attacker: a program secure against one attacker may be insecure against
another. Let the hyperproperty HPA be the hyperproperty that characterizes
programs that are secure against all possible attackers from A. A behavior B of
a program falls into HPA precisely when B ∈ HPA for all A ∈ A:

HPA =
⋂

A∈A

HPA Θ(HPA) =
⋂

A∈A|Θ

HPA

When a program assumes a static delegation context Θ, the attacker model is
further restricted to the ones consistent with Θ. Therefore, a delegation context
can be understood as a hyperproperty transformer. It follows that hyperproperties
accept at least as many programs after a delegation context is added.

Theorem 3. HPA ⊆ Θ(HPA).

This matches our intuition about static delegation: the more trust assumptions,
the fewer reasonable attackers, the more programs considered secure.

8

3.5 Noninterference and the Lattice of Information Flow

For confidentiality, noninterference [13, 37] demands that information should not
flow from high to low (secret to public). Noninterference of integrity requires that
information should not flow from low to high (untrusted to trusted). To illustrate
how delegation affects noninterference, we adapt Clarkson and Schneider’s [12]
definition of observational determinism [18].

Definition 3 (Observational Determinism). Let L be any set of low labels.
Observational determinism OD is the hyperproperty:

ODL = {B | ∀t1, t2 ∈ B � t01 =L t02 =⇒ t1 ≈L t2}

State t0 denotes the initial state of the trace t. We leave the definition of
low equivalence between states unspecified, as in prior work on knowledge-based
security [6, 24, 26, 40].

Noninterference for confidentiality NIcA = ODPA and integrity NIiA = ODTA

are mere instantiations of observational determinism over public and trusted
labels for some attacker A. For an attacker model A|Θ:

Θ(NIA) =
⋂

A∈A|Θ

(ODPA ∩ODTA)

Prior work [19, 23, 30] enforces low equivalence by ensuring that low-labeled
information is not influenced by high-labeled information. Concretely, a dynamic
relabel is safe when it does not relabel high-labeled information to a low label.
We formalize safe relabeling as the flows-to relation.

Definition 4 (Flows-to). Label ℓ securely flows to ℓ′ (Θ |= ℓ ⊑ ℓ′) when:

∀A ∈ A|Θ � (ℓ′ ∈ PA =⇒ ℓ ∈ PA) ∧ (ℓ′ ∈ TA =⇒ ℓ ∈ TA)

Equivalently, ⟨θc, θi⟩ |= ⟨p, q⟩ ⊑ ⟨p′, q′⟩ when θc |= p′ ≤ p and θi |= q ≤ q′.

As visualized in fig. 3, flows-to and the acts-for define two lattices on the
same underlying set of labels. Information Lattice operators are given by:

⟨p1, q1⟩ ⊔ ⟨p2, q2⟩ = ⟨p1 ∧ p2, q1 ∨ q2⟩ ⟨p1, q1⟩ ⊓ ⟨p2, q2⟩ = ⟨p1 ∨ p2, q1 ∧ q2⟩

3.6 Downgrading and Nonmalleable Information Flow

Some programs, such as the MPC example from fig. 2, intentionally break nonin-
terference. Prior work on dynamic security policies either achieve downgrading
by relabeling or by dynamic delegation. Visually, relabeling move information
downward in fig. 3 and dynamic delegation moves the attacker partition leftward.

9

Nonmalleable Information Flow (NMIF) To prevent misuse of downgrades
by relabeling, Cecchetti et al. [9] propose NMIF, a security hyperproperty that
combines robust declassification [46] with transparent endorsement.

Robust declassification requires that secret information flow to public only
when the information is trusted. This restriction ensures that attackers do not
influence disclosure of information to them. A declassification is only robust when
it declassifies secret–trusted information (SA ∪ TA).

Transparent endorsement is a dual condition that allows untrusted information
to influence trusted information only when the information is public to the
attacker. It only allows endorsement of public–untrusted information (PA ∩ UA).

Therefore, secret–untrusted information should not be downgraded. Indeed,
the key recipe to enforcing NMIF is to enforce noninterference for public or
trusted information [9]:

NI▼A = ODTA∪PA

A label is compromised when it is secret–untrusted for some attacker [9, 45].
To enforce NMIF, it suffices to reject downgrading information with compromised
labels, so that there is no flow out from compromised labels.

Unfortunately, NMIF against A|θ rejects all downgrades. Namely, all labels
(except for ⟨⊤,⊥⟩) are compromised against the attacker A⊤ = ⟨{⊤},P⟩ (it
controls every principal for integrity and controls no principal for confidentiality).
Therefore, further restrictions over the attacker model is needed.

NMIF Attackers Prior work [45, 46] assumes attackers control more confiden-
tiality than integrity. We call them valid attackers:

Definition 5 (Valid Attackers). V = {⟨C, I⟩ ∈ A | I ⊆ C}

Restricting attackers to valid ones makes our framework mirror attacker
models studied in the cryptography literature [44], where a principal is honest (not
controlled by attacker), semi-honest (controlled by attacker for confidentiality), or
malicious (controlled by attacker for both confidentiality and integrity). The valid
attacker restriction excludes the unrealistic “malicious but not curious” attackers.

In fact, much existing work satisfy the valid attacker assumption by construc-
tion. For example, robust declassification [46] originally defines integrity and
confidentiality by equivalence relations over system states. The state transitions
an active attacker may perform are, by construction, observable by the attacker.

Definition 6 (Uncompromised Labels). Label ℓ is uncompromised under Θ,
written Θ |= ▼ℓ, when ℓ is either public or trusted for all valid attackers:

∀A ∈ V|Θ � ℓ ∈ PA ∪ TA

It follows that labels of principals are uncompromised: Θ |= ▼ ⟨p, p⟩.
Uncompromised labels have an alternative characterization: they are the

labels with at least as much integrity as confidentiality. Of course, in the presence
of asymmetric delegation, we cannot directly compare a label’s confidentiality

10

and integrity components since each component has a different set of delegations.
We circumvent this problem by introducing a witnessing principal r who has no
more integrity than q and no less confidentiality than p.

Theorem 4. ⟨θc, θi⟩ |= ▼ ⟨p, q⟩ ⇐⇒ ∃r ∈ P � (θi |= q ≤ r) ∧ (θc |= r ≤ p).

In the absence of asymmetric delegation, theorem 4 reduces to a simple
acts-for check (θ |= q ≤ p), which prior systems rely on [9, 46].

