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Abstract—Digital twins (DTs) help improve real-time monitor-
ing and decision-making in water distribution systems. However,
their connectivity makes them easy targets for cyberattacks such
as scanning, denial-of-service (DoS), and unauthorized access.
Small and medium-sized enterprises (SMEs) that manage these
systems often do not have enough budget or staff to build strong
cybersecurity teams. To solve this problem, we present a Virtual
Cybersecurity Department (VCD), an affordable and automated
framework designed for SMEs. The VCD uses open-source
tools like Zabbix for real-time monitoring, Suricata for network
intrusion detection, Fail2Ban to block repeated login attempts,
and simple firewall settings. To improve threat detection, we also
add a machine-learning-based IDS trained on the OD-IDS2022
dataset using an improved ensemble model. This model detects
cyber threats such as brute-force attacks, remote code execution
(RCE), and network flooding, with 92% accuracy and fewer false
alarms. Our solution gives SMEs a practical and efficient way to
secure water systems using low-cost and easy-to-manage tools.

Index Terms—Digital Twins, Cybersecurity, Intrusion Detec-
tion System, Machine Learning, Zabbix, Water Distribution,
SMEs

I. INTRODUCTION

As water distribution systems become increasingly con-
nected, they face growing cybersecurity risks [1]–[6]. Integrat-
ing information technology (IT) and operational technology
(OT) has significantly improved efficiency and real-time mon-
itoring, but has also introduced new vulnerabilities. DT tech-
nology, which provides virtual replicas of physical systems,
further enhances these capabilities by improving operational
visibility, predictive maintenance, and decision-making [7],
[8]. However, increased connectivity and intelligence in DTs
expand their attack surface, making them vulnerable not only
to data leaks but also to threats that could impact public health
and infrastructure safety. Cyberattacks such as unauthorized
access, data manipulation, or DoS could result in severe
incidents like water contamination or system disruptions [9].
These attacks can go undetected for long periods, especially
in systems without active monitoring. As the number of
smart sensors and connected devices grows, the complexity of
protecting the infrastructure increases. Thus, robust, automated
cybersecurity measures are crucial.

SMEs, which often manage water distribution networks,
have serious challenges in cybersecurity because they usually

do not have enough money or trained IT staff. Traditional
security systems are expensive and need expert teams, so they
are not good options for small organizations. To solve this,
we propose a VCD, a low-cost and easy-to-use system built
with open-source tools. The main tool in the VCD is Zabbix,
which gives real-time system monitoring, alerting, and data
visualization [?], [10]. It helps detect technical problems and
possible cyber threats in the digital twin environment. To
improve detection, we also added a machine-learning-based
IDS trained on the OD-IDS2022 dataset. This system can find
different types of cyberattacks, such as scanning, brute-force,
RCE, and DoS attacks. By combining simple monitoring with
advanced machine learning, our framework gives SMEs an
effective and affordable way to protect their water systems.

Unlike many existing frameworks, our VCD uniquely com-
bines traditional open-source tools with a customized, explain-
able machine learning model, all optimized for low-resource
environments typical in SME water utilities.

The motivation for this work comes from real needs in
the field. Many small and rural water utilities want to use
digital twin systems, but they are not ready to face growing
cybersecurity risks. Most existing solutions are made for large
companies and need expensive tools or professional IT teams.
SMEs cannot afford these systems and are left with weak
protection. Also, new cyberattacks are becoming smarter and
harder to detect with old methods. Our goal is to offer a
practical and affordable solution that helps SMEs protect their
water infrastructure using tools they can manage themselves.
The proposed Virtual Cybersecurity Department gives them
a way to use open-source software, automate responses, and
improve detection with machine learning—without needing
large investments or complex systems.

The remainder of the paper is organized as follows: Sec-
tion II reviews existing research in cybersecurity for DT-
based water systems. Section III introduces our proposed
VCD framework, including system architecture, communi-
cation flow, cybersecurity integration, and ML-based IDS.
Section IV presents the experimental evaluation, including
results from the Zabbix-based monitoring and the IDS model
performance. Finally, Section V concludes the paper and
outlines directions for future work.
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TABLE I
RECENT WORK ON CYBERSECURITY IN DT-ENABLED WATER DISTRIBUTION SYSTEMS (POST-2020)

Ref. Focus, Challenges, and Tech. & Eval.
Focus Challenges Tech. & Eval.

