
On the Prevalence and Usage of Commit Signing on GitHub
A Longitudinal and Cross-Domain Study

Anupam Sharma
sharmaanupam@iitgn.ac.in

Indian Institute of Technology Gandhinagar
Gandhinagar, Gujarat, India

Sreyashi Karmakar
24310059@iitgn.ac.in

Indian Institute of Technology Gandhinagar
Gandhinagar, Gujarat, India

Gayatri Priyadarsini Kancherla
gayatripriyadarsini@iitgn.ac.in

Indian Institute of Technology Gandhinagar
Gandhinagar, Gujarat, India

Abhishek Bichhawat
abhishek.b@iitgn.ac.in

Indian Institute of Technology Gandhinagar
Gandhinagar, Gujarat, India

Abstract
GitHub is one of the most widely used public code development
platform. However, the code hosted publicly on the platform is
vulnerable to commit spoofing that allows an adversary to introduce
malicious code or commits into the repository by spoofing the
commit metadata to indicate that the code was added by a legitimate
user. The only defense that GitHub employs is the process of commit
signing, which indicates whether a commit is from a valid source
or not based on the keys registered by the users.

In this work, we perform an empirical analysis of how prevalent
is the use of commit signing in commonly used GitHub repositories.
To this end, we build a framework that allows us to extract the
metadata of all prior commits of a GitHub repository, and identify
what commits in the repository are verified. We analyzed 60 open-
source repositories belonging to four different domains — web
development, databases, machine learning packages and security —
using our framework and study the presence of verified commits in
each of these repositories over five years. Our analysis shows that
only ∼10% of all the commits in these 60 repositories are verified.
Developers committing code to security-related repositories are
much more vigilant when it comes to signing commits by users.

We also analyzed different Git clients for the ease of commit
signing through their interfaces, and found that GitKraken provides
the most convenient way of commit signing whereas GitHub Web
provides the most accessible way for verifying commits. During our
analysis, we also identified an unexpected behavior in how GitHub
handles unverified emails in user accounts preventing legitimate
owner to use the email address. We believe that the low number of
verified commits may be due to lack of awareness, complicated steps
for setup, and difficulty in managing multiple keys across systems.
Finally, we propose ways to identify commit ownership based on
GitHub’s Events API addressing the issue of commit spoofing.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
EASE 2025, 17–20 June, 2025, Istanbul, Türkiye
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/XXXXXXX.XXXXXXX

CCS Concepts
• Security and privacy→ Software and application security;
Usability in security and privacy; • General and reference →
Measurement.

Keywords
Commit Spoofing, Commit Signing, GitHub, Git clients
ACM Reference Format:
Anupam Sharma, Sreyashi Karmakar, Gayatri Priyadarsini Kancherla, andAb-
hishek Bichhawat. 2025. On the Prevalence and Usage of Commit Signing
on GitHub: A Longitudinal and Cross-Domain Study. In Proceedings of
The 29th International Conference on Evaluation and Assessment in Soft-
ware Engineering (EASE 2025). ACM, New York, NY, USA, 11 pages. https:
//doi.org/XXXXXXX.XXXXXXX

1 Introduction
Version control systems have become a standard tool for software
development where developers worldwide can collaborate on a
project. Git [13] is one such widely used version control system,
and GitHub [19] is a commonly used repository-hosting and collab-
orative software development platform based on Git. Multiple Git
clients like Git-CLI [13], GitHub Desktop [20] and GitKraken [7]
allow users to work on projects or repositories being developed
on GitHub. Public repositories or projects on GitHub can be down-
loaded or cloned by all users while changes to the project are either
performed through pull requests or by directly committing to the
repository. Although owners or managers of a repository review
the pull requests, it is possible that a malicious user can inject unin-
tended code into the repository without getting flagged or noticed
by them. One such method of injecting malicious code is via com-
mit spoofing where an attacker alters the metadata of commit to
impersonate another user and introduce malicious commits. For
instance, in 2021, malicious commits were pushed to the php-src
repository using the names of legitimate users [32]. Attackers can
use commit spoofing to perform typo-squatting, where attackers
create clones of legitimate repositories with similar names and in-
troduce malicious commits [9]. Users can get tricked due to similar
names, and may download the malicious repository.