4 Algorithms

In IFC systems that incorporate delegation, the acts-for relation θ |= p1 ≤ p2 is
frequently checked by label inference

procedures [34] and even at run time, where it can impose significant over-
head [11]. Unfortunately, its semantic definition quantifies over the potentially
infinite set of all attackers, which makes direct use of definition infeasible in
practice. Similarly, the definition of uncompromised labels Θ |= ▼ℓ does not
yield an algorithm. In this section, we assume oracle access to syntactic lattice
operations (⇒, ⊥, ⊤, ∧, ∨) of P, and derive sound and complete algorithms that
check for the aforementioned relations.

4.1 Acts-for Algorithm

Algorithm 1 gives an algorithm for deciding θ |= p ≤ q. We write θ ⊢ p ≤ q to
denote this algorithmic system.

Algorithm 1 (Acts-for θ ⊢ p ≤ q).

P-Axiom
p ⇒ q

· ⊢ p ≤ q

P-Delegation
θ ⊢ p ∧ q′ ≤ q θ ⊢ p ≤ q ∨ p′

θ, p′ ⇒ q′ ⊢ p ≤ q

The algorithm recursively applies the lattice axioms and rule P-Delegation
until the delegation context is empty for all sub-cases. The acts-for relation holds
when rule P-Axiom apply to all sub-cases.

Theorem 5 (Correctness of Acts-for). Algorithm 1 is sound and complete
with respect to definition 2: θ ⊢ p ≤ q ⇐⇒ θ |= p ≤ q.

4.2 NMIF Algorithm

Neither the semantic definition of uncompromised labels (definition 6) nor their
alternative characterization (theorem 4) lends itself to an algorithmic implemen-
tation. The semantic definition quantifies over all valid attackers (a potentially
infinite set), and the alternative characterization conjures up an intermediate
principal. Our solution is to use the alternative characterization but with a

11

“best principal.” For that, we use minθ(p), the highest-authority principal in the
equivalence class of p.7

Definition 7 (Minimal Principal). minθ(p) ∈ P is the (necessarily) unique
principal such that θ |= p ≤ q if and only if minθ(p) ⇒ q for any q ∈ P.

We must demand more structure on P to compute minθ(p). Specifically, we
rely on an oracle that returns join-prime factorizations of arbitrary principals.
Intuitively, a join-prime principal cannot be written as the join of other principals.
In finite lattices, these are the principals of the form p = q1∧· · ·∧qn. Factorization
oracles arise trivially in existing implementations of IFC models, as these are
based on lattices with a finite set of principal names [3, 4, 34, 41].

Algorithm 2 (Min minθ(p) = q).

Min-Base
join-prime(p) ∀(p′ ⇒ q′) ∈ θ � p ̸⇒ p′

minθ(p) = p

Min-Pick
join-prime(p) p ⇒ p′

minθ,p′⇒q′(p) = minθ(p ∧ q′)

Min-Factor
¬ join-prime(p) p = p1 ∨ · · · ∨ pn ∀i ∈ [n] � join-prime(pi)

minθ(p) =
∨
i∈[n]

minθ(pi)

The rules from Algorithm 2 can be applied in any order without backtracking
because of the uniqueness of minθ(p). Moreover, all derivations are finite since
either the size of θ decreases, or we switch from a reducible element to a finite
set of irreducible elements.

Theorem 6 (Correctness of Min). Algorithm 2 is sound and complete with
respect to definition 7.

Our NMIF algorithm simply combines algorithms 1 and 2.

Algorithm 3 (Uncompromised Label Check Θ ⊢ ▼ℓ).

θc ⊢ minθi(q) ≤ p

⟨θc, θi⟩ ⊢ ▼ ⟨p, q⟩

Theorem 7 (Correctness of Uncompromised Label Check). Algorithm 3
is sound and complete with respect to theorem 4.

7 Recall that higher authority is lower in the authority lattice, thus the use of min as
opposed to max.

12

5 Label Inference

In practical IFC systems, label inference is an important way to avoid redundant
user annotations, since it is secure to infer labels of intermediate computations
from their inputs and outputs. Typically, label inference is performed by solving
a system of constraints over lattice elements [34, 48]. IFC systems further benefit
from bounded label polymorphism, which allows user to write library code reusable
at different security levels. In this section, we show how to do label inference
directly over the algebraic model of labels using the algorithms from Section 4.

1 host Alice , Bob , Chuck
2 assume Alice = Bob for integrity
3 assume Bob = Chuck for integrity
4
5 fun average(a: int , b: int): int
6 {
7 return (a + b) / 2
8 }

8 fun main() {
9 val a = Alice.input

10 val b = Bob.input
11 val c = Chuck.input
12
13 val r1 = average(a, b)
14 val r2 = average(b, c)
15 }

Fig. 4. The average function is implicitly polymorphic over the labels of its arguments.

5.1 Bounded Label Polymorphism

As in traditional type systems, allowing code that is generic over labels increases
expressiveness significantly. Existing languages like Jif [34] and Flow Caml [39]
support bounded label polymorphism, which allows functions to be parameterized
over labels that are bounded by specified security levels. Annotation burden
on users can be further reduced by assuming information flow from function
arguments to return values by default.

In fig. 4, the annotation-free polymorphic function average is applied in main

to arguments with different security labels. Shown below is the same function
with explicit annotations, all of which can be inferred.

1 fun average[X, Y, Z](a: int{X}, b: int{Y}): int{Z}
2 where (X ⊔ Y ⊑ Z)

Label inference assigns existential label variables to all unlabeled expressions
and creates constraints based on IFC typing rules. The constraints are then
solved by a constraint solver that uses parameter bounds as delegation contexts.

In each function, polymorphic label variables are treated as label constants, so
solutions of label variables are expressed by both label constants and polymorphic
label variables. Type checking at call sites ensures that the parameter bounds
are satisfied. As functions have their own delegation contexts, a new constraint
system is solved for each function.

13

5.2 Constraint Solver

We describe a novel constraint solver that computes the minimum-semantic-
authority solution to constraint systems with delegation contexts. Minimum-
authority solutions are desirable because they allow systems to choose cheaper
security enforcement mechanisms [3, 10, 15, 16, 47, 49].

