
GTSD: Generative Text Steganography Based on
Diffusion Model

Zhengxian Wu[0000−0001−7957−0441], Juan Wen(�)[0000−0002−4199−2988], Yiming
Xue[0000−0001−6500−3868], Ziwei Zhang, and Yinghan Zhou

Collage of Information and Electrical Engineering, China Agricultural University,
Beijing 100083, China
wenjuan@cau.edu.cn

Abstract. With the rapid development of deep learning, existing gen-
erative text steganography methods based on autoregressive models have
achieved success. However, these autoregressive steganography approaches
have certain limitations. Firstly, existing methods require encoding can-
didate words according to their output probability and generating each
stego word one by one, which makes the generation process time-consuming.
Secondly, encoding and selecting candidate words changes the sampling
probabilities, resulting in poor imperceptibility of the stego text. Thirdly,
existing methods have low robustness and cannot resist replacement at-
tacks. To address these issues, we propose a generative text steganogra-
phy method based on a diffusion model (GTSD), which improves gener-
ative speed, robustness, and imperceptibility while maintaining security.
To be specific, a novel steganography scheme based on diffusion model
is proposed to embed secret information through prompt mapping and
batch mapping. The prompt mapping maps secret information into a
conditional prompt to guide the pre-trained diffusion model generating
batches of candidate sentences. The batch mapping selects stego text
based on secret information from batches of candidate sentences. Exten-
sive experiments show that the GTSD outperforms the SOTA method in
terms of generative speed, robustness, and imperceptibility while main-
taining comparable anti-steganalysis performance. Moreover, we verify
that the GTSD has strong potential: embedding capacity is positively
correlated with prompt capacity and model batch sizes while maintain-
ing security.

Keywords: Text Steganography · Diffusion Model · Text Generation.

1 Introduction

With the continuous development of social networks, people are more and more
inclined to communicate through images, audios, videos, text, etc. [1], which
greatly facilitates daily life but also increases the risk of privacy leakage. To safe-
guard data and communications, information security systems have emerged,
with encryption systems and concealment systems being particularly promi-
nent and receiving significant attention from researchers. The encryption system

ar
X

iv
:2

50
4.

19
43

3v
1

 [
cs

.C
R

]
 2

8
A

pr
 2

02
5

2 Z. Wu et al.

Fig. 1: The process of existing generative text steganography methods.

transforms readable plaintext into unreadable ciphertext to protect the security
of secret information. Apart from that, the concealment system mainly protects
secret information by hiding it into the common carrier, such as image [1], audio
[2], video [3], and text [4,5,6]. This technology, also known as steganography,
can conceal the existence of confidential information to achieve the purpose of
not being easily suspected and detected. Due to the high accessibility, efficient
transmission, and storage efficiency of text carriers, text steganography has at-
tracted wide attention from researchers in recent years [7]. Text steganography
can be divided into two categories: modification-based steganography [8] and
generative-based steganography. Modification-based text steganography embeds
secret information by altering the given text carrier, such as format change[9],
synonym substitution[10], and syntactic equivalent substitution[11]. However,
since text has lower entropy and lacks redundancy for modification, these meth-
ods are low in embedding capacity and security.

In contrast, generative-based text steganography has become mainstream
in recent years. Unlike modification-based text steganography, generative-based
text steganography autoregressively generates innocuous-looking steganography
straight from secret information using language models. As shown in Fig. 1(a),
assume the confidential message to be sent is "Birthday: 2200/11/12". Alice,
the sender, first needs to turn the message into a bitstream "1100...011..." using
any encryption algorithm. To conceal the existence of the bitstream, Alice uses
text steganography to transform the bitstream into semantically innocuous but
readable stego text, like "these songs are perfect for a party", and sends it
to Bob under Eve’s surveillance without arising Eve’s suspicion. Let’s further
illustrate the main process of generative text steganography using Fig. 1(b).
Suppose the language model has previously output the stego phrase "the songs

Generative Text Steganography Based on Diffusion Model 3

are". At this moment, "the songs are" is taken as input to obtain the probability
distribution p of the next token. Based on p, the top n tokens with the highest
probabilities are selected and Huffman coded. Suppose the bits to be embedded
at this moment are "011". The token corresponding to "011", which is "perfect",
is chosen as the stego output. Then "perfect" is appended to the end of "the
songs are" and input into the model to obtain the probability distribution of
the next token. This process repeats until all the bits have been embedded. To
extract the confidential bitstream, Bob simply needs to repeat the above steps
with the same start token and language model by comparing the received stego
text. Generative-based text steganography methods have greatly alleviated the
problem of low embedding capacity and security. However, it is prone to attacks,
because extracted secrated bits are determined by received stego text. The most
insidious and efficient attack is replacement attacks, such as random replacement,
synonym replacement, and character substitution, which only need to change a
few words to invalidate stego text. For example, Eve attacks the stego sentence
by replacing "perfect" with "great". In this case, Bob extracts the wrong secret
bits "111" which maps to "great". And, once an error occurs, the extraction of
all subsequent bits will be impacted.