The origin of commits is identified using the username and
email associated with the commit. However, GitHub associates the
commit with the user account in GitHub without any verification.
A mere presence of email address in the commit data is enough

ar
X

iv
:2

50
4.

19
21

5v
1

 [
cs

.S
E

]
 2

7
A

pr
 2

02
5

https://orcid.org/0000-0002-3443-4646
https://orcid.org/0000-0002-5578-0396
https://orcid.org/0000-0002-1842-9353
https://orcid.org/0000-0002-3075-2743
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

EASE 2025, 17–20 June, 2025, Istanbul, Türkiye Anupam Sharma, Sreyashi Karmakar, Gayatri Priyadarsini Kancherla, and Abhishek Bichhawat

to associate the commit with an account having the same email
address. As Git allows updating Git configuration with any email
address, it is possible for malicious actors to push code on Git
and make it appear as being committed by some other user, i.e., a
malicious user can set their Git configuration tomimic the username
and email of a legitimate or known user, and may be able to commit
to repositories without being identified. This attackwas successfully
performed, recently, by unknown users on open-source libraries [11,
32]. It is, in fact, quite easy to exploit this feature and perform
commit spoofing in repositories [28].

GitHub introduced verification badges and vigilant mode to pre-
vent spoofing and provide guarantees that the commits originated
from a trusted source [3]. Commit signing uses digital signatures
to ensure that every commit on GitHub is signed using the key
registered by the user in their GitHub account. Commits displayed
on the GitHub page, with vigilant mode turned on, are then tagged
with labels or badges depending on the verification of the user com-
mits. While this is a useful feature to warn users about potentially
malicious commits, it is unclear if the developers use this feature to
sign their commits on GitHub repositories, and if so how prevalent
it is. The feature itself is available only on the commits page of
repositories in GitHub, which is rarely accessed by the users. More-
over, it is also not known if popular Git clients assist developers
by providing user-friendly features to perform commit signing and
verification. We try to address both these issues in the current work.
More specifically, we address the following research questions:
RQ1: How prevalent is the usage of commit signing among the de-

velopers of different open-source repositories on GitHub?
(1) How often are the features against commit spoofing, pro-

vided by GitHub, used in practice in popular open-source
repositories?

(2) What are the usage trends of commit signing before and
after the release of features like verification badges and
vigilant mode by GitHub?

(3) Does the background or domain of a user impact their
commit signing practices? More concretely, do a certain
category of developers, say web-developers, use commit
signing more often than other category of developers, say,
security developers?

RQ2: Do popular Git clients like Git CLI, GitHub Desktop, and
GitKraken, in comparison to GitHub web, implement conve-
nient features to perform commit signing or have any provi-
sions against commit spoofing, and if the existing states of
these software can be used against commit spoofing?

To this end, we developed a framework1 to analyze the commits
of a given repository. Given a GitHub repository, the framework
fetches commit metadata based on the date range provided and
provides distribution of commits as verified and unverified commits
based on the signature attached with the commits. We performed
a longitudinal study analyzing the commits on 60 top repositories
(based on the Gitstar Ranking [2]) from four domains (15 reposi-
tories from each domain) — machine learning, security, database
and web development — over five years, i.e., one year before and
four years after the vigilant mode and verification badges were
introduced by GitHub. We observed that only ∼ 10% of the total

1The code and the dataset is at https://github.com/anp-scp/commit_crawler

commits were signed and the usage of signed commits increased in
the first year after the introduction of vigilant mode by GitHub, but
later decreased constantly. Within each of the four domains, 12.77%
of commits in web development repositories, 2.55% of commits in
ML-related repositories, 5.95% of commits in database-related repos-
itories and 28.35% of commits in security-related repositories were
verified — of the four domains, security developers tend to use com-
mit signing the most. We also found that, of the three popular Git
clients — Git CLI, GitHub Desktop and GitKraken, GitKraken pro-
vides the most convenient way of commit signing whereas GitHub
web provides the most accessible way for verifying commits. We
discuss these results in detail in sections 5 and 6.

