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ABSTRACT
Cryptographic research takes software timing side channels seri-

ously. Approaches to mitigate them include constant-time coding

and techniques to enforce such practices. However, recent attacks

like Meltdown [42], Spectre [37], and Hertzbleed [70] have chal-

lenged our understanding of what it means for code to execute in

constant time on modern CPUs. To ensure that assumptions on the

underlying hardware are correct and to create a complete feedback

loop, developers should also perform timing measurements as a

final validation step to ensure the absence of exploitable side chan-

nels. Unfortunately, as highlighted by a recent study by Jancar et

al. [30], developers often avoid measurements due to the perceived

unreliability of the statistical analysis and its guarantees.

In this work, we combat the view that statistical techniques only

provide weak guarantees by introducing a new algorithm for the

analysis of timing measurements with strong, formal statistical

guarantees, giving developers a reliable analysis tool. Specifically,

our algorithm (1) is non-parametric, making minimal assumptions

about the underlying distribution and thus overcoming limitations

of classical tests like the t-test, (2) handles unknown data depen-

dencies in measurements, (3) can estimate in advance how many

samples are needed to detect a leak of a given size, and (4) allows

the definition of a negligible leak threshold Δ, ensuring that accept-
able non-exploitable leaks do not trigger false positives, without

compromising statistical soundness. We demonstrate the neces-

sity, effectiveness, and benefits of our approach on both synthetic

benchmarks and real-world applications.
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1 INTRODUCTION
Since their initial discovery by Paul Kocher [38], side-channel vul-

nerabilities have played a crucial role in the security of software

implementations, especially in the field of cryptography. Software

timing-based side-channel vulnerabilities are especially relevant as

they can potentially be exploited remotely.

Constant-Time Implementations. To avoid timing related vulnera-

bilities, developers follow constant time coding practices, so that the

execution time of their code is independent of secret data.. These

practices include avoiding branching based on secret data, avoiding

secret-based memory access, and avoiding assembly instructions

with variable execution times for secret inputs. To provide guaran-

tees for such code, other approaches like dynamic instrumentation

(e.g., [15, 71]) and formal analysis tools (e.g., [4, 13, 17]) have been

used, with varying degrees of formal security guarantees. A study

by Jancar et al. [30] investigates the use of such tools as a means to

preventtiming side channels. In general, the study found that none

of the tool-assisted approaches were widely accepted by developers,

with over 60% of participants reporting no tool usage at all, with

many citing poor usability or lack of maintenance as core issues

preventing further adoption.

While these practices are the foundation for modern secure

implementations, recent research has shown that our assumptions

on how secrets get leaked on modern hardware architectures are

continually being subverted [37, 42, 52, 70]. Features like speculative

execution or CPU frequency scaling are able to introduce variable

execution time even when all best practices are being followed.

At the same time, it is unknown if the community has identified

all potential sources of leakage in a given architecture, leaving an

unaddressed risk when analyzing implementations based solely on

known best practice. We believe that closing the feedback loop by

actually measuring the timing behavior of software implementations

after other techniques have been applied will help to reduce this

remaining risk significantly.

Statistical Evaluation of Timing Measurements. Statistical analy-

ses of side-channel measurements likely pose the fewest challenges

in terms of usability and maintenance. For the analysis, the devel-

oper has to measure the (unbiased) execution time of the algorithm

for different input classes and pass the measurements to a statistical
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algorithm. Measuring execution time is a trivial task for crypto-

graphic developers, and statistical algorithms do not require a lot

of maintenance, as they do not change and do not interact much

with compilers, other software libraries, or the operating system.

However, today’s statistical methods to analyze timing measure-

ments have significant drawbacks – participants from Jancar et

al. [30] reported false positives and limited guarantees as some of

the core points against statistical techniques. To quote Jancar et al.:

These tools are generally easy to install and run, even

at scale, and operate on executable code, ruling out

the possibility of compiler-induced violations of the

constant-time policy. However, they only provide weak,

informal guarantees.

In this paper, we address the last point: We extend the set of

statistical guarantees that can be given when evaluating timing

measurements to mitigate some of the perceived drawbacks. A first

step in this direction was already made by Dunsche et al. [18] and

Kario [34], who showed that it is possible to strictly bind the false

positive rate when evaluating timing measurements, even when

only minor assumptions on the distributions of the measurements

are made.

In this paper, we address different problems to improve the re-

liability and usability of statistical algorithms for software side

channels.

Dependent Measurements. Timing side channels rely on repeated

measurements of the execution time of a protocol, typically gath-

ered by running the protocol many times in succession. To analyze

the measurements based on a statistical test, one makes simple as-

sumptions under which the statistical test yields reliable results. A

common and crucial assumption in prior work, such as [18, 34, 53],

is the independence between measurements. While this assumption

may hold in an optimized setting, it often breaks down in practice

due to environmental factors, application-specific behaviors, or

many other uncontrolled conditions inside the system under test.

One simple example is the usage of caches in the operating system

and the CPU. Each measurement can alter cache values, affect-

ing subsequent timing measurements. This brings us to our first

research question:

RQ1: Can statistical tests still yield reliable results

when measurements are dependent?

The question can be answered in the affirmative. To demonstrate

that addressing data dependency is beneficial, we analyze data from

the artifact provided by Dunsche et al. [18]: Timing measurements

of the mbedTLS library in the most recent version available at

the time, in the context of the Bleichenbacher [7] vulnerability. In

this example, the tool from Dunsche et al. reported a side channel,

which could not be confirmed by manual code analysis from the

researchers and was therefore classified as a false positive. When

analyzing the data, we found a strong positive correlation, which

likely resulted in the incorrect analysis of their tool (RTLF ). By

considering dependent measurements, our proposed approach will

avoid such misclassifications as we will show in our evaluation.

Negligible Side Channels. For many applications, the size of a

timing leak is a key factor for the consideration of whether it is

actually exploitable and whether it is worth investing the time

in mitigating it. For example, the impact of micro-architectural

leakage is assumed to be small, making such leakage, especially in

remote scenarios, likely unexploitable. Many developers, therefore,

often exclude this type of leakage from their attacker model. A

prominent example of this is the popular cryptographic library

OpenSSL, which explicitly excludes side-channel vulnerabilities

that are only locally exploitable from their attacker model
1
. At

the same time, this mindset is not captured by current statistical

approaches. As the number of samples increases, current techniques

will eventually detect and report even the smallest leakage as a

vulnerability, even when the leakage is too small to actually impact

security or stems from a biased measurement setup. This leads us

to our second research question:

RQ2: Can a statistical testing framework be designed

to ensure that negligible side channels or minor struc-

tural biases are not detected as statistically significant

differences?

We answer RQ2 in the affirmative. To demonstrate this, we repeat

the experiments of Bernstein et al. [6] usingmeasurement code from

their artifact to collect data for their discovered Kyberslash leak. We

then empirically study the impact of varying parameters reflecting

different notions of negligible side channels. We do not employ one

specific threshold, as Crosby et al. [14], for example, considered side

channels below 100ns unexploitable, while Hubert Kario argues

that side channels as small as one clock cycle can be detectable over

local area networks [35]. We want to emphasize that smaller timing

leaks are generally possible since the CPU frequency may vary, and

timing leaks may manifest non-deterministically across samples.

When applying less strict thresholds, as in Crosby’s assessment,

our algorithm does not flag the leak of the Kyberslash vulnerability

- expected to be around 20 clock cycles - as practically significant.

On the other hand, following Hubert Kario’s considerations for

exploitability, our test does indicate a significant leak as expected.

Our statistical algorithm gives developers a flexible tool to apply

their own assumptions and considered attacker models enabling

sound risk assessments.

High-level statistical idea. For both RQ1 and RQ2, we developed
a resampling-based test procedure that accounts for dependence

both between and within the measurements. The test is then em-

bedded in a framework that allows specifying the maximum size

Δ of a potential difference should not be detected. To be precise,

given a reasonable amount of measurements, our statistical test will

never detect differences that are smaller than Δ and even those that

are precisely equal to Δ are only detected at a prescribed rate 𝛼 . In

practice, this usually results in no false positives due to structural
bias or negligible side channels.

Our new statistical algorithm has additional advantages that

will produce more accurate results than previous techniques. In

contrast to RTLF proposed in Dunsche et al. [18], our algorithm is

able to also handle discrete measurements, where only few distinct

values are observed. Additionally, our approach can work with

arbitrary alternatives, does not require multiple testing, and is non-

parametric, which eventually will increase the accuracy of the test.

1
https://openssl-library.org/policies/general/security-policy/

2

https://openssl-library.org/policies/general/security-policy/


SILENT: A New Lens on Statistics in Software Timing Side Channels Dunsche et al.

Restricted measurement environments. Another question that de-

velopers and pentesters commonly face when performing statistical

side-channel analysis concerns the number of measurements re-

quired to obtain statistically reliable results. In some scenarios,

performing measurements incurs certain costs — such as network

latency, long test initialization times, or security restrictions (e.g.,

intrusion detection systems limiting the number of requests per

timeframe) — which can incentivize users to perform fewer mea-

surements than might be necessary to detect a given side channel.

In this work, we provide practitioners with a tool to make accu-

rate and cost-efficient choices for their required sample size by

answering the following research question:

RQ3: How many measurements do we need to iden-

tify a side channel of a given size?

Our statistical algorithm naturally provides this information by

Theorem 3. We will show that this can be used to optimize the

measurement process in scenarios where measurements are typi-

cally not free for the tester. Specifically, we will show that by first

making a few measurements, we can estimate how many measure-

ments we will need to detect a side channel of an assumed size

reliably. To demonstrate the reliability of our approach, we revisit

the Kyberslash example to predict the amount of measurements

required to detect the vulnerability. We then additionally show the

practical benefit of our approach for web pentesters, by showing

how the tester’s position in the network affects the number of

measurements needed to detect a given time leak in an artificially

constructed web-based timing side-channel vulnerability.

Contributions.

• We provide a broadly applicable theoretically founded test-

ing framework to analyze timing measurements of software

implementations of two input classes that can handle de-

pendent data, considers arbitrary alternatives, has bounded

type-1 errors, does not require multiple testing and is non-

parametric.

• We give a broad range of statistical guarantees which state-

of-the-art tools cannot provide.

• We implement and provide our approach as an open-source

tool for the community.

• We showcase the developed methodology on diverse practi-

cal applications in both cryptography and web security.

Ethical Considerations. Since we did only rely on artifacts al-

ready published in related work, and on lab experiments with our

own web application, there was no need to perform a Repsonsible

Disclosure.