In this study, we argue that the autoregressive nature of language models
causes cumulative errors in extracting secret bits when the stego message is at-
tacked. Moreover, autoregressive language models generate tokens sequentially
from left to right, leading to time-consuming and uncontrollable semantics. To
address these issues, we abandon the classic autoregressive framework and adopt
a non-autoregressive diffusion model, which is trained to learn the target distri-
bution from a noise distribution. In recent years, diffusion models have been
widely used in fields such as image generation and restoration due to their pow-
erful generative capabilities. Recently, diffusion models have also been applied to
text generation. Compared to autoregressive language models, diffusion models
have three advantages: (1) Faster generation speed: Unlike autoregressive lan-
guage models that generate tokens one by one, diffusion models predict all tokens
simultaneously; (2) Strong redundancy: Diffusion models generate batches of text
with the same semantics but different expressions; (3) High semantic controlla-
bility: The strong control capabilities of conditional diffusion models ensure that
the generated text is highly controllable, and the generative priors of diffusion
models guarantee the quality of the generated text. In this study, we utilize the
AR-diffusion [12] as the basic framework to design text steganography method.

Inspired by the advantages of diffusion models, in this paper, we first in-
troduce the diffusion model in text steganography and propose a new genera-
tive text steganography framework: Generative Text Steganography based on
Diffusion model (GTSD). Our goal is to improve generative speed, robustness,
and imperceptibility, while maintaining security. Specifically, we design a novel
steganographic scheme based on diffusion model, mapping secret information to
prompts and output batches. During the training process, a transformer-based
denoising model denoises the noisy latent variable to learn the target probability
distribution. During the inference phase, the prompts are used as controllable

4 Z. Wu et al.

conditions to guide the pre-trained diffusion model to generate candidate texts
in batches. Then, the stego text is selected from the batch of outputs. To re-
duce the significant number of inference steps, a skip mechanism is introduced
to improve generative speed. In addition, since the diffusion model generates
text in batches rather than token by token, using it for text steganography can
significantly improve the speed of generating steganographic text. Extensive ex-
periments demonstrate that the proposed method can achieve faster generative
speed, stronger robustness, and imperceptibility while maintaining security. The
contributions to this study are as follows:

• We propose a novel Generative Text Steganography based on Diffusion
model (GTSD), marking the first use of non-autoregressive language models
for generative text steganography. Compared to mainstream text steganography
that generates stego tokens one by one, our model can efficiently generate all
candidate stego texts at once.

• An embedding scheme is designed to embed sensitive information by select-
ing prompts and text from output batches. In addition, our method has strong
potential: the larger the prompt capacity and model batch sizes, the larger the
embedding capacity.

• We conduct extensive experiments on three classical text steganography
datasets. All experiments demonstrate that our approach outperforms the SOTA
text steganography methods in terms of generative speed, robustness, and im-
perceptibility, while maintaining comparable anti-steganalysis performance. Fur-
thermore, experimental results verify that the embedding capacity of our method
is positively correlated with prompt capacity and model batch sizes.

2 Related Work

With the development of Natural Language Processing (NLP) technology, gen-
erative text steganography has achieved remarkable success.

Le et al. [13] first applied the duality of steganography and source coding
(i.e., data compression) to propose the generative text steganography based on
arithmetic coding (AC). However, the AC-based method requires encrypting
the message in advance and also relies on a more stringent condition: explicit
data distribution. Yang et al. [14] proposed a linguistic steganography based
on recurrent neural networks that can automatically generate high-quality stego
text on the basis of a secret bitstream that needs to be hidden. Zhou et al.
[4] proposed a linguistic steganographic model based on adaptive probability
distribution and a generative adversarial network, which eliminates exposure
bias and embedding deviation during the embedding process. To further improve
security, Zhang et al. [5] proposed a provably secure steganography method based
on adaptive dynamic grouping (ADG). The ADG method dynamically grouped
and numbered the probability distribution of all tokens in the vocabulary into
groups with approximately the same probability sum and randomly sampled the
next token from the normalized distribution of the group to which the secret bits
correspond. The ADG-based generative text steganography achieves the SOTA

Generative Text Steganography Based on Diffusion Model 5

method in terms of security. Although current generative text steganography
methods have made significant progress and greatly improved anti-steganalysis
performance, they still suffer from low robustness and slow generative speed.

