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Abstract—As generative Al (GenAl) agents become more
common in enterprise settings, they introduce security challenges
that differ significantly from those posed by traditional systems.
These agents aren’t just LLMs—they reason, remember, and
act, often with minimal human oversight. This paper introduces
a comprehensive threat model tailored specifically for GenAl
agents, focusing on how their autonomy, persistent memory
access, complex reasoning, and tool integration create novel
risks. This research work identifies 9 primary threats and
organizes them across five key domains: cognitive architecture
vulnerabilities, temporal persistence threats, operational execu-
tion vulnerabilities, trust boundary violations, and governance
circumvention. These threats aren’t just theoretical—they bring
practical challenges such as delayed exploitability, cross-system
propagation, cross system lateral movement, and subtle goal
misalignments that are hard to detect with existing frameworks
and standard approaches. To help address this, the research work
present two complementary frameworks: ATFAA (Advanced
Threat Framework for Autonomous AI Agents), which organizes
agent-specific risks, and SHIELD, a framework proposing prac-
tical mitigation strategies designed to reduce enterprise exposure.
While this work builds on existing work in LLM and Al security,
the focus is squarely on what makes agents different—and why
those differences matter. Ultimately, this research argues that
GenAl agents require a new lens for security. If we fail to
adapt our threat models and defenses to account for their unique
architecture and behavior, we risk turning a powerful new tool
into a serious enterprise liability.

Index Terms—generative Al, threat model, Al agents, cyber-
security, attack vectors, security framework

I. INTRODUCTION

Generative Al (GenAl) agents are emerging as a new cat-
egory of enterprise technology. Unlike conventional systems,
they combine large language models (LLMs) with planning
capabilities, persistent memory access, and third party/internal
tool integration [!]. These agents aren’t limited to gener-
ating responses—they actively interact with systems, make
decisions, and act across enterprise environments, often with
minimal human oversight [2].

This growing autonomy is what sets them apart—and what
makes them particularly challenging from a security stand-
point. GenAl agents can traverse organizational boundaries,
make mutating API calls, and manipulate enterprise data,
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sometimes without direct user input [3]. They’re dynamic,
adaptive, and deeply embedded into operational workflows.

Traditional security measures may not fully address the
risks these agents pose. Agentic architecture—a blend of
reasoning components, memory systems, language interfaces,
and external tools—introduces a much broader and more
complex attack surface than most existing frameworks were
designed to handle [4]. While valuable, frameworks such as
the OWASP Top 10 for LLMs [5], NIST AI Risk Management
Framework [2], MITRE ATLAS [6], and CSA MAESTRO
[7] tend to treat LLMs as isolated components or provide
high-level risk guidance. They often don’t account for the
emergent security properties that arise when autonomy, long-
term memory access, and dynamic tool usage are combined.

This paper aims to bridge that gap. It introduces the Ad-
vanced Threat Framework for Autonomous AI Agents (AT-
FAA) and a supporting defense model, SHIELD, to address
the unique threats presented by GenAl agents. This work
contributions include:

o An analysis of GenAl agent architectures, with a focus
on security implications stemming from autonomy, rea-
soning, memory, and tool use.

o A taxonomy of 9 primary threats targeting these agentic
capabilities.

o A discussion of relevant attack vectors, including under-
explored exploitation techniques.

e Mapping threats to the STRIDE framework and tailored
SHIELD mitigation strategies.

The field is evolving quickly, and this threat model offers a
strong foundation for developing security strategies that are
tailored to the operational behavior of autonomous agents.
Without dedicated controls, what promises to be a transfor-
mative technology could easily become a significant enterprise
liability [6].

II. BACKGROUND

A. Literature Review

Despite the accelerating adoption of GenAl agents, the
security research landscape remains relatively fragmented. The
review of recent literature (2023-2025) reveals that while
foundational risks—Ilike prompt injection—are well-covered,



deeper architectural concerns tied to autonomy and persistent
behavior are often overlooked.

Wang et al. [8] provide a useful summary of LLM agent se-
curity issues, but their focus is mostly on prompt manipulation
rather than systemic vulnerabilities. Chen et al. [O] explore
memory corruption through “AgentPoison” and demonstrate
that persistent context can be compromised, though they stop
short of addressing broader enterprise implications.

Frameworks like MITRE ATLAS [6] and the NIST Al
Risk Management Framework [2] are helpful starting points,
but they tend to focus on classical machine learning systems
or generalized Al risks. ATLAS, for example, leans heavily
toward adversarial ML patterns, while NIST’s framework pro-
vides high-level principles but lacks detailed controls tailored
to agents.

OWASP’s Top 10 for LLM Applications [5] highlights
common issues with LLM-powered tools, yet doesn’t deeply
explore the combined risks of reasoning, memory, and tool
execution. CSA’s MAESTRO [7] and OWASP’s newer Agentic
Threat Model [10] move closer to addressing agent-specific
concerns, but are still early-stage and lack unified mitigation
guidance.

This research highlights a gap here: most existing frame-
works treat GenAl agents as conventional apps that include
LLMs, rather than as autonomous, interconnected systems
with emergent behaviors. This paper proposes a security model
specifically designed to account for the architectural and
operational distinctions of GenAl agents.

B. GenAl Agents Architecture

GenAl agents represent a significant milestone towards
autonomous systems. Unlike common LLM applications con-
fined to text generation, GenAl agents integrate language
models with abilities that enable them to reason, plan, and
act under minimal or reduced human oversight [3]. Their
distinguishing characteristic is active interaction with envi-
ronments—making decisions and taking actions in multiple
organizational systems, not just responding to commands [I,

1.