Artifacts. As part of our artifacts, we provide all evaluated real-

world measurements, including the specific data sets taken from

related work, and results. We further provide the scripts to gener-

ate the artificial data for our ground truth study,the setup of the

tested applications, and - most importantly - the code used for our

statistical evaluations.

2 BACKGROUND
In 1996, Paul Kocher introduced the world to timing based side-

channel attacks [38]. In these attacks, the attacker uses the exe-

cution time of an algorithm to learn something about its inputs.

Since then, many timing attacks have been proposed in the litera-

ture targeting various cryptographic systems [1, 2, 5, 11, 12, 45, 46,

56, 67, 77, 78], but also the operating system [37, 42] or the appli-

cation layer [9, 23, 33, 66]. To protect against timing attacks, the

community created a set of programming paradigms colloquially

known as ’constant-time programming’. Under these paradigms,

the programmer is not allowed to use branching instructions with

secret inputs or perform secret-based memory lookups (to avoid

cache-induced timings). Additionally, the programmer should not

use assembly instructions with variable execution time and secret

inputs. However, recent research has shown that these paradigms

are not enough to ensure that code actually runs in secret indepen-

dent time. Attacks like Hertzbleed [70] or Spectre [37] subverted

our expectations of what is actually happening on the hardware

with our code, which questions whether the developed code is ac-

tually ’constant time’ enough to be secure in actual applications.

With potentially further unknown influences on the execution time,

measuring the execution time is an intuitive tool to ensure that no

significant side channels are present.

2.1 Statistical Hypothesis Test
Statistical hypothesis tests are used to take a quantitative decision

based on data 𝑥 := (𝑥1, . . . , 𝑥𝑛) on rejection or acceptance of some

null hypothesis 𝐻0 against an alternative hypothesis 𝐻1. Such tests

are based on a summary statistic 𝑆 := 𝑆 (𝑥), which is a quantitative

measure of the plausibility of 𝐻0 given some observed data. 𝑆 is

also called the test statistic and returns a real-value, such as the

sample mean. In the context of side-channel analysis, this is the

test that, given the measurements, will decide whether or not a side

channel is present.

Type-1 error. A hypothesis test is constructed such that for a

sample 𝑥 , it rejects𝐻0 in favor of𝐻1 if 𝑆 (𝑥) exceeds some threshold

𝑐 , above which 𝑆 seems at odds with 𝐻0. Since the data contains

some unpredictable randomness, there is always a risk of a false

decision. In statistical terms, rejecting 𝐻0 when it holds true is

referred to as a type-1 error (False Positive), while not rejecting a

hypothesis 𝐻0, while it is not true, is called a type-2 error (False

Negative). Here, we define 𝛼 as the maximal type-1 error rate consid-

ered to be acceptable. Specifically, we have P(𝑆 > 𝑐 |𝐻0 is true) ≤ 𝛼 .
By choosing a high 𝛼 value, the hypothesis test can make more

’risky’ classifications, while a low 𝛼 value makes the test more

conservative.

Statistical Power and Alternatives. The power of a hypothesis test

is the probability of rejecting 𝐻0 when 𝐻1 is true (i.e., the probabil-

ity of a true positive). As the sample size increases, a well-designed

hypothesis test should eventually reject 𝐻0 when 𝐻1 is indeed true

or, in mathematical terms, lim𝑛→∞ P(𝑆 > 𝑐 |𝐻1 is true) = 1. This is

an important characterization for the type-2 error, as it is asymp-

totically negligible in the sample size 𝑛. Generally speaking, the

statistical power expresses how often the test identifies a correctly

positive result and, therefore, always depends on the alternative

3
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(the true difference from the null hypothesis) at hand. For larger

differences, the power is generally higher than for smaller.

Multiple Testing. In many cases, a null hypothesis is a compo-

sition of several sub-hypotheses, and it is rejected when at least

one test rejects a sub-hypothesis. Here, one can think of different

tests applied to the same data. This yields the classical multiple

testing problem (see Noble [49] for an overview), where each sep-

arate test can erroneously decide that the null hypothesis is false.

For instance, if there are 𝑝 sub-hypotheses and one performs for

each hypothesis a test with a prescribed type-1 error 𝛼 , then the

type-1 error rate of the combined test (which rejects if at least one

test for a sub-hypothesis rejects) can only be upper bounded by 𝑝𝛼 .

Moreover, this upper bound can not be improved without further

assumptions. To handle this problem, one can use classical methods

like the Bonferroni correction [8]. Slightly more advanced tests are

multivariate tests or tests based on functions of the individual tests.

Dependent Data. A classical assumption in statistics are indepen-

dent observations, where each sample is entirely independent of

other samples. However, real-world applications, such as timing

measurements on real hardware, often introduce dependencies due

to the underlying system. Whenever a measurement is done, it

influences the system under test. In the context of timing measure-

ments, this can be a subtle modification like the changing of values

in the CPU cache, changes in the CPU frequency due to consumed

electricity, or a not-so-subtle change in the RAM or hard drive

introduced by the application that is tested. Ignoring such depen-

dencies can lead to misleading inferences, such as underestimated

variability (noise) and or inflated type-1 errors. To overcome that,

it is possible to model this dependency in the statistical analysis to

allow for valid conclusions.

Parametric Assumptions. Many hypothesis tests make assump-

tions about the expected distributions of the data that will be seen.

A simple (and for software timing measurements naive assump-

tion), is that the samples will be normal distributed. If the expected

distribution can be expressed by a function with a small set of

parameters, we call these distributions parametric. A classic exam-

ple of a test that makes a parametric assumption is the t-test [55],

where normally distributed data is assumed. A normal distribution

can be fully determined by the mean and variance, which makes

it parametric. Tests that use parametric assumptions are powerful

when the corresponding assumptions are (at least approximately)

satisfied but can produce misleading results if these assumptions

are violated. In software timing measurements, it is often opti-

mistic to know the distribution in advance. Mistakes that introduce

non-constant time behavior can be completely arbitrary and can

potentially also overlap, producing distributions that are not para-

metric anymore. Whenever we make no parametric assumption,

we usually use non-parametric statistics such as quantiles.

Quantiles. The (empirical) 𝑘-th quantile is a statistical measure

that separates the lowest 𝑘% of the data set from the remaining

(100 − 𝑘)% of the data. For a formal statistical analysis, the 𝑘-th

quantile of a real-valued random variable 𝑋 can be defined as the

smallest number 𝑞𝑘 such that the inequality P(𝑋 ≤ 𝑞𝑘 ) ≥ 𝑘 holds.

In other words, in average 𝑘% of the observations are smaller or

equal to 𝑞𝑘 and (1 − 𝑘)% of the observation are larger.

Booststrap. In many applications, the threshold 𝑐 (see Type-1

error) required for a statistical test is difficult to obtain by theoretical

arguments. However, often 𝑐 can be estimated through a simple

procedure known as bootstrap, which is based on a simulation

of the test statistic for artificially generated random data with a

distribution closely similar to the true but unknown distribution

of the data. By repeatedly resampling the data set and imitating

the behavior of 𝑆 under 𝐻0, an empirical estimator, say 𝑐∗
1−𝛼 , for

𝑐 := 𝑐1−𝛼 can be obtained. Formally, we consider a rejection rule

of the form 𝑆 > 𝑐 , where we assume that 𝑆 is resampled exactly 𝐵

times, say 𝑆∗
1
, . . . , 𝑆∗

𝐵
and denote the ordered values of this procedure

by 𝑆∗(1) ≤ . . . ≤ 𝑆∗(𝐵) . This allows us to estimate the unknown

threshold 𝑐 by the empirical threshold (1 − 𝛼)-quantile 𝑐∗
1−𝛼 :=

𝑆 ( ⌊ (1−𝛼 )𝐵⌋ ) of this sample. In summary, bootstrapping allows one

to define a configurable threshold, and we refer to [65] for a more

detailed discussion on the subject.

2.2 Statistical Side-Channel Analysis
In statistical side-channel analysis, the user repeatedly measures the

execution time of an algorithm for two different classes of inputs

that should have the same execution time. Once the measurements

are gathered, the user then applies a statistical test to determine

if the measurements follow the same distribution. If they do, the

implementation is considered secure (regarding the tested classes

of inputs), while if the distributions are different, the implementa-

tion is considered insecure. Several approaches have been proposed

for such tests. The most important will be discussed in the fol-

lowing: TVLA is a statistical approach commonly used to search

side-channel vulnerabilities in cryptographic primitives [31, 60, 64].

It was proposed by Goodwill et al. with the Test Vector Leakage As-

sessment (TVLA) framework [41]. Typically, it is used with Welch’s

t-test [55], the paired t-test [16], or the 𝜒2
-test [47] to obtain a

test decision. dudect [53] performs a series of Welch’s t-tests [55]

on a partitioned data set. dudect is designed to measure and test

repeatedly until the first positive is detected.Mona [57] is a testing

tool based on Crosby’s box test [14]. It iterates over all percentiles

and reports a timing leak if it finds a box of size 1% or bigger. tls-
fuzzer [34] performs a collection of well established statistical

tests. For the final decision, four distinct tests are executed, namely

the Wilcoxon signed-rank test [76], Sign test [68, Section 15.3],

the paired t-test [55], and the Friedman test [20]. As illustrated

in the statistical background (Multiple Testing), a statistically sig-

nificant difference is reported whenever at least one test detects

one. RTLF [18] provides a testing procedure that is based on quan-

tiles. Essentially, it considers the deciles as its primal focus and

guarantees a bounded type-1 error based on a bootstrap.

2.3 Relevant Hypothesis Testing
In hypothesis testing for two distributions 𝑃𝑋 and 𝑃𝑌 , for instance,

representing the execution time of an algorithm, it is common to

formulate the hypotheses in terms of exact equality: 𝐻0 : 𝑃𝑋 = 𝑃𝑌
versus 𝐻1 : 𝑃𝑋 ≠ 𝑃𝑌 . That is, the null hypothesis assumes exactly

identical timing behavior, while the alternative hypothesis assumes

a difference. However, in the real world, testing for exact equality

is ambitious. As John Tukey [63] famously noted:

4
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All we know about the world teaches us that the ef-

fects of A and B are always different—in some decimal

place—for any A and B. Thus asking “Are the effects

different?” is foolish.

To overcome that simplification, we suggest, among many others in

the statistical literature (see Stefan Wellek [73] for a comprehensive

account), to use a relevant hypotheses. The key difference lies in the

construction of the hypotheses. Namely, for a threshold Δ > 0 and

some distance measure 𝑑 between the distributions 𝑃𝑋 and 𝑃𝑌 , we

consider the hypotheses

𝐻0 : 𝑑 (𝑃𝑋 , 𝑃𝑌 ) ≤ Δ 𝑣𝑠. 𝐻1 : 𝑑 (𝑃𝑋 , 𝑃𝑌 ) > Δ . (1)

In simple terms, rather than asking whether the distributions are

exactly identical or not, we assess whether they are sufficiently

similar or meaningfully different.