3 Generative Text Stegonagraphy based on Diffusion
Model

3.1 Problem Definitions

In this paper, we denote the secret bitstream to be hidden as B = {A1, A2, ..., An},
where Ai represents the bit segment read in the ith time, consisting of a fixed
number of binary digits. Its length affects the embedding capacity, which will be
analyzed later. The generated stego text set is denoted as S = {s1, s2, ..., sn},
where si is obtained by segment Ai and the pre-trained diffusion model. After
transmission over the public channel, the stego texts S may be changed into
S′ by a random replacement attack. Based on S′, the extracted bitstream, de-
noted as B′, is expected to be equal to B. In this paper, our goal is to ensure
that our proposed steganography framework meets the general metric criteria
for steganography [15]: (1) Security: S cannot be detected as abnormal by the
mainstream steganalysis methods. (2) Capacity: The embedding capacity of the
text steganography model, i.e., the number of bits embedded in one word, should
be comparable to the SOTA steganography methods. (3) Robustness: When
the stego text is subjected to random replacement attacks, the receiver can still
accurately extract the secret information. In other words, B = B′. (4) Imper-
ceptibility: The KL Divergence (KLD) between the statistical distributions of
the stego texts and normal texts should be minimized as much as possible.

Fig. 2: The architecture of proposed method. The pc and k denote the capacity
of prompt table and model batch sizes, respectively.

6 Z. Wu et al.

3.2 Methodology

The overall architecture of the proposed GTSD is shown in Fig. 2, which con-
sists of a prompt mapping module, a diffusion generation module, and a batch
mapping module.

Diffusion Training. Compared to images, which are composed of continu-
ous pixels, texts consist of a discrete sequence of symbols (letters, words, etc.)
with semantic associations, making them complex and abstract [16]. To project
continuous text representations into the discrete feature space, text diffusion
models generally utilizes embedding and rounding algorithms [17]. As shown in
Fig. 2 (black lines), GTSD conducts diffusion training in two processes: forward
noising and backward denoising, with the backward denoising being guided by
conditional prompts.

During the forward noising, the jth sentence cj of the sentence batch is
mapped to a latent variable x0

j , and gradually projected to a latent Gaussian
distribution vector xT

j over T time steps, by adding randomly sampled Gaussian
noise ϵ ∼ N (0, I) in each step. xt

j represents the latent variable of sentence cj in
time step t. The process of converting xt−1

j to xt
j is described as:

q(xt
j |xt−1

j) =
√
αtx

t−1
j +

√
1− αtϵ, t ∼ [0, T], (1)

where αt denotes a monotonically decreasing function from 1 to 0, and T repre-
sents the total time length.

During the backward denoising, xT
j gradually removes the predicted noise

ϵθ to get the original embedding x0
j , which can be rounded to sentence cj . The

process of converting xt
j to xt−1

j conditioned on prompt Pj is described as:

pθ(x
t−1
j |xt

j ;Pj) =
xt
j −

√
1− ᾱtϵθ(x

t
j , t, Pj)√

1− ᾱt
, (2)

where ᾱt =
∏t

n=1 αn, and ϵθ ∼ N (0, I) is learned from the transformer model.
Pj denotes the conditional prompt of sentence cj .

The forward noising and backward denoising can both be performed in batch
training. The optimization of the diffusion model during the training can be
described as follows:

Loss =
∑T

t=0E||pθ(x0|xt;P)− x0||2. (3)

Mapping Mechanism. In generative text steganography, one of the most
critical designs is establishing the mapping mechanism between the bitstream
and the text. Traditional autoregressive steganography methods map the bit-
stream segments to word encoding, which is constructed by the output probabil-
ity distribution of the language model at each time step. However, in diffusion
models, we cannot access the probability distribution at each time step. There-
fore, there is a need to design a novel mapping approach for GTSD.

In this study, we divide the bitstream B into segments {A1, A2, ..., An}, each
Ai containing two parts, i.e., Ai=(M i

p,M
i
b), where their lengths correspond to

Generative Text Steganography Based on Diffusion Model 7

the size of the prompt table pc and model batch size k, respectively. Specifically,
M i

p is used for selecting the specific prompt, which is used to generate a batch
of candidates C = {c1, c2, ...ck} based on backward denoising. The second block
M i

b is used to select the corresponding stego text si from C. For clarity, we refer
to these two steps as prompt mapping and batch mapping, respectively.

Prompt mapping necessitates a predefined prompt table. As shown in Fig. 2,
the prompt table consists of three words, which are selected from natural text.
During prompt mapping, we map the bitstream block M i

p to a specific prompt
in the prompt table. For example, when M i

p = "10000 10110", we select the No.
534 (convert binary to decimal) prompt "good luck to" and combine it with a
randomly sampled length li, as the conditional prompt P to guide the diffusion
model to generate the candidate set C. Notice that the prompt of these three
words cannot change during the generation process. To ensure this, we performed
prompt filtration using a pre-trained diffusion model beforehand.