Zhang et al.
2021 [12] Attack detection in DT water systems Distinguish anomalies from normal ops;

Integrate IT/OT data ML anomaly detection; IoT integration; Simulation testbed

Liu et al.
2022 [13] Secure smart water DTs Ensuring secure communication Cryptographic protocols; Anomaly-based IDS; Emulated

DT with intrusions
Qi et al. 2022

[14] Risk assessment in DT networks Prioritizing vulnerabilities in distributed
systems

Sensor fusion; Statistical threat scoring; Risk evaluation
scenario analysis

Kumar et al.
2023 [15] Mitigate attacks via anomaly+blockchain Data tampering, traceability Blockchain for data integrity; ML detection; Experimental

deployment
Lin et al.
2023 [16]

IDS using DT correlation
(hydraulic/network) Detect stealthy attacks in normal ops Hybrid IDS correlating physical & network metrics;

Lab-scale DT with synthetic attacks

II. RELATED WORK

A. Cybersecurity in DTs for Water Systems

In recent years, DT technology has become more common
in water distribution systems due to its ability to provide real-
time monitoring, predictive analytics, and decision support.
However, this increased connectivity has also introduced new
cybersecurity challenges. DTs, by design, connect multiple
physical and digital components, which increases the attack
surface for potential cyber threats.

Zhang et al. [12] presented a machine-learning-based intru-
sion detection framework for DT-enabled water systems, inte-
grating IoT sensors to detect anomalies in physical and cyber
operations. Liu et al. [13] proposed a secure DT architecture
using encryption protocols and anomaly-based IDS to protect
communication flows between devices and the cloud. Homaei
et al. [1], [2] also highlighted the dual role of DTs as both
monitoring tools and high-risk targets for attacks, especially
in rural water networks.

These studies show that while DTs improve operations, they
also require new security solutions that go beyond traditional
IT protections.

B. Challenges in DT-based Water Infrastructure

Cybersecurity in water distribution systems faces multiple
technical and operational challenges, particularly when DTs
are integrated:

• Anomaly Detection: DT systems rely on normal behav-
ior patterns to function correctly. However, cyberattacks
often mimic legitimate fluctuations (e.g., consumption
peaks), making detection difficult without advanced ML
techniques.

• Scalability and Performance: Real-time monitoring and
analysis require high processing power and efficient algo-
rithms, especially as the number of IoT sensors increases.

• Legacy and Modern System Integration: Many utilities
still use legacy systems that are not easily compatible
with modern IoT devices or secure communication pro-
tocols, creating interoperability issues.

• Network Communication Risks: Protocols used in DTs
are sometimes unencrypted or misconfigured, exposing
them to packet sniffing, spoofing, or DoS attacks.

• Limited Resources in SMEs: Most SMEs lack the IT staff,
funding, or training to maintain enterprise-level cyberse-
curity systems, leaving them especially vulnerable.

• Public Safety and Reliability: Failures in cyber-protected
DTs could lead to water shortages, contamination, or
service disruptions, affecting entire communities.

These issues make it clear that new frameworks should be
lightweight, scalable, and capable of operating in low-resource
environments.

C. Emerging Solutions and Gaps

Recent research has introduced several approaches to im-
prove cybersecurity in DT-enabled water networks. Qi et al.
[14] introduced a risk assessment method using sensor fusion
and statistical analysis to identify vulnerable components. Ku-
mar et al. [15] proposed combining blockchain with anomaly
detection to increase data traceability and prevent tampering.
Lin et al. [16] focused on hybrid intrusion detection systems
that analyze both physical process data and network logs to
detect stealth attacks.

Although these methods show progress, they often rely on
complex systems or high-performance resources, which may
not be suitable for SMEs.

D. Positioning of This Work

In contrast to prior works that require extensive infrastruc-
ture or expert personnel, our proposed VCD offers a practical
alternative for small and medium-sized enterprises. The VCD
uses a combination of lightweight, open-source tools—Zabbix,
Suricata, and Fail2Ban—alongside a machine-learning-based
IDS trained on the OD-IDS2022 dataset.

Unlike many traditional systems that depend solely on
signature-based detection or manual log review, our model
integrates real-time monitoring with automated responses and
a trained ensemble ML model. This hybrid approach improves
detection of advanced threats such as brute-force, RCE, and
DoS attacks, making it well-suited for decentralized water
systems with limited resources. It also reduces the need for
continuous human supervision and simplifies system mainte-
nance, allowing operators to focus on operational tasks rather
than complex cybersecurity management.