Practical Significance vs. Statistical Significance. It is crucial to dis-

tinguish between practical significance and statistical significance.

With a large sample size, one may detect very tiny differences that

might not be relevant for the application and consideration. In the

context of side-channel attacks, the size of a side channel indicates

if it is likely exploitable or not in a given attacker model. For ex-

ample, Crosby et al. [14] argue that timing differences of 100𝑛𝑠 or

larger are likely exploitable in a LAN-setting. Hence, following this

assumption, if we aim to assess whether some code or protocol

possibly contains an exploitable side channel in a LAN setting, a

meaningful test could be designed in a way that it only detects side

channels of around 100𝑛𝑠 or larger. Here, we want to emphasize

that the naive approach of rejecting𝐻0 in (1), whenever any chosen

test rejects the classical hypotheses and the test-statistic exceeds Δ,
does not yield a statistical test controlling the type-1 error rate. We

illustrate this fact in Appendix B for the classical 𝑡-test.

Controlling Type-2 Errors. When performing a statistical test,

one can always control either the type-1 or the type-2 error (in the

overwhelming number of cases, the type-1 error), and given that

error, we aim to minimize the other error. In the context of software

timing side channels, e.g. Dunsche et al. [18] did this in RTLF . They

chose a static false positive rate 𝛼 and then tried to minimize the

amount of false negatives, i.e., maximizing the number of correct

results. Therefore, a hypothesis test is constructed in a way that

the controlled error causes more harm. Obviously, defining what

causes more significant harm depends on the application. In the

context of side channels, a type-1 error may cause the developer

to spend hours trying to debug a vulnerability that is not present.

In contrast, a type-2 error risks a vulnerability going undetected,

which may leak information to an attacker, potentially inflicting

very high financial damage or threat to human lives. Consequently,

if it is desirable to control the type-2 error instead of the type-1

error, we would have to switch the hypotheses in (1). However,

doing that is often unfeasible in the classical setting. We illustrate

that in the Appendix B.

3 SHORTCOMINGS OF PRIORWORK
Previous approaches for the analysis of timing side channels suffer

from various drawbacks, which we point out in this section. We

summarize them in Table 1.

Parametric Assumption. As discussed before, parametric assump-

tions are often not valid in the context of timing side channels. The

assumption of a normal distribution made by TVLA, dudect, and

also tlsfuzzer (as it employs a paired two-sample t-test), limit their

applicability for this use case. Note that in other fields, for exam-

ple when comparing power traces for hardware leaks, parametric

assumptions can be valid.

Bounded Type-1 Error. As discussed in subsection 2.1, a hypoth-

esis test is usually constructed in the spirit that for the bounded

type-1 error, we want to minimize the type-2-error. However, nei-

ther Mona nor Dudect fully controls the type-1 error. Due to the

construction of Mona, especially for small sample sizes and large

variances, Mona faces an overwhelming type-1 error (see [18]). In

contrast, dudect uses a very conservative decision rule, which is

the other extreme to Mona (see [18]).

Arbitrary Alternatives. In practical applications, the ability to

detect violations of 𝐻0 (i.e. statistical power) is critical. Ideally, we

require that P(reject 𝐻0 | 𝐻1 is true) 𝑛→∞→ 1. However, this guaran-

tee fails for some of the commonly used tools. For example, Mona

relies on a fixed threshold and exhibits no statistical power when the

differences between distributions fall below those thresholds. In the

case ofMona, effects below a 1% difference remain undetected, even

for large sample sizes. Similarly, dudect and tlsfuzzer lack statistical

power in very simple examples like two normal distributions with

equal means but differing variances, highlighting the limitations of

these tools. In analogy, RTLF considers only differences in deciles,

making it insensitive to changes that do not affect those specific

quantiles. Extending their methodology to a larger collection of

quantiles is possible but incurs severe multiple-testing costs.

Multiple Testing. Mona, dudect, tlsfuzzer and RTLF use multiple

hypothesis testing (see Section 2). While dudect and Mona do not

explicitly account for this issue, RTLF applies a simple Bonferroni

correction [59], to control the overall level 𝛼 , while tlsfuzzer attains

a type-1 error of 4𝛼 . Even though the Bonferroni correction can

be optimized in various ways (e.g., [80], [29]), there have been, to

the best of our knowledge, no efforts to apply these methods in the

side-channel literature.

Dependent Data. As already mentioned, dependence between

observations is a natural phenomenon in real systems. To this

day, no statistical tool has accounted for this data characteristic.

Strictly speaking, the results obtained by all tools did not yield the

desired guarantees. However, there is a grey zone in which minor

deviations do not affect the outcome. This can, for example, be

observed in the OpenSSL data collected in Dunsche et al. [18].While

minor dependence between observations is present, the results

are still sound. However, as we will later see (subsection 7.1), the

dependence between observations will often not be negligible.

We illustrate the impact of dependent data in a simple example,

where we artificially generate dependent data for which we can

accurately control the ground truth (see Appendix A). We then

analyze the data with dudect, Welch’s t-test (TVLA), tlsfuzzer (ex-

cluding the Friedman test as we consider a two-sample problem),

and RTLF (Figure 1). Our considered side channel uses a simple

shift. Here, we want to emphasize that the designed experiments

5
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Table 1: Comparison of previous approaches to SILENT .

Tool
Dependent

Data
Non-

Parametric
Bounded

type-1 error
Arbitrary

Alternatives Bootstrap
No multiple

testing
Discrete
Data

Reservable
Hypotheses

TVLA � ○ ○ ○ ○ ○ ○ ○
Mona ○ ○ ○ ○ ○ ○ ○ ○
dudect ○ ○ � ○ ○ ○ ○ ○
tlsfuzzer � � ○ ○ � ○ ○ ○
RTLF ○ ○ ○ ○ ○ ○ ○ ○
SILENT ○ ○ ○ ○ ○ ○ ○ ○

○ Applies � Partially applies ○ Does not apply

favor tools based on the t-test (TVLA, dudect and tlsfuzzer) since the

data example recovers the comparison of two normally distributed

samples with a shift for the independent case. In this simple exam-

ple, we see that all tools struggle in multiple ways. Starting with

the null hypothesis (𝐻0), shown in the first column and separated

by the black dotted line, we notice that all tools tend to over-reject

for positively correlated measurements. Among them, only dudect

avoids extreme over-rejection, mainly because it employs a very

conservative threshold. The statistical reason for this is that for

positively correlated data, the estimated variance is smaller than

the true variance, leading to too many false positives. In contrast to

that, we can observe that for negatively correlated data, the exact

opposite happens, namely under-rejection, due to an overestima-

tion of the true variance. For the independent case, where Φ = 0, we

can observe that all tests perform reasonably well. Moving to the

alternative hypothesis, i.e. where a side channel is indeed present.

Besides dudect, all tools reliably detect side channels. Again, the

conservative decision rule proposed by dudect is the crucial part

here. For positively correlated data under 𝐻1, the detections are, in

theory, valid. However, since the type-1 error (𝛼) was not properly

controlled under 𝐻0, drawing a usable conclusion is not possible.

With strong positive dependence, distinguishing between the pres-

ence or absence of a side channel becomes particularly difficult, as

a positive outcome (side channel present) is as likely under 𝐻0 as

in 𝐻1. For negative correlations, there is an actual turning point.

If the signal

√
𝑛𝜇 surpasses the threshold 𝑐 used by the respective

tool, an under-rejection becomes an over-rejection. This is clearly

visible in TVLA and tlsfuzzer from the second to the third column

and less obvious in dudect and RTLF .

4 REAL-WORLD EXAMPLES
Dependent Data. Dependent observations naturally occur in mea-

surement data, as each measurement on real hardware has the pos-

sibility to influence subsequent measurements as the systems we

are measuring on are stateful. Each measurement influences the

values in CPU registers, the RAM, the OS, and various caching

mechanisms. On a micro-architectural level, the measurement can

also influence the power consumption [70], which influences the

CPU frequency. These changes in the system state can create a de-

pendency in the measurements that is measurable. This dependency

can be very small if functions are measured in isolation, where side

effects can be well contained, or can be very large if side channels

are measured within bigger applications that do more than just

execute a mathematical function in a tight loop. To show that data

dependency can naturally occur, we conducted an experiment built

around the page table mechanism in the operating system and CPU.

When a process requests memory from the operating system, a

piece of physical memory is mapped to a virtual address space. This

mapping takes heavy advantage of a cache called TLB (Transla-

tion Lookaside Buffer). If a piece of memory (page) was recently

loaded, it will be in the cache, and access to it will be faster, while

not-so-recent pages will be slower since they are not in the cache

anymore and need to be loaded again. Even if the information that

is retrieved is public (and the timing difference, therefore, not an

issue), the TLB can introduce data dependency, which depends on

the memory access pattern of the inputs in the system under test.

To demonstrate this effect, we implemented an experiment where

we allocate a large piece of memory (32MB) and then either access

the first 512KB of memory or a random chunk of 512 KB. When fre-

quently accessing the first 512 KB, we expect the respective pages

to be in the TLB, and the measurements should, therefore, not have

a strong dependency, as the pages do not have a chance to unload

between measurements. However, when accessing random chunks

of memory, the access time will depend on whether the chunk, or

parts of it, were accessed by a previous (random) measurement.

It will, therefore, create a stronger dependency, as the caches are

eventually purging pages from the cache. In an experiment with

100,000 measurements repeated 10,000 times, we found that the

dependency analysis revealed an average dependency estimation

of 29.35 when accessing the same chunk, while the average de-

pendency estimation was 132.15 when accessing random chunks.

Here, higher values correspond to longer dependence between mea-

surements. For more details, we refer to Section 5. In section 7,

we present an example from Dunsche et al. [18] where during the

Bleichenbacher vulnerability test in mbedTLS, data dependency

appeared in real-world measurements, which was likely responsible

for a false positive result in RTLF .