After generating a batch of candidate sentences C according to the condi-
tional prompt P , batch mapping is applied to obtain the final stego text si
according to M i

b . For example, when M i
b = "00000 00010", we select c2 from C,

ending up with the final stego text si = "good luck to watch this film".

Algorithm 1 Information Hiding Algorithm
Input:

secret bits B, prompt table PT with a length of pc, the pre-trained diffusion model,
random seeds r, batch sizes k, and text length l ∈ [lmin,lmax]

Output:
stego texts S = {s1, s2, ...}

1: Sample initialized Gaussian distributions N={N0, N1, ..., Nk} by random seeds r
2: Divide secret bits B into segments {A1, A2, ...} where each Ai has a length of pc+k

3: Random sample length l={l0, l1, ..., l|A|−1} form lmin to lmax by random seeds r
4: Set stego texts S={}
5: while not end of segments {A1, A2, ...} do
6: Divide Ai into M i

p and M i
b , with their lengths being pc and k, respectively

7: Extract the specific prompt corresponding to the decimal value of M i
p, and com-

bine it with li to obtain the conditional prompt Pi

8: Input Pi to the diffusion model, get a batch of candidate sentences
C={c0, c1, ..., ck} from Gaussian distributions N

9: select stego text si from C according to M i
b by batch mapping

10: S.append(si)
11: end while
12: return stego texts S

Information Hiding Algorithm. The pink lines shown in Fig. 2 present
the overall information hiding process, which is occurred only during inference
time and is described in Algorithm 1. The core idea is using the pre-trained
diffusion model to generate stego texts from randomly sampled Gaussian distri-

8 Z. Wu et al.

butions N under the guidance of the conditional prompt. Note that the initialized
Gaussian distributions N and length l are generated by random seeds r. In this
paper, the lmin and lmax are set to 5 and 25. To improve generative speed, we
introduce a skip mechanism [17,18] to decrease the number of sample steps in
the inference stage.

Information Extraction Algorithm. The green lines in Fig. 2 present
the information extraction process. The sender and the receiver share the same
prompt table, pre-trained diffusion model, model batch sizes, and random seeds.
The overall extraction process is described in Algorithm 2.

Algorithm 2 Information Extraction Algorithm
Input:

stego texts S with |S| sentences, prompt table PT with a length of pc, random
seeds r, batch sizes k, and text length l ∈ [lmin,lmax]

Output:
secret bits B

1: Sample initialized Gaussian distributions N={N0, N1, ..., Nk} by random seeds r
2: Random sample length l={l0, l1, ..., l|S|−1} range form lmin to lmax by random

seeds r
3: Set secret bits B={}
4: while not end of stego texts S = {s1, s2, ...} do
5: Match the first three words of si and PT to obtain the specific prompt and M i

p

6: Combine the special prompt and li as conditional prompt Pi to guide
the pre-trained diffusion model generating a batch of candidate sentences
C={c0, c1, ..., ck} from Gaussian distributions N

7: Calculate the similarity score Q of si and each sentence ci ∈ C
8: Find c∗, which maps to the largest score Q∗, to obtain M i

b

9: B.append(Ai=(M i
p,M i

b))
10: end while
11: return secret bits B

The receiver uses the shared random seeds r to sample the initialized Gaus-
sian distributions N and length l. Then M i

p and the special prompt is obtained
by matching the first three words of the received stego text si based on the
shared prompt table PT . After that, the receiver uses the same method as the
sender to generate a batch of candidate sentences C from Gaussian distributions
N . Next, the receiver compute the similarity score Q between si and each sen-
tence in C, and find the best score to get the M i

b . Finally, the ith segment of
secret bits is obtained by combining M i

b and M i
p.

It is worth mentioning that even when the transmitted stego texts undergo
replacement attacks, which change a few words that alter the stego texts, our
method maintains a high accuracy in correctly extracting the secret information.
This hypothesis is validated in Section 4.

Discussion on embedding Capacity. The size of the prompt table and
the model batch are positively correlated with the embedding capacity of GTSD.

Generative Text Steganography Based on Diffusion Model 9

The embedding capacity bwp (bits per word) can be calculated as:

bpw =
log2 k + log2 pc

l̄
(4)

where l̄ is the average length of stego texts S. In Sec. 4, we varied the sizes of
the prompt table and model batch sizes to get different embedding capacities
for comparative analysis.

4 Experimental Results and Analysis

4.1 Setup

To verify the performance of the proposed method, we conduct our experiments
on three publicly available standard datasets: Movie [19], Twitter [20], and News
[5]. Since the sentence embedding length of the diffusion model is 54, we filter
sentences with sentence lengths less than 5 or greater than 54. Finally, we ran-
domly divide the dataset into a training set, a validation set, and a test set
according to the ratio of 8:1:1.