Fig. 1. DT platform in the WDS [17]

III. PROPOSED FRAMEWORK

This section describes the structure and components of the
proposed VCD, a cost-effective monitoring framework for DTs
in WDS. The system is designed to help SMEs enhance their
operational security through automated, open-source tools.
The framework includes four main components: the DT system
overview, system architecture and communication flow, cyber-
security integration using Zabbix and Suricata, and a machine
learning-based IDS.

A. DT System Overview

The VCD is built on a Digital Twin platform that integrates
real-time data collection, AI-driven analytics, and secure com-
munication. It consists of three main layers: cyber-physical
systems (CPS), data management, and predictive analytics.

The CPS layer includes sensors, PLCs, and IoT water
meters deployed in water treatment facilities and distribution
pipelines. These devices collect environmental, operational,
and consumption data. The data is transmitted securely using
technologies such as LoRaWAN, VPN, and SSH. AI/ML
models—including LSTM, Prophet, and LightGBM—are used
for water usage forecasting, leakage detection, and energy
monitoring. Additionally, GIS tools support spatial analysis
and map-based monitoring (Figure 1) [17].

This architecture is designed for rural and small-scale water
utilities but is scalable for larger infrastructures. It provides
enhanced operational control, cost efficiency, and resource
optimization.

B. System Architecture and Communication Flow

The system consists of three key components: edge nodes,
secure communication channels, and a central server.

• Edge nodes include Raspberry Pi devices equipped with
Zabbix proxies, IoT meters, SCADA units, and PLCs.
These nodes are strategically placed at water plants

Fig. 2. Deployment of Zabbix proxies on Raspberry Pi devices for real-time
data collection from IoT meters and SCADA systems.

and administrative locations to ensure complete visibility
(Figure 2).

• Secure communication is established using VPN tunnels,
SSH protocols, and LoRaWAN networks. This ensures
that data from the field devices reaches the central server
with integrity and confidentiality. Zabbix continuously
monitors the stability and quality of these connections.

• The central server, hosted on a Virtual Private Server
(VPS), aggregates all incoming data. It runs Zabbix for
real-time monitoring, Suricata for intrusion detection,
and Fail2Ban for automated IP blocking. The server can
optionally connect to cloud platforms like AWS or Azure
for data storage and computational scalability.

Figure 3 presents the VCD architecture, highlighting the
placement of Zabbix and the ML-based IDS modules.

C. Cybersecurity Integration with Zabbix and Suricata

The core of the cybersecurity layer is Zabbix, which pro-
vides data collection, visualization, and alerting functionalities.
It monitors metrics such as network traffic, CPU load, memory
usage, and failed login attempts. Zabbix is integrated with
Suricata, an open-source IDS that inspects network packets
and detects threats like port scanning, brute-force logins, and
unusual data flows. Suricata’s alerts are visualized in the
Zabbix dashboard. Fail2Ban complements the system by mon-
itoring authentication logs. It automatically bans IP addresses
that exceed a defined number of failed login attempts. This
combination of tools ensures multi-layered protection against a
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Fig. 3. VCD architecture with Zabbix and ML-based IDS for DT-enabled SME water systems

wide range of attacks while remaining lightweight and suitable
for resource-constrained environments.

D. AI/ML-Based Intrusion Detection System

As part of the proposed framework, we developed a machine
learning-based IDS to improve the detection of cyber threats
in smart water networks. This IDS is trained on the OD-
IDS2022 dataset, which provides 1,031,916 labeled samples
[18]. Each sample contains 82 features representing flow-based
network data, including IP addresses, port numbers, protocol
types, packet lengths, time durations, and flag behaviors.
These records include normal traffic and 29 attack types
such as DoS, brute force, SQL injection, RCE, hijacking,
and reconnaissance. To simplify classification and reduce
overfitting, we grouped the 29 attack classes into seven general
categories, listed in Table II. This grouping keeps the detection
meaningful while making the machine learning models easier
to train and evaluate.

TABLE II
7-GROUP ATTACK CATEGORIZATION

Group Includes
BENIGN BENIGN
DOS DoS Hulk, Slowhttptest, GoldenEye, Slowloris, DDoS-*
BRUTEFORCE Bruteforce-Web, Bruteforce-XSS, FTP/SSH-Patator, Web Brute Force
INJECTION SQL/LDAP/SIP Injection, Web SQL Injection
HIJACKING MITM, Hijacking
RCE RFI, Exploit, Cmd Injection, Upload, Backdoor
OTHER Infiltration, Bot, PortScan, Web XSS

We proposed and implemented five machine learning mod-
els as part of the IDS component. All models use the same
preprocessing pipeline: label encoding, numerical feature ex-
traction, mutual information for feature selection, data nor-
malization, and oversampling with SMOTE to balance class
distribution.