Core architectural components typically include:

o Planning & Reasoning Engine: The system’s mind,
usually powered by LLMs, enabling agents to determine
the steps needed to achieve their objectives [3]. This
research have observed numerous sophisticated agents
using advanced reasoning techniques, including:

— Reflection: Referencing prior actions and outcomes
to guide subsequent actions [8].
— Self-criticism: Identifying and correcting mistakes in
output or thinking [8].
— Chain of thought: Breaking down challenging prob-
lems into step-by-step, logical reasoning [8].
— Subgoal decomposition: Dividing high-level goals
into workable subtasks [8].
e« Memory Systems: Short-term (session) and long-term
(persistent) memory modules that allow agents to main-

tain context between interactions—a capability with sig-
nificant security implications [9].

e Action & Tool Invocation: Most concerning from a
security perspective is the ability of these agents to call
various first and third party SaaS tools through function
call interfaces, API calls, and code execution. These
possibilities range from simple data retrieval to advanced
operational tasks like workflow execution.

o Supporting Services: Such as vector databases for
retrieval-augmented generation (RAG), persistent storage
for long-term memory, and integration of enterprise data
sources [3].

The arrival of platforms such as LangChain, LangFlow, Au-
toGen, and CrewAl has made it much more democratized
to create autonomous agents, but with this simplicity of
integration and rapid prototyping comes novel security threat
in the form of supply chain vulnerabilities [4] from use of
third-party modules and lightly screened modules.

C. Current Security Challenges

Applying existing security frameworks to GenAl agents
reveals several fundamental limitations. These agents differ
from typical software systems in how they reason, remember,
and act—capabilities that introduce entirely new risk surfaces
not fully addressed by today’s standard security approaches.

Planning and Agency Vulnerabilities: One of the more
distinctive risks stems from how agents plan and make de-
cisions. Traditional security models offer little protection for
the agent’s reasoning process itself. While prompt injection
remains a known concern for LLMs, agents introduce more
complex planning logic that can be subtly manipulated [&].
An attacker might not just alter what the agent says—but how
it thinks, how it decomposes goals, or how it chooses between
multiple actions. Because this reasoning process is dynamic,
logic-based, and often opaque, small nudges in input or context
can lead to drastically different outcomes [11].

Memory Persistence Risks: Long-term memory—a key
feature of many GenAl agents—presents another underex-
plored attack vector. Persistent memory access enables agents
to retain knowledge and context across interactions, but it
also introduces risks of gradual poisoning. Unlike traditional
stateless applications, an attacker can introduce misleading
information that lingers in the agent’s memory and influences
future decisions [9]. Current frameworks offer limited guid-
ance on how to secure these memory systems or detect when
they’ve been compromised over time.

Tool Execution Boundaries: GenAl agents can invoke
external tools—such as APIs, database queries, or even code
execution environments—often based on inferred goals or nat-
ural language inputs. This capability is powerful, but it creates
privilege management challenges that go beyond what role-
based access controls (RBAC) typically address [6]. Agents
might misuse a tool unintentionally, or worse, be manipulated
into chaining together actions that individually seem safe but
together escalate privilege or bypass safeguards. These types



of exploits are difficult to spot using traditional enforcement
mechanisms.

Identity and Authentication Challenges: In multi-agent
environments, identity becomes fluid. Agents may act on be-
half of users, other agents, or even systems, creating ambiguity
in attribution and authority. This opens the door to spoofing at-
tacks and weakens trust boundaries. Traditional authentication
schemes—Ilike user tokens or service accounts—may not fully
map to how agentic systems operate, especially when agents
interact with one another or inherit permissions dynamically
[12].

Multi-Agent Interaction Security: As systems increas-
ingly deploy networks of interacting agents, new layers of
complexity arise. Agents may coordinate tasks, delegate re-
sponsibilities, or share context with others—raising difficult
questions about inter-agent trust, authority, and data validation
[12]. Without robust communication protocols and trust veri-
fication mechanisms, malicious or misconfigured agents could
propagate harmful behavior throughout the system.

These challenges highlight why existing frameworks like
MITRE ATLAS [6] and the NIST AI Risk Management
Framework [2] fall short when applied to GenAl agents.
While these frameworks provide valuable guidance for Al
systems generally, they do not adequately address the unique
architectural features and attack vectors present in agentic Al
systems.

III. METHODOLOGY

This threat modeling framework combines systematic liter-
ature review, theoretical threat analysis, expert consultation,
and case study analysis to create a comprehensive framework
for identifying and addressing security risks in autonomous Al
agent systems. This multi-faceted approach allowed us to iden-
tify both documented and potential threats while developing a
structured taxonomy for agentic Al security.

A. Systematic Literature Analysis

Phase one involved an exhaustive survey of security research
directly focusing on agentic Al systems. This work prioritized
current research (2023-2025) from academia and industry
security teams, focusing on papers that specifically addressed
the unique security properties of agent architectures beyond
common LLM applications.

Primary sources included recent papers from leading secu-
rity conferences (IEEE S&P, USENIX Security, CCS, NDSS),
technical reports from organizations like OWASP and CSA,
and security advisories published by Al research labs. Based
on this survey, this research identified emerging threat classes
specifically targeting agent components rather than underlying
LLM infrastructure.

The literature review process followed a structured method-
ology:

e Source Identification: This research used academic

databases (IEEE Xplore, ACM Digital Library), industry
publications (e.g., reports from security vendors, Al labs),

and security conference proceedings to identify relevant
sources.

o Selection Criteria: Papers were selected based on ex-
plicit focus on agentic Al security (beyond general LLM
security), recency (prioritizing 2023-2025 publications),
and technical depth in describing threats or architectures.

o Systematic Coding: Each source was coded for threat
types, attack vectors, affected agent components (reason-
ing, memory, tools, etc.), and proposed mitigations using
a standardized rubric based on established security con-
cepts (e.g., STRIDE) and emerging Al-specific concerns.

This review revealed that despite significant literature ad-
dressing general LLM security, research specifically targeting
the unique vulnerabilities of agentic systems is fragmented
and sparse [6]. The OWASP Foundation recently announced
Agentic Al Security Initiative [13] is among the first organized
efforts to bridge this gap, outlining primary vulnerability areas
like “planning and adaptation mechanisms,” “memory and

environment interactions,” and “autonomous tool usage.”

