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Vı́ctor González Morales,
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Abstract—Digital twins (DTs) are improving water distri-
bution systems by using real-time data, analytics, and pre-
diction models to optimize operations. This paper presents a
DT platform designed for a Spanish water supply network,
utilizing Long Short-Term Memory (LSTM) networks to predict
water consumption. However, machine learning models are
vulnerable to adversarial attacks, such as the Fast Gradient
Sign Method (FGSM) and Projected Gradient Descent (PGD).
These attacks manipulate critical model parameters, injecting
subtle distortions that degrade forecasting accuracy. To further
exploit these vulnerabilities, we introduce a Learning Automata
(LA) and Random LA-based approach that dynamically adjusts
perturbations, making adversarial attacks more difficult to
detect. Experimental results show that this approach significantly
impacts prediction reliability, causing the Mean Absolute Per-
centage Error (MAPE) to rise from 26% to over 35%. Moreover,
adaptive attack strategies amplify this effect, highlighting cyber-
security risks in AI-driven DTs. These findings emphasize the
urgent need for robust defenses, including adversarial training,
anomaly detection, and secure data pipelines.

Index Terms—Digital Twins, Artificial Intelligence, Cyberse-
curity, Adversarial Machine Learning Attack

I. INTRODUCTION

Digital twin technology has emerged as a critical driver
of digital transformation across various industries, playing
a crucial role in improving the accuracy and efficiency of
cyber-physical systems. One area where this technology has
been widely adopted is in water distribution networks. DTs
enable real-time and accurate simulations of physical systems,
facilitating enhanced decision-making and optimization of
operations. Through data-driven and automated processes, this
technology helps industries increase operational efficiency and
utilize resources more sustainably [1], [2].

However, despite their many benefits, DTs are exposed to
significant security challenges due to their complex structure
and continuous connection to the internet. One of the most
critical security threats is data and model poisoning, which can
significantly compromise the performance of digital twin sys-
tems and lead to erroneous outcomes. Data poisoning involves
manipulating input data that feeds into the system, while
model poisoning involves tampering with ML models [3], [4].
These threats pose serious risks, especially for systems that
rely on ML models for prediction and optimization, as they
can degrade the accuracy of forecasts and increase operational
costs [5].

In this context, AML attacks, particularly FGSM, have
demonstrated the ability to disrupt ML models [6]–[8], and

PGD [9] consists of the iterative application of FGSM. These
attacks introduce small perturbations to input data, drastically
reducing model accuracy and misleading prediction systems.
Given that ML models such as LSTM networks are exten-
sively used for water consumption forecasting in distribution
networks, such attacks can significantly impact the efficiency
and effectiveness of these systems [10], [11].

This paper focuses on addressing the security challenges
faced by DTs in water distribution networks and proposes
innovative solutions to mitigate the risks of data and model
poisoning. A security layer has been developed to safe-
guard the system against cyberattacks like FGSM and data
poisoning, ensuring system integrity. The evaluation results
demonstrate that the proposed platform improves the system’s
accuracy and efficiency, reduces operational costs, and sup-
ports intelligent decision-making. These solutions are vital for
ensuring the sustainability of water resources and advancing
digital transformation in the water sector.

A. Objective of the Article

This paper focuses on cybersecurity risks in DTs for
water distribution networks, specifically in water consumption
forecasting using time series data. It examines AML attacks,
such as FGSM and PGD, and their impact on LSTM-based
prediction models. To make attacks more complex and harder
to detect, the study explores the use of LA. Additionally, it
proposes mitigation strategies to strengthen DTs against data
and model poisoning, improving system reliability, reducing
costs, and supporting better decision-making in digital water
management.