1) Random Forest Classifier: The Random Forest (RF)
model builds many decision trees from random subsets of
the training data. Each tree gives a class prediction, and the
final result is selected by majority voting. This is expressed in



Equation 1.

ŷ = mode (h1(x), h2(x), . . . , hT (x)) (1)

where ht(x) is the prediction of tree t, and T is the total
number of trees.

2) Tuned LightGBM Classifier: LightGBM is a gradient
boosting algorithm that builds trees sequentially to minimize
prediction errors. It grows trees leaf-wise and uses a loss
function with regularization, as shown in Equation 2.

L(t) =

n∑
i=1

L(yi, ŷ
(t−1)
i + ft(xi)) + Ω(ft) (2)

Here, L is the loss function, ŷ(t−1)
i is the previous predic-

tion, ft is the new decision tree, and Ω is the regularization
term.

3) Improved Ensemble Model (v1): This model combines
three base classifiers—Random Forest, LightGBM, and a
Multi-layer Perceptron (MLP)—into a soft voting ensemble.
It averages the class probabilities from each model and se-
lects the class with the highest average score, as shown in
Equation 3.

ŷ = argmax
c

(
1

M

M∑
m=1

Pm(c | x)

)
(3)

where Pm(c | x) is the probability of class c predicted by
model m, and M is the number of models.

4) Weighted Ensemble with Feature Engineering: This
model improves ensemble voting by assigning custom weights
to each classifier and using new engineered features like packet
length ratios and size variations. The prediction formula with
weights is given in Equation 4.

ŷ = argmax
c

(
M∑

m=1

wm · Pm(c | x)

)
(4)

where wm is the weight assigned to model m, and
∑

wm =
1.

5) Improved Ensemble (v2): The final and most optimized
model uses the same weighted voting as in Equation 4, but
with improved components. These include:

• A deeper MLP with 3 hidden layers (256, 128, 64) and
ReLU activation

• A tuned LightGBM with max depth = 10, 64 leaves, and
learning rate = 0.05

• A larger Random Forest with 150 trees and class-
balanced weighting

The ensemble weights are selected based on validation
scores to ensure balanced detection across all classes, espe-
cially minority attacks like RCE and Hijacking.
Note: To improve model transparency, we use SHAP (SHap-
ley Additive exPlanations), a method from cooperative game
theory that attributes prediction changes to individual features.
The SHAP value for a feature i is calculated using:

ϕi =
∑

S⊆F\{i}

|S|!(|F | − |S| − 1)!

|F |!
[f(S ∪ {i})− f(S)] (5)

Here, F is the full feature set, S is a subset of features
excluding i, and f is the prediction function. SHAP values
explain how much each feature contributes to the final predic-
tion, helping operators understand the decision process of the
IDS.

In summary, the AI-based IDS module strengthens the
proposed framework by enabling real-time detection of var-
ious cyber threats using interpretable and resource-efficient
machine learning models. In the following section, we present
the experimental evaluation and performance results of the IDS
models, along with the integration of Zabbix for continuous
monitoring in the digital twin environment.

IV. EXPERIMENTAL EVALUATION AND MODEL
PERFORMANCE

This section presents the experimental evaluation of the
proposed VCD for water systems. The validation includes
two parts: real-time monitoring results using Zabbix, and
the performance of machine learning models for intrusion
detection.

A. Monitoring Setup and Attack Simulation

The VCD was tested in a hybrid digital twin setup. Zabbix
server was installed on a VPS, and several Raspberry Pi
devices were installed in field locations like water plants and
offices. These Raspberry Pis worked as Zabbix proxies and
collected logs from IoT meters, PLCs, and SCADA systems.

To test the system, three types of cyberattacks were per-
formed:

• Nmap Scan (Reconnaissance): A stealth scan was
launched using Nmap to find open ports. Suricata de-
tected this scan and sent alerts to Zabbix. The traffic
pattern showed abnormal packet behavior (Figure 4).

• Brute Force (Hydra + SSH): An SSH brute-force attack
was simulated using Hydra. Zabbix recorded many failed
logins and increased CPU usage. Suricata also detected
frequent access to port 22. Fail2Ban blocked the at-
tacker’s IP after too many failed attempts, as shown in
Figures( 5, 6).