Label and Principal Constraints Figure 5 gives the syntax of the label
constraint language. Expressions in the constraint language include label constants
and label variables, authority projections, as well as standard lattice operations.
A constraint either asserts that an expression flows to another, or asserts that an
expression is uncompromised. We translate constraints over labels to constraints
over principals to leverage algorithms from Section 4. Figure 6 gives the syntax

L. Constants ℓ
L. Variables Y

L. Expressions L ::= ℓ | Y | Lπ

| L1 ⊔ L2 | L1 ⊓ L2

| L1 ∨ L2 | L1 ∧ L2

L. Constraints C ::= L1 ⊑ L2 | ▼L
Projections π ∈ {c, i}

Fig. 5. Syntax of label constraints.

P. Constants p
P. Variables Y π

P. Expressions Pπ ::= p | Y π

| Pπ
1 ∨ Pπ

2 | Pπ
1 ∧ Pπ

2

| p1 → Pπ
2 | minπ′(Pπ′

)
P. Constraints D ::= Pπ

1 ⇒π Pπ
2

Fig. 6. Syntax of principal constraints.

of the principal constraint language. The syntax includes a principal variable Y π

for each combination of label variable Y and projection π. That is, Y c represents
the confidentiality of Y , and Y i represents Y ’s integrity.

We index expressions Pπ by the component π they represent. This prevents
expressions like Y c

1 ∧ Y i
2 , whose components are mixed. Expressions include

principal constants and principal variables, as well as principal-lattice operations
∨ and ∧. The operation → is called the relative pseudocomplement of the meet
operation: p1 → p2 is defined as the minimal-authority principal p such that
p1 ∧ p ⇒ p2. We use → to solve constraints of the form Y π ∧ p1 ⇒π Pπ

2 .The
minπ() operation allows mixing integrity and confidentiality components; we use
it when solving for labels that must be uncompromised. Principal constraints
have the form Pπ

1 ⇒π Pπ
2 , which stands for θπ |= Pπ

1 ≤ Pπ
2 .

Figure 7 gives rules for translating label constraints to principal constraints.
The definition of JLKπ is a straightforward encoding of the label-lattice operations.
Using JLK, we translate a flows-to (⊑) constraint to two acts-for (⇒) constraints,
one for each label component. The constraint ▼L follows from algorithm 3.

Solving Principal Constraints Our constraint solver requires the left-hand
side of each constraint to be atomic (a constant or a variable), that is, constraints
of the form p1 ⇒π Pπ

2 and Y π
1 ⇒π Pπ

2 . We exhaustively apply the equational

14

JCK = D1, . . . , Dn

JL1 ⊑ L2K = JL2Kc ⇒c JL1Kc, JL1Ki ⇒i JL2Ki J▼LK = JLKi ⇒i minc(JLKc)

JLKπ = Pπ

JL1 ⊔ L2Kπ = J(L1 ∧ L2)
c ∧ (L1 ∨ L2)

iKπ
JL1 ⊓ L2Kπ = J(L1 ∨ L2)

c ∧ (L1 ∧ L2)
iKπ

JL1 ∨ L2Kπ = JL1Kπ ∨ JL2Kπ
JL1 ∧ L2Kπ = JL1Kπ ∧ JL2Kπ

J⟨p, q⟩Kπ =

{
p if π = c

q if π = i

JY Kπ = Y π

JLπ′
Kπ =

{
JLKπ if π = π′

⊤ if π ̸= π′

Fig. 7. Translating label constraints to principal constraints.

axioms of Heyting algebra (e.g., associativity, absorption, distributivity, etc.)
until no left-hand side of any constraint can be further simplified. As equational
axioms are syntactic rewrites, it does not change the constraint system over the
underlying algebra. Moreover, this process always terminates, and ensures that
the left-hand side of each constraint either is atomic or contains a meet (∧).8

Constraint solving fails if the left-hand side of any constraint contains a
meet, since such systems do not have unique solutions. For example, the system
Y1 ∧ Y2 ⇒ Alice has no minimal solution: we can assign {Y1 7→ Alice, Y2 7→ ⊤}
or {Y1 7→ ⊤, Y2 7→ Alice}, but neither solution is better than the other. Compiler
implementations need to either restrict the syntax of polymorphic constraints, or
report errors during constraint solving.

Once the simplification process succeeds, we extend the algorithm of Rehof
and Mogensen [35] for iteratively solving semi-lattice constraints. We initialize
all principal variables to ⊤, and use unsatisfied constraints to update variables
repeatedly until a fixed point is reached, using the rule:

given Y π ⇒π Pπ, set Y π := Y π ∧ current-value(Θ,Pπ),

where current-value(Θ,Pπ) is the value of Pπ according to the current assignment.
Note that constraints that have constants p on the left-hand side are ignored

during the fixed point computation. Once a fixed-point solution is reached, we
perform the following check for each constraint with a constant left-hand side:

given p ⇒π Pπ, check θπ |= p ≤ current-value(Θ,Pπ).

We have a minimal-authority solution if all such constraints are satisfied; otherwise,
there is no valid solution.

8 Translation rules in fig. 7 never generate constraints with → or minπ(·) on the
left-hand side, and the constraint simplification eliminate all joins (∨) on the left.

15

5.3 Implementation

We modified the parser of the Viaduct compiler [3] with the delegation syntax,
and extended its static analysis procedure with our label inference algorithm. 9

Because the original Viaduct constraint solver can only make syntactic com-
parison (⇒) between labels, it instantiates polymorphic variables with constant
principal names. Therefore, Viaduct has to run a specialization procedure to
create a monomorphic copy of a function at each call site. In nested function
calls, the number of monomorphic functions created grows exponentially with the
depth of calls. Recursive calls need to be handled explicitly to ensure termination.

Thanks to delegation contexts, label inference no longer requires monomorphic
functions and can be done in one pass. For each function call site, the specializa-
tion procedure memoizes the argument labels, and avoid creating duplicates of
monomorphic functions that are instantiated with the same polymorphic argu-
ment labels. Since all specialized functions have different labels, our procedure
creates a minimal number of monomorphic functions. Recursive functions no
longer need to be separately handled because the signatures of newly created
monotonic copies eventually reach a fixed point, which are memoized.

6 Related Work

Expressive trust delegation has been widely investigated in access control and
capability systems [25, 38], where delegation is called role hierarchy [38]. Such
systems support role adoption, which is a form of dynamic delegation. However,
access control systems generally do not connect to information flow security
conditions. Many prior IFC systems have delegation abstractions compatible with
our framework, but they either lack support for asymmetric delegation [3, 9, 45],
or do not explore its effect over hyperproperties [4, 26, 32, 33, 46].