B. Paper Structure

This paper is structured as follows: Section II reviews re-
lated work and the motivation behind addressing cybersecurity
in WDS. Section III presents the proposed DT platform and
forecasting models. Section IV analyzes the impact of FGSM-
based AML attacks on LSTM models. Section V applies
the FGSM attack and evaluates forecasting accuracy. Sec-
tion VI introduces a Learning Automata-based FGSM attack
to improve stealth. Section VII proposes a Random Learning
Automata strategy to enhance unpredictability. Section VIII
discusses DT vulnerabilities and mitigation strategies. Finally,
Section IX concludes the paper and outlines future directions.
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Table I
DT PROJECTS IN WATER INDUSTRY WITH AI/ML/DL AND THEIR VULNERABILITIES TO POISONING ATTACKS

Project Data Used Model/Algorithm ML/AI/DL Techniques Vulnerability Possible Attack Vectors Mitigation Strategies
Ciliberti et al. (2021) Pressure, flow, and asset

data
AI models for leak detection,
optimization

ML/AI for DMA optimization High Data poisoning of asset manage-
ment systems

Data integrity verification, encrypted data
channels

Bonilla et al. (2022) Real-time pressure and flow
rate data

GCNs AI/ML for hydraulic state esti-
mation

High Data poisoning of real-time pres-
sure and flow data

Data validation techniques, secure data
pipelines

Zekri et al. (2022) IoT sensor data, asset oper-
ation data

Multi-Agent Systems, AI-
driven agents

Multi-agent reinforcement
learning

Moderate-
High

Model poisoning by corrupting re-
ward system

Robust reward functions, anomaly detec-
tion

Matheri et al. (2022) Wastewater treatment sen-
sor data

Cyber-Physical Systems
(CPS), AI optimization
models

AI/ML for predictive mainte-
nance

High Data poisoning via corrupted sen-
sor data

Secure real-time data transmission, predic-
tive anomaly detection

Ramos et al. (2022) Leakage detection, water
usage data

Optimization algorithms AI-driven optimization for wa-
ter management

Moderate Tampered leakage data poisoning Cryptographic methods for data validation

Henriksen et al. (2022) Hydrological data, climate
models

ML Models ML for climate adaptation Moderate Tampered hydrological data affect-
ing water management

Redundant data sources, data quality au-
dits

Savic (2022) Water usage patterns AI anomaly detection models AI/ML for anomaly detection High Model poisoning via corrupted
anomaly detection data

AI model validation, adversarial training

Pedersen et al. (2022) Water level sensors,
drainage data

Hydraulic models with DTs ML for error classification Moderate Data poisoning from water level
sensors

Redundant sensor validation, secure data
transmission

Valencia Smart Water
(2023)

SCADA, customer feedback Hydraulic models with real-
time optimization

AI/ML for pressure manage-
ment

Moderate Tampered sensor inputs poisoning Secure data transmission, blockchain ver-
ification

Sabesp Digital Twin (2023) IoT sensor data, remote
monitoring

ML for anomaly detection AI/ML for fault detection High Data poisoning from faulty sensors
or pump data manipulation

Real-time anomaly detection, secure IoT
devices

Tarragona Water Consor-
tium (2023)

Hydraulic models, real-time
sensors

Live simulations for predictive
maintenance

ML for predictive maintenance Moderate Data manipulation through com-
promised sensors

Redundant sensor data validation systems

Smart Water Grid in Gaula
(2023)

Leakage detection, water
usage data

Digital twin with real-time op-
timization

AI-driven optimization for wa-
ter loss prevention

Moderate-
High

Data poisoning from compromised
sensors

Blockchain-based validation, real-time
monitoring

Water Research Foundation
AI/ML Project (2023)

Utility performance data ML models for prediction AI/ML for performance opti-
mization

High Model poisoning via contaminated
datasets

Regular model audits, federated learning

Menapace et al. (2024) Pressure sensor data GNNs DL/ML for pressure estimation High Data poisoning through compro-
mised sensor data

Data cross-validation, hybrid training with
anomaly detection

II. RELATED WORKS AND MOTIVATION

A. Related Works

The increasing reliance on AI and ML in water distribution
networks has led to significant advancements in digital twin
technology. However, these AI-driven systems also introduce
cybersecurity vulnerabilities, particularly AML threats. Sev-
eral studies have investigated the application of DTs, AI, and
cybersecurity in water management.