• DoS (hping3): A SYN flood attack was done using
hping3. It caused high CPU and memory usage. Zabbix
showed this unusual behavior and created alerts, even
when the logs were not clear.

These tests showed that the system can detect and respond
to real cyberattacks using simple and open-source tools.

B. Monitoring Indicators

Several indicators were collected from Zabbix to check the
system behavior:

• CPU and Memory Usage: These increased during DoS
attack and helped to detect it (Figure 7).



Fig. 4. logging attempt to the servers

Fig. 5. Fail2Ban logs showing IP bans triggered by repeated failed SSH login
attempts

• Network Traffic (Upload/Download): Abnormal traffic
helped detect Nmap and DoS attacks (Figure 8).

• Dropped and Malformed Packets: These increased during
the flood attack.

• Failed Login Attempts: Zabbix tracked this for brute force
detection, and Fail2Ban blocked the IP.

• Suricata Alerts: Number of alerts helped show which
attack was happening.

• Alert Time: The system created alerts in a few seconds
after the attack started.

C. Machine Learning IDS Evaluation

Besides traditional detection, five machine learning models
were tested using the OD-IDS2022 dataset. The goal was to

Fig. 6. Suricata alerts for SSH brute-force attack attempts showing repeated
unauthorized access to port 22

Fig. 7. Memory usage monitoring under DDoS Attack

Fig. 8. Network monitoring under DDoS Attack

classify seven types of network traffic, including attacks like
RCE, hijacking, and injection.

Table III shows the performance of each model. The best
model was the improved ensemble (v2), which used Light-
GBM, Random Forest, and MLP together.

TABLE III
COMPARISON OF IDS MODELS FOR 7-CLASS CATEGORIZATION

(OD-IDS2022 DATASET)

Model Acc. Macro F1 RCE F1 HIJACK Rec. Explainable Gran.
Random Forest 77.0% 0.47 0.37 0.54 ✓ SHAP 30+
LightGBM (Tuned) 82.2% 0.714 0.526 0.609 – (addable) 7
Improved Ens. (v1) 80.4% 0.6645 0.55 0.73 ✓ SHAP 7
Weighted Ens. + FE 80.2% 0.66 0.54 0.76 ✓ SHAP 7
Improved Ens. (v2) 92.0% 0.88 0.86 0.87 ✓ SHAP 7

Table IV shows the full report for the best model. It gives
good results in all classes, including small ones like injection.
Figure 9 shows the confusion matrix.

TABLE IV
ENSEMBLE MODEL CLASSIFICATION REPORT

Class Precision Recall F1-score Support
BENIGN 0.91 0.93 0.92 2024
BRUTEFORCE 0.87 0.85 0.86 2377
DOS 0.96 0.97 0.96 6463
HIJACKING 0.84 0.87 0.85 2475
INJECTION 0.82 0.78 0.80 220
OTHER 0.92 0.93 0.93 14629
RCE 0.85 0.88 0.86 1812
Accuracy 0.92 30000
Macro Avg 0.88 0.89 0.88 30000
Weighted Avg 0.92 0.92 0.92 30000

This experiment confirms that the proposed VCD can detect
and respond to cyberattacks in real time using both rule-based



Fig. 9. Confusion matrix showing class-wise prediction performance across
7 traffic categories.

and AI-based tools. It works well even in small water systems
with low-cost hardware.

V. CONCLUSION AND FUTURE WORK

This study proposed a VCD to improve the cybersecurity
of DTs used in water networks, with a focus on SMEs.
The solution combines free tools: Zabbix for live monitoring,
Suricata as an IDS, and Fail2Ban to block repeated login
attempts. Zabbix proxies were installed on Raspberry Pi units
to collect data from SCADA, PLCs, and IoT sensors. We tested
the system with simulated attacks (port scanning, brute-force
on SSH, and DoS), and it responded correctly with alerts, log
collection, and IP blocking.

The IDS part was developed using the OD-IDS2022 dataset
(over one million records with 29 classes). We simplified the
task by grouping the classes into 7 attack types. We tested
five ML models, and the final version (v2) used a combina-
tion of RF, LGBM, and MLP with SHAP for explainability.
This model gave the best results for detecting attacks like
RCE, hijacking, and injection. The full framework is low-
cost, supports real-time detection, and works well for small
organizations without advanced computing systems.

For future work, we will explore LLMs to improve detection
accuracy, reduce false positives, and classify threats more
precisely. We also plan to integrate blockchain to protect data
integrity and support trusted operations. These upgrades aim
to create smarter and more secure water management systems.
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