Negligible Side Channels. Developers always consider (some-

times implicitly) specific attacker scenarios as out of scope. For

example, OpenSSL, the most well-known cryptographic library,

does not consider attacks that require co-located attackers to be

relevant.
2
In the context of timing measurements, this may apply

to known but small side channels that likely can not be exploited

in a remote or even LAN attacker scenario with a realistic amount

of measurements. Through our methodology, we provide a tool to

2
https://openssl-library.org/policies/general/security-policy/
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(a) dudect (b) TVLA (c) RTLF (d) tlsfuzzer

Figure 1: Empirical rejection rates of 1, 000 simulation runs for various tools with sample size 𝑛 = 10000. For TVLA, RTLF and
tlsfuzzer we set 𝛼 = 0.1, while for dudect we kept the default threshold, which yields a very conservative 𝛼 .

developers that allows them to define their notion of a negligible

side channel. This way, our statistical test can be included in a

continuous integration pipeline that detects any new side chan-

nels exceeding the defined threshold while maintaining a low false

positive rate for the expected leak. Additionally, setting thresholds

enables testers to produce more meaningful reports as they can

focus on reporting exploitable side channels. We demonstrate the

effect of our threshold in section 7 based on a known side channel

in an older version of the reference code of the post quantum KEM

scheme Kyber [6].

Determining a Reasonable Sample Size. The ability to estimate a

required sample size for a reliable detection of timing leaks can be

a beneficial feature for developers. However, the required sample

size is heavily influenced by measurement variance. Our approach

allows for a sample size estimation by analyzing a small initial sam-

ple to assess variance, then incorporating the detection threshold

(Δ), critical leak size (𝜇), and desired detection rate (𝑝). section 7

demonstrates this estimation on real-world data.

5 SILENT : RELEVANT HYPOTHESIS TESTS
In this section, we propose a statistical tool called SILENT (Sta-

tistical Identification and Leakage Estimation with Negligibility

Thresholds) to distinguish between two distributions 𝑃𝑋 and 𝑃𝑌
based on collected timing measurements of 𝑋 and 𝑌 using the hy-

potheses (1). Our test does not rely on parametric assumptions,

will bound type-1 errors, and support arbitrary alternatives with

minor additional costs. The test decision is based on a bootstrap

procedure. We first define some basic assumptions required for

statistical theory which confirms the feasibility of the proposed

method:

Assumption 1. Let 𝑍𝑖 = (𝑋𝑖 , 𝑌𝑖 )⊤, 𝑖 = 1, . . . , 𝑛, 𝑛 ∈ N, be a
sequence of strictly stationary𝑚-dependent random vectors for some

𝑚 ∈ N.

Here, we emphasize that we do not assume independence be-

tween 𝑋𝑖 and 𝑌𝑖 , even though this can be the case in practice. Ad-

ditionally, we allow for dependence between the vectors 𝑍𝑖 in a

specific manner, which is called𝑚-dependence and defined as fol-

lows: for a fixed 𝑚 ∈ N and any 𝑡 ∈ N, the sequence (𝑍𝑖 )𝑖≤𝑡 is

independent of (𝑍𝑖 )𝑖≥𝑡+𝑚+1. Note that this recovers the case of

independence when𝑚 = 0. Obviously,𝑚 is unknown in advance

and therefore we estimate it using the generic estimator proposed

by Politis et al. [51]. An implementation can be found in [27]. Be-

yond this, we impose no additional distributional assumptions,

particularly no parametric assumptions. Recall that the goal of the

statistical hypothesis test is to decide whether the distributions 𝑃𝑋
and 𝑃𝑌 are similar or not. To achieve this, we construct a hypothe-

ses test based on a slack parameter Δ > 0, which will be chosen in

advance to determine whether two distributions are "Δ-close" or
not.

Subsequently, we compare 𝑃𝑋 and 𝑃𝑌 using a set of quantiles

of 𝑋 and 𝑌 , respectively. For that, we first define a set of indices

𝐾 , indicating which quantiles will be considered. We consider the

following hypotheses-pair

𝐻0 : max

𝑘∈𝐾
|𝑞𝑋
𝑘
− 𝑞𝑌

𝑘
| ≤ Δ (2)

versus

𝐻1 : max

𝑘∈𝐾
|𝑞𝑋
𝑘
− 𝑞𝑌

𝑘
| > Δ . (3)

Note that whenever the alternative hypothesis 𝐻1 holds, the two

distributions are indeed different.

Maximum test. In contrast to previous approaches, we will not

use a multiple testing approach, but rather test all quantiles simul-

taneously. For that purpose, we first define the test statistic

𝑄̂𝑚𝑎𝑥 := 𝑄̂𝑚𝑎𝑥 (𝑥,𝑦) := max

𝑘∈𝐾𝑚𝑎𝑥
𝑠𝑢𝑏

|𝑞𝑥
𝑘
− 𝑞𝑦

𝑘
| − Δ

𝜎̂𝑘
, (4)

where 𝜎̂2

𝑘
is the empirical variance of the bootstrap sample

𝑄̂
𝑘,∗
1
, . . . , 𝑄̂

𝑘,∗
𝐵

calculated by Algorithm 2), i.e.

𝜎̂2

𝑘
:=

1

𝐵 − 1

𝐵∑︁
𝑖=1

(𝑄̂𝑘,∗
𝑖

−𝑄𝑘,∗
𝑖

)2 , (5)

and 𝑄
𝑘,∗
𝑖

:= 1

𝑛

∑𝑛
𝑖=1

𝑄̂
𝑘,∗
𝑖

denotes its empirical mean. Regarding the

definition of 𝐾𝑚𝑎𝑥
𝑠𝑢𝑏

, we filter 𝐾 twice. In the first step, we define the

subset

𝐾𝑠𝑢𝑏 :=

{
𝑘 ∈ 𝐾

���𝜎̂2

𝑘
< 5

1

|𝐾 |
∑︁
𝑘∈𝐾

𝜎̂2

𝑘

}
(6)

7



SILENT: A New Lens on Statistics in Software Timing Side Channels Dunsche et al.

of quantiles, where the variance is not too large compared to the rest.

This also excludes the scenario of unfavorable signal-to-noise ratios,

and we include only those quantiles 𝑞𝑘 , which can be estimated

with a sufficiently large number of observations. In the second step,

we also define the subset

𝐾𝑚𝑎𝑥
𝑠𝑢𝑏

:=

{
𝑘 ∈ 𝐾𝑠𝑢𝑏

��� |𝑞𝑋𝑘 − 𝑞𝑌
𝑘
|

𝜎̂𝑘
+ 30

√︄
log(𝑛)3/2

𝑛
≥ Δ

𝜎̂𝑘

}
(7)

as the set of levels with relevant differences between the quantiles.

This filter is primarily used for boosting the statistical power of

the resulting test, as it includes only those differences between

the quantiles that are likely to exceed Δ. Note that this can also

yield less quantiles in the bootstrap procedure and therefore a less

conservative decision rule. With that in hand, we can define the

test decision by the following: we reject the null hypothesis (2) in

favor of (3), if and only if

𝑄̂𝑚𝑎𝑥 (𝑥,𝑦) − 𝑐∗1−𝛼 > 0 ,

where 𝑐∗
1−𝛼 is the threshold determined by the resampling proce-

dure in Algorithm 1 and Algorithm 2. Here, we point out that the

procedure defined in Algorithm 2 refers to the continuous case.

For the discrete case, the bootstrap procedure in Algorithm 2 is

not consistent. Therefore, we have formulated an alternative in

Algorithm 4 based on Jentsch and Leucht [32].

Quantile Estimator. We propose the following estimators: For

continuous data, we propose the well-known estimator based on

the rank statistic:

𝑞𝑥𝑖 :=

{
𝑥 ( ⌈𝑛𝑖 ⌉ ) , if 𝑛𝑖 ∉ Z
1

2
(𝑥 (𝑛𝑖 ) + 𝑥 (𝑛𝑖+1) ), if 𝑛𝑖 ∈ Z

. (8)

For discrete data, this estimator is not usable, as the classical as-

ymptotic analysis (see e.g. [65]) is not applicable. Therefore, we

consider a different estimator for discrete distributions, so-called

mid-distribution quantiles (see Appendix C).

5.1 Algorithms
The algorithmic foundation comprises three key components: cal-

culating the test statistic defined in (4), determining the threshold,

and making the final test decision. Algorithm 1 integrates all three

steps. Since threshold computation is a crucial contribution of this

work, we present it separately in Algorithm 2 (or Algorithm 4 for

discrete data). We implemented our algorithm in R and make it

publicly available on GitHub
3
. For the implementation we have

used the following packages: [22, 25, 27].

5.2 Analysis under the Null Hypothesis
Subsequently, we consider two different asymptotic results. Theo-

rem 1 derives the limit on the boundary of𝐻0, namelymax𝑘∈𝐾 |𝑞𝑋
𝑘
−

𝑞𝑌
𝑘
| = Δ. On the other hand, Theorem 2 derives the asymptotic 𝛼-

level for the bootstrap quantile.

Theorem 1 (Asymptotic behavior). Assume that Assumption 1

holds and𝑋 and𝑌 are continuous random variables with densities 𝑓𝑋 ,

and 𝑓𝑌 , which are strictly positive and continuous in a neighborhood

3
https://github.com/tls-attacker/SILENT

Algorithm 1 SILENT Test to distinguish two distributions.

function SILENT (𝑥 , 𝑦, 𝛼 , Δ, 𝐾 , 𝐵)

Require: data sets 𝑥 , 𝑦, false positive rate 𝛼 , threshold Δ, set of quantiles
𝐾 , bootstrap parameter 𝐵

Ensure: "Violation", "No Violation"

1: Check if data is discrete or continuous.

2: Compute quantiles 𝑞𝑥 and 𝑞𝑦 .

3: Estimate dependence𝑚.

4: Compute bootstrap statistics 𝑄̂∗
:= 𝐵𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝 (𝑥, 𝑦, 𝐾, 𝐵,𝑚) .

5: Compute empirical variance 𝜎̂2

𝑘
(as in equation (5)).

6: Select subset 𝐾𝑚𝑎𝑥
𝑠𝑢𝑏

defined in equation (7).

7: Compute test statistic 𝑄̂𝑚𝑎𝑥 (𝑥, 𝑦) as in equation (4)

8: Compute final bootstrap statistic 𝑄̂∗
𝑚𝑎𝑥 := max𝑘∈𝐾𝑚𝑎𝑥

𝑠𝑢𝑏
𝑄̂𝑘,∗/𝜎̂𝑘

9: Define threshold 𝑐∗
1−𝛼 := (𝑄̂∗

𝑚𝑎𝑥 )⌊ (1−𝛼 )𝐵⌋
10: if 𝑄̂𝑚𝑎𝑥 (𝑥, 𝑦) > 𝑐∗

1−𝛼 then
11: return "Violation".

12: else
13: return "No Violation".