One of the key areas of research involves integrating
AI models, such as LSTM networks, into water forecasting
systems. Studies like those of [10], [11] have demonstrated the
effectiveness of LSTM models in accurately predicting water
consumption patterns. However, these models remain suscep-
tible to adversarial attacks that can degrade their predictive
accuracy.

Another line of research focuses on securing AI-based
water management systems from cyber threats. [7], [8] ex-
amined adversarial attacks, including the FGSM, on AI-driven
infrastructure, demonstrating how even minor perturbations in
input data can significantly impact model predictions. Such
vulnerabilities highlight the need for robust cybersecurity
strategies in AI-powered DTs.

Additionally, various digital twin projects in the water
industry have explored advanced ML techniques for enhanced
system monitoring. [12] integrated graph convolutional net-
works (GCNs) within DTs for hydraulic state estimation,
improving real-time system analysis. Similarly, [13] applied
graph neural networks (GNNs) for sensor placement optimiza-
tion, highlighting the growing intersection of AI and DTs in
water distribution networks.

Despite these advancements, limited research has focused
on the impact of AML threats on digital twin systems in
the water industry. Existing studies primarily address general
cybersecurity concerns or specific ML vulnerabilities but do
not comprehensively analyze how adversarial attacks can
compromise water forecasting accuracy. This gap underscores
the necessity of further research on securing AI-based DTs
from adversarial threats.

Figure 1. Correlation Matrix based on the parameters

B. Motivation for the Study

DT in water distribution networks enhances infrastruc-
ture management through predictive analytics, improving ef-
ficiency and sustainability. However, AI-driven forecasting
models, particularly LSTMs, are highly susceptible to adver-
sarial ML attacks.

This study addresses key challenges:
• LSTM vulnerability: Water consumption forecasting

models, reliant on LSTMs, are prone to adversarial
attacks like FGSM, degrading accuracy and increasing
operational costs.

• Insufficient security in DTs: Most implementations lack
robust cybersecurity measures to protect AI models from
targeted attacks.

• Expanding cybersecurity risks: IoT-connected DTs
enlarge the attack surface, making AI integrity crucial
for system reliability.

• Real-world impact: Adversarial AI manipulation could
disrupt water allocation, pressure control, and leak de-
tection, compromising public utilities.

III. PROPOSED DT AND FORECASTING MODELS

CAUCCES is a DT platform designed to enhance water
distribution through real-time monitoring, predictive analysis,
and data-driven decision-making. It has been developed in
collaboration with the Media Engineering Group at the Uni-
versity of Extremadura and Ambling Ingenierı́a y Servicios,
S.L [14]. The platform integrates IoT sensors, AI-based fore-
casting, and secure data management to improve efficiency,
minimize water loss, and ensure stable distribution.



Figure 2. DT Platform in the Water Distribution Networks

Figure 3. Water consumption forecasting via LSTM for 6(top) and 18
months(bottom)

Traditional water networks lack smart monitoring and
forecasting, making them vulnerable to challenges such as
aging infrastructure and environmental impacts. CAUCCES
addresses these issues by continuously gathering data, uti-
lizing reliable communication technologies, and optimizing
scheduling for better maintenance and operation. This creates
a real-time digital replica of the water system, enabling early
detection and prevention of potential problems before they
affect service.

A. Forecasting Results

Figure 3 presents the forecasting results of water consump-
tion using the UV-LSTM models.

The following algorithm outlines the steps for training an
LSTM model for water consumption prediction:

Algorithm 1 LSTM for Water Consumption Prediction
1 Initialize parameters:
2 Define the number of LSTM units (neurons), learning rate, and epochs

3 Initialize weight matrices Wf , Wi , WC , Wo , and bias vectors bf , bi , bC , bo
4 Preprocess input data:
5 Normalize water consumption and meteorological data using Min-Max scaling

6 Divide the dataset into training, validation, and testing sets

7 Create sequences of input data X and target values Y

8 Reshape input data X to (num samples, sequence length, num features)

9 Model Training:
10 Initialize cell state C0 and hidden state h0 to zeros

11 for each epoch do
12 for each batch in the training data do
13 for each time step t in the input sequence do
14 Compute Forget Gate: ft = σ(Wf · [ht−1, xt] + bf )