Our inference algorithm differs from prior implementations of syntax-directed
IFC label inference [3, 34, 48] by operating directly over the underlying algebra.
This algebraic approach enhances extensibility: adding principals or delegations
does not invalidate existing analysis. Dolan [14] proposes an inference algorithm
for an expressive algebraic type system with subtyping, type constructors, and
recursive function types. However, their algorithm produces contrived representa-
tions of typing schemes, limiting its practicality. In contrast, our label system
balances expressiveness with a simple and effective inference algorithm.

FLAM [4] proposes a label model and defines robust authorization to ad-
dress security vulnerabilities arising from dynamic delegation. However, robust
authorization is a proof-theoretic definition that lacks semantics. Arden and
Myers [5] propose the FLAC calculus, based on the FLAM label model, and prove
robust declassification for a language that downgrades using dynamic delegation.
However, FLAC has no attacker semantics. Cecchetti et al. [9] define NMIF, but
their system cannot explicitly express delegations between atomic principals.

9 Code available at: https://github.com/apl-cornell/viaduct.

16

https://github.com/apl-cornell/viaduct

7 Conclusion and Future Directions

We present an algebraic semantic framework for IFC labels that models asymmet-
ric delegation, along with sound and complete algorithms that enforce security
conditions and inference security annotations. Our approach provides a solid
foundation for building modular, expressive and extensible IFC systems.

Acknowledgments. This work was supported by the National Science Foundation
under NSF grant 1704788. Any opinions, findings, conclusions, or recommendations
expressed in this material are those of the authors and do not necessarily reflect the
views of the National Science Foundation. We also thank Suraaj Kanniwadi and Ethan
Cecchetti for discussions and feedback.

Disclosure of Interests. The authors have no competing interests to declare that are
relevant to the content of this article.

17

Bibliography

[1] Abadi, M.: Access control in a core calculus of dependency. In: 11th ACM
SIGPLAN Int’l Conf. on Functional Programming. pp. 263–273. ACM, New
York, NY, USA (2006). https://doi.org/10.1145/1159803.1159839

[2] Abadi, M.: Variations in access control logic. In: van der Meyden, R., van der
Torre, L. (eds.) Deontic Logic in Computer Science, Lecture Notes in Com-
puter Science, vol. 5076, pp. 96–109. Springer Berlin Heidelberg (2008).
https://doi.org/10.1007/978-3-540-70525-3_9

[3] Acay, C., Recto, R., Gancher, J., Myers, A., Shi, E.: Viaduct: An extensible,
optimizing compiler for secure distributed programs. In: 42nd ACM SIG-
PLAN Conf. on Programming Language Design and Implementation (PLDI).
pp. 740–755. ACM (Jun 2021). https://doi.org/10.1145/3453483.3454074

[4] Arden, O., Liu, J., Myers, A.C.: Flow-limited authorization. In: 28th IEEE
Computer Security Foundations Symp. (CSF). pp. 569–583 (Jul 2015).
https://doi.org/10.1109/CSF.2015.42

[5] Arden, O., Myers, A.C.: A calculus for flow-limited authorization. In: 29th

IEEE Computer Security Foundations Symp. (CSF). pp. 135–147 (Jun 2016).
https://doi.org/10.1109/CSF.2016.17

[6] Askarov, A., Chong, S.: Learning is change in knowledge: Knowledge-based
security for dynamic policies. In: 2012 IEEE 25th Computer Security Founda-
tions Symposium. pp. 308–322 (2012). https://doi.org/10.1109/CSF.2012.31

[7] Biba, K.J.: Integrity considerations for secure computer systems. Tech. Rep.
ESD-TR-76-372, USAF Electronic Systems Division, Bedford, MA (Apr
1977), https://ban.ai/multics/doc/a039324.pdf, (Also available through
National Technical Information Service, Springfield Va., NTIS AD-A039324.)

[8] Blok, W.J., Pigozzi, D.: Algebraizable Logics (1989)
[9] Cecchetti, E., Myers, A.C., Arden, O.: Nonmalleable information flow control.

In: 24th ACM Conf. on Computer and Communications Security (CCS). pp.
1875–1891. ACM (Oct 2017). https://doi.org/10.1145/3133956.3134054

[10] Chong, S., Liu, J., Myers, A.C., Qi, X., Vikram, K., Zheng, L., Zheng, X.:
Secure web applications via automatic partitioning. In: 21st ACM Symp. on
Operating System Principles (SOSP). pp. 31–44 (Oct 2007). https://doi.
org/10.1145/1323293.1294265

[11] Chong, S., Vikram, K., Myers, A.C.: SIF: Enforcing confidentiality and
integrity in web applications. In: 16th USENIX Security Symp. (Aug 2007),
http://www.cs.cornell.edu/andru/papers/sif.pdf

[12] Clarkson, M.R., Schneider, F.B.: Hyperproperties. In: 21st IEEE Computer
Security Foundations Symp. (CSF). pp. 51–65 (Jun 2008). https://doi.org/
10.1109/CSF.2008.7

[13] Denning, D.E.: A lattice model of secure information flow. Comm. of the
ACM 19(5), 236–243 (1976). https://doi.org/10.1145/360051.360056

[14] Dolan, S.: Algebraic subtyping: Distinguished Dissertation 2017. BCS Learn-
ing & Development Ltd, Swindon, GBR (2017)

https://doi.org/10.1145/1159803.1159839
https://doi.org/10.1145/1159803.1159839
https://doi.org/10.1007/978-3-540-70525-3_9
https://doi.org/10.1007/978-3-540-70525-3_9
https://doi.org/10.1145/3453483.3454074
https://doi.org/10.1145/3453483.3454074
https://doi.org/10.1109/CSF.2015.42
https://doi.org/10.1109/CSF.2015.42
https://doi.org/10.1109/CSF.2016.17
https://doi.org/10.1109/CSF.2016.17
https://doi.org/10.1109/CSF.2012.31
https://doi.org/10.1109/CSF.2012.31
https://ban.ai/multics/doc/a039324.pdf
https://doi.org/10.1145/3133956.3134054
https://doi.org/10.1145/3133956.3134054
https://doi.org/10.1145/1323293.1294265
https://doi.org/10.1145/1323293.1294265
https://doi.org/10.1145/1323293.1294265
https://doi.org/10.1145/1323293.1294265
http://www.cs.cornell.edu/andru/papers/sif.pdf
https://doi.org/10.1109/CSF.2008.7
https://doi.org/10.1109/CSF.2008.7
https://doi.org/10.1109/CSF.2008.7
https://doi.org/10.1109/CSF.2008.7
https://doi.org/10.1145/360051.360056
https://doi.org/10.1145/360051.360056

