
https://orcid.org/0009-0003-6373-153X

Simplified and Secure MCP Gateways for

Enterprise AI Integration

Ivo Brett CISSP, B.Eng, MSc

Solution Architect / Educator

independent.academia.edu/ivobrett

Abstract— The increasing adoption of the Model Context

Protocol (MCP)[1] for AI Agents necessitates robust security

for Enterprise integrations. This paper introduces the MCP

Gateway to simplify secure self-hosted MCP server

integration.[2] The proposed architecture integrates security

principles, authentication, intrusion detection, and secure

tunneling, enabling secure self-hosting without exposing

infrastructure. Key contributions include a reference

architecture, threat model mapping, simplified integration

strategies, and open-source implementation recommendations.

This work focuses on the unique challenges of enterprise-

centric, self-hosted AI integrations, unlike existing public MCP

server solutions.[3]

Keywords—AI Agents, MCP, Security

I. INTRODUCTION

The Model Context Protocol (MCP) enhances AI systems
by enabling dynamic interaction with external tools but
introduces critical security risks.[4] Enterprises
implementing MCP servers face amplified challenges, as
developers must manage OAuth, API security, and threat
mitigation—diverting focus from core AI integration tasks.
To address this, we propose the MCP Gateway, a dedicated
intermediary that centralizes security, monitoring, and policy
enforcement. The latest versions of the MCP Specification[2]
mandates OAuth 2.1 and Dynamic Client Registration,
increasing compliance complexity. The Gateway abstracts
these requirements, handling authentication, identity
integration, and access control while ensuring spec-
compliant deployments. As AI adoption grows, tailored
security for protocols like MCP becomes essential. The MCP
Gateway mitigates risks without overburdening developers,
enabling secure, scalable AI-tool integration.

II. CONTRIBUTIONS

This paper makes three key contributions: (a) A reference
architecture for MCP Gateways validated through
implementation; (b) Threat model mappings with
corresponding mitigation strategies; and (c) Tool-specific
implementation guidelines.

III. METHODOLOGY

The research methodology comprised: (1) Analysis of
MCP security challenges through technical documentation
and community discourse; (2) Development of security
controls compliant with MCP protocol standards; and (3)
Empirical validation via prototype implementation. The
approach balanced standardization requirements with
practical deployment considerations.

IV. ARCHITECTURAL SEPARATION OF MCP COMPONENTS

The evolution of MCP's security requirements has led to
thoughtful enhancements that better align with enterprise

security practices[8]. The 2025-03-26 MCP specification[2]
introduced OAuth 2.1 support, prompting a clear distinction
between the resource server (responsible for tool execution)
and the authorization server (managing OAuth flows). This
separation reflects a growing focus on scalability, simplified
token management, and alignment with zero-trust
architecture—ultimately making the specification more
adaptable and robust for enterprise environments.

Fig. 1. Separation of Resource and Authorization in MCP Server.

This led to the conceptual separation of concerns: the MCP
Gateway assumes authorization responsibilities (OAuth 2.1
flows, token validation, identity integration) while MCP
servers focus solely on resource provision. The Gateway acts
as a policy enforcement point, translating enterprise identity
tokens into MCP-specific credentials through a dedicated
authentication service. This architecture aligns with
enterprise patterns where API gateways front specialized
services, while maintaining compliance with MCP
specifications through protocol-level interoperability. The
separation reduces attack surface (isolating sensitive auth
logic) and simplifies server development - critical for
adoption in security-conscious environments.

V. REFERENCE ARCHITECTURE

The MCP Gateway provides a layered security
architecture designed to protect self-hosted MCP Servers.

Fig. 2. Reference Architecture

The MCP gateway’s core components include:

• Security Proxy: Handles ingress traffic with TLS
termination, rate limiting, and forward authentication
delegation.

• Authentication Gateway: Manages OAuth 2.1 flows,
integrates with enterprise identity providers, and
validates tokens while offloading auth from MCP
servers.

• Zero Trust Tunnelling: Establishes identity-aware
encrypted tunnels to isolate backend servers,
enforcing fine-grained access policies.

• Security Middleware: Performs deep inspection with
threat detection and centralized logging.

• Backend MCP Servers: Simplified, isolated
components focused solely on tool execution,
leveraging the gateway for security.