14: end if

Algorithm 2 Bootstrap maximum for dependent data

function Bootstrap(𝑥 , 𝑦, 𝐾 , 𝐵,𝑚)

Require: data sets 𝑥 , 𝑦, set of quantiles 𝐾 , bootstrap parameter 𝐵, depen-

dence𝑚

Ensure: 𝑄̂∗

1: for 𝑖 = 1 to 𝐵 do
2: Sample 𝐼 ⊂ {1, . . . , 𝑛 −𝑚 + 1} with |𝐼 | = ⌈𝑛/𝑚⌉.
3: Set 𝑥∗ = 𝑥 [𝐼 ], 𝑦∗ = 𝑦 [𝐼 ], where each 𝑖 ∈ 𝐼 includes all

𝑥𝑖 , . . . , 𝑥𝑖+𝑚−1.

4: Compute bootstrap test-statistic:

𝑄̂𝑖,∗ =
���𝑞𝑥∗ − 𝑞𝑦∗

��� − |𝑞𝑥 − 𝑞𝑦 | .

5: end for
6: return 𝑄̂∗

:= (𝑄̂∗
1
, . . . , 𝑄̂∗

𝐵
) .

Algorithm 3 Statistical Power Analysis

function Measurements(𝑥 , 𝑦, 𝜇, Δ, 𝐾 , 𝑆ℎ𝑖 𝑓 𝑡 ,𝛼 )

Require: data sets 𝑥 , 𝑦, expected side channel 𝜇, threshold Δ, set of quan-
tiles 𝐾 , boolean 𝑆ℎ𝑖 𝑓 𝑡 , type-1 error threshold 𝛼

Ensure: 𝑛
1: Compute quantiles 𝑞𝑥 and 𝑞𝑦 .

2: Estimate dependence𝑚.

3: Compute bootstrap statistics 𝑄̂∗
:= 𝐵𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝 (𝑥, 𝑦, 𝐾, 𝐵,𝑚) .

4: Compute empirical variance 𝜎̂2

𝑘
(as in equation (5)).

5: Select subset 𝐾𝑠𝑢𝑏 as in (6).

6: if 𝑆ℎ𝑖 𝑓 𝑡 = 1 then
7: 𝜎̂ :=

√
𝑛min𝑘∈𝐾𝑠𝑢𝑏 𝜎̂𝑘 .

8: else
9: 𝜎̂ :=

√
𝑛𝑚𝑒𝑑𝑖𝑎𝑛 (𝜎̂𝑘 ) .

10: end if

11: Compute𝑛𝑠𝑢𝑏 =

( Φ−1 (1−𝑝 )
𝜎̂

−Φ−1 (1−𝛼 )𝜎̂
𝜇−Δ

)
2

, whereΦ−1 ( ·) is the quantile
function of a standard normal distribution.

12: return Estimated sample size 𝑛 = ⌈𝑚𝑎𝑥 (100, 𝑛𝑠𝑢𝑏 ) ⌉.

8
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of all points 𝑘 ∈ 𝐾 . Furthermore let G = (G1,G2) denote a bivariate
Brownian bridge with covariance structure(

𝜎2

𝑋,𝑙
𝜎𝑋,𝑌,𝑙

𝜎𝑋,𝑌,𝑙 𝜎2

𝑌,𝑙

)
=

𝑚∑︁
ℎ=−𝑚

(
Cov(𝑋0, 𝑋ℎ) Cov(𝑋0, 𝑌ℎ)
Cov(𝑌0, 𝑋ℎ) Cov(𝑌0, 𝑌ℎ)

)
. (9)

If the null hypotheses (2) is satisfied, the weak convergence

𝑄̂𝑚𝑎𝑥
𝑑→ max

𝑘∈𝐾, |𝑞𝑋
𝑘
−𝑞𝑦

𝑘
|=Δ

sign(𝑞𝑋
𝑘
− 𝑞𝑌𝐾 )

(
G1 (𝑘)
𝑓𝑋 (𝑞𝑋

𝑘
)
− G2 (𝑘)
𝑓𝑌 (𝑞𝑌𝑘 )

)
holds, where the right hand side is defined as−∞ if

{
𝑘 ∈ 𝐾, |𝑞𝑋

𝑘
−𝑞𝑦
𝑘
| =

Δ
}
= ∅ .

In Theorem 1, we only consider the continuous case. The dis-

crete case is slightly more involved but yields no further insights.

Asymptotic results for mid-distribution quantiles can be obtained

in [43]. In the following theorem, we formulate the guarantee for

our bootstrap procedure under the null hypothesis:

Theorem 2 (Bootstrap Guarantee). Let the assumptions of

Theorem 1 be satisfied and let 𝑐∗
1−𝛼 denote the quantile obtained by

Algorithm 1. Suppose that the null hypothesis (2) holds, then

lim sup

𝑛→∞
P(𝑄̂𝑚𝑎𝑥 > 𝑐∗

1−𝛼 ) ≤ 𝛼

with equality in the case that |𝑞𝑋
𝑘
− 𝑞𝑌

𝑘
| = Δ for all 𝑘 ∈ 𝐾 .

5.3 Analysis under the Alternative Hypothesis
To complement the results in Section 5.2, we also consider the

alternative hypothesis 𝐻1 in (3). We first derive the consistency,

which means that the probability of rejection converges to 1 if the

null hypothesis is not satisfied. Secondly, we also derive a "worst

case" statistical power analysis.

Theorem 3 (Bootstrap Guarantee). Let the assumptions of

Theorem 1 be satisfied and let 𝑐∗
1−𝛼 denote the quantile obtained by

Algorithm 1. Suppose that the alternative (3) holds, then

lim

𝑛→∞
P(𝑄̂𝑚𝑎𝑥 > 𝑐∗

1−𝛼 ) = 1

In particular 𝑄̂𝑚𝑎𝑥 diverges to infinity with rate

√
𝑛(max𝑘∈𝐾 |𝑞𝑋

𝑘
−

𝑞𝑌
𝑘
| − Δ). Suppose that there is only one quantile 𝑞𝑘0

such that |𝑞𝑋
𝑘
−

𝑞𝑌
𝑘
| is maximized; in this case the statistical power of the test is

approximately given by

P(𝑍 > 𝑞1−𝛼 −
√
𝑛( |𝑞𝑋

𝑘0

− 𝑞𝑌
𝑘0

| − Δ)) , (10)

where 𝑍 is a centered, normally distributed random variable with

variance

𝜎2

𝐹𝑋 ,𝑙

𝑓 2

𝑋
(𝑞𝑋
𝑘0

)
−

2𝜎2

𝐹𝑋 ,𝐹𝑌 ,𝑙

𝑓𝑋 (𝑞𝑋
𝑘0

) 𝑓𝑌 (𝑞𝑌𝑘0

)
+

𝜎2

𝐹𝑌 ,𝑙

𝑓 2

𝑌
(𝑞𝑌
𝑘0

)
,

𝑞1−𝛼 is the (1−𝛼) quantile of its distribution and 𝜎2

𝐹𝑋 ,𝑙
, 𝜎2

𝐹𝑋 ,𝐹𝑌 ,𝑙
and

𝜎2

𝐹𝑌 ,𝑙
are the long-run (co)variances defined in (9).

6 ILLUSTRATION OF CONTRIBUTIONS
In this section, we illustrate the contributions made in Section 5

on artificially created data. To do this, we first show that we have

constructed a well-performing test illustrated on the same data sets

as in Section 3 (see Appendix A for details) and later expand on the

individual contribution of a statistical power analysis.

Varying Parameters. We consider three different scenarios to

illustrate the impact of Δ and sample size 𝑛: 𝑛 = 1000, 10000 with

Δ = 0.5 and 𝑛 = 10000 with Δ = 0.25. The rest of the parameters

are set to default values. The results are summarized in Figure 2.

In Figure 2a we revisit the example discussed in Section 3. In

contrast to all previously considered tools, we observe that SILENT

consistently maintains the type-1 error rate 𝛼 across all forms of

dependence Φ. Notably, for 𝜇 < Δ, we clearly see the convergence

𝛼 → 0 as 𝑛 → ∞. This is a highly relevant result: when the

implementation is truly constant time (i.e., 𝜇 = 0), the test yields

practically no false positives and therefore significantly reduces

the overhead created by investigation of false alarms. We refer

the interested reader to Appendix B where we explain how this

improves over the naive two step procedure, where one first applies

a classical test (e.g. one of the tools in Table 1) and discards all

positive test results where the detected difference is smaller than Δ.
Furthermore, Figure 2a also illustrates that if there indeed is a side

channel greater than Δ present, the statistical power of the testing

procedure quickly increases with the amount of measurements.

This illustrates our ability to account for multiple testing penalties

without sacrificing too much statistical power which is a classical

problem of the Bonferroni correction that we evade due to our

usage of 𝐾𝑚𝑎𝑥
𝑠𝑢𝑏

in Algorithm 1. Turning to Figure 2b, we observe

similar behavior for smaller sample sizes. While the test retains

type-1 error control, its statistical power is reduced. The effect is

strongest under strong positive correlation between measurements.

This is expected, as such correlations increases the true standard

deviation and thereby reduce the signal-to-noise ratio. This makes

finding a true positive more difficult - or in simpler terms, with

more noise for the same signal, detection becomes less reliable.

Finally, Figure 2c illustrates the flexibility in choosing different

Δ values to obtain the theoretical guarantees established in Section

5. Here, we set 𝜇 = 0.2 and 𝜇 = 0.3, such that Δ = 0.25 lies between

the two. This example highlights how suitable choices of Δ can

effectively separate 𝐻0 and 𝐻1, leading to both type-1 and type-2

errors vanishing for sufficiently large 𝑛. In Figure 2c, due to strong

dependence and an insufficient sample size 𝑛, this ideal separation

is not yet fully achieved.

Statistical Power Analysis and Implications: In practical settings,

we often do not have prior knowledge of the precise noise charac-

teristics present in measurements. Therefore, we expect users to

collect at least 100 measurements. Based on these, the expected size

𝜇, expected bias Δ, desired detection rate 𝑝 , and prescribed type-1

error 𝛼 , we will then conclude what the actual sample size 𝑛 should

be to detect that difference 𝜇 reliably. An additional and equally

important factor is the nature of the side channel. Specifically, is

the leakage visible as a clear shift in the distribution, or is it only

apparent in the tails—for instance, only in very fast execution times

(e.g., the lower 10% quantile)? This distinction has a direct impact

on the sample size 𝑛. If the side channel causes a shift across the

distribution, detection typically requires fewer samples. In contrast,

when the effect is subtle and localized in the tails, more samples are

needed to confidently identify the deviation. To account for this,

we implemented a simple but effective rule:

9
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(a) 𝑛 = 10000, Δ = 0.5 (b) 𝑛 = 1000, Δ = 0.5 (c) 𝑛 = 10000, Δ = 0.25

Figure 2: Rejection rate heatmaps for SILENT under varying sample size and Δ.