B. Theoretical Threat Modeling Process

Building on the literature foundation, this research devel-
oped a conceptual framework for agentic Al threats through a
structured process of theoretical analysis:

o Conceptual Framework Development: This paper syn-
thesized findings from the literature review and architec-
tural analysis to identify five core domains of agentic
vulnerability, forming the basis of this Advanced Threat
Framework for Autonomous Al Agents (ATFAA). These
domains represent distinct facets of agent operation sus-
ceptible to attack.

o Domain Categorization: Each identified threat (drawn
from literature or theoretical analysis) was systemati-
cally categorized according to both traditional STRIDE
methodology (to facilitate integration with existing se-
curity practices) and this novel ATFAA domains (to
highlight agent-specific risks).

o Attack Vector Analysis: For each threat, this research
conducted theoretical analysis of potential attack vectors
based on known agent architectures (e.g., RAG pipelines,
ReAct patterns) and capabilities (planning, tool use,
memory access). This involved developing detailed tech-
nical descriptions of plausible exploitation mechanisms,
including novel techniques targeting the interaction be-
tween agent components.

This theoretical process allowed us to extend beyond docu-
mented vulnerabilities to anticipate emerging threats based on
the unique capabilities and architectural patterns of agentic
systems. This research work categorization methodology pri-
oritized threats that:

o Are unique to or significantly exacerbated by agentic
systems (versus general LLM applications).

« Present significant enterprise security implications (e.g.,
data exfiltration, unauthorized actions, system disruption)

[14].
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Fig. 1. General architecture of an Agentic system.

o Currently lack robust, widely adopted mitigation strate-
gies in standard security frameworks.

C. Expert Consultation and Validation

To validate and refine the theoretical framework, this work
engaged with security and Al experts through a series of
structured consultations:

« Expert Panel Reviews: The preliminary framework and
threat list were reviewed by a panel of 7 security re-
searchers and Al practitioners from industry (including
Al platform providers and enterprise security teams),
who provided feedback on threat categorization, technical
feasibility of attack vectors, and relevance to real-world
deployments.

o Adversarial Thinking Exercises: The work employed
structured adversarial thinking methodologies, drawing
on techniques from cyber threat modeling (e.g., attack
trees) and adapting concepts from MITRE ATT&CK
for Al agent contexts [I5], to brainstorm and refine
potential attack vectors and exploitation scenarios not yet
documented in the literature.

This consultation process helped refine this threat model, en-
suring it reflected diverse perspectives and addressed practical
security concerns beyond purely academic conceptualizations.

D. Case Study Analysis

To ground this theoretical framework in practical applica-
tions, this work analyzed documented security incidents and
conducted hypothetical case studies across multiple domains.
In investigation of real world incidents involving Al systems,
this research analyzed several documented security failures to
understand practical vulnerabilities and failure modes. No-
tably, the Microsoft Tay chatbot incident [16] highlighted
the susceptibility of Al systems to adversarial user inputs,
resulting in rapid degradation of behavior and inappropriate
outputs. Similarly, prompt injection attacks targeting systems

like GitHub Copilot [17] demonstrated how attackers can ma-
nipulate the reasoning process of Al assistants, compromising
output integrity. Emerging research on large language model
(LLM) data poisoning [9] further illustrated the feasibility
of memory and knowledge contamination, underscoring long-
term risks to model reliability and trustworthiness. Com-
plementing this, the work also conducted an architectural
assessment of widely adopted Al agent frameworks to identify
critical security components and potential attack surfaces. This
included examining LangChain’s agent deployment patterns,
such as ReAct agents and tool invocation mechanisms [18];
the AutoGPT architecture, focusing on autonomous task exe-
cution loops and memory management [19]; and Microsoft’s
Semantic Kernel, analyzing the integration of planners, func-
tion calling, and memory components [20]. Together, these
insights provide a comprehensive view of current threats and
architectural vulnerabilities in Al agent ecosystems.

E. Limitations and Future Work

While comprehensive in scope, this research methodology
possesses limitations that must be acknowledged:

o Theoretical Focus: The framework is primarily based on
theoretical analysis, literature review, and expert consul-
tation rather than extensive empirical red teaming against
live systems. It represents a foundation for future empiri-
cal validation rather than a definitive security assessment
based on widespread exploitation evidence.

o Architectural Assumptions: The threat model assumes
certain common architectural patterns (e.g., LLM-based
reasoning, distinct memory modules, API-based tool use).
It may not fully capture threats specific to highly novel
or non-standard agent implementations.

« Evolving Landscape: The field of agentic Al is evolving
rapidly. New agent capabilities, architectures, and frame-
works will undoubtedly emerge, potentially introducing



vulnerabilities beyond those identified in this current
framework.
We envision this work as the first step in an ongoing research
program, with several critical areas requiring further explo-
ration:

« Empirical Validation: Future work should include rigor-
ous red team assessments of the identified threats against
real-world agent implementations across different frame-
works and deployment contexts to validate their technical
feasibility, impact, and the effectiveness of proposed
mitigations.

o Quantitative Risk Assessment: Development of metrics
and methodologies for quantifying the risk posed by
agentic threats will be essential for effective prioritization
and resource allocation. This could involve exploring
Bayesian risk models, developing metrics for reasoning
path deviation or goal adherence, or adapting existing
cyber risk scoring frameworks.

o Security-by-Design Patterns: Research into architec-
tural patterns and development practices that intrinsically
resist these threats would provide valuable guidance for
secure agent development. This could include inves-
tigating patterns like the “principle of least agency,’
developing techniques for “verifiable reasoning steps,’
or designing more robust memory compartmentalization
approaches.

Despite these limitations, The research believes this systematic
understanding of the GenAl agent threat landscape provides a
valuable foundation for developing effective security controls.
Without such measures, what could be one of the most
transformative technologies in the enterprise environment may
instead become one of its most significant vulnerabilities.

IV. THREAT MODEL FOR GENAI AGENTS

Securing GenAl agents demands a nuanced understand-
ing of their unique threat profile. These systems share
some vulnerabilities with traditional applications and general
LLM deployments but are distinguished by architectural ele-
ments—particularly the interplay between reasoning, memory,
and action—that introduce novel attack vectors requiring spe-
cial attention [4]. Based on the comprehensive examination of
potential exploit scenarios derived from literature, architectural
analysis, and theoretical modeling, this work has identified key
risks across multiple domains that specifically target GenAl
agent deployments. These threats are mapped to both the
traditional STRIDE model (Spoofing, Tampering, Repudia-
tion, Information disclosure, Denial of service, Elevation of
privilege) and this novel Advanced Threat Framework for
Autonomous Al Agents (ATFAA), which provides specialized
categorization for emerging agentic threats.