VI. MAPPING TO SECURITY FRAMEWORKS

Before proceeding with the detailed threat mapping, it is
helpful to briefly review the seven layers of the MAESTRO
framework[5], which structures our analysis. MAESTRO
breaks down the AI agent ecosystem into distinct layers:
Foundation Models (Layer 1) provide core AI capabilities;
Data Operations (Layer 2) and Agent Frameworks (Layer 3)
manage data flow and tooling, respectively. Deployment
Infrastructure (Layer 4) and Evaluation and Observability
(Layer 5) cover the hosting environments and monitoring
systems. Security and Compliance (Layer 6) spans across all
layers, enforcing governance and control. Finally, the Agent
Ecosystem (Layer 7) represents the external interface where
business applications interact with users and third-party
services. The table below provides a structured and
comprehensive mapping between the MCP Gateway
components and the MAESTRO framework. It serves as a
valuable tool for securing enterprise AI integrations by
systematically identifying and addressing potential threats.

TABLE I. MCP GATEWAY COMPONENT MAPPING TO THREATS

MCP

Gateway

Area

MAESTRO

Layer(s)
Key Threats

Primary

Mitigations

Security
Proxy

4 (Deployment) Denial of
Service,

Protocol Abuse

Rate limiting,
Traffic shaping,

Connection limits,

Strict protocol
validation, WAF

rules

Auth

Gateway

3 (Agent

Frameworks), 6

(Security &

Compliance)

Agent Identity

Attack, Lack of

Auditability,

Regulatory
Non-

Compliance

Strong OAuth 2.1

implementation,

Scoped tokens,

Secure key
management,

Logging, Privacy

compliance
adherence

Zero Trust

Tunneling

4

(Deployment),
6 (Security &

Compliance)

Data

Exfiltration,
Side Channel

Information

Leakage

Network

segmentation,
Encryption in

transit, Zero Trust

Access, Service
mesh, Immutable

infrastructure,

Security audits

Security 5 (Evaluation & Tool Poisoning, Threat detection

MCP

Gateway

Area

MAESTRO

Layer(s)
Key Threats

Primary

Mitigations

Middleware Observability) Threat
Detection

Failure

(IDS), Content
security policies,

Input validation,

Continuous behavior
monitoring,

Immutable audit

trails

Backend
MCP

Servers

3 (Agent
Frameworks), 4

(Deployment)

Injection
Attacks,

Framework

Evasion, Host
System

Compromise

Isolation, Strict
input validation,

Continuous

framework
hardening,

Containerization,
Host-based intrusion

detection

a. Threats as per Maestro Framework [5]

We further evaluated the security posture offered by the
MCP Gateway architecture against the key mitigation
strategies and identified threat categories, based on the
security framework proposed by Narajala & Habler [4]. The
MCP Gateway addresses the key security requirements
outlined by Narajala & Habler by centralizing critical
controls across network, application, identity, and monitoring
layers. It enforces strong authentication and authorization
through OAuth 2.1 integration, mitigating identity and access
control subversion. Secure Zero Trust tunnelling protects
communications from interception and lateral movement,
aligning with their network segmentation principles.
Application-level protections such as protocol validation,
traffic inspection, and threat detection (e.g., tool poisoning
mitigation through WAF and IDS integration) defend against
resource exhaustion, tool misuse, and injection attacks. The
gateway’s continuous logging and anomaly detection
capabilities support the operational security and continuous
monitoring requirements emphasized in the framework. By
consolidating these defences at a centralized ingress point,
the MCP Gateway simplifies enterprise deployments while
meeting the defence-in-depth, Zero Trust, and secure tool
management practices advocated for robust MCP security.

VII. PROOF OF CONCEPT IMPLEMENTATION

To validate the feasibility and security potential of the
proposed MCP Gateway architecture, we developed a
working proof of concept (PoC) using publicly available
tools and minimal custom infrastructure. This
implementation demonstrates how a modular, zero-trust
gateway can securely mediate interactions between MCP
clients and servers without embedding complex authorization
logic into the backend.

The PoC was deployed on a hardened public facing
Virtual Private Server (VPS) running Ubuntu Linux (Ubuntu
22.04 64 Bit). This setup provided a reliable and transparent
environment for the deployment, ensuring compatibility with
the components used in the implementation.

Pangolin[11] acted as the central management server,
providing identity and access management. It securely
exposed the local MCP server via WireGuard tunnels,
preventing direct exposure to the public internet.