15 Compute Input Gate: it = σ(Wi · [ht−1, xt] + bi)

16 Compute Candidate Cell State: C̃t = tanh(WC · [ht−1, xt] + bC )

17 Update Cell State: Ct = ft · Ct−1 + it · C̃t

18 Compute Output Gate: ot = σ(Wo · [ht−1, xt] + bo)

19 Update Hidden State: ht = ot · tanh(Ct)

20 end for
21 Compute output (predicted water consumption): ypredt

= Dense(ht)

22 Calculate batch loss: MSE(ypredt
, ytruet )

23 Backpropagation through time (BPTT):
24 Calculate gradients of Loss w.r.t weights and biases

25 Update Wf , Wi , WC , Wo and bf , bi , bC , bo using an optimizer

26 end for
27 Evaluate model on the validation set after each epoch

28 end for
29 Model Evaluation:
30 Test the model on the testing set

31 Calculate and report performance metrics: RMSE and MAPE

32 Model Deployment:
33 Save the trained model for future use

34 Deploy the model for real-time or batch water consumption prediction

IV. AML ATTACKS ON FORECASTING

AML is an emerging field within the broader domain of
ML, focusing on designing and evaluating models that are
vulnerable to adversarial inputs. These inputs, also called
adversarial examples, are carefully crafted perturbations de-
signed to mislead the model into making incorrect predictions
while appearing normal to humans. Such perturbations are
typically small enough to go unnoticed in the input data
but large enough to degrade the model’s performance signifi-
cantly. AML is crucial in various applications, particularly in
domains where high reliability is required, such as healthcare,
autonomous systems, and financial forecasting.

The FGSM is one of the foundational techniques in the
adversarial attack literature. It is a white-box attack method,
meaning the attacker has full access to the model, including
its architecture and parameters. FGSM exploits the gradient of
the loss function to the input features. Computing the gradient
generates small perturbations to the input that maximally
increase the model’s loss, leading to erroneous predictions.
The perturbation is scaled by a factor ϵ, which controls its
magnitude. The mathematical expression for FGSM is given
by:

Xadv = X + ϵ · sign(∇XJ(θ,X, y)) (1)

Where:
• Xadv is the adversarial input generated by the FGSM

attack.
• X is the original input data (e.g., daily temperature and

water consumption records).



• ϵ is the perturbation magnitude, determining the intensity
of the attack.

• J(θ,X, y) represents the loss function, with θ denoting
the model parameters and y being the true output label.

• ∇XJ(θ,X, y) is the gradient of the loss function for the
input data.

Meanwhile, the core formula for generating adversarial
examples using PGD is as follows:

X
(t+1)
adv = clip[X−ϵ,X+ϵ]

(
X

(t)
adv + α · sign

(
∇Xt

adv
J
(
X

(t)
adv, y

)))
(2)

Where:
• X

(t)
adv refers to the generation of adversarial attacks at the

time step t in the iterative sequence of the generation of
FGSM attacks. At t = 0, it would be the input (daily
water consumption or temperature).

• X
(t+1)
adv represents the adversarially perturbed input at

time step t+ 1.
• ϵ is the perturbation factor determining the magnitude of

the adversarial noise.
• ∇Xt

adv
J(θ,Xt

adv, y) represents the gradient of the loss
function concerning the input at time step t.

• J(θ,Xt
adv, y) is the loss function, and y is the true target

value (water consumption in the following days).
• α is the step size at each iteration.
• sign(·) returns the sign of each component.
• The clip function projects the example into the ϵ-ball

around x and enforces the valid data range.
By applying this formula, the adversarial input is slightly

modified, causing the model to make incorrect predictions.
This technique is both simple and effective, making it widely
used in adversarial attack research.