• If the user believes the side channel is given by a shift, we

estimate the variance using the smallest quantile variance

observable by the initial measurements.

• If the user is unsure or suspects the effect may be local (say

10% quantile only), we conservatively estimate using the

median of the quantile variances observable by the initial

measurements.

This will then also be reflected in the needed sample size 𝑛, as

smaller variance yields smaller sample size.

Limitations. By measuring only small subsample to estimate

the number of required measurements, we assume that the sys-

tem under test is not meaningfully changing due to effects outside

of our measurements. Strict stationarity is usually not given, as,

for example, when doing network measurements, of course also,

other processes on the system are changing the internal state of the

system under test. However, for practical purposes there is some le-

niency in the requirement and subtle differences may even out over

the course of the measurements. While the general order of magni-

tude of the statistical power analysis will be oftentimes still correct,

better results are achieved when slightly more measurements are

done when performing measurements on real systems.

7 REAL WORLD EVALUATION
In the following subsections, we analyze real-world measurements

showcasing that our test can handle dependent data, the effect of Δ
and how various parameters affect our sample size estimation, and

the impact of different measurement setups.

7.1 Dependent Data
First, we analyze a data set collected by Dunsche et al. [18] for the

mbedTLS library implementing the Transport Layer Security (TLS)

protocol. Specifically, we analyzed their Bleichenbacher measure-

ments in for the most recent version of mbedTLS they considered.

We specifically chose this data set as their tool, RTLF, indicated

an unexpected timing leak based on their measurements and we

identified strong dependence between the measurements. As dis-

cussed in section 3, RTLF may fail to maintain its configured false

positive rate for such measurements. When analyzing the data set

with our own test, we found no indication of a timing difference

with the parameters 𝛼 = 0.1,Δ = 5 and 𝐵 = 1000. As Dunsche et

al. [18] could not find a source for the perceived leak in the code

of mbedTLS and already ruled this result to be a false positive, we

believe that the dependency in the measurements likely caused

the incorrect assessment made by RTLF. Another indicator is the

statistical power analysis. For 𝜇 = 100 (as Dunsche et al. identi-

fied), Δ = 5, 𝑝 = 0.9, 𝛼 = 0.1, we get an estimated sample size of

𝑛 = 13, 388, 944. This underpins that the detection in Dunsche et al.

was likely a false positive.

7.2 Impact of Δ and Sample Size Estimation
To study our proposed sample size estimation and the impact of

different detection thresholds for Δ, we test the reference imple-

mentation of Kyber, a post-quantum key encapsulation mechanism,

for the Kyberslash 1 vulnerability [6]. Kyberslash 1 exploits runtime

differences of secret-dependent division operations included when

compiling the reference code optimized for code size on certain

platforms. As Kyberslash provides a rather small side channel of 2̃0

cycles, we consider it a good example to conduct an empirical study

on the statistical power we obtain when varying the parameters

after estimating the required sample size. We provide more details

on the collection of the measurements in Appendix E.

Data Collection. We begin our empirical study with a small sam-

ple of 300 measurements. Using our power analysis, we estimate the

sample size needed to detect a leak of at least size 𝜇 with detection

rate 𝑝 , based on the observed variance and a set negligibility thresh-

old Δ. Note that the actual leak of Kyberslash is fixed at around

20 cycles. By varying 𝜇, we simulate a misestimation of the leak

size and examine its effect on the required sample size and actual

detection rate. Similarly, we can adjust Δ to study the effect of lower

and higher thresholds. Note that 𝜇 is solely a parameter for the sta-

tistical power estimation and not a parameter of our statistical test.

As the side channel is fixed, the empirical detection rate ultimately

only depends on the configured threshold (Δ) and the estimated

sample size (𝑛). For each case, we evaluate the obtained sample size

based on 1,000 data sets to study the detection rate empirically.

Empirical Results. We consider eight cases as shown in Table 2.

Cases one to three use a fixed threshold Δ of five cycles and a

targeted detection rate 𝑝 of 90% but vary the expected size of the

10
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Table 2: Results of our statistical power analysis based on an
initial data set of 300 measurements for the Kyberslash leak.
On the right, we then present the empirical rejection rate
(empirical p) over 1,000 data sets with the estimated sample
size for a fixed false positive rate of 𝛼 = 0.1.

Case 𝜇 Δ Targeted p Estimated 𝑛 Empirical p

1 15 5 0.9 1826 0.924

2 20 5 0.9 785 0.689

3 25 5 0.9 441 0.442

4 20 1 0.9 455 0.552

5 20 10 0.9 1683 0.841

6 20 5 0.75 359 0.377

7 20 5 0.99 793 0.707

8 50 40 0.9 1738 0.110

leak to be 15, 20, or 25 cycles, respectively. As we expect the real leak

to be around 20 cycles based on the findings of [6], our sample size

estimation in case one should be too conservative as an assumed

leak of 15 cycles is less pronounced than a leak of 20 cycles and

thus requires a larger sample size for reliable detection. Indeed, we

find that the estimated sample size of 1826 measurements results in

a detection rate of 92.4%, which is slightly above the targeted 90%.

Assuming a leak of 20 cycles in case 2, the estimated sample size

already drops to 785 measurements. However, with this sample size,

we obtain an empirical detection rate of 68.9% in contrast to the

90% rate we targeted. This can be attributed to a higher variance

contained in some of the 1,000 measurement sets we collected.

Here, we emphasize again that the estimated sample size 𝑛 should

be viewed as a guideline rather than an exact requirement. Finally,

case three overestimates the leak to be 25 cycles, resulting in a

proposed sample size of 441 cycles, which results in a detection rate

of 44.2%. Here, we expected a significantly lower detection rate as

the 𝜇 value was not chosen appropriately.

As illustrated by cases four and five, the threshold Δ also affects

the estimated sample size. Generally, the closer the threshold is

to the sought leak size 𝜇, the more measurements are necessary.

Similarly, the targeted detection rate also affects the estimated

sample size, as illustrated by cases six and seven. Note that while

we can see the effect of the sample size on the empirical statistical

power, they again remain well below the configured detection rate.

A general takeaway is that collecting slightly more measurements

is always a reasonable and safe approach.

As our last parameter example, we increase the threshold and

expected leak size to Δ = 40 and 𝜇 = 50 in case eight. This simulates

a scenario where the developer considers a leak of up to 40 cycles

to be entirely negligible in their attacker model and is primarily

looking to detect leaks of at least 50 cycles. As the Kyberslash

leak lies below these thresholds, we expect to reach a detection

rate close to our configured false positive rate, which we set to be

10% in all tests. As Δ and 𝜇 are quite close again, we obtained a

comparatively high sample size estimate of 1738, which yields an

empirical detection rate of 11%.

7.3 Varying Measurement Scenarios
To study the outcomes of the sample size estimation for varying

measurement scenarios, we implemented a web server that provides

Table 3: Results of our statistical power analysis based on
an initial data set of 10,000 measurements for our web ap-
plication. On the right, we present the actual sample size
required to detect the leak compared to the estimates sample
size (estimated n) for a false positive rate of 𝛼 = 0.1.

Case Description 𝜇 Δ p Estimated
𝑛

Test
Result

1 Local 11,364 2,355 0.9 1,002 7 (1,500)

2 LAN 12,940 1,258 0.9 1,061 7 (1,200)

3 WAN (local) 38,479 4,975 0.9 1,846 7 (7,000)

4 WAN (Inter.Cont.) 44,667 52,773 - - /

7 Difference (actual sample size) / No Difference

a timing leak during user authentication. This leak arises from the

two-step authentication process: first, the server queries the data-

base to check if the user is known and only then hashes and com-

pares the password. A similar artificial leak used by Schinzel [57]

to study tests for timing side channels. To study the accuracy of

the statistical power analysis, we complement it with varying mea-

surement scenarios simulating a co-located, local LAN, and remote

attacker introducing various levels of variance in the measure-

ments. We provide more details on our implemented web server in

Appendix E. In our experiment, we now consider the view of an

attacker who wants to know if a specific user is in the database of

the server. The attacker uses a naive Python-based setup to measure

server response times in nanoseconds. To estimate structural bias,

they first collect 10,000 measurements using arbitrary usernames

unknown to the server. They then estimate the side-channel tim-

ing gap by comparing responses for a known and an unknown

username. Both values are obtained by the median of the absolute

difference of the deciles. With both values in hand, the attacker

can choose proper values in the statistical power analysis for the

expected side-channel size and delta, such that the attacker can

optimize a mass enumeration attack.

Empirical Results. For the four cases, we obtained similar signal

estimates 𝜇 for the Local and LAN setups, while the WAN setups

showed varying signal strengths. We attribute this to increased

variance in theWANmeasurements, which reduces the reliability of

the estimator for 𝜇 and Δ. As a result, the statistical power analysis
produced similar estimated sample sizes 𝑛 for the Local and LAN

setups. These estimates slightly underestimated the number of

measurements needed to detect a true positive. We believe this

is due to a non-optimized measurement setup that led to a mild

overestimation of 𝜇 and/or underestimation of Δ. For example, in

the Local setting, detection required 1,500 samples, which is far

above the estimated 895. The effect is even stronger visible in the

first WAN case, where an estimated sample size of 1,846 was given,

while in reality we need roughly 7,000 measurements. The reason

for that can be explained by the poor estimation of 𝜇, Δ and/or

unreliability of the measurement setup.

The results were even less reliable in the second WAN case. Due

to the pronounced increase in variance, both 𝜇 and Δ were poorly

estimated. For 10,000 samples, the estimate for Δ exceeded that

of 𝜇, making statistical power analysis infeasible since it requires

the signal 𝜇 to be greater than Δ. However, if we reuse the Local
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parameters for 𝜇 and Δ in this fourth case, the estimated sample

size jumps to 𝑛 = 396, 562. This sharp increase clearly illustrates

the effect of high variance, as all other parameters remain the same.

Overall, it is visible that the measurement setup is a clear limita-

tion of the procedure. The less reliable the measurements are, the

less reliable the statistical guarantees. Consequently, some effort

should also be put into optimizing the measurement setup. Possible

options to do so involve isolating the measuring and measured

process to separate cores (when measuring locally) and employing

a proxy process to mitigate side affects between the test vector

generation and the measurement collection. Alternatively, high

precision hardware timestamping can be used, as done by Merget

et al. [45].