Pangolin leverages Traefik[12] for HTTP proxying, Let's
Encrypt for Automated SSL certificates (https) and Gerbil
for WireGuard tunnel management. Pangolin also

incorporates dedicated internal components—including
Badger for authentication services and Newt for WireGuard
tunnel management - adopting a modular architecture that
enhances security, simplifies maintenance, and ensures
scalability. The following components were utilized with the
specified versions for reproducibility:

TABLE II. SPECIFIC VERSIONS OF KEY COMPONENTS

POC Software Version

Traefik V3.3.3

Wireguard 2023-12-11 release

Crowdsec V1.6.8

Crowdsec Bouncer Traefik plugin V1.4.2

Pangolin (inc Gerbil/Newt/Badger) V1.2.0

Docker V28.1.1

MCP Inspector V0.10.2

We used the Anthropic MCP Inspector[7] as the primary
client interface for initiating tool requests and inspecting
protocol interactions. For external demonstration and testing,
the Cloudflare AI Playground[6] was employed to simulate
MCP interactions across the public Internet.

The system includes two stateless MCP servers,
implemented with Server-Sent Events (SSE)—one hosted
locally and one in the cloud—neither of which includes built-
in authentication. These servers expose tools and resources
accessible through the gateway.

A secure WireGuard-based tunnel connects the MCP
Gateway to the local MCP server, with Pangolin serving as a
tunnelled mesh reverse proxy. This setup ensures encrypted,
identity-aware communication between the public gateway
and internal services, preserving security even across
distributed infrastructure.

The gateway itself is powered by Traefik, which
functions as a secure proxy and ingress controller. Traefik
applies several layers of middleware

Fig. 3. Proof Of Concept Implementation

Forward Authentication Middleware delegates OAuth 2.1
flows to a custom-built component that interacts with
identity providers (e.g., GitHub, Google) and returns
authentication status and authentication token.

Intrusion Detection Middleware (CrowdSec) monitors
traffic for anomalous behaviour and enforces behavioural
bans [9]. This is achieved using Crowdsec Bouncer in a

Traefik plugin[13] which provides virtual patching
capabilities and WAF for advanced behaviour detection.
Request Tracing and Logging are integrated for full
observability and post-incident analysis. In addition, we
developed a User Interface Manager to support onboarding
and configuring new local MCP servers. This includes the
ability to assign policies via Traefik middleware to MCP
servers.

A core function of the MCP Gateway is its capability to
abstract and manage the complexity of the OAuth
authorization flow on behalf of MCP servers. This design
enables developers to implement standard-compliant MCP
servers using the Server-Sent Events (SSE) transport
protocol, which can be securely deployed within enterprise
networks. When an unauthenticated request is received, the
gateway proxy[10] automatically issues a 401 Unauthorized
response, prompting the client to initiate a metadata
discovery process. In response to the .well-known/oauth-
authorization-server request, the MCP Gateway returns the
necessary metadata, including the authorization server URI
required for the OAuth exchange. Following successful user
authentication, the client reattempts the original request, and
the gateway proxy authorizes access based on the validated
OAuth token, seamlessly enabling secure and authenticated
communication with the MCP server.

Fig. 4. External OAuth2 message flow

This PoC demonstrates that a dedicated MCP Gateway
can effectively externalize authentication, authorization, and
traffic inspection from the MCP servers, aligning with the
updated OAuth 2.1 requirements of the official MCP
Specification (2025-03-26). It further confirms that modern
open-source components can be composed into a secure,
flexible architecture suitable for enterprise-scale AI
integration.

Fig. 5 below shows key snippets of the Traefik
configuration demonstrating the implementation of essential
security features. These include the setup of middleware for
MCP authentication, OAuth metadata redirection, and
CrowdSec protection.

Fig. 5. Traefik Configuration – dynamic_config.yaml

VIII. EVALUATION AND DISCUSSION

Qualitative testing showed the gateway's potential: The
Oauth2 Gateway enforced authentication; Traefik blocked
unauthenticated requests; invalid Authorization tokens were
rejected. Traefik rate limiting and CrowdSec blocked
excessive requests. Backend servers were isolated via
WireGuard. Centralized authentication and WAF avoided
replication on backend servers. Embedding security in each
MCP server leads to duplication and complexity so
offloading to a specific gateway shows merits.

Benefits:

The MCP Gateway decouples security from MCP
servers, centralizes policy enforcement, enhances security
posture through defence-in-depth and Zero Trust, and
simplifies compliance with centralized logging.

Comparison with Alternatives:

Standard API Gateways lack MCP-specific threat
understanding and Public MCP gateway solutions do not yet
fully address enterprise self-hosted needs.