V. APPLYING FGSM TO THE LSTM MODEL FOR WATER
CONSUMPTION FORECASTING

The LSTM model, previously implemented to forecast wa-
ter consumption based on daily water usage and temperature
records, can be tested for robustness using FGSM-based
adversarial attacks. The model’s temporal nature, handling
sequences of time-series data, makes it an interesting case
for adversarial attacks, as small changes in the input sequence
could propagate and lead to substantial forecasting errors over
time.

To integrate FGSM into the LSTM framework, the first
step involves computing the gradient of the loss function
concerning the input sequence. Since LSTM models handle
time series data, the inputs consist of daily historical records,
including temperature and water consumption. The FGSM
attack aims to perturb this input sequence so that the LSTM
model’s forecast deviates significantly from the actual future
water consumption values.

The adversarial input Xadv is generated by adding a small
perturbation ϵ to each feature (temperature and water con-
sumption) at each time step in the input sequence. The sign of
the gradient of the loss function determines the perturbation.
After generating the adversarial input, the perturbed input
sequence is fed into the LSTM model to assess how robust
the model is against adversarially perturbed data.

Once the FGSM attack is applied, the impact on the
LSTM model’s predictive accuracy is evaluated. As shown
in table II, even for small perturbation values (ϵ=0.001), the
Mean Absolute Error (MAE) and Root Mean Squared Error
(RMSE) increase slightly, indicating a reduction in forecast
precision. As ϵ increases, the error metrics grow significantly,
with MAE exceeding 18 and MAPE surpassing 35% for
(ϵ=0.01). This demonstrates the model’s vulnerability to small
adversarial modifications in the input sequence.

Table II
RESULTS OF FGSM ATTACK WITH DIFFERENT ϵ VALUES ON LSTM

MODELS

Model ϵ MAE RMSE MAPE
LSTM 0.0 12.334 20.653 24.419
LSTM 0.001 12.660 20.861 25.261
LSTM 0.005 13.959 21.718 28.609
LSTM 0.008 14.926 22.385 31.104
LSTM 0.01 15.567 22.840 32.754
LSTM+ 0.0 12.329 20.449 25.032
LSTM+ 0.001 12.758 20.726 26.108
LSTM+ 0.005 14.462 21.879 30.378
LSTM+ 0.008 15.721 22.783 33.531
LSTM+ 0.01 16.551 23.400 35.606

To further evaluate the model’s resilience, Projected Gra-
dient Descent (PGD) is applied. Unlike FGSM, PGD refines
the perturbation iteratively, leading to a stronger adversarial
impact. Table III shows that for ϵ=0.01, the MAE increases
at a similar rate as FGSM, but for lower values of ϵ (e.g.,
0.005 and 0.008), the prediction error already exhibits a
steeper increase in RMSE and MAPE compared to FGSM.
This suggests that even at intermediate perturbation levels,
PGD induces more severe deviations in the LSTM model’s
forecasts.

Table III
RESULTS OF PGD ATTACK WITH DIFFERENT EPSILON VALUES ON LSTM

MODELS

Model ϵ MAE RMSE MAPE
LSTM 0.0 12.334 20.653 24.419
LSTM 0.001 12.660 20.861 25.261
LSTM 0.005 13.960 21.720 28.615
LSTM 0.008 14.933 22.390 31.125
LSTM 0.01 15.579 22.848 32.790
LSTM+ 0.0 12.329 20.449 25.032
LSTM+ 0.001 12.759 20.726 26.108
LSTM+ 0.005 14.467 21.884 30.395
LSTM+ 0.008 15.741 22.797 33.588
LSTM+ 0.01 16.589 23.424 35.708

Comparing both attacks, PGD consistently leads to higher
errors at every tested epsilon value. While FGSM causes a
steady degradation in model accuracy, PGD intensifies this
effect by iteratively optimizing the perturbation, making it
more effective in misleading the model. Notably, for ϵ=0.005,
the difference between FGSM and PGD is already evident in
all error metrics, particularly in RMSE.



VI. LA-BASED UNDETECTABLE FGSM ATTACK

This section presents a learning automata-based approach
for dynamically adjusting the perturbation size in the FGSM
attack on LSTM models [15]. The primary objective is to
improve attack stealth while maintaining its effectiveness in
reducing forecasting accuracy.