In this paper, we conduct experiments on NVIDIA RTX 4060 and CUDA
11.6. In the training stage, the batch sizes and initial learning rate are set to 128
and 1e-3, respectively. We utilize the AdamW as the optimization and dropout
mechanism to prevent overfitting. During inference, the model batch sizes k is
set to 1024. Moreover, we design a prompt table and a extended prompt table,
and their lengths pc are set to 1024 and 10243, respectively.

4.2 Baselines

We reproduce the following text steganography methods and steganalysis tools
to verify the performance of the GTSD in terms of security and efficiency.

Steganography methods. We utilize VLC[14], AC[13], and ADG[5] as our
baselines. Each steganography method generates 11,000 stegos and 11,000 covers
for evaluating performance.

Steganalysis methods. We employ linguistic steganalysis methods, includ-
ing BERT-F [21], LS-CNN [22], TS-BiRNN [23], and BiLSTM-Dense [24], to test
the anti-steganalysis ability of GTSD. In our experiments, ’stego’ is regarded as a
positive class, while ’cover’ is regarded as a negative class, indicating the absence
of embedded secret information.

4.3 Metrics

Embedding Capacity. Embedding capability represents the average amount
of bits that one single token can carry. This paper uses bits per word (bpw) as
the measure, with higher values indicating greater capacity.

Security. Steganalysis tools mainly distinguish detected text as cover or
stego. To evaluate the anti-steganalysis ability, accuracy and F1 are utilized

10 Z. Wu et al.

as measurements, which are calculated as Acc = TP+TN
TP+FP+FN+TN , and F1 =

2TP
2TP+FP+FN , where TP and TN are true positives and true negatives, FP and
FN are false positives and false negatives.

Imperceptibility. We calculate the KL divergence (KLD) between the sta-
tistical distributions of the sentence embedding of cover and stego to indirectly
reflect the overall information-theoretic security. The KLD is computed by:

DKL(pc||ps) ≈
∑

(log
σs

σc
+

σ2
c + (µc − µs)

2

2σs
− 1

2
), (5)

where µc and µs are the mean deviation of cover and stego vectors, while σc

and σs are the standard deviation of cover and stego vectors. In this paper, the
dimension of sentence vectors is set to 100.

Robustness. We attack the stego text by randomly replacing n words in
each sentence and use the Sentence Correct Extraction Rate (CER) after re-
placement attacks as a measure of robustness. That is to say, if any hidden
bit in a stego sentence is not extracted correctly, the sentence is considered to
have been extracted incorrectly. To avoid randomness, we perform 10 rounds
of replacement attacks on 1,000 stego texts and calculate the Average Sentence
Correct Extraction Rate (ACER):

ACER =
∑10

i=1

CNi

1000× 10
(6)

where CNi denotes the number of correctly extracted stego sentences in the ith
round. In this paper, n is set to 0, 1, 2, 3, and 4.

Generative speed. To test the model efficiency, We measure the total time
spent generating 512 stego texts and calculated the average time per stego text
in seconds.

4.4 Compared with Baselines

We compare the proposed model with baselines in terms of security and embed-
ding capacity, robustness, imperceptibility, and generative speed.

Security and Embedding Capacity. For a steganographic model, lower
steganalysis performance indicates that it is more difficult to distinguish between
cover and stego texts, which means the model’s security is better. To verify
the security of the proposed method, four steganalysis tools are used to detect
stego texts, and the results are shown in Table. 1.From Table. 1, it can be seen
that VC- and VLC-based steganography methods have relatively weak resistance
against current mainstream steganalysis algorithms, with detection accuracy and
F1 scores generally above 90%. In contrast, the state-of-the-art steganography
method ADG, based on provably secure design, shows anti-detection perfor-
mance against various steganalysis tools consistently below 50%. Our proposed
GTSD demonstrates comparable steganalysis resistance to ADG. We also note
that the embedding capacity of our method increases with the size of the prompt
table. Although the embedding capacity of our method equipped with the basic

Generative Text Steganography Based on Diffusion Model 11

Table 1: The detection accuracy and F1 of stego texts. The -b (-e) mean using
the prompt table (extended prompt table) during prompt mapping.
Datasets Models bpw↑ BERT-F LS-CNN TS-BiRNN BiLSTM-Dense

acc↑ F1↓ acc↑ F1↓ acc↑ F1↓ acc↑ F1↓
Movie VLC 1.82 0.9665 0.9665 0.9580 0.9580 0.9400 0.9400 0.9410 0.9410

4.41 0.9230 0.9230 0.8590 0.8590 0.8530 0.8530 0.8565 0.8565
AC 2.21 0.9690 0.9690 0.9535 0.9535 0.9365 0.9365 0.9350 0.9350