During the analysis, we also discovered an unexpected behavior
in how GitHub handles "unverified" emails in commit metadata.
This behavior allows an attacker to add any email address, which
is not already in use on GitHub, to their account and push com-
mits using that email address. GitHub, then, associates the commit
with the attacker’s account even if the email address is unverified.
The email address remains linked to the attacker, preventing the
rightful owner from using it with GitHub in the future. Moreover,
the verification mail sent to the actual owner provides no means of
reporting the incident and instructs the owner to ignore the mail
if the owner did not initiate the action, failing to raise any alarm.
While the owner can claim the email address by contacting GitHub
support, this is possible only when the owner becomes aware of
the misuse. We discuss this in detail in Sections 5.3 and 6.2.4. We
disclosed this behavior to GitHub; their response is available in our
code repository1.

In summary, our key contributions are as follows:
• We performed a longitudinal and cross-domain analysis of
the prevalence of commit signing. Unlike existing studies,
we studied the commits of actual users by excluding the
commits made via bots and GitHub web.

• We assessed the usability of GitHub’s web interface, Git
CLI, GitHub Desktop and GitKraken from the perspective of
commit signing and verification.

• We also discovered an unexpected behavior in how GitHub
handles unverified emails in user accounts and GitHub, pre-
venting legitimate owner to use the email address.

• Lastly, we provide recommendations, in section 6.2.3, on
alternate ways of associating commits with user accounts in
GitHub that could help defend against commit spoofing.

2 Background
2.1 Commit Spoofing
Commit spoofing is a form of identity theft where a developer
can alter the metadata of a Git commit to record that the commit
originated from another user. This spoofing takes advantage of two
facts: (i) Git uses user-provided metadata to track the author of the
commit, such as the author’s name and email address, without any
identity verification, and (ii) GitHub uses the provided email address
to associate the commit with a GitHub user account. An attacker can
easily get the email address from someone’s public repository either
via git log or via the patch format from GitHub web, configure
a repository with the obtained identity information, and commit
code to GitHub. This creates a false impression that the victim has

https://github.com/anp-scp/commit_crawler

On the Prevalence and Usage of Commit Signing on GitHub EASE 2025, 17–20 June, 2025, Istanbul, Türkiye

Attacker clones victim's public repo and get username
and email from git logs

1
Attacker configures local git config with user's identity

2

Attackers commits & push a malicious commit making victim as committer/author which is unknown to the victim
3

GitHub showing victim as the committer which
was actually committed by the attacker

4

Victim remains unaware about the commit.
This activity is not shown in victim's GitHub
feed, nor the repository belongs to the victim

5

Figure 1: Commit spoofing. The attacker (dummy46) gets the identity information from the victims’s (dummy400) public repository
logs and uses it in the Git config to push malicious commits on victim’s behalf. GitHub associates the commit to the victim.

Figure 2: The different verification badges assigned by
GitHub based on commit signatures [3].

authored the code, which can harm the reputation of the victim,
resulting in defamation for the victim, or inject vulnerabilities in
a repository via a pull request, tricking maintainers into thinking
that it came from a legitimate user.

Figure 1 shows the steps involved in performing commit spoofing.
The GitHub account of the attacker is dummy46 and the victim’s
account is dummy400. The attacker (dummy46) first gets the identity
information from the Git log of a public repository (1○), configures
the local Git config with the victim’s identity (2○), and uses it
to commit and push code to a repository unknown to the user
(3○). Since GitHub uses email addresses to associate commits with
user accounts, GitHub shows the profile of the victim (dummy400)
as the author of the commit (4○). The victim remains completely
unaware of the commit (5○). The commit is neither visible in the
attacker’s activity overview nor in the victim’s activity overview
in their respective GitHub profiles, preventing the verification of
the authorship of the commit.

2.2 Commit Signing, Badges and Vigilant Mode
Commit signing is a technique to defend against commit spoofing;
using the git commit –S command, commits can be signed using
GPG, SSH, or S/MIME keys. In addition to this feature, GitHub
released the vigilant mode and verification badges on April 28, 2021
[3]. Figure 2 shows the different kinds of verification badges visible
on the GitHubweb interface, which helps in differentiating commits.
All correctly signed commits are labeled with the “Verified” badge.
The incorrectly signed or unsigned commits are labeled with the
“Unverified” badge since they may contain illegitimate commits.