A. Advanced Threat Framework for Autonomous Al Agents
(ATFAA)

The ATFAA framework represents a significant evolution
in threat modeling specifically designed for autonomous Al
systems. Unlike traditional security models focused primarily

on perimeter defense or application-level vulnerabilities, the
ATFAA addresses the unique nature of Al agents that reason,
learn, remember, act, and potentially evolve across organiza-
tional boundaries.

1) Core Principles: The ATFAA is built on four founda-
tional principles that guide security analysis and mitigation
strategies:

o Cognitive Security: Safeguarding the integrity and con-
fidentiality of agent reasoning, planning, and learning
processes from manipulation or unintended influence.

o Execution Integrity: Protecting the agent’s operational
functionality, ensuring actions and tool invocations align
with intended goals and authorizations, and preventing
unauthorized operations.

« Identity Coherence: Maintaining clear, verifiable, and
distinct boundaries between agent identities, user identi-
ties, and system identities to prevent spoofing and ensure
proper authorization context.

« Governance Scalability: Ensuring continuous oversight,
monitoring, and control mechanisms remain effective,
auditable and adaptable as systems evolve in complexity,
scale, and operational velocity.

2) Threat Taxonomy (9 Threats): The ATFAA now identi-
fies 9 primary threats, drawing upon and consolidating con-
cepts from emerging research and initiatives like the OWASP
Agentic Al Threat Model [10] and CSA MAESTRO [7].
The threats are organized into five domains that collectively
represent the comprehensive attack surface of autonomous Al
systems.

Risk Assessment Criteria Explanation: For each threat,
this research work provides a qualitative risk assessment based
on the following general criteria, considering the context of
enterprise GenAl agent deployments:

o Likelihood: An estimate of the probability or ease of
the threat occurring. High (Exploits common weaknesses,
requires minimal access/knowledge, potentially automat-
able), Medium (Requires specific architectural knowl-
edge, sustained access, chained exploits, or specific con-
ditions), Low (Requires rare conditions, advanced exper-
tise, significant resources, or non-public vulnerabilities).

o Impact: The potential negative consequences if the threat
is realized. Critical (Fundamental compromise of core
function, security objectives, widespread system integrity,
major financial/reputational loss), Severe (Significant im-
pairment of functionality, major data breach/loss, unau-
thorized high-privilege access, significant operational dis-
ruption), Medium (Noticeable degradation of perfor-
mance, minor data exposure, limited unauthorized access,
moderate operational issues).

e Detection Difficulty: An estimate of how hard it is to
detect that the attack is occurring or has occurred using
typical security monitoring. Extreme (Indistinguishable
from normal operation/learning without specialized deep
analysis or forensics), High (Requires specialized Al-
specific tools/analysis, often significantly delayed de-



tection), Medium (May trigger general anomaly detec- ing/Information Disclosure)
tion but requires specific investigation to confirm), Low
(Likely detected by standard monitoring tools, logs, or
security controls).

e Description: Compromising the agent’s knowledge base
(e.g., RAG databases) or persistent memory with false
or distorted information that affects future decisions.
This can lead to self-validating cycles where manipulated
beliefs stored in memory are later retrieved as evidence,
reinforcing the original falsehood (belief reinforcement

3) Domain 1: Cognitive Architecture Vulnerabilities: T1:
Reasoning Path Hijacking (Tampering)

o Description: Attackers manipulate the logical pathways

that AI agents use for decision-making, redirecting con-
clusions toward malicious outcomes while maintaining
apparent logical consistency.

Vector: By injecting specially crafted contradictions, sub-
tle biases, or misleading information into an agent’s con-
text or reasoning process (e.g., through indirect prompt
manipulation, poisoned RAG data), attackers can create
divergent logical paths that maintain surface validity
while driving toward unauthorized outcomes. This often
exploits the chain-of-thought or step-by-step reasoning
mechanisms in modern LLMs, creating what we term
‘logical bifurcation points’—critical junctures where the
agent’s reasoning can be subtly redirected without obvi-
ous error flags.

e Risk: Likelihood: High; Impact: Critical; Detection: Se-

vere.
Example: An attacker could introduce contradictory fi-
nancial evaluation criteria into a document processing
agent’s input data, causing it to approve transactions that
violated compliance requirements while generating justi-
fications that appeared internally consistent and satisfied
superficial risk controls [&].

T2: Objective Function Corruption & Drift (Tampering)

e Description: Modifying the agent’s core goals or reward

mechanisms, altering its purpose, potentially covertly.
This includes gradual shifts in goals or operational priori-
ties over extended periods (objective drift) that remain un-
detected due to occurring incrementally across sessions.
Vector: Exploits goal-definition, self-improvement, or re-
inforcement learning mechanisms. This can occur through
manipulated feedback, poisoned reward models, direct
goal modification, or by consistently introducing sub-
tle preference biases across multiple sessions (e.g., via
manipulated user feedback, staged interactions rewarding
slightly off-goal behavior). Such actions can create ‘goal
drift vectors’ that gradually shift agent priorities away
from intended objectives or safety constraints without
triggering abrupt change detection alarms [5].

loops).

Vector: Targets persistent data stores (e.g., poisoning
vector databases [5]) or memory transfer mechanisms.
Implanted misinformation persists and distorts the agent’s
understanding. This exploits the agent’s tendency to trust
its own past conclusions or memory; manipulated data,
once generated and stored, can be re-referenced, creating
loops where false information becomes entrenched and
resistant to correction [5].

Risk: Likelihood: High; Impact: Severe (potentially Crit-
ical if loops amplify); Detection: Extreme.

o Example: Planting false security protocol exceptions in a

knowledge base could lead an agent to misclassify unau-
thorized access [9]. If the agent logs this misclassification
and later references its own logs as evidence, it reinforces
the incorrect belief.