3.90 0.9320 0.9320 0.8815 0.8815 0.8735 0.8735 0.8645 0.8645
ADG 5.07 0.5184 0.4577 0.5055 0.4468 0.4985 0.3317 0.4970 0.3396

Ours-b 1.87 0.5000 0.3430 0.4835 0.4741 0.5085 0.5079 0.4915 0.4808
Ours-e 4.97 0.5000 0.3333 0.5045 0.4751 0.4820 0.4803 0.4935 0.4305

Twitter VLC 1.81 0.9370 0.9370 0.9280 0.9280 0.8950 0.8950 0.8810 0.8810
4.48 0.8680 0.8679 0.8120 0.8120 0.8035 0.8032 0.7770 0.7769

AC 2.13 0.9225 0.9225 0.9040 0.9040 0.8770 0.8770 0.8840 0.8840
3.93 0.8845 0.8845 0.8310 0.8310 0.8285 0.8284 0.8210 0.8210

ADG 5.11 0.4995 0.3375 0.5145 0.5137 0.4965 0.3595 0.5000 0.3386
Ours-b 2.20 0.5125 0.5110 0.4980 0.4659 0.4900 0.4830 0.5035 0.4963
Ours-e 5.37 0.5000 0.3333 0.4970 0.3789 0.5035 0.4418 0.5040 0.4049

News VLC 1.82 0.9770 0.9770 0.9715 0.9715 0.9625 0.9625 0.9640 0.9640
3.91 0.9620 0.9620 0.9340 0.9340 0.9060 0.9060 0.9195 0.9195

AC 2.17 0.9690 0.9690 0.9645 0.9645 0.9495 0.9495 0.9580 0.9580
3.99 0.9615 0.9615 0.9205 0.9205 0.9029 0.9029 0.8995 0.8994

ADG 5.43 0.5250 0.5234 0.4925 0.4915 0.5005 0.3344 0.5005 0.338
Ours-b 2.22 0.4970 0.3504 0.4230 0.3798 0.5235 0.5213 0.4170 0.3693
Ours-e 5.49 0.5130 0.5893 0.5025 0.4937 0.5170 0.5148 0.5050 0.4786

prompt table is lower than ADG, GTSD achieves a higher embedding capac-
ity with the extended prompt table. Unlike the ADG algorithm, which cannot
control capacity (with bpw typically around 5), our algorithm can increase the
hidden capacity by expanding the size of the prompt table.

Robustness Analysis. Generative text steganography methods based on
autoregressive language models lack robustness under replacement attacks. On
the one hand, the VLC-based and AC-based methods use Huffman coding and
arithmetic coding, respectively, for secret embedding. Since each word coding is
unique, changing any word in stego text will lead to the fail of bitstream ex-
traction, If every sentence is subjected to an attack, the proportion of correctly
extracted sentences would be 0. On the other hand, the ADG-based method em-
beds secret information based on dynamic groupings, which may contain multiple
words in each group. If we assume that the replaced word di belongs to group
D = {d1, d2, ...} and the random replacement word ej belongs to candidate pool
E = {e1, e2, ...}. Then, the Sentence Correct Extraction Rate of ADG can be
simply calculated as |E∩D|

|E| . According to the principle of ADG, the vocabulary
size is 50178, the ideal average group number is 25, and the average words in
each group are 1568, and E is set to vocabulary. The theoretical Sentence Correct
Extraction Rate of ADG is close to 1

32 after replacing one word.

12 Z. Wu et al.

Table 2: The Average Correct Extraction Rate (ACER) of the proposed GTSD.
The left (right) of "|" means the attacked words without (with) prompts.

n 1 2 3
batch sizes 128 256 128 256 128 256

News 99.94|69.57 99.97|67.21 99.29|47.43 99.41|47.08 96.15|29.30 96.24|30.96
Movie 99.90|67.38 99.91|70.59 98.43|44.07 98.01|44.14 93.29|26.95 91.04|25.70
Twitter 99.97|64.63 99.99|65.84 99.71|41.16 99.58|41.18 98.19|25.32 98.59|25.31

Compared with the existing generative text steganography methods, our pro-
posed method has better robustness. Under non-attack conditions, we conduct
extraction experiments with a successful extraction accuracy of 100%. Then We
randomly replace the words of each stego text n times (except prompts) and
verify the robustness with the ACER, as shown in Table. 2. When n=1, 2, and
3, the ACEA can basically reach about 95%. Moreover, when n = 4, the ACEA
has decreased but still remains above 80%, which is because our sentence length
is set to short. As the batch size increases, there is a slight decrease in robustness,
but the overall effect is small.