In addition to verification badges, GitHub has a vigilant mode
feature for users. If a user enables vigilant mode, any unsigned
commits associated with the user are marked as “Unverified”. This

prevents commit spoofing because if an attacker tries to spoof the
commit metadata with the details of another legitimate user, and if
that user’s vigilant mode is enabled, then the commit made by the
attacker will be automatically marked as “Unverified”. However,
if the vigilant mode is disabled, all unsigned commits are simply
unlabeled, i.e., not given any badge. But, the disadvantage of this
feature is all the legitimate commits that remained unsigned due to
lack of awareness will also be marked as “Unverifed".

Additionally, GitHub displays a “Partially Verified” badge, where
a commit has multiple authors, as permitted by Git. For instance, a
committer can set another user as the co-author using git commit
–author command, and one can perform spoofing by taking advan-
tage of this feature. If there exists such a commit in GitHub, and
the user marked as the author has enabled the vigilant mode, then
the commit is marked as “Partially Verified”; otherwise, it is simply
marked as “Verified”. Hence, vigilant mode provides an additional
layer of security to maintain the integrity of commits as, if someone
adds other authors in a commit and the commit is signed, GitHub
will mark the commit as “Partially Verified” alerting the users that
not all authors have signed the commit.

3 Related Works
Git is the most widely used modern version control system, with
GitHub alone hosting over 100 million developers and more than
420 million repositories [14]. In this section, we review relevant
research in this domain. We begin by discussing various attacks that
have been explored, followed by a detailed examination of prior
work on commit spoofing. Finally, we conclude with a discussion
on quantitative and empirical studies related to commit signing,
providing insights into the current landscape.

3.1 Attacks and Vulnerabilities on GitHub
Attacks targeting GitHub’s functionality can be broadly classified
into three categories: metadata manipulation attacks, integrity at-
tacks (code manipulation), and commit spoofing.

Torres-Arias et al. [36] discuss several attacks targeting Git’s
metadata, which can lead to inconsistent repository states and un-
intended developer actions. These attacks exploit vulnerabilities
in Git’s handling of metadata, such as branch and tag references,
rather than the content of the commits themselves. These attacks

EASE 2025, 17–20 June, 2025, Istanbul, Türkiye Anupam Sharma, Sreyashi Karmakar, Gayatri Priyadarsini Kancherla, and Abhishek Bichhawat

are subtle and can leave no trace, making them particularly danger-
ous. They primarily target the metadata that Git uses to organize
and reference commits instead of the using the commit objects.
The authors propose maintaining a cryptographically-signed log of
relevant developer actions. The exploit leveraged a weakness that
allowed attackers to subtly manipulate Git repository structures
by targeting unprotected metadata. The authors propose using
cryptographic mechanisms to safeguard the data.

Another category of attacks studied by previous works include
man-in-the-middle attack, which eventually lead to integrity vio-
lations. The work done by Afzali et al. [4] discusses such scenar-
ios [1, 29] where a legitimate user utilizes the web interface of the
code hosting service to commit a code, and the hosting service itself
is compromised. When a user commits code from GitHub Web, the
commit is actually made by GitHub on behalf of the user. In this
case, the commit’s author is the user, and GitHub is the committer.
GitHub will sign the commit by default and show it as verified.
However, if the Git server is compromised, an attacker can tamper
with the changes requested by the user, and GitHub will still show
it as verified. For instance, a user was able to upload their public
key to the Rails project by exploiting a vulnerability in public key
update form in GitHub [23, 33]. The solution is to sign the commit,
which makes any modification unverified, assuming the attacker
does not have the private key. The authors proposed a browser
extension to perform commit signing while performing web-based
commit. Such attacks apply to all Git and web-based code hosting
software, specifically in an on-premise setup. It is important to
note that commit signing prevents such impersonation unless the
GPG web-of-trust is not breached. If web-of-trust is breached, the
attacker can still perform such impersonation. Hence, it is essential
to study the proper setup of web-of-trust in the Git ecosystem.

3.2 Commit Spoofing
Git allows viewing the authors’ and committers’ email via the git
log command. Similarly, GitHub allows the viewing of the code
author’s email from the patch view of a commit. One can access
the patch view by adding .patch at the end of a commit URL of a
public GitHub repository (to get the commit URL, one can open the
commit history of a GitHub repository and click on the hash of any
commit). An attacker can use these details in the Git configuration
file to impersonate someone else by committing and pushing code
to a GitHub repository. Since GitHub uses email to associate users in
web interface, the victim’s profile would be shown by GitHub as the
author of the code without the victim’s knowledge. Such attacks
can have highly defamatory implications for the victim; hence,
studying the defenses against such impersonation is important.