5) Domain 3: Operational Execution Vulnerabilities: T4:
Unauthorized Action Execution (Elevation of Privilege)

e Description: Attackers manipulate the agent to execute

actions or use tools in ways that violate intended permis-
sions or operational boundaries. This includes orchestrat-
ing sequences of individually benign operations that pro-
duce unauthorized outcomes when combined, or forcing
agents to perform operations outside their intended scope
via imprecise definitions or input handling.

Vector: Exploits interfaces between reasoning and action.
This can involve targeting ’authorization boundary tran-
sitions’ by chaining multiple operations that individu-
ally respect security boundaries but collectively bypass
controls (e.g., using output from one permitted func-
tion as unauthorized input to another). Alternatively, it
can exploit ’capability perimeter control’ ambiguities by
leveraging unexpected interactions between tools, using
techniques like ‘function parameter injection’ (embed-
ding malicious commands within seemingly benign data
parameters), or exploiting overly broad tool permissions

[5]-

« Risk: Likelihood: Medium; Impact: Critical; Detection: e Risk: Likelihood: High; Impact: Critical; Detection: High.
High. e Example: An attacker chains a permitted data retrieval

function with a poorly sandboxed code execution tool
to exfiltrate sensitive data. Alternatively, an Al agent
designed for document classification is manipulated into
executing database queries by embedding query language
in document metadata, exploiting weak input validation
on the tool interface.

o Example: Manipulating feedback for a security agent
could train it to prioritize speed over verification [8].
Over time, through repeated exposure to manipulated
signals rewarding speed across sessions, the agent might
begin classifying suspicious access patterns as acceptable
“efficiency optimizations” rather than security threats.

4) Domain 2: Temporal Persistence Threats: T3: Knowl- T5: Computational Resource Manipulation (Denial of
edge, Memory Poisoning & Belief Loops (Tamper- Service)



e Description: Attackers craft inputs or interactions de-
signed to exploit resource allocation mechanisms, causing
excessive consumption of computational resources (CPU,
memory, GPU, API quotas) to degrade performance,
create denial-of-service conditions, or force operational
shortcuts that compromise security.

Vector: This targets what we term ‘resource allocation
decision points’—the internal mechanisms distributing
computational resources across agent tasks. By generating
specially crafted inputs that trigger disproportionately
resource-intensive processing (e.g., deeply nested reason-
ing chains, requests requiring massive RAG retrievals,
complex tool interactions), attackers create ‘computa-
tional bottlenecks’ that can starve other critical functions,
increase operational costs, or force the agent into de-
graded, potentially less secure, operational modes.

Risk: Likelihood: High; Impact: Medium; Detection:
Low.

6) Domain 4: Trust Boundary Violations: T6: Identity
Spoofing and Trust Exploitation (Spoofing)

e Description: Attackers exploit insufficient boundaries or
verification mechanisms related to agent, user, or inter-
agent identities to perform unauthorized operations under
falsified authorization contexts or propagate malicious
instructions within multi-agent systems.

Vector: Exploits ambiguity or weaknesses in identity
management. This includes targeting ’identity transition
zones’ where agent actions become attributed to human
identities (e.g., exploiting ’identity inheritance vulner-
abilities” where agent actions improperly inherit user
permissions). It also involves targeting ’inter-agent trust
frameworks’ by compromising ’trust attestation channels’
(e.g., stealing API keys, manipulating authentication to-
kens, exploiting protocol weaknesses) to assume trusted
agent identities or manipulate trust verification processes
within an agent ecosystem.

e Risk: Likelihood: High; Impact: Critical; Detection: High.

T7: Human-Agent Trust Manipulation (Spoofing)

o Description: Attackers exploit the natural human ten-

dency to trust Al recommendations or outputs to induce
users into performing unauthorized actions, divulging
sensitive information, or overriding security controls
based on deceptive Al guidance.

Vector: This exploits what we term ‘human-Al trust
interfaces’—the psychological and usability aspects in-
fluencing how humans evaluate and act upon Al outputs.
By manipulating Al responses to include ‘trust amplifi-
cation signals’ (e.g., feigning high certainty, referencing
false authority, mimicking trusted communication styles,
generating socially engineered prompts urging immediate
action), attackers increase the likelihood of users taking
harmful actions based on the agent’s deceptive guidance,
effectively bypassing technical controls through human
interaction.

e Risk: Likelihood: Very High; Impact: Severe; Detection:
Extreme.

7) Domain 5: Governance Circumvention: T8: Qversight
Saturation Attacks (Denial of Service)

e Description: Attackers intentionally generate excessive
volumes of low-significance audit events, alerts, or ac-
tions requiring human review, overwhelming governance
mechanisms (human review queues, automated moni-
toring systems) and exceeding monitoring or response
capacity.

o Vector: This exploits what we call ‘governance atten-
tion economics’—the finite human and computational
resources available for oversight. By generating high
volumes of low-severity alerts, complex logs requiring
analysis, or actions flagged for mandatory review (i.e.,
‘attention-consuming events’), attackers create ‘oversight
blind spots’ where genuinely malicious actions are missed
amidst the noise, or monitoring systems become ineffec-
tive due to resource exhaustion or alert fatigue.

e Risk: Likelihood: High; Impact: Severe; Detection:
Medium.

T9: Governance Evasion and Obfuscation (Repudiation)

o Description: Attackers exploit ambiguities in complex
agent interactions or logging mechanisms to obscure
responsibility trails, hindering forensic analysis and pre-
venting attribution. Additionally, attackers may design
attacks that dynamically evolve or operate stealthily
specifically to circumvent adaptive security controls or
established detection thresholds.

o Vector: Targets auditability and detection. This includes
targeting ’responsibility attribution junctions’ by dis-
tributing components of an attack across multiple agents,
using ephemeral identities, manipulating logs (if possi-
ble), or leveraging complex, poorly logged interactions
to create ’attribution gaps’. It also involves exploiting
"detection threshold mechanics’ by operating consistently
below thresholds ("low and slow” attacks), strategically
alternating attack patterns to avoid triggering correlation
engines, or adapting behavior in response to observed
defenses to bypass ‘adaptive defense mechanisms’.

e Risk: Likelihood: Medium; Impact: Severe; Detection:
Extreme.