A. ϵ Selection with Learning Automata

The learning automata mechanism selects an optimal ϵ
value from a predefined set:

ϵ ∈ {0.0001, 0.0005, 0.001, 0.0025, 0.005} (3)

Each ϵ action has an associated probability, initialized
equally and updated iteratively based on attack performance.

B. Probability Update Mechanism

The reward and penalty factors guide the probability up-
dates:

• If the attack increases the MAPE within a controlled
range, between 30 percent and 50 percent, the selected
ϵ is rewarded.

• If MAPE exceeds 100 percent, the attack is considered
too aggressive, and the probability of using that epsilon
is penalized.

The probability update rule is given by:

P (at) = P (at) + r · (1− P (at)), if rewarded (4)

P (at) = P (at) · (1− p), if penalized (5)

where r is the reward factor, and p is the penalty factor.

C. Delayed Input Strategy

A delayed poisoning strategy introduces an artificial delay
in using adversarial examples. Instead of applying the per-
turbation immediately, the adversarial inputs from previous
iterations are stored and used after a fixed delay. This gradual
attack approach helps to avoid abrupt changes, making the
attack harder to detect.

D. Experimental Results

Using learning automata, the ϵ values were adjusted iter-
atively to maintain an effective yet undetectable attack. The
MAPE progression over iterations showed a smooth increase,
avoiding sharp variations, as shown in 4. The probability
evolution of different ϵ values demonstrated the learning au-
tomata’s ability to converge toward optimal attack parameters.

Figure 5 illustrates how an FGSM attack based on Learning
Automata (LA) can remain imperceptible to a human ob-
server. Unlike conventional perturbations that follow a mono-
tonic increase in magnitude, the penalty and reward mecha-
nism in LA introduces variability, preventing a straightforward
detection pattern. This alternation in perturbation intensity
adds a layer of randomness that disrupts the usual correlation
between distortion and detectability. As a result, the attack
does not exhibit a consistently increasing trend, making it
more challenging to distinguish from natural fluctuations in
the data. This adaptive behavior enhances the stealthiness of
the adversarial perturbations, posing greater difficulties for
both manual and automated detection methods.

Figure 4. Fluctuation of the epsilon variable along the iterations in an LA-
based FGSM Attack

Figure 5. Hidden LA-based FGSM Attack

VII. RANDOM LEARNING AUTOMATA FOR FGSM
ATTACK OPTIMIZATION

This section presents a Random Learning Automata (RLA)-
based approach for dynamically adjusting the perturbation size
in the FGSM attack on LSTM models. The key idea is to
select multiple ϵ values per iteration instead of a single value,
which helps improve attack stealth and avoid detection by the
forecasting model [15].

A. ϵ Selection Using Random Learning Automata

In contrast to standard learning automata, RLA selects a
random combination of ϵ values from a predefined set instead
of a single value:

ϵ ∈ {0.0001, 0.0005, 0.001, 0.0025, 0.005} (6)

At each iteration, a subset of ϵ values is selected with
probabilities determined by:

P (at) = {P1, P2, . . . , Pn},
n∑

i=1

Pi = 1 (7)

where Pi represents the probability of selecting ϵ ϵi.

B. Probability Update Mechanism

To ensure the adaptive selection of ϵ values, the probability
update mechanism follows:

P (at) = P (at) + r · (1− P (at)), if rewarded (8)

P (at) = P (at) · (1− p), if penalized (9)

where:



• r is the reward factor, controlling how quickly successful
epsilon values gain priority.

• p is the penalty factor, reducing the probability of un-
successful ϵ values.

The probabilities are normalized after every update:

P (at) =
P (at)∑n
j=1 Pj

(10)

C. Multi ϵ Selection Strategy

Instead of choosing only one ϵ per iteration, RLA selects
two or three ϵ values and applies them simultaneously:

ϵchosen = {ϵi, ϵj}, where i, j ∈ {1, 2, 3, 4, 5} and i ̸= j.
(11)

The number of selected ϵ values varies at each iteration and
follows:

k ∼ U{1, 3} (12)

where U(1, 3) represents a uniform distribution selecting
either 1 or 2 ϵ values per iteration.