Another consequence of such impersonation is malicious clones
of reputed repositories with slight organizational and repository
name changes (typo-squatting). Another level of trust can be built
by adding stars from fake accounts and committing code using the
email of the maintainer of the legitimate repository. These steps can
easily trick users into thinking it is a legitimate repository. Cao et
al. [9] devised a system, Fork Sentry, to detect malicious forks. The
authors identified 26 malicious forks used for illicit mining out of
35 cryptocurrency repositories. The identification could have also
been performed by checking for signed commits and verification

badges as the attacker will never be able to get a verified badge
on the impersonated commit, if the victim has enabled the vigilant
mode. In a similar work by Gonzalez et al. [22], the authors curated
a dataset of 15 malware-infected repositories in which their rule-
based decision model was able to flag 53.33% of malicious commits.
The authors considered factors like lines of code added, deleted,
and modified, number of files added, deleted, or modified, sensitive
files edited, file history, and contributor’s trust.

Bottolfsen et al. [8] discuss the importance of improving security
practices in software development to mitigate the risks associated
with commit spoofing. This work discusses the implication of com-
mit spoofing and the corresponding mitigation strategies. They,
additionally, propose a tool which identifies a commit spoofing
in repositories, when a code is pushed or merged, via a GitHub
action. However, it cannot flag any of the commits that were made
before the tool is installed and doesn’t handles the scenario where
a repository is cloned, updated and then pushed. We discuss our
approach considering all such scenarios in detail in section 6.

3.3 Measurement and Usability Studies
Research on GitHub security often targets the accidental exposure
of sensitive information within repositories. This involved secret
strings extraction from repositories through various measurement
studies [12, 30] where the strings identified to be secrets include
API keys, cryptographic keys, and other authentication credentials,
which are critical for security. Prior studies [24, 31] identified vul-
nerabilities in open-source GitHub repositories whose issues are
mined from discussions around commits and pull requests. Other
sources include social media platforms like X (formerly, Twitter),
Reddit, and online blogs and articles.

Recently, a quantitative study by Collier [10] analyzed GitHub
users’ profile to determine the prevalence of signed commits, con-
cluding that commit signing remains an uncommon practice. While
our study shares a similar objective, we focus on repositories rather
than individual users. This allows us to better capture the vari-
ability of commit signing practices within a given repository. Ad-
ditionally, we analyze the longitudinal trend of signed commits,
assessing changes before and after the introduction of GitHub’s
vigilant mode to evaluate its impact on adoption. Similarly, Bot-
tolfsen [8] conducted a quantitative analysis examining factors
correlated with signed commits in repositories, including program-
ming language, repository size, and number of forks. Our analysis
further investigates commit signing across different repository cat-
egories to understand which developer communities demonstrate
greater awareness of commit signing security practices. Unlike pre-
vious studies, we exclude commits made by automated bots, which
could otherwise skew the data about human developers’ commit
signing practices.

Several studies [26, 27, 34, 35] have highlighted key mismanage-
ment and the challenges of digital signature usability as critical
failure points. Research on SSH key systems [5, 6] has examined
methods to enhance security layers, improve key management, and
optimize user interactions. While prior studies have investigated
user experiences with secure emails and SSH key setup in general
practice, a comprehensive usability study of commit signing on
GitHub remains unexplored. In this study, we analyze different Git

On the Prevalence and Usage of Commit Signing on GitHub EASE 2025, 17–20 June, 2025, Istanbul, Türkiye

client interfaces, assess the usability of vigilant mode, and examine
the various badges and tags displayed in different scenarios.

4 Study Methodology and Setup
Our study investigates: (i) how are the defenses provided by GitHub
against commit spoofing adopted by the open-source community,
specifically among GitHub users, (ii) does the area or domain of the
developer have any effect on its adoption, and (iii) if popular Git
clients support features to mitigate commit spoofing. We describe
our data collection and analysis approaches, next.