B. The SHIELD Mitigation Framework

SHIELD offers six defensive strategies against ATFAA
threats. Implementation involves trade-offs between protec-
tion, performance, usability, and cost.

Implementing SHIELD: Challenges and Considerations:
While the SHIELD strategies offer a path towards mitigat-
ing agentic threats, organizations should anticipate practical
challenges while working with an agentic Al ecosystem.
Heuristic Monitoring can be computationally intensive, po-
tentially impacting system performance, and requires sophis-
ticated baselining and tuning to minimize false positives.
Achieving true Logging Immutability involves complexity and
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potential expense, requiring robust solutions like cryptograph-
ically secured, append-only logs and rigorous access controls.
Stringent and sensitive Escalation Control mechanisms, such
as frequent re-authentication or multi-factor verification for
agent actions, can introduce usability friction for end-users or
operational overhead. Furthermore, defining and maintaining
effective Segmentation boundaries can be challenging in dy-
namic environments where agents may require flexible access
to diverse resources. These challenges do not invalidate the
framework but highlight the need for a risk-based approach,
prioritizing mitigations based on specific risk assessments
within the context of organizational security posture and risk
tolerance.

1) Segmentation:

o Description: Implement strict boundaries between agent
capabilities, data sources, and execution environments
at the workload level, limiting the potential impact of
compromised components based on Zero Trust principles.

o Technical Implementation:

— Workload-Level Isolation: Define security perimeters
around individual agent components, applications, or
services, rather than broad network segments.

— Policy Enforcement: Utilize agent-based
micro-segmentation tools (e.g., Illumio,
Guardicore/Akamai, Palo Alto Networks agents) or
native cloud controls (e.g., AWS Security Groups,

Azure NSGs/Firewall, Google Cloud Firewall) to
enforce granular policies based on identity and
context.

Traffic Mapping & Policy Definition: Map agent
communication flows and dependencies before en-
forcement. Start with broader policies in monitoring
mode, then progressively refine rules based on the
principle of least privilege.

Container Security: Implement specific container
isolation techniques (e.g., using Docker network
segmentation, Kubernetes Network Policies, service
mesh like Istio/Linkerd) to control traffic between
containerized agent components.

API Gateway Controls: Use API gateways with deep
packet inspection, schema validation, and rate limit-
ing to control access to agent tools and functions.
Auditing: Conduct regular micro-segmentation audits
using automated tools to verify policy enforcement
and identify potential misconfigurations.

o Mitigates: T4 (Unauthorized Action Execution), TS5
(Computational Resource Manipulation), T6 (Identity
Spoofing - agent/human part).

2) Heuristic Monitoring:

o Description: Deploy anomaly detection and alerting
systems specifically designed to identify deviations in



agent reasoning patterns, decision processes, behav-
ioral outputs, and resource consumption, moving beyond
signature-based detection.

o Technical Implementation:

— Behavioral Baselining: Establish dynamic baselines
of normal agent behavior (e.g., typical reasoning
steps, tool usage sequences, API call frequencies,
resource utilization).

— AI/ML Models: Implement statistical methods (e.g.,
Z-score, IQR), machine learning algorithms (e.g.,
Isolation Forest, Local Outlier Factor (LOF), One-
Class SVM), or deep learning models (e.g., Au-
toencoders, LSTMs for sequential analysis) tailored
for detecting deviations from these baselines. Utilize
cloud ML platforms (e.g., SageMaker, Vertex Al) or
specialized libraries (e.g., TensorFlow Probability).

— Contextual Logging Analysis: Integrate agent logs
(including reasoning traces, confidence scores, tool
inputs/outputs) with SIEM/SOAR platforms en-
hanced with AI/ML analytics capabilities (e.g.,
Splunk, Datadog, Exabeam) for contextual anomaly
detection.

— Data Quality & Preprocessing: Ensure high-quality
input data for monitoring models through robust pre-
processing (handling missing values, normalization)
and relevant feature engineering.

— Continuous Tuning & Feedback: Regularly retrain
models with new data and incorporate feedback
loops where analysts validate flagged anomalies to
improve accuracy and reduce false positives over
time.

o Mitigates: T1 (Reasoning Path Hijacking), T2 (Objective

Function Corruption & Drift), T9 (Governance Evasion -
adaptive part).

3) Integrity Verification:

e Description: Implement cryptographic validation and run-

time checks for critical agent components (code, models),
data, memory, goals, and operational parameters to detect
unauthorized modifications or tampering.

o Technical Implementation:

— Code & Model Hashing/Signing: Calculate and ver-
ify cryptographic hashes (e.g., SHA-256) or digital
signatures of agent code and ML models before
execution and periodically during runtime.

— Runtime Integrity Monitoring: Deploy Runtime Ap-
plication Self-Protection (RASP) concepts or host-
based intrusion detection systems (HIDS) configured
to monitor agent processes for unexpected modifica-
tions or behaviors.

— Memory Safety & Sandboxing: Utilize memory-safe
languages (e.g., Rust) where feasible, or employ
secure execution environments like WebAssembly
(Wasm) sandboxes to isolate agent components and
prevent memory corruption or runtime tampering.

— Data & Memory Integrity Checks: Employ cryp-
tographic integrity proofs (e.g., HMACs, Merkle
Trees) for persistent memory data stores and critical
configuration parameters, with automated verifica-
tion workflows.

— Cryptographic Attestation: Use hardware-based (e.g.,
TPM) or software-based attestation techniques to
verify the integrity of the agent’s execution environ-
ment and critical software components.

o Mitigates: T3 (Knowledge/Memory Poisoning & Belief

Loops), T6 (Identity Spoofing - inter-agent trust part).