7.4 Discussion on Sample Size Estimation
In general, we find our statistical power analysis to provide a good

first estimate for the sample size 𝑛. However, based on the empirical

detection rates we obtained in Table 2 and the classifications in

Table 3, we stress that it may be beneficial to extend the estimated

sample size. To this point, the largest sample size we report is based

on the median of the variances over the decile differences. Alter-

natively, it would also be reasonable to report the minimum, the

median, and the maximum for a better overview. On the other hand,

presenting three sample sizes can be counterintuitive to end users.

Ultimately, no single choice is always best. Ideally, the estimation

would always consider the variance of the quantile in which the

signal of the leak manifests. However, this quantile is usually not

known beforehand. Hence, we opted for the median of the quantile

variances. It would also be possible to set 𝜇 slightly lower than the

sought leak size to obtain a more conservative estimate. On top of

that, it might also be reasonable to measure a larger initial data set,

as this would capture deviations in the measurement setup more

accurately, resulting in better estimations.

8 RELATEDWORK
Timing Attacks. In 1996, Kocher first introduced the concept

of timing attacks [38]. In his work, he demonstrated how secret-

dependent execution times in asymmetric cryptographic algorithms

like RSA and DSS could be exploited. Subsequently, Tsunoo et

al. [62] extended these attacks to symmetric cryptography and

presented timing attacks on DES by exploiting cache timing. Brum-

ley and Boneh [12] advanced this further by showing that timing

attacks could be performed remotely by measuring variations in

response times of TLS servers over a network. This discovery had

significant implications for real-world security, leading to further

attacks e.g. on TLS [1, 2, 54], WPA3 [67], recent post-quantum

cryptographic schemes [24, 50], and web applications
4
. Kaufman et

al. [36] further showed that vulnerabilities could persist even after

compilation, highlighting the challenges of mitigating timing-based

side channels.

Hardware Side Channels. A lot of research on side channels fo-

cuses on hardware side channels, where the TVLA framework [41]

is dominant in the literature. When analyzing hardware implemen-

tations, the tester can get closer to the source. The tester, therefore,

4
https://portswigger.net/research/listen-to-the-whispers-web-timing-attacks-that-actually-work

can typically get better control over the system under test and

control outside influences, which changes the distributions in the

gathered data. Additionally, their measurements are often normally

distributed, which justifies using tests like the t-test for the analysis.

Analysis Techniques. Analysis techniques for side channels can

be roughly divided into four categories. Static analysis inspects

the program code without running it. It usually requires users to

annotate secret or sensitive values. This inspection can target the

binary itself [17], the LLVM IR [3], or the source code
5
. In contrast,

dynamic analysis runs the annotated program with varying input

values on a real system. It then observes the program flow to de-

tect potential leaks. The main limitation is coverage. It can only

guarantee the absence of leaks for the tested execution paths and

input values. Examples of such tools include [28, 39, 61, 72, 74, 75].

Another approach is symbolic execution. It also executes the code

but uses symbolic inputs instead of concrete ones. This technique

allows to reason about the reachability and potential operands of

each instruction. Symbolic techniques also typically require anno-

tating secret or sensitive values. Examples of symbolic analysis

tools include [10, 15, 69].

Statistical Techniques. Statistical analysis has always been im-

portant for evaluation timing side channels, especially outside aca-

demic research. An important step in this field came by Crosby

et al. [14] when investigating how timing vulnerabilities could be

measured in remote scenarios. They proposed the box test, which

was later implemented in Mona [57] and several tools presented

at Blackhat [40, 44, 48]. Fu et al. [21] released a follow-up preprint

of the dudect paper. Their work also considers the Welch’s t-test.

In context of t-tests, Shelton at al. [58] also considered relevant

hypotheses counterpart. Fei et al. [19] introduced a theoretical

framework using likelihood methods to analyze the theoretical

properties of rather general side-channel attacks in more detail.

Zhang et al. [79] developed a theoretical model for cache-based

side-chanel attacks also accounting for misclassifications.

9 CONCLUSION
In this work, we presented a new approach for statistical side-

channel analysis that strives away from the classical hypothesis

testing approach towards a relevant hypothesis approach. This

approach gives users the ability to definewhich kind of side-channel

sizes they care about and only find vulnerabilities that have at

least the given size with sound statistical guarantees. Additionally,

our approach works with discrete and continuous data, making it

applicable in even more scenarios. In general, our approach extends

the set of statistical guarantees that can be provided to users when

performing statistical analysis which we expect to assist statistical

analysis to get broader adoption.

Future Work. An important assumption that we are making in

our algorithm is that the distributions from which we are drawing

are strictly stationary (see 1). This means that the system under

test should not change during our measurements independent of

our measurements. Just like all other approaches introduced so

far, a strong violation of that assumptions can compromise the

5
http://web.archive.org/web/20200810074547/http://trust-in-soft.com/tis-ct/
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statistical guarantees. While our test can practically handle small

changes, large changes will invalidate our statistical guarantees.

Non-stationary measurements can appear in real measurements,

when, for example, the network over which the measurements are

being taken suddenly gets under heavy load, as this can drastically

change the variance in the measurements. To account for such

changes, a statistical algorithm could estimate when the distribu-

tions are changing and then use a testing procedure that accounts

for these changes in behavior. Analyzing algorithms like this would

further strengthen the robustness of the statistical analysis in prac-

tical relevant scenarios.
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A GENERATING DEPENDENT DATA
Since one major contribution of our approach is modeling depen-

dency between observations and coordinates, we consider a very

basic model that generates dependent observations, namely the

autoregressive model of order one 𝐴𝑅(1) (cf. [26] chapter 1). It is
a fundamental time series model that expresses a variable 𝑌𝑡 as

a function of its past values (modeling the dependence) plus an

additional noise term:

𝑌𝑛 = 𝜙𝑌𝑛−1 + 𝜖𝑛, 𝜖𝑛 ∼ N(0, 𝜎2) . (11)

To determine the strength of the dependence, we chose 𝜙 between

−1 and 1, where values closer to ±1 correspond to stronger depen-

dence between observations. The case 𝜙 = 0 corresponds to the

classical normally distributed case with independent observations

(𝑌𝑛 does not depend on 𝑌𝑛−1 anymore). Since we consider two sam-

ple problems, we will consider observations of two𝐴𝑅(1) processes
of size 𝑛, say 𝑥1, . . . , 𝑥𝑛 and 𝑦1, . . . , 𝑦𝑛 , where we shift all 𝑦 by 𝜇.

Parameter settings: Throughout the simulations, we let the de-

pendence parameter be 𝜙 vary between −0.9 and 0.9 and the signal

𝜇 between 0 and 1. For the Bootstrap procedures, we chose 𝐵 = 1000

throughout the simulations.

B ILLUSTRATION T-TEST
Misleading Two Step Procedure. Subsequently, we illustrate two

distinct facts concerning relevant hypotheses. For that purpose,

consider the well-known one-sample t-test with the following pair

of hypotheses:

𝐻0 : 𝜇 = 0 vs. 𝐻1 : 𝜇 ≠ 0 . (12)

For normally distributed data, the t-test is known to yield reliable

results. As already indicated in Section 2.3, we only want to detect

relevant changes of size Δ or larger. One might therefore consider

testing the following hypotheses-pair instead:

𝐻0 : |𝜇 | ≤ Δ vs. 𝐻1 : |𝜇 | > Δ . (13)

To test the hypotheses-pair in (13) with a prescribed type-1 error

𝛼 , instead of adapting our approach in Section 5 to the t-test, it
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might also seem natural to consider a two-step procedure: First,

perform the classical t-test and second reject only if 𝑥 also exceedsΔ.
However, already in this simple example, one can see that this can

yield an inflated 𝛼 . In fact, if the true 𝜇 = Δ, we get by default 𝛼 =

0.5, since the distribution of the empirical mean is still symmetric

around 𝜇. Or in other words, in 50% of the times it is greater than

Δ and in 50% it is smaller, yielding to a rejection rate of 0.5, which

is way higher than 𝛼 set in the t-test. Simulating that two-step

procedure also underpins that, yielding an empirical rejection rate

of 𝛼 ≈ 0.5. The closer 𝜇 gets to zero, the less obscure this two-step

procedure will be.

In this very simple example, it is not difficult to correctly reject. To

properly reject the null hypothesis in (13), the following rejection

rule yields a level 𝛼 test: reject 𝐻0 if and only if

|𝑥 | − Δ

𝜎𝑥
> 𝑐1−𝛼 ,

where 𝑐1−𝛼 is the 1 − 𝛼 quantile of the standard normal distribu-

tion. Note that only simplicity we assumed to know the standard

deviation of 𝑥 . For more advanced hypotheses, like in (2), the pro-

cedure is way more involved and simple adaptations as above are

not possible.

Reversing Hypotheses. Considering the hypotheses-pair in (13),

we have already pointed out that it might also be reasonable to

control the type-2 error 𝛽 . For that purpose, we usually reverse

hypotheses and therefore 𝛽 will be the type-1 error with respect to

the following hypotheses-pair:

𝐻0 : |𝜇 | ≥ Δ vs. 𝐻1 : |𝜇 | < Δ .

This is indeed possible and yields no further complications. The

rejection rule is only adapted by the following: we reject 𝐻0 if and

only if

|𝑥 | − Δ

𝜎𝑥
< 𝑐𝛼 .

One question that might arise is whether reversing the hypotheses

is also possible in the classical setting of (12). The clear answer is

no. If we were to set 𝐻0 : 𝜇 ≠ 0, rejecting 𝐻0 would depend on

the true (but unknown) value of 𝜇. To put it intuitively: imagine

being in court and trying to prove someone is not guilty as the

null. Then there are countless ways a person could be innocent,

but only one specific crime they are accused of. For each of the

ways a person is innocent, you would in principle have to define

a rejection rule. Translating this to the statistical setting: for each

possible 𝜇, the distribution of the test statistic is different (as the 𝑥

follows a different distribution); hence the rejection rule is different

for a prescribed 𝛼 .

C ADDITIONAL DEFINITIONS AND
ALGORITHMS

For a discrete random variable 𝑋 taking values in 𝑥1, . . . , 𝑥𝑑 with

probabilities 𝑝1, . . . , 𝑝𝑑 , we define 𝐹𝑚𝑖𝑑 (𝑥) = 𝐹 (𝑥) − 0.5𝑝 (𝑥). Then,
if 𝜋𝑘 :=

∑𝑘−1

𝑖=1
𝑝𝑖 + 𝑝𝑘/2, the mid-distribution quantile function can

be defined by

𝐹−1

𝑚𝑖𝑑
(𝑝) :=


𝑥1, if 𝑝 < 𝑝1/2,

𝑥𝑘 , if 𝑝 = 𝑝𝑘 , 𝑘 = 1, . . . , 𝑑

𝜆𝑥𝑘 + (1 − 𝜆)𝑥𝑘+1
, if 𝑝 = 𝜆𝜋𝑘 + (1 − 𝜆)𝜋𝑘+1

,

𝑥𝑑 , if 𝑝 > 𝜋𝑑

,

where 0 < 𝜆 < 1. As already mentioned in the previous section,

the standard n-out-of-n bootstrap fails. We, therefore, adopt an m-

out-of- n bootstrap procedure proposed in Jentsch and Leucht [32].