D. MAPE-Based Reward and Penalty System

The attack’s effectiveness is measured using the MAPE.
The MAPE is calculated as:

MAPE =
100

n

n∑
t=1

∣∣∣∣yt − ŷt
yt

∣∣∣∣ , yt ̸= 0 for all t. (13)

where:
• yt is the actual water consumption value at time t.
• ŷt is the adversarially perturbed prediction.
• n is the total number of test samples.
The probability update mechanism follows these rules:
• If the attack increases MAPE within the range 30% <

MAPE < 50%, the selected ϵ values are rewarded.
• If MAPE exceeds 100%, the attack is too aggressive,

leading to a penalty.
• If the MAPE increase per iteration is too high (above a

threshold), a moderate penalty is applied.
To prevent abrupt changes in the attack, the penalty factor

is adjusted dynamically:

padaptive =


3p, if MAPE > 100%

1.5p, if ∆MAPE > 5%

p, otherwise
(14)

E. Delay-Based Adversarial Example Storage

To further enhance stealth, adversarial examples are stored
and applied after a delay. Instead of using the perturbed input
immediately, RLA waits for a iterations before introducing
the modified input into the model:

X
(t)
input = X

(t−a)
adv (15)

where X
(t−a)
adv is the adversarially generated input from a

iterations ago. This delayed input poisoning strategy prevents
sudden changes, making the attack harder to detect.

Figure 6. Fluctuation of the epsilon variable along the iterations in a RLA-
based FGSM Attack

Figure 7. Hidden RLA-based FGSM Attack

F. Experimental Results

The FGSM attack based on Random Learning Automata
(RLA) introduces a higher degree of unpredictability in the
perturbation process. Unlike structured learning mechanisms,
RLA selects ϵ values in a stochastic manner, influenced by
random penalty and reward adjustments, as shown in 6. This
randomness disrupts the formation of any discernible pattern,
making the attack appear chaotic in nature. As a result,
adversarial perturbations exhibit greater variation across dif-
ferent instances, reducing the likelihood of detection through
conventional anomaly-based methods.

The key characteristic of RLA is its reliance on randomness
rather than deterministic adaptation. The ϵ values fluctuate in
a manner reminiscent of natural chaotic systems, where no
two perturbations follow an exact progression. This irregular-
ity prevents straightforward pattern recognition, complicating
both manual and automated defense mechanisms. By embrac-
ing randomness as a core feature, the attack achieves a higher
level of stealth, leveraging the unpredictability inherent in its
learning process to bypass detection frameworks.

The impact of this randomness can be observed in the
graphical representation of the ϵ values throughout the attack
process. This variability makes it challenging to establish a
clear boundary between adversarial and legitimate samples.
Figure 7 illustrates this phenomenon, highlighting how the
fluctuating nature of epsilon contributes to the stealthiness of
the attack.

VIII. MITIGATION STRATEGIES

Protecting digital twin (DT) systems from adversarial at-
tacks requires a combination of cybersecurity measures, data



Table IV
MITIGATION STRATEGIES FOR ADVERSARIAL ATTACKS IN DIGITAL TWIN FORECASTING MODELS

Aspect Data / System Technique / Method Potential Vulnerability Risk Level Possible Attack Vectors Mitigation Strategies
LoRa Encryption Meter data, device provi-

sioning
Built-in AES-128 Poor key management, reuse

of keys
Moderate Key guessing, eavesdropping on

packets
Frequent key rotation, secure key distribu-
tion, proper implementation of AES-128

Meter-to-Gateway Sec LoRa meter to LoRa gate-
way link

Mutual authentication, secure
join procedures

Replay or spoofing of meter
credentials

High Impersonation of valid meters, data
injection

Challenge-response protocols, nonce usage,
short-lived session keys

Firmware Integrity On-device firmware (water
meters, gateways)