Limitations and Challenges:

Challenges and risks include the complexity of
integrating components, performance overhead from security
processes, managing keys/tokens, tuning threat detection
rules, and ensuring reliable tunnel management. Another
important consideration is the maturity of foundational
components: Pangolin[11], which underpins the tunnelling
and management framework, is a relatively new open-source
project (less than six months old at the time of writing) and

depends on several underlying technologies, including
WireGuard. Over time, the security resilience of Pangolin
and its ecosystem will become clearer through broader
adoption, auditing, and community contributions.

Further Research:

Future work includes advanced AI/ML-based tool
behaviour analysis, developing custom parsers, scenarios,
and collections to enhance the MCP Gateway’s intrusion
detection capabilities, enabling more accurate detection of
protocol-specific threats and contributing reusable security
modules back to the broader open-source community, and
more granular, context-aware authorization.

IX. CONCLUSION

The proposed MCP Gateway architecture enables secure
enterprise MCP adoption by centralizing security
responsibilities. PoC results show feasibility in mitigating
key risks. By abstracting complexity, it facilitates robust,
secure, scalable, and spec-compliant AI integrations, crucial
for trustworthy AI systems. While challenges remain, the
gateway pattern offers a pragmatic path for managing MCP
security at scale.

X. REFERENCES

[1] Anthropic, "Introducing the model context protocol," Anthropic

Developers Documentation, 2024. Accessed: 2025-04-01. [Online].
Available: https://developers.anthropic.com/

[2] Opensource Community, "Specification - Model Context Protocol,"
March 2025. [Online]. Available:
https://modelcontextprotocol.io/specification/2025-03-26

[3] Anthropic, "List of public Model Context Protocol Servers,"
Anthropic Github. Accessed: 2025-04-01. [Online]. Available:
https://github.com/anthropics/mcp-public-servers

[4] Narajala & Habler, "Enterprise-Grade Security for the Model Context
Protocol (MCP): Frameworks and Mitigation Strategies," [Online].
Available: https://doi.org/10.48550/arXiv.2504.08623

[5] Ken Huang, "Agentic AI Threat Modeling Framework: MAESTRO |
CSA," CSA, Feb. 6, 2025. Accessed: 2025-04-22. [Online].
Available: https://cloudsecurityalliance.org/blog/2025/02/06/agentic-
ai-threat-modeling-framework-maestro/

[6] Cloudflare, "Workers AI LLM Playground (Testing Tool)," Apr. 22,
2025. [Online]. Available: https://playground.ai.cloudflare.com

[7] Anthropic, "MCP Inspector" GitHub, Apr. 22, 2025. [Online].
Available: https://github.com/modelcontextprotocol/inspector

[8] Christian Posta, "The Updated MCP OAuth Spec Is a Mess," Apr. 22,
2025. [Online]. Available: https://blog.christianposta.com/the-
updated-mcp-oauth-spec-is-a-mess

[9] CrowdSec, "Quickstart: Protect Traefik with CrowdSec AppSec,"
CrowdSec Documentation. [Online]. Available:
https://docs.crowdsec.net/docs/next/appsec/quickstart/traefik/

[10] Ivo Brett, "MCPAuth - MCP Gateway for external Authentication and
Authorization," GitHub repo, 2025. Accessed: 2025-04-01. Available:
https://github.com/oidebrett/MCPAuth

[11] Pangolin. Self-hosted tunneled reverse proxy, Accessed: 2025-04-01.
Available: https://docs.fossorial.io/Getting%20Started/quick-install

[12] Traefik, Open source reverse proxy and ingress controller, Accessed
2025-04-01, Available: https://traefik.io/traefik/

[13] Crowdsec Bouncer Traefik plugin, Traefik plugin for Crowdsec -
WAF and IP protection, Accessed: 2025-04-02: Available
https://github.com/maxlerebourg/crowdsec-bouncer-traefik-plugin

https://developers.anthropic.com/
https://modelcontextprotocol.io/specification/2025-03-26
https://github.com/anthropics/mcp-public-servers
https://doi.org/10.48550/arXiv.2504.08623
https://cloudsecurityalliance.org/blog/2025/02/06/agentic-ai-threat-modeling-framework-maestro/
https://cloudsecurityalliance.org/blog/2025/02/06/agentic-ai-threat-modeling-framework-maestro/
https://playground.ai.cloudflare.com/
https://github.com/modelcontextprotocol/inspector
https://blog.christianposta.com/the-updated-mcp-oauth-spec-is-a-mess
https://blog.christianposta.com/the-updated-mcp-oauth-spec-is-a-mess
https://docs.crowdsec.net/docs/next/appsec/quickstart/traefik/
https://github.com/oidebrett/MCPAuth
https://docs.fossorial.io/Getting%20Started/quick-install
https://traefik.io/traefik/