4.1 Data Collection
4.1.1 Repository Selection. We selected repositories from four
categories or domains: (i) machine learning, (ii) database, (iii) secu-
rity, and (iv) web development. We referred to Gitstar Ranking [2]
to select the repositories based on their popularity. We iterated
through some of the top repositories listed in there and categorized
them into the 4 domains based on their description. We excluded
repositories that could not be classified under one of these domains,
which were not a tool or libraries (for example, tutorials, guides,
lists of awesome research papers in some domain, etc) and have less
than 1K commits in total at the time of doing the study. Additionally,
we excluded repositories that had less than 20% commits during
our extraction interval (the time interval for which we downloaded
the commits; we discuss this in the next step) out of the total com-
mits. Finally, we considered 15 top repositories in each of the four
domains for our analysis; the list of repositories is shown in table 1.

4.1.2 Commit Extraction. For extracting commit metadata, we
utilized GitHub’s REST API [25]. However, unlike GitHub’s web
interface, the REST API marks a commit as either verified or
unverified with a reason instead of the different badges. The
REST API marks correctly signed commits as verified and all
unsigned and incorrectly signed commits as unverified with pos-
sible reasons covering the "no badge" commits, too. The only way
to track the badges in the GitHub’s web interface is to crawl the
commit pages of the repositories. However, we opt for the REST
API instead of crawling the web pages as (i) crawling of the com-
mit pages in GitHub is not allowed as per GitHub’s robots.txt,
(ii) there is a rate limit provided for sending requests to GitHub’s
REST API server but no such standards are provided for crawling of
GitHub pages, and (iii) the case for commits with “Partially Verified"
badge and no badge is dependent on the “Vigilant Mode" settings
of a user in GitHub.

We used the commit endpoint of GitHub’s REST API to get the
commit-related information of the repositories, which included
“COMMIT SHA”, “COMMIT_DATE”, “AUTHOR”, “COMMITTER”,
“STATUS” and “REASON”. Here, the “STATUS” is a boolean that
specifies if the commit is verified, and the “REASON” is an enum
whose value specifies why a commit is assigned the respective sta-
tus. Table 2 describes the possible values for this field. As GitHub re-
leased vigilant mode and verification badges on April 28th, 2021 [3],
we downloaded the commit data from one year before the release,
i.e., April 28th, 2020, until December 31st, 2024, to observe if the
commits reflect any change in commit signing practices before and
after the release of vigilant mode and verification badges. We refer
to this time period as the “extraction interval".

We created a framework for the extraction and analysis, which
follows the above steps to fetch the commit data given the extraction
interval and the repository link as shown in fig. 3. We downloaded
a total of 869, 437 commits across all 60 repositories in the last five
years.

4.2 Data Analysis
4.2.1 Analyzing Commit Data. A commit can be made directly
by a user, bots, or via the GitHub web interface. GitHub automati-
cally signs commits made by the GitHub web interface, irrespective
of the users’ awareness about commit-spoofing or signing. As this
does not reflect commit signing practices by real users, we ex-
clude all commits made by either GitHub’s web interface or bots.
Commits via the web interface can be excluded by filtering the
commits made via the id “noreply@github.com". Commits by bots
are, however, difficult to detect. To find the possible bots, we find
the top-k committers (by varying k from 5 to 20) for each repository
and checked the user accounts of these committers manually to
determine if it is a bot. GitHub web and bots were found to be
used quite often to merge commits. Although the “User" endpoint
of GitHub’s REST API can be used to check if a user account in
GitHub is a “User" or “Bot", we found multiple instances where
the fields had incorrect values. For instance, PyTorch’s bot with id
“pytorchmergebot@users.noreply.github.com" is assigned a “User"
type by the REST API. Hence, wemanually checked the possibility
of an account being a bot.

4.2.2 Analyzing Usability of Git Clients. In addition to measur-
ing the commit signing practices, we also analyzed some popular
Git clients to investigate if they provide convenient features to per-
form commit signing and verify the integrity of commits. For this,
we compared Git CLI [13], GitHub Desktop [20], and GitKraken [7]
with GitHub’s web interface [19] for the following scenarios:

• Commit signing: Does the client provide an additional
interface for setting up commit signing apart from the one
provided by Git? If yes, are they convenient to use?

• Verification of commit signatures:Does the client provide
features or badges that help identify or verify a commit’s
signature? How interpretable are these badges, if any?