Algorithm 4 Bootstrap Maximum for discrete data

function Bootstrap(𝑥 , 𝑦, 𝛼 , Δ,𝐾𝑚𝑎𝑥
𝑠𝑢𝑏

, 𝐵,𝑚)

Require: 𝑥 , 𝑦, 𝛼 , Δ, 𝐾𝑚𝑎𝑥
𝑠𝑢𝑏

, 𝐵,𝑚

Ensure: 𝑄̂∗

1: for 𝑖 = 1, . . . , 𝐵 do
2: Set𝑚1 = 𝑛2/3

.

3: Sample 𝐼 ⊂ {1, . . . , 𝑛 −𝑚 + 1} with |𝐼 | = ⌈𝑚1/𝑚⌉.
4: Set 𝑥∗ = 𝑥 [𝐼 ], 𝑦∗ = 𝑦 [𝐼 ], where each index 𝑖 ∈ 𝐼 includes all

elements 𝑥𝑖 , . . . , 𝑥𝑖+𝑚−1.

5: Compute bootstrap test-statistic:

𝑄̂𝑖,∗ =
√
𝑚1

(���𝑞𝑋,∗
𝑘

− 𝑞𝑌,∗
𝑘

��� − ��𝑞𝑋
𝑘

− 𝑞𝑌
𝑘

��)
.

6: end for
7: return 𝑄̂∗

:= (𝑄̂1,∗, . . . , 𝑄̂𝐵,∗ )

D PROOFS
Proof. Proof of Theorem 1

Assume that we are under the null hypothesis. Therefore, we can

decompose 𝑄̂ by

𝑄̂ =
√
𝑛max

𝑘∈𝐾
( |𝑞𝑋

𝑘
− 𝑞𝑌

𝑘
| − Δ) (14)

= max

{√
𝑛 max

𝑘∈𝐾, |𝑞𝑋
𝑘
−𝑞𝑌

𝑘
|=Δ

( |𝑞𝑋
𝑘
− 𝑞𝑌

𝑘
| − Δ),

√
𝑛 max

𝑘∈𝐾, |𝑞𝑋
𝑘
−𝑞𝑌

𝑘
|<Δ

( |𝑞𝑋
𝑘
− 𝑞𝑌

𝑘
| − Δ)

}
and note that by Lemma 21.4 from [65] combined with the asymp-

totic normality of the empirical process for𝑚-dependent data the

second quantity in the outer maximum diverges to −∞. The first

quantity converges in distribution against the limit

max

𝑘∈𝐾, |𝑞𝑋
𝑘
−𝑞𝑌

𝑘
|=Δ

sign(𝑞𝑋
𝑘
− 𝑞𝑌𝐾 )

(
G1 (𝑘)
𝑓𝑋 (𝑞𝑋

𝑘
)
− G2 (𝑘)
𝑓𝑌 (𝑞𝑌𝑘 )

)
, (15)

due to the weak convergence of the quantile processes combined

with the continuous mapping theorem. As the first quantity is thus

also tight, it dominates the maximum. We hence obtain that, under

𝐻0, the test statistic is given by

𝑄̂ =
√
𝑛 max

𝑘∈𝐾, |𝑞𝑋
𝑘
−𝑞𝑌

𝑘
|=Δ

( |𝑞𝑋
𝑘
− 𝑞𝑌

𝑘
| − Δ) (16)

with high probability, this yields the desired result by (15).

□
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Proof. Proof of Theorem 2

By Theorem 1 we only need to establish that the bootstrap process

𝑄̂∗
converges to the distribution given in equation (15) in probabil-

ity given the original data. To that end, we first note that Lemma

21.4 as well as Theorems 23.7 and 23.9 from [65] yield that{√
𝑛

(
𝑞
𝑋,∗
𝑘

− 𝑞𝑌,∗
𝑘

− (𝑞𝑋
𝑘
− 𝑞𝑌

𝑘
)
) }
𝑘∈𝐾

(17)

𝑑→
{ G1 (𝑘)
𝑓𝑋 (𝑞𝑋

𝑘
)
− G2 (𝑘)
𝑓𝑌 (𝑞𝑌𝑘 )

}
𝑘∈𝐾

in probability given Y := {𝑋1, ..., 𝑋𝑛, 𝑌1, ..., 𝑌𝑛}. This also yields

max

𝑘∈𝐾∗

√
𝑛

(
𝑞
𝑋,∗
𝑘

− 𝑞𝑌,∗
𝑘

− (𝑞𝑋
𝑘
− 𝑞𝑌

𝑘
)
)
− (18)

max

𝑘∈𝐾, |𝑞𝑋
𝑘
−𝑞𝑌

𝑘
|=Δ

√
𝑛

(
𝑞
𝑋,∗
𝑘

− 𝑞𝑌,∗
𝑘

− (𝑞𝑋
𝑘
− 𝑞𝑌

𝑘
)
)
= 𝑜P (1)

as the index sets are the same with high probability. This follows

because we have by asymptotic normality that

P
©­« sup

𝑘∈𝐾 : |𝑞𝑋
𝑘
−𝑞𝑌

𝑘
|=Δ

( |𝑞𝑋
𝑘
− 𝑞𝑌

𝑘
| − Δ) ∈ (−

√︁
log(𝑛)/𝑛),

√︁
log(𝑛)/𝑛)ª®¬

= P
©­«
√
𝑛 sup

𝑘∈𝐾 : |𝑞𝑋
𝑘
−𝑞𝑌

𝑘
|=Δ

( |𝑞𝑋
𝑘
− 𝑞𝑌

𝑘
| − Δ) ∈ (−

√︁
log(𝑛)),

√︁
log(𝑛))ª®¬

→ 1 ,

so that 𝑘 ∈ 𝐾∗
with probability tending to 1. For those 𝑘 with

|𝑞𝑋
𝑘
− 𝑞𝑌

𝑘
| ≠ Δ a similar argument shows that the probability of

𝑘 ∈ 𝐾∗
goes to 0. Taking subsequences, we can turn (17) into an

almost sure statement, combining this with the continuousmapping

theorem and equation (18) yields the desired convergence along

the subsequence. As we can do this for any subsequence, we obtain

the result.

□

Proof. Proof of Theorem 3

For the first statement of the theorem first note that 𝑄̂ diverges to

+∞, to be precise we have for any index 𝑘0 ∈ 𝐾

𝑄̂ =
√
𝑛max

𝑘∈𝐾
( |𝑞𝑋

𝑘
− 𝑞𝑌

𝑘
| − Δ) (19)

≥
√
𝑛( |𝑞𝑋

𝑘0

− 𝑞𝑌
𝑘0

| − |𝑞𝑋
𝑘0

− 𝑞𝑌
𝑘0

|) +
√
𝑛( |𝑞𝑋

𝑘0

− 𝑞𝑌
𝑘0

| − Δ) . (20)

The first summand in the last line is tight (uniformly in 𝑘0) by Corol-

lary 21.5 from [65] and the continuous mapping theorem and the

second summand diverges for at least one index 𝑘0 ∈ 𝐾 . Combining

this with the fact that 𝑐∗
1−𝛼 is bounded in probability (see the proof

of theorem 2) yields the desired result.

For the second statement note that when 𝑘0 denotes the unique

index with |𝑞𝑋
𝑘0

− 𝑞𝑌
𝑘0

| = Δ equation (19) becomes an equality with

high probability by arguments similar to those that lead to equation

(16). Consequently, we have

P(𝑄̂ > 𝑞1−𝛼 ) = 𝑜 (1)+ (21)

P(
√
𝑛( |𝑞𝑋

𝑘0

− 𝑞𝑌
𝑘0

| − |𝑞𝑋
𝑘0

− 𝑞𝑌
𝑘0

|) > 𝑞1−𝛼 −
√
𝑛( |𝑞𝑋

𝑘0

− 𝑞𝑌
𝑘0

| − Δ)) .
(22)

We then obtain the desired result by noting that (
√
𝑛( |𝑞𝑋

𝑘0

− 𝑞𝑌
𝑘0

| −
|𝑞𝑋
𝑘0

− 𝑞𝑌
𝑘0

|) converges against 𝑍 by the same arguments that yield

(15). □

E ADDITIONAL DETAILS OF THE REAL
WORLD EVALUATION

Kyberslash. When compiling the reference Kyber implementa-

tion released before the discovery of Kyberslash [6] for minimal

code size (-Os), an operand-dependent division operation is used

on certain platforms. As one of these operands is a coefficient of the

secret key used for decryption, this division operation poses a side

channel that can be used to reconstruct the private key entirely [6].

For our data set, we collected measurements on a Raspberry Pi

2B that features an affected ARM CPU. Specifically, we adapted

the demo script
6
provided by the Kyberslash authors to measure

two vectors for a fixed secret key: one expected to yield a slow

division, and one expected to yield a fast division resulting in a

difference of 20 cycles. In total, we performed 1,000 iterations each

collecting 5,0000 measurements for each of the two vectors. For

our comparison of test results with varying sample sizes, we then

created subsets of these measurements.

Web Application. We developed and evaluated a small Flask ap-

plication written in Python, which uses SQLite as its database and

SHA-256 for its hashing operations. All functionality was imple-

mented using the official Python modules.

For each measurement scenario, we collected two sets of mea-

surements. In the first set, we measured the server’s response time

when the request included an existing username and incorrect pass-

word. In the second set, we measured the response time when the

request included a non-existent username and an incorrect pass-

word. We expect the response times in the first set to be longer

because the existing username triggers additional internal process-

ing (a hash operation and a comparison).

To collect these measurements, we deployed the web application

on a server with an AMD EPYC 7763 CPU, 2 TB RAM, and Ubuntu

22.04.4 LTS. For the LAN measurements, we used a client with

the same hardware and operating system. For the WAN (local)

measurements, we used a client with an AMD Ryzen 7 PRO 5850U,

48 GB of RAM, and Ubuntu 24.04.2 LTS. For the WAN (Inter.Cont.)

measurements, we used a client with an Intel Core i9-14900K, 64GB

of RAM, and Ubuntu 24.04 LTS.

6
https://kyberslash.cr.yp.to/demos.html
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