4) Escalation Control:
e Description: Establish granular, dynamic permission

frameworks with mandatory verification, minimal priv-
ilege assignment (least privilege principle), and strict
checks for privilege transitions or capability expansions
based on real-time context.

o Technical Implementation:

— Attribute-Based Access Control (ABAC): Implement
policy engines (e.g., Open Policy Agent - OPA with
Rego) that make access decisions based on rich
attributes of the user/agent, resource, action, and
environment.

— Policy as Code: Define authorization policies in a
manageable, auditable, and version-controlled code
format, integrated with CI/CD pipelines.

— Context-Aware Authentication: Validate identity and
authorization context for each sensitive operation or
tool call, potentially using continuous authentication
methods based on behavioral biometrics or anomaly
detection.

— Just-in-Time (JIT) Access: Implement automated JIT
privilege allocation systems (e.g., using HashiCorp
Vault, cloud IAM features like session policies)
where elevated permissions are granted only for the
necessary duration and automatically revoked.

— Regular Review & Automation: Regularly audit per-
missions and ABAC rules, leveraging automated
compliance checks and feedback loops to refine
policies.

o Mitigates: T4 (Unauthorized Action Execution), T6

(Identity Spoofing and Trust Exploitation).

5) Logging Immutability:
e Description: Create tamper-resistant, comprehensive, and

verifiable audit trails for all significant agent decisions,
actions, data accesses, tool invocations, and inter-agent
communications.

o Technical Implementation:

— Tamper-Resistant Storage: Utilize write-once, read-
many (WORM) storage, cryptographically secured
append-only databases for critical logs requiring the
highest level of immutability assurance.

— Cryptographic Signing & Timestamping: Ensure logs
are cryptographically signed (e.g., using HMACs
or digital signatures) upon generation and include



secure, verifiable timestamps (e.g., via trusted times-
tamping authorities or blockchain anchoring like
Guardtime KSI).

— Secure Log Aggregation: Implement secure log for-
warding protocols (e.g., TLS encrypted syslog-ng or
Fluentd) to transmit logs to separate, hardened log
repositories or SIEM systems, preventing tampering
at the source or in transit.

— Log Integrity Monitoring: Periodically verify the
cryptographic integrity of log chains or signatures
using automated tools and workflows (e.g., check-
ing hash chains, verifying signatures against trusted
keys). Integrate alerts for detected tampering with
SIEM/SOAR.

— Comprehensive Content: Ensure logs capture suffi-
cient context without logging any sensitive content
and PII, including reasoning traces (where feasi-
ble), input prompts/data, tool calls with parame-
ters, outputs/responses, confidence scores, and iden-
tity/attribution information.

— Treat logs with the same level of data classification
as the highest level of data classification to which the
agent has access. For example, logs generated from
agents with HIPAA data access must be treated as
HIPAA logs.

— Independent Audits: Conduct periodic external audits
and adversarial testing (red teaming) to validate the
effectiveness of the decentralized oversight mecha-
nisms.

o Mitigates: T7 (Human-Agent Trust Manipulation), T8
(Oversight Saturation Attacks).

C. Threat Model Overview

The following table provides a consolidated view of the 9
threats identified in the analysis, mapped to both the STRIDE
and ATFAA frameworks, along with the primary SHIELD
mitigation strategy(ies).

D. Attack Surface Expansion

One of the most significant findings of this research work is
how dramatically GenAl agents expand the traditional attack
surface compared to conventional software or even simpler Al
models [4]:

o Cognitive Dimension: The reasoning, planning, and
learning capabilities of agentic systems create entirely
new attack vectors targeting decision-making processes
that have no direct parallel in traditional systems with
fixed logic [8].

o Temporal Dimension: Long-running agents with persis-
tent memory create opportunities for gradual corruption,

o Mitigates: T9 (Governance Evasion and Obfuscation). . . . .
poisoning, or objective drift that may remain undetected

for extended periods, introducing a time-based attack
surface absent in stateless applications [9].

6) Decentralized Oversight:

o Description: Distribute monitoring, validation, and ap-

proval responsibilities across multiple independent sys-
tems, specialized agents, or human reviewers to prevent
single-point governance failures, bypass, or collusion.

o Technical Implementation:

— Multi-Party Validation: Implement decentralized re-
view mechanisms for critical actions or configura-
tion changes using multi-signature schemes, quorum-
based approvals, or consensus protocols requiring
validation from multiple independent entities (human
or machine).

— Specialized Audit Agents: Deploy independent Al
agents specifically designed to monitor the behav-
ior, decisions, and compliance of operational agents
against predefined policies or ethical guidelines.

— Federated Monitoring: Establish monitoring struc-
tures involving diverse stakeholders (e.g., security
team, compliance officers, business unit owners, po-
tentially external auditors) with role-based access to
relevant oversight data and dashboards.

— Explainable AI (XAI) Integration: Leverage XAl
techniques to make agent decision-making processes
more transparent and auditable for human reviewers.

— Adaptive Governance: Implement adaptive review
thresholds or intervention triggers that dynamically
adjust based on real-time risk assessments derived
from heuristic monitoring (Section 4.2.2) or the
sensitivity of the task being performed.

o Tool Integration & Action Space: The ability to invoke
external tools, APIs, and potentially execute code vastly
expands the potential impact of a compromise, allowing
agents to interact with and affect multiple systems, cre-
ating complex action chains that are difficult to secure.

o Trust Boundaries: Agents operating across traditional
system boundaries, interacting with users (T7), and po-
tentially collaborating with other agents create novel path
traversal risks and complex trust management challenges
absent in conventional applications [12].

o Identity Fluidity: The often blurry line between agent
identity and the user identity on whose behalf it operates
creates new impersonation and privilege escalation op-
portunities (T6) that challenge traditional authentication
and authorization models [12].

o Governance Complexity: The scale, speed, and auton-
omy of agent operations create unprecedented challenges
for effective monitoring, auditing, and oversight, intro-
ducing governance-level vulnerabilities [6, 12].