[15] Fournet, C., le Guernic, G., Rezk, T.: A security-preserving compiler for
distributed programs: From information-flow policies to cryptographic mech-
anisms. In: 16th ACM Conf. on Computer and Communications Security
(CCS). pp. 432–441 (Nov 2009), https://doi.org/10.1145/1653662.1653715

[16] Fournet, C., Rezk, T.: Cryptographically sound implementations for typed
information-flow security. In: 35th ACM Symp. on Principles of Program-
ming Languages (POPL). pp. 323–335 (Jan 2008), https://doi.org/10.1145/
1328438.1328478

[17] Garg, D., Pfenning, F.: Non-interference in constructive authorization logic.
In: 19th IEEE Computer Security Foundations Workshop (CSFW) (2006).
https://doi.org/10.1109/CSFW.2006.18

[18] Goguen, J.A., Meseguer, J.: Security policies and security models. In: IEEE
Symp. on Security and Privacy. pp. 11–20 (Apr 1982). https://doi.org/10.
1109/SP.1982.10014

[19] Goguen, J.A., Meseguer, J.: Unwinding and inference control. In: IEEE
Symp. on Security and Privacy. pp. 75–86 (Apr 1984). https://doi.org/10.
1109/SP.1984.10019

[20] Hirsch, A.K., Amorim, P.H.A.d., Cecchetti, E., Tate, R., Arden, O.: First-
order logic for flow-limited authorization. In: 2020 IEEE 33rd Computer
Security Foundations Symposium (CSF). pp. 123–138 (2020). https://doi.
org/10.1109/CSF49147.2020.00017

[21] Hirsch, A.K., Clarkson, M.R.: Belief semantics of authorization logic. CCS
’13, Association for Computing Machinery, New York, NY, USA (2013).
https://doi.org/10.1145/2508859.2516667

[22] Hirt, M., Maurer, U.M.: Player simulation and general adversary structures
in perfect multiparty computation. J. Cryptol. 13(1), 31–60 (2000). https:
//doi.org/10.1007/S001459910003

[23] Kozyri, E., Chong, S., Myers, A.C.: Expressing information flow properties.
Foundations and Trends in Privacy and Security 3(1), 1–102 (2022). https:
//doi.org/10.1561/3300000008

[24] Landauer, J., Redmond, T.: A lattice of information. In: 6th IEEE Computer
Security Foundations Workshop (CSFW). pp. 65–70. IEEE Computer Society
Press (Jun 1993). https://doi.org/10.1109/CSFW.1993.246638

[25] Li, N., Grosof, B.N., Feigenbaum, J.: Delegation logic: A logic-based approach
to distributed authorization. ACM Transactions on Information and System
Security (TISSEC) 6(1), 128–171 (2003). https://doi.org/10.1145/605434.
605438

[26] Li, P., Zhang, D.: Towards a general-purpose dynamic information flow
policy (2021), https://arxiv.org/abs/2109.08096

[27] Matetic, S., Schneider, M., Miller, A., Juels, A., Capkun, S.: Delegatee:
Brokered delegation using trusted execution environments. In: USENIX
Security Symposium. pp. 1387–1403 (2018)

[28] Montagu, B., Pierce, B.C., Pollack, R.: A theory of information-flow labels.
In: 26th IEEE Computer Security Foundations Symp. (CSF). pp. 3–17 (Jun
2013). https://doi.org/10.1109/CSF.2013.8

19

https://doi.org/10.1145/1653662.1653715
https://doi.org/10.1145/1328438.1328478
https://doi.org/10.1145/1328438.1328478
https://doi.org/10.1109/CSFW.2006.18
https://doi.org/10.1109/CSFW.2006.18
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.1109/SP.1984.10019
https://doi.org/10.1109/SP.1984.10019
https://doi.org/10.1109/SP.1984.10019
https://doi.org/10.1109/SP.1984.10019
https://doi.org/10.1109/CSF49147.2020.00017
https://doi.org/10.1109/CSF49147.2020.00017
https://doi.org/10.1109/CSF49147.2020.00017
https://doi.org/10.1109/CSF49147.2020.00017
https://doi.org/10.1145/2508859.2516667
https://doi.org/10.1145/2508859.2516667
https://doi.org/10.1007/S001459910003
https://doi.org/10.1007/S001459910003
https://doi.org/10.1007/S001459910003
https://doi.org/10.1007/S001459910003
https://doi.org/10.1561/3300000008
https://doi.org/10.1561/3300000008
https://doi.org/10.1561/3300000008
https://doi.org/10.1561/3300000008
https://doi.org/10.1109/CSFW.1993.246638
https://doi.org/10.1109/CSFW.1993.246638
https://doi.org/10.1145/605434.605438
https://doi.org/10.1145/605434.605438
https://doi.org/10.1145/605434.605438
https://doi.org/10.1145/605434.605438
https://arxiv.org/abs/2109.08096
https://doi.org/10.1109/CSF.2013.8
https://doi.org/10.1109/CSF.2013.8

[29] Myers, A.C.: Mostly-Static Decentralized Information Flow Control. Ph.D.
thesis, Massachusetts Institute of Technology, Cambridge, MA (Jan 1999)

[30] Myers, A.C., Liskov, B.: A decentralized model for information flow control.
In: 16th ACM Symp. on Operating System Principles (SOSP). pp. 129–142
(Oct 1997). https://doi.org/10.1145/268998.266669

[31] Myers, A.C., Liskov, B.: Protecting privacy using the decentralized label
model. ACM Transactions on Software Engineering and Methodology 9(4),
410–442 (Oct 2000). https://doi.org/10.1145/363516.363526

[32] Myers, A.C., Sabelfeld, A., Zdancewic, S.: Enforcing robust declassification.
In: 17th IEEE Computer Security Foundations Workshop (CSFW). pp.
172–186 (Jun 2004). https://doi.org/10.1109/CSFW.2004.9

[33] Myers, A.C., Sabelfeld, A., Zdancewic, S.: Enforcing robust declassification
and qualified robustness. Journal of Computer Security 14(2), 157–196
(2006). https://doi.org/10.3233/JCS-2006-14203

[34] Myers, A.C., Zheng, L., Zdancewic, S., Chong, S., Nystrom, N.: Jif 3.0: Java
information flow (Jul 2006), http://www.cs.cornell.edu/jif, software release,
http://www.cs.cornell.edu/jif