Signed or hashed firmware up-
dates

Unauthorized firmware modifi-
cations

High Malicious updates, remote code ex-
ecution

Secure OTA updates with signature checks;
regular patching

Gateway-to-Server Data in transit from gateway
to server

TLS/SSL, VPN, or private
lines

Man-in-the-middle attacks Moderate Traffic interception, unauthorized
data reading

Encrypted communication tunnels,
certificate-based authentication

Net Monitoring & IDS LoRa gateway and backend
network

Intrusion Detection / Preven-
tion Systems

Undetected brute-force, scan-
ning attempts

Moderate Malicious traffic patterns, repeated
authentication failures

Automated anomaly detection, real-time
threat response

ChirpStack Security ChirpStack network server,
application server

Role-based access, secure
APIs

Misconfiguration, weak API
keys

Moderate Unauthorized device provisioning,
data leakage

Secure API endpoints, regular security au-
dits, minimal privilege policies

Database Security (Post-
greSQL)

Stored water consumption
records

Encryption at rest, access con-
trols

Unauthorized DB access or
tampering

High SQL injection, stolen credentials Strict role management, periodic audits, row-
level security

End-to-End Encryption Full data flow from meter to
final storage

Consistent encryption in transit
and at rest

Partial encryption gaps Moderate Plaintext exposure at intermediate
hops, data sniffing

Holistic encryption approach, verifying en-
cryption at all layers

AML Training for AI Forecasting model (e.g.,
LSTM)

Incorporating FGSM/PGD ex-
amples into training

Model easily fooled by small
perturbations

High Data poisoning, gradient-based ad-
versarial attacks

Model retraining on adversarial samples, en-
semble methods

Domain-based
Constraints

Forecasts Physical/hydraulic plausibility
checks

Acceptance of impossible me-
ter readings

Moderate Sudden large outliers can corrupt
predictions

Filter or flag data outside valid us-
age/pressure thresholds

Real-time Anomaly Detec-
tion

Incoming meter data stream Isolation Forest, One-Class
SVM

Persistent adversarial or sensor
tampering

High Silent data drift, gradual poisoning Trigger alerts when usage deviates from his-
torical/seasonal norms

Gradient Masking &
Model Randomization

Neural network layers Adding noise, dropout, random
inference steps

Straightforward gradient-based
attack

Moderate White-box adversary calculates
precise gradients

Stochastic layers obscure gradients, raising
attack complexity

Key Management & Reg-
ular Audits

All cryptographic opera-
tions

Rotating keys, HSM usage,
compliance checks

Stolen or expired keys, un-
patched systems

Moderate Privilege escalation, extended infil-
tration

Automated key rotation, routine compliance
(ISO/IEC 27001), robust backup/redundancy

integrity techniques, and machine learning defenses (Ta-
ble IV). Key strategies focus on strengthening AI models
against manipulation, ensuring secure data transmission, and
implementing real-time monitoring. AI-based anomaly detec-
tion can identify suspicious activity, while adversarial training
improves model robustness. Secure encryption, authentication
protocols, and strict access controls help prevent unauthorized
access and data tampering. Additionally, continuous auditing
and compliance with cybersecurity standards ensure long-term
resilience. By integrating these strategies, DTs can maintain
reliable forecasting and decision-making even in the presence
of cyber threats.
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IX. CONCLUSION AND FUTURE WORK

This study shows that although AI-based DTs are helpful
for water forecasting and resource management, they can
still be attacked. Small, hidden changes in the data—called
adversarial attacks—can reduce LSTM accuracy, increase
costs, and damage trust. One serious method is AML, which
can poison the system quietly. Our research highlights this
hidden danger, which is important for city infrastructure and
water systems where wrong decisions can have big impacts.
Our method using learning automata can adapt to and follow
the monthly and seasonal fluctuations in water consumption
patterns.

Next, we plan to use Zabbix for real-time monitoring
of things like sensor status, unusual forecasts, and network
traffic. With smart alert settings, Zabbix can find problems
fast and react automatically. In future work, we also want to
use federated learning to avoid having one weak point and
explore using multiple models together for stronger defense.
These steps will help protect DTs and keep water systems
safer from cyber threats.
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