Security teams must fundamentally reconsider traditional de-
fense perimeters and develop monitoring and control mech-
anisms specifically designed for the unique characteristics
of agentic systems across all these dimensions [4]. Recent
forecasts from the UK Government highlight that “by 2025,
generative Al is more likely to amplify existing risks than
create wholly new ones, but it will increase sharply the speed
and scale of some threats” [21]. This reinforces the urgency



TABLE I
THREAT MODEL OVERVIEW: MAPPING 9 THREATS TO STRIDE, ATFAA, AND SHIELD

Threat ID | Threat Name STRIDE Category ATFAA Domain Primary SHIELD Mitigation(s)
Tl Reasoning Path Hijacking Tampering Cognitive Architecture Heuristic Monitoring
T2 Objective Function Corruption & Tampering Cognitive Architecture Heuristic Monitoring
Drift
T3 Knowledge, Memory Poisoning & | Tampering/ Info Disclosure Temporal Persistence Integrity Verification
Belief Loops
T4 Unauthorized Action Execution Elevation of Privilege Operational Execution Segmentation, Escalation Control
T5 Computational Resource Manipula- Denial of Service Operational Execution Segmentation
tion
T6 Identity Spoofing & Trust Exploita- Spoofing Trust Boundary Escalation Control, Segmentation,
tion Integrity Verification
T7 Human-Agent Trust Manipulation Spoofing Trust Boundary Decentralized Oversight
T8 Oversight Saturation Attacks Denial of Service Governance Circumvention | Decentralized Oversight
T9 Governance Evasion & Obfuscation Repudiation Governance Circumvention | Logging Immutability, Heuristic
Monitoring

of developing agent-specific security controls that address the
unique characteristics of these systems.

V. THREAT MODEL ANALYSIS AND IMPLICATIONS

A. Unique Characteristics and Broader Implications of GenAl
Agent Threats

The threats outlined in ATFAA have characteristics that
differentiate them from typical cybersecurity risks [4]:

o Delayed Effect: Many agentic threats, particularly those
targeting memory and learning (T3, T2) do not manifest
immediately but introduce latent vulnerabilities. Initial
compromises (e.g., memory poisoning) might only influ-
ence future actions days, weeks, or months later, making
it extremely difficult to trace incidents back to the root
cause using traditional forensic methods [9]. This tem-
poral complexity challenges standard incident response
playbooks.

o Goal Misalignment Magnification: Agent autonomy
means small, induced goal misalignments (T2) can com-
pound over time [&].

o Cross-System Propagation: Agents interacting with
multiple systems create vectors for compromise propa-
gation [12]. Exploiting tool access (T4) or trust (T6) can
allow breaches to spread rapidly.

o Detection Challenges: The variability and opacity of
agent reasoning make distinguishing malicious manipula-
tion (T1, T3) from normal behavior difficult with standard
methods [3], requiring more specialized monitoring.

« Exploitation of Trust: Threats targeting human trust
(T7) or inter-agent trust (T6) bypass technical controls
by manipulating psychological or relationship factors.

o Threat Interplay: These threats can interact. Memory
Poisoning (T3) might facilitate Objective Drift (now part
of T2) or Unauthorized Action (T4). Identity Spoofing
(T6) could enable Unauthorized Action (T4). This sug-
gests holistic mitigations are needed.

« Sector-Specific Impacts: Consequences vary by context.
Finance faces fraud risks (T2, T4). Healthcare faces

risks to patient outcomes or privacy (T7, T3). Critical
infrastructure faces potential kinetic impacts.

o Regulatory and Compliance Challenges: Agent auton-
omy and opacity challenge existing regulations (GDPR,
etc.). Demonstrating compliance, assigning liability (T9),
ensuring fairness (T3), and providing explanations be-
comes harder.

These characteristics and implications underscore the urgent
need for specialized security measures, like those proposed
in the SHIELD framework, that address the unique nature of
agentic Al systems across technical, operational, and gover-
nance dimensions [0, 12].

VI. CONCLUSION AND FUTURE WORK

This paper introduced the ATFAA threat model and
SHIELD mitigation framework for GenAl agents, identifying
9 threats across five domains unique to agentic capabilities
(autonomy, memory, reasoning, tools) [4]. This provides a
structure extending beyond general AI/LLM guidelines (NIST
RMF [2], MITRE ATLAS [6], OWASP Top 10 [5], MAE-
STRO [7]).

Securing GenAl agents requires addressing their specific
properties. Agentic threats exhibit temporal complexity, goal
manipulation potential, propagation risks, and detection chal-
lenges, demanding specialized measures [8, 9, ]. Threat
interplay, sector impacts, and regulatory hurdles underscore
the need for agent-specific security paradigms.

As adoption grows [!, 2], practitioners should consider
SHIELD-based strategies:

o Defense-in-Depth: Deploy multiple, overlapping secu-
rity controls (e.g., combining Segmentation, Escalation
Control, and Integrity Verification) rather than relying on
single protection mechanisms.

o Zero-Trust Architecture: Implement strict verification
for all agent actions and interactions (Escalation Control,
robust Segmentation), regardless of apparent source or
network location.



o Continuous & Specialized Monitoring: Deploy moni-

toring systems designed to detect and alert unique agen-
tic attack patterns (Heuristic Monitoring), focusing on
cognitive, behavioral, and temporal anomalies, not just
traditional IOCs.

Compartmentalization: Implement strict boundaries
(Segmentation) between agent subsystems, data sources,
and external resources to contain potential compromises
and limit blast radius.

Robust Governance & Auditing: Maintain appropriate
human oversight mechanisms (supported by Decentral-
ized Oversight) and ensure tamper-proof, comprehensive
records (Logging Immutability) for accountability and
forensics.

Future work should prioritize empirical validation of the iden-
tified threats and the effectiveness of the proposed SHIELD
mitigations through rigorous red teaming and simulation
across diverse agent architectures. Developing quantitative risk
assessment methodologies tailored to agentic threats (e.g.,
exploring Bayesian risk models, metrics for reasoning path
deviation, or goal adherence verification) and establishing
standardized security-by-design patterns (e.g., investigating

patterns like “principle of least agency,

EEREL)

verifiable reasoning

steps,” secure memory architectures) for agentic systems are
also critical next steps. Addressing the security challenges
of GenAl agents proactively and holistically is essential to
realizing their transformative potential without introducing
unacceptable enterprise risk.
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