[35] Rehof, J., Mogensen, T.A.: Tractable constraints in finite semilattices. In:
3rd International Symposium on Static Analysis. pp. 285–300. No. 1145
in Lecture Notes in Computer Science, Springer-Verlag (Sep 1996). https:
//doi.org/10.1007/3-540-61739-6_48

[36] Rutherford, D.E.: Introduction to Lattice Theory. Oliver and Boyd (1965)
[37] Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE

Journal on Selected Areas in Communications 21(1), 5–19 (Jan 2003).
https://doi.org/10.1109/JSAC.2002.806121

[38] Sandhu, R.S.: Role hierarchies and constraints for lattice-based access con-
trols. In: 4th European Symp. on Research in Computer Security (ESORICS)
(Sep 1996)

[39] Simonet, V.: The Flow Caml System: documentation and user’s manual.
Technical Report 0282, Institut National de Recherche en Informatique et
en Automatique (INRIA) (Jul 2003)

[40] Soloviev, M., Balliu, M., Guanciale, R.: Security properties through the lens
of modal logic (2023). https://doi.org/10.1109/csf61375.2024.00009

[41] Stefan, D., Russo, A., Mazières, D., Mitchell, J.C.: Disjunction category
labels. In: Laud, P. (ed.) Proceedings of the 16th Nordic conference on In-
formation Security Technology for Applications. Lecture Notes in Computer
Science, vol. 7161, pp. 223–239. Springer (2011). https://doi.org/10.1007/
978-3-642-29615-4_16

[42] Stone, M.H.: Topological representations of distributive lattices and brouwe-
rian logics. Časopis pro pěstování matematiky a fysiky 067(1), 1–25 (1938).
https://doi.org/10.21136/CPMF.1938.124080

[43] Swamy, N., Hicks, M., Tse, S., Zdancewic, S.: Managing policy updates in
security-typed languages. In: 19th IEEE Computer Security Foundations
Workshop (CSFW). pp. 202–216 (Jul 2006). https://doi.org/10.1109/CSFW.
2006.17

20

https://doi.org/10.1145/268998.266669
https://doi.org/10.1145/268998.266669
https://doi.org/10.1145/363516.363526
https://doi.org/10.1145/363516.363526
https://doi.org/10.1109/CSFW.2004.9
https://doi.org/10.1109/CSFW.2004.9
https://doi.org/10.3233/JCS-2006-14203
https://doi.org/10.3233/JCS-2006-14203
http://www.cs.cornell.edu/jif
http://www.cs.cornell.edu/jif
https://doi.org/10.1007/3-540-61739-6_48
https://doi.org/10.1007/3-540-61739-6_48
https://doi.org/10.1007/3-540-61739-6_48
https://doi.org/10.1007/3-540-61739-6_48
https://doi.org/10.1109/JSAC.2002.806121
https://doi.org/10.1109/JSAC.2002.806121
https://doi.org/10.1109/csf61375.2024.00009
https://doi.org/10.1109/csf61375.2024.00009
https://doi.org/10.1007/978-3-642-29615-4_16
https://doi.org/10.1007/978-3-642-29615-4_16
https://doi.org/10.1007/978-3-642-29615-4_16
https://doi.org/10.1007/978-3-642-29615-4_16
https://doi.org/10.21136/CPMF.1938.124080
https://doi.org/10.21136/CPMF.1938.124080
https://doi.org/10.1109/CSFW.2006.17
https://doi.org/10.1109/CSFW.2006.17
https://doi.org/10.1109/CSFW.2006.17
https://doi.org/10.1109/CSFW.2006.17

[44] Yao, A.C.: Protocols for secure computations. In: 23rd annual IEEE
Symposium on Foundations of Computer Science. pp. 160–164 (1982).
https://doi.org/10.1109/SFCS.1982.38

[45] Zagieboylo, D., Suh, G.E., Myers, A.C.: Using information flow to design
an ISA that controls timing channels. In: 32nd IEEE Computer Security
Foundations Symp. (CSF) (Jun 2019). https://doi.org/10.1109/CSF.2019.
00026

[46] Zdancewic, S., Myers, A.C.: Robust declassification. In: 14th IEEE Computer
Security Foundations Workshop (CSFW). pp. 15–23 (Jun 2001). https:
//doi.org/10.1109/CSFW.2001.930133

[47] Zdancewic, S., Zheng, L., Nystrom, N., Myers, A.C.: Secure program par-
titioning. ACM Trans. on Computer Systems 20(3), 283–328 (Aug 2002).
https://doi.org/10.1145/566340.566343

[48] Zhang, D., Myers, A.C., Vytiniotis, D., Peyton Jones, S.: SHErrLoc: A static
holistic error locator. ACM Trans. on Programming Languages and Systems
39(4), 18 (Aug 2017), http://dl.acm.org/citation.cfm?id=3121137

[49] Zheng, L., Chong, S., Myers, A.C., Zdancewic, S.: Using replication and
partitioning to build secure distributed systems. In: IEEE Symp. on Security
and Privacy. pp. 236–250 (May 2003). https://doi.org/10.1109/SECPRI.
2003.1199340

[50] Zheng, L., Myers, A.C.: A language-based approach to secure quorum
replication. In: 9th ACM SIGPLAN Workshop on Programming Languages
and Analysis for Security (PLAS) (Aug 2014). https://doi.org/10.1145/
2637113.2637117

21

https://doi.org/10.1109/SFCS.1982.38
https://doi.org/10.1109/SFCS.1982.38
https://doi.org/10.1109/CSF.2019.00026
https://doi.org/10.1109/CSF.2019.00026
https://doi.org/10.1109/CSF.2019.00026
https://doi.org/10.1109/CSF.2019.00026
https://doi.org/10.1109/CSFW.2001.930133
https://doi.org/10.1109/CSFW.2001.930133
https://doi.org/10.1109/CSFW.2001.930133
https://doi.org/10.1109/CSFW.2001.930133
https://doi.org/10.1145/566340.566343
https://doi.org/10.1145/566340.566343
http://dl.acm.org/citation.cfm?id=3121137
https://doi.org/10.1109/SECPRI.2003.1199340
https://doi.org/10.1109/SECPRI.2003.1199340
https://doi.org/10.1109/SECPRI.2003.1199340
https://doi.org/10.1109/SECPRI.2003.1199340
https://doi.org/10.1145/2637113.2637117
https://doi.org/10.1145/2637113.2637117
https://doi.org/10.1145/2637113.2637117
https://doi.org/10.1145/2637113.2637117

A Details for Section 3 (Semantic Framework)

Definition 8 (Closures). Define upward and downward closed sets as follows:

↑ p = {q ∈ P | p ⇒ q} ↓ p = {q ∈ P | q ⇒ p}

Definition 9 (Equivalence Classes). The equivalence class of a principal with
respect to a delegation context is:

[p]θ = {q ∈ P | (θ |= p ≤ q) ∧ (θ |= q ≤ p)}

We extend this notation to denote the equivalence closure of a set:

[P]θ =
⋃
p∈P

[p]θ

Remark 1. We denote the set of equivalence classes using standard notation:

P/θ = P/≡θ = {[p]θ | p ∈ P}

for P ⊆ P (we might have P = P). This is different from [P]θ ⊆ P.