Imperceptibility. We use KLD to measure the distortion between stego
texts and cover texts, and the results of KLD are listed in Table. 3. For AC-base
and VLC-based methods, we apply two different embedding payloads. As shown
in Table. 3, the KLD decreases with the increase of bpw for AC-based and VLC-
based methods. This is a common phenomenon in text steganography [5]: as bpw
increases, the candidate pool of stego text grows closer to the candidate pool of
cover text, making the distortion decrease. Our method also basically satisfies
this phenomenon, and with the increase of bpw, KLD has a certain increase.
Compared to the ADG-based method, the GTSD has stronger imperceptibility,
especially in Movie and News. In addition, the bpw of the ADG-based method
cannot be increased, which means that the KLD cannot be reduced. But the
GTSD can increase the bpw by improving the capacity of prompt table and
model batch sizes.

Table 3: The KLD of different steganography methods.
Models Movie Twitter News

bpw↑ KLD↓ bpw↑ KLD↓ bpw↑ KLD↓
VLC 1.82 3.55 1.82 1.32 1.81 1.33

4.41 0.74 3.91 3.40 4.48 2.26
AC 2.21 2.71 2.17 1.43 2.13 3.91

3.90 0.24 3.99 3.45 3.93 2.49
ADG 5.07 0.32 5.43 0.35 5.11 0.16

Ours-b 1.87 0.47 2.22 0.56 2.20 0.11
Ours-e 4.97 0.08 5.49 0.54 5.37 0.12

Generative Text Steganography Based on Diffusion Model 13

Generative Speed. Since diffusion models generate all tokens simultane-
ously, the generative speed of the proposed method is significantly faster than
that of the baselines, as shown in Table 4. Compared to the baselines, the gen-
erative speed of GTSD is approximately 0.03 seconds per sentence, making it
50 to 100 times faster. This observation indicates that the proposed GTSD is
well-suited for real-time covert communication.

Table 4: The comparison of generative speed.
Models Movie Twitter News
VLC 3.526 1.511 3.762
AC 0.336 0.185 0.417

ADG 1.499 0.618 2.792
Ours-e 0.034 0.036 0.039

4.5 Ablation

(a) bpw (b) times

Fig. 3: The bpw and times of different batch sizes.

To explore the potential of the GTSD, we design two ablation schemes: (1)We
use basic prompt table and extended prompt tables during prompt mapping to
observe the effects of prompt capacity on embedding capacity, anti-steganalysis
ability, and imperceptibility. The results as shown in Table. 1 and Table. 3; and
(2) we set different model batch sizes during the batch mapping, including 8,
16, 32, 64, 128, 256, and 512, to observe the relationship between embedding
capacity, generative speed, and batch sizes, and the results as shown in Fig. 3.

The results of Table. 1 and Table. 3 indicate that extended prompt table
increases embedding capacity by 2.5 times and decreases KLD, while the change

14 Z. Wu et al.

in anti-steganalysis ability is almost negligible. Therefore, we can both improve
bpw and keep the effect of anti-steganalysis ability by improving the capacity of
prompt table.

According to Fig. 3(a), batch size is positively correlated with bpw, and with
the increase in batch sizes, bpw also keeps rising. Moreover, as shown in Fig.
3(b), as batch size increases, the time required decreases. Fig. 3(a) and Fig. 3(b)
both demonstrate that both bpw and time efficiency improve with increasing
batch sizes in resource-rich situations.

5 Conclusion

In this paper, we propose a novel generative text steganography method based
on diffusion model, named GTSD, which introduces the diffusion model into text
steganography for the first time. This method improves generative speed, robust-
ness, and imperceptibility while maintaining security. Specifically, we propose
a new steganography scheme that embeds secret information through prompt
mapping and batch mapping. Prompt mapping converts secret information into a
conditional prompt to guide the pre-trained diffusion model in generating batches
of candidate sentences. Batch mapping then selects the stego text based on the
secret information from these batches. We conduct extensive experiments on the
Movie, Twitter, and News datasets. The experimental results show that the pro-
posed method outperforms the state-of-the-art method in terms of robustness,
imperceptibility, and generative speed, while maintaining security. Furthermore,
we demonstrate that the proposed GTSD has strong potential: as the prompt
capacity and model batch sizes increase, the embedding capacity also increases,
while maintaining security. In future work, we will also explore multi-language
text steganography and improve the robustness of text steganography against
other attacks.