Remark 2. Note that [p]θ ∈ P/θ and ↑[p]θ ⊆ P/θ. In particular, ↑[p]θ is a set of
sets of principals, not a set of principals.

Theorem 8 (Prime Ideal/Filter). Let L be a distributive lattice, I ⊆ L an
ideal, and F ⊆ L a filter such that I ∩ F = ∅. Then there exists a prime ideal P
and a prime filter Q such that

I ⊆ P F ⊆ Q P ∩Q = ∅

Theorem 1 (Algebraic Model). The algebraic model of the principal lattice
P under delegation context θ is the quotient lattice P/≡θ.

Proof. Follows from the definition of Lindenbaum–Tarski Algebra of propositional
intuitionistic logic. The Lindenbaum algebra of theory θ, P/≡θ, is the initial
algebra of the category of Heyting algebras that are consistent with θ. In human
language, there is a lattice homomorphism from P/≡θ to every algebraic model
J of θ.

Theorem 2 (Attacker Model). A|θ is the set of prime filters of P/≡θ.

Proof. Since each attacker is a truth assignment of some Heyting algebra J,
it can be characterized by a homomorphism from J to the two-point lattice
2 = {⊤,⊥}. Therefore, each attacker is uniquely characterized by a lattice
homomorphism from P/≡θ to 2. We can then define each attacker by the kernel
of its characterizing homomorphism. The set of such kernels are precisely the set
of prime filters of P/≡θ.

Theorem 4. ⟨θc, θi⟩ |= ▼ ⟨p, q⟩ ⇐⇒ ∃r ∈ P � (θi |= q ≤ r) ∧ (θc |= r ≤ p).

22

Proof. We prove each direction separately.

– Case =⇒ . Assume, for contradiction, that q ̸∈ [[↓ p]θc]θi . The sets ↑[q]θi and
[↓ p]θc/θi are disjoint and form a filter/ideal pair of P/θi. Thus, theorem 8
gives a prime filter I0 of P/θi with ↑[q]θ ⊆ I0 and I0 ∩ ([↓ p]θc/θi) = ∅.
Let I =

⋃
I0. Note that I and [[↓ p]θc]θi are disjoint and [↓ p]θc ⊆ [[↓ p]θc]θi ,

so I and [↓ p]θc are disjoint as well. This in turn implies I/θc and ↓ p/θc are
disjoint. Moreover, these sets form a filter/ideal pair in P/θc, so theorem 8
gives a prime filter C0 of P/θc with I/θc ⊆ C0 and C0 ∩ (↓ p/θc) = ∅.
Now, define C =

⋃
C0 and note that

I =
⋃

(I/θc) ⊆
⋃

C0 = C

Since I0 is an ideal of P/θi, we have I |= θi. Since C0 is an ideal of P/θc, we
have C |= θc. Combining these three results, we have ⟨C, I⟩ ∈ V|⟨θc,θi⟩.
Because ⟨θc, θi⟩ |= ▼ ⟨p, q⟩ and q ∈ ↑[q]θi ⊆ I0 =⇒ q ∈ I, we have p ∈ C.
However, p ∈ [↓ p]θc , which contradicts the fact that C0 and ↓ p/θc are disjoint.
Thus, we must have q ∈ [[↓ p]θc]θi .
Finally, q ∈ [[↓ p]θc]θi means there exists r ∈ [↓ p]θc such that q ∈ [r]θi . By
definition, we have θi |= q ≤ r. Moreover, r ∈ [↓ p]θc means there exists
p′ ∈ ↓ p such that r ∈ [p′]θc . By definition, θc |= r ≤ p′, and theorem 2 with
p′ ∈ ↓ p gives θc |= p′ ≤ p. By transitivity, we have θc |= r ≤ p.

– Case ⇐= . Assume there exists r such that θi |= q ≤ r and θc |= r ≤ p. We
claim ⟨p, q⟩ is public whenever it is untrusted. Formally, let ⟨C, I⟩ ∈ V such
that ⟨C, I⟩ |= ⟨θc, θi⟩, and assume q ∈ I. We need to show p ∈ C.
Since I |= θi, θi |= q ≤ r, and q ∈ I, we have r ∈ I. Moreover, I ⊆ C
(definition 5), so r ∈ C. Finally, since C |= θc, θc |= r ≤ p, and r ∈ C, we
have p ∈ C as desired.

B Details for Section 4 (Algorithms)

Lemma 1. If θ1 |= p ≤ q, then (θ1, θ2) |= p ≤ q for any θ2.

Proof. Immediate since A|θ1,θ2 ⊆ A|θ1 .

Corollary 1. If p ⇒ q, then θ |= p ≤ q for any θ.

Proof. We have · |= p ≤ q by theorem 2. The result then follows by lemma 1.

Lemma 2. If · |= p ≤ q, then p ⇒ q.

Proof. Assume, for contradiction, that p ⇏ q. The set ↑ p = {p′ ∈ P | p ⇒ p′}
is a filter of P, and ↓ q = {q′ ∈ P | q′ ⇒ q} is an ideal of P. Moreover, ↑ p and
↓ q are disjoint since p ⇏ q. By theorem 8, there exists a prime filter P ⊇ ↑ p
that is also disjoint from ↓ q. This means p ∈ P and q ̸∈ P . However, P ∈ A by
theorem 2 (attackers are prime filters) and P |= · trivially, which contradicts the
assumption · |= p ≤ q.

23

Lemma 3. If (θ, p1 ⇒ q1) |= p2 ≤ q2, then θ |= p2 ∧ q1 ≤ q2.

Proof. Let A be an attacker such that A |= θ and p2 ∧ q1 ∈ A. We need to show
q2 ∈ A. Since p2∧q1 ∈ A and A is upward-closed (theorem 2), we have p2, q1 ∈ A.
From A |= θ and q1 ∈ A, we get A |= θ, p1 ⇒ q1. Using this, and the fact that
p2 ∈ A, we invoke our primary assumption to get q2 ∈ A.

Lemma 4. If (θ, p1 ⇒ q1) |= p2 ≤ q2, then θ |= p2 ≤ q2 ∨ p1.

Proof. Let A be an attacker such that A |= θ and p2 ∈ A. We need to show
q2 ∨ p1 ∈ A. If p1 ∈ A, then q2 ∨ p1 ∈ A since A is upward-closed (theorem 2),
so assume p1 ̸∈ A. Then, A |= θ, p1 ⇒ q1 and we assumed p2 ∈ A, so we can
invoke our primary assumption to get q2 ∈ A. Since A is upward-closed, this
gives q2 ∨ p1 ∈ A.

Theorem 5 (Correctness of Acts-for). Algorithm 1 is sound and complete
with respect to definition 2: θ ⊢ p ≤ q ⇐⇒ θ |= p ≤ q.

Proof. We prove soundness by induction on the derivation of θ ⊢ p ≤ q.

– Case P-Axiom.. We have p ⇒ q by inversion on the derivation. The results
follows from corollary 1.

– Case P-Delegation.. We have θ = (θ′, p′ ⇒ q′), θ′ ⊢ p ∧ q′ ≤ q, and
θ′ ⊢ p ≤ q ∨ p′. Induction gives θ′ |= p ∧ q′ ≤ q and θ′ |= p ≤ q ∨ p′. Let A be
an attacker such that A |= θ′, p′ ⇒ q′ and p ∈ A. We need to show q ∈ A.
If p′ ∈ A, then q′ ∈ A since A |= p′ ⇒ q′. Since p, q′ ∈ A, theorem 2 gives
p ∧ q′ ∈ A. The first induction hypothesis then gives q ∈ A.
Otherwise, p′ ̸∈ A. The second induction hypothesis gives q ∨ p′ ∈ A. The-
orem 2 then implies q ∈ A since we cannot have p′ ̸∈ A and q ̸∈ A but
q ∨ p′ ∈ A.

We prove completeness by induction on θ.

– Case θ = ·. Assume · |= p ≤ q. Then p ⇒ q by lemma 2. Applying
rule P-Axiom, we get · ⊢ p ≤ q as desired.

– Case θ = θ′, p′ ⇒ q′. Assume θ′, p′ ⇒ q′ |= p ≤ q. By lemmas 3 and 4, we get
θ′ |= p ∧ q′ ≤ q and θ′ |= p ≤ q ∨ p′. By induction, we get θ′ ⊢ p ∧ q′ ≤ q and
θ′ ⊢ p ≤ q ∨ p′. We can now apply rule P-Delegation to get θ′, p′ ⇒ q′ ⊢
p ≤ q as desired.

Lemma 5. If θ |= p2 ∧ q1 ≤ q2 and θ |= p2 ≤ p1, then (θ, p1 ⇒ q1) |= p2 ≤ q2.

Proof. Follows trivially from theorem 2 since attackers are closed under ∧.

Theorem 6 (Correctness of Min). Algorithm 2 is sound and complete with
respect to definition 7.

Proof. Minimal elements are unique and algorithm 2 always terminates, so
it suffices to prove soundness. More concretely, whenever algorithm 2 derives
minθ(p) = p′, we need to show θ |= p ≤ q ⇐⇒ p′ ⇒ q for all q.

Let q ∈ P. We proceed by induction on the derivation.

24

– Case Min-Base. We have θ = (p1 ⇒ q1, . . . , pn ⇒ qn), minθ(p) = p,
join-prime(p), and ∀i ∈ [n] � p ⇏ pi.
• Case =⇒ . Assume θ |= p ≤ q. We apply lemma 4 n times and lemma 2

once to get p ⇒ q ∨ p1 ∨ · · · ∨ pn. Since join-prime(p) and p ⇏ pi for all
i, it must be the case that p ⇒ q as desired.

• Case ⇐= . Immediate by corollary 1.
– Case Min-Pick. We have θ = (θ′, p′ ⇒ q′), minθ(p) = minθ′(p ∧ q′),

join-prime(p), and p ⇒ p′.
• Case =⇒ . Assume θ |= p ≤ q. We need to show minθ′(p ∧ q′) ⇒ q.

Lemma 3 gives θ′ |= p∧q′ ≤ q. We can then apply the induction hypothesis
to get the desired result.

• Case ⇐= . Assume minθ′(p ∧ q′) ⇒ q. We need to show θ |= p ≤ q. The
induction hypothesis gives θ′ |= p ∧ q′ ≤ q. Corollary 1 gives θ′ |= p ≤ p′.
Combining these with lemma 5 gives the desired result.

– Case Min-Factor. We have p = p1 ∨ · · · ∨ pn, minθ(p) =
∨

i∈[n] minθ(pi),
and ∀i ∈ [n] � join-prime(pi).
• Case =⇒ . Assume θ |= p ≤ q. We need to show

∨
i∈[n] minθ(pi) ⇒ q.

By the definition of ∨, we have θ |= pi ≤ q for all i ∈ [n]. The induction
hypotheses then give minθ(pi) ⇒ q for all i ∈ [n]. Finally, we use the
definition of ∨ to get the desired result.

• Case ⇐= . Assume
∨

i∈[n] minθ(pi) ⇒ q. We need to show θ |= p ≤ q. By
the definition of ∨, we have minθ(pi) ⇒ q for all i ∈ [n]. The induction
hypotheses then give θ |= pi ≤ q for all i ∈ [n]. Finally, we use the
definition of ∨ to get θ |= p1 ∨ · · · ∨ pn ≤ q.

Theorem 7 (Correctness of Uncompromised Label Check). Algorithm 3
is sound and complete with respect to theorem 4.

Proof. We show soundness and completeness separately.

– Case Soundness. Assume θc ⊢ minθi(q) ≤ p. Pick r = minθi(q). By definition 7
(instantiated with minθi(q) ⇒ minθi(q)), θi |= q ≤ minθi(q). By theorem 5,
θc |= minθi(q) ≤ p.

– Case Completeness. Assume there exists r ∈ P such that θi |= q ≤ r and
θc |= r ≤ p. By definition 7, minθi(q) ⇒ r. By theorem 2, θc |= minθi(q) ≤ r.
By transitivity, θc |= minθi(q) ≤ p. Finally, by theorem 5, θc ⊢ minθi(q) ≤ p.

25

	 An Algebraic Approach to Asymmetric Delegation and Polymorphic Label Inference (Technical Report)