Acknowledgments. This work was supported by the National Natural Science
Foundation of China (No. 62272463)

References

1. Liao, X., Yin, J., Chen, M., Qin, Z.: Adaptive payload distribution in multiple
images steganography based on image texture features. IEEE Transactions on De-
pendable and Secure Computing 19(2), 897–911 (2020)

2. Wu, J., Chen, B., Luo, W., Fang, Y.: Audio steganography based on iterative
adversarial attacks against convolutional neural networks. IEEE transactions on
information forensics and security 15, 2282–2294 (2020)

3. Li, Z., Jiang, X., Dong, Y., Meng, L., Sun, T.: An anti-steganalysis hevc video
steganography with high performance based on cnn and pu partition modes. IEEE
Transactions on Dependable and Secure Computing 20(1), 606–619 (2022)

4. Zhou, X., Peng, W., Yang, B., Wen, J., Xue, Y., Zhong, P.: Linguistic steganogra-
phy based on adaptive probability distribution. IEEE Transactions on Dependable
and Secure Computing 19(5), 2982–2997 (2021)

Generative Text Steganography Based on Diffusion Model 15

5. Zhang, S., Yang, Z., Yang, J., Huang, Y.: Provably secure generative linguistic
steganography. In: ACL (2021)

6. Ding, J., Chen, K., Wang, Y., Zhao, N., Zhang, W., Yu, N.: Discop: Provably
secure steganography in practice based on" distribution copies". In: 2023 IEEE
Symposium on Security and Privacy (SP). pp. 2238–2255. IEEE (2023)

7. Yang, Z.L., Zhang, S.Y., Hu, Y.T., Hu, Z.W., Huang, Y.F.: Vae-stega: linguistic
steganography based on variational auto-encoder. IEEE Transactions on Informa-
tion Forensics and Security 16, 880–895 (2020)

8. Mahato, S., Yadav, D.K., Khan, D.A.: A modified approach to text steganography
using hypertext markup language. In: ACCT (2013)

9. Ekodeck, S.G.R., Ndoundam, R.: Pdf steganography based on chinese remainder
theorem. Journal of information security and applications 29, 1–15 (2016)

10. Chen, Z., Huang, L., Yu, Z., Yang, W., Li, L., Zheng, X., Zhao, X.: Linguistic
steganography detection using statistical characteristics of correlations between
words. In: Information Hiding (2008)

11. Xiang, L., Wang, X., Yang, C., Liu, P.: A novel linguistic steganography based on
synonym run-length encoding. IEICE Trans. Inf. Syst. 100-D(2), 313–322 (2017)

12. Wu, T., Fan, Z., Liu, X., Zheng, H.T., Gong, Y., Jiao, J., Li, J., Guo, J., Duan, N.,
Chen, W., et al.: Ar-diffusion: Auto-regressive diffusion model for text generation.
Advances in Neural Information Processing Systems 36 (2024)

13. Van Le, T.: Efficient provably secure public key steganography. Cryptology ePrint
Archive (2003)

14. Yang, Z.L., Guo, X.Q., Chen, Z.M., Huang, Y.F., Zhang, Y.J.: Rnn-stega: Lin-
guistic steganography based on recurrent neural networks. IEEE Transactions on
Information Forensics and Security 14(5), 1280–1295 (2018)

15. Zhang, H.J., Tang, H.J.: A novel image steganography algorithm against statistical
analysis. In: 2007 International Conference on Machine Learning and Cybernetics.
pp. 3884–3888 (2007)

16. Strudel, R., Tallec, C., Altché, F., Du, Y., Ganin, Y., Mensch, A., Grathwohl, W.,
Savinov, N., Dieleman, S., Sifre, L., et al.: Self-conditioned embedding diffusion for
text generation. ICLR (2022)

17. Li, X., Thickstun, J., Gulrajani, I., Liang, P.S., Hashimoto, T.B.: Diffusion-lm
improves controllable text generation. Advances in Neural Information Processing
Systems 35, 4328–4343 (2022)

18. Gong, S., Li, M., Feng, J., Wu, Z., Kong, L.: Diffuseq: Sequence to sequence text
generation with diffusion models. In: ICLR (2022)

19. Maas, A.L., Daly, R.E., Pham, P.T., Huang, D., Ng, A.Y., Potts, C.: Learning
word vectors for sentiment analysis. In: ACL (2011)

20. Go, A., Bhayani, R., Huang, L.: Twitter sentiment classification using distant su-
pervision. CS224N project report, Stanford 1(12), 2009 (2009)

21. Peng, W., Zhang, J., Xue, Y., Yang, Z.: Real-time text steganalysis based on multi-
stage transfer learning. IEEE Signal Processing Letters 28, 1510–1514 (2021)

22. Wen, J., Zhou, X., Zhong, P., Xue, Y.: Convolutional neural network based text
steganalysis. IEEE Signal Processing Letters 26(3), 460–464 (2019)

23. Yang, Z., Wang, K., Li, J., Huang, Y., Zhang, Y.J.: Ts-rnn: Text steganalysis based
on recurrent neural networks. IEEE Signal Processing Letters 26(12) (2019)

24. Yang, H., Bao, Y., Yang, Z., Liu, S., Huang, Y., Jiao, S.: Linguistic steganalysis via
densely connected lstm with feature pyramid. In: Proceedings of the 2020 ACM
Workshop on Information Hiding and Multimedia Security (2020)

	GTSD: Generative Text Steganography Based on Diffusion Model