• Verification of multi-author commit signatures: Since,
only the committer can sign the commit, how do the clients
show the status of such commits? How are badges or labels
assigned to such commits?

5 Results and Findings
5.1 Prevalence and Variation in Commit Signing

Usage Across Domains and Over Time
Of the total 869,437 downloaded commits, 289,308 commits (33.27%)
were correctly signed. However, this number includes the commits
made via GitHub’s web interface and bots. Since commits made via
GitHub’s web interface are automatically signed by GitHub, and
bots are mostly used for tasks like merging commits, such commits
are excluded from our analysis. After excluding such commits, we
were left with 399,520 commits pushed by actual users.

Out of 399,520 commits pushed by actual users, only 38,586 com-
mits (9.65%) were correctly signed. We further filtered the data

EASE 2025, 17–20 June, 2025, Istanbul, Türkiye Anupam Sharma, Sreyashi Karmakar, Gayatri Priyadarsini Kancherla, and Abhishek Bichhawat

Table 1: Top 15 repositories related to tools or libraries having at least 1K commits were considered for the study based on
their popularity in Gitstar Ranking [2] for each of the 4 categories. This list excluded repositories having less than 20% of total
commits during our extraction interval (28 April 2020 to 31 December 2024).

Sl. No. Machine Learning Database Security Web dev

1 tensorflow/tensorflow redis/redis fatedier/frp facebook/react
2 AUTOMATIC1111/stable-diffusion-webui ClickHouse/ClickHouse NationalSecurityAgency/ghidra vercel/next.js
3 huggingface/transformers pingcap/tidb gorhill/uBlock facebook/react-native
4 pytorch/pytorch cockroachdb/cockroach mitmproxy/mitmproxy nodejs/node
5 tensorflow/models influxdata/influxdb rapid7/metasploit-framework mrdoob/three.js
6 keras-team/keras facebook/rocksdb gchq/CyberChef denoland/deno
7 scikit-learn/scikit-learn surrealdb/surrealdb schollz/croc angular/angular
8 geekan/MetaGPT mongodb/mongo openssl/openssl mui/material-ui
9 hiyouga/LLaMA-Factory duckdb/duckdb AdguardTeam/AdGuardHome ant-design/ant-design
10 microsoft/autogen taosdata/TDengine brave/brave-browser puppeteer/puppeteer
11 microsoft/DeepSpeed pubkey/rxdb cure53/DOMPurify tauri-apps/tauri
12 openai/gym timescale/timescaledb zaproxy/zaproxy storybookjs/storybook
13 ray-project/ray rqlite/rqlite cryptomator/cryptomator sveltejs/svelte
14 hankcs/HanLP tikv/tikv SoftEtherVPN/SoftEtherVPN gin-gonic/gin
15 huggingface/pytorch-image-models scylladb/scylladb OpenVPN/openvpn gohugoio/hugo

User configures "Repo
Link" and "Date Range"

Fetch commit data using
GitHub REST API
(Commit Endpoint)

Extract and save following metadata:

Commit SHA, Commit Date, Author,
Committer, Verification Status, and

Reson for status

Perform analysis:

Distribution of across verification status,
reason for status and years

Figure 3: Flow diagram showing the usage of the framework for commit extraction and analysis.

Table 2: Description of different states of commit based on
commit signature as per GitHub REST API [16]

Status Description

valid The signature is regarded as valid as none of the below
errors were occurred

invalid GitHub could not verify the signature cryptographically
using the key-id attached in the signature

malformed_signature Parsing error occurred while processing the signature

unknown_key The signature was created using a key that hasn’t been
linked to any user’s account

bad_email
The email address of the committer in the commit does
not match any of the identities associated with the PGP
key used to create the signature

unverified_email The email address of the committer is linked
to a user, but it hasn’t been verified on their account

no_user The committer email address in the commit is not linked
to any user account in GitHub

unknown_signature_type The commit contains a signature that is not PGP-based
unsigned The commit is not signed
gpgverify_unavailable Unavailability of the signature verification service

gpgverify_error Communication error while contacting signature
verification service.

not_signing_key The GPG key used to create the signature does not
include the "signing" flag in its usage settings

expired_key The key used to create the signature has expired

to get unique committers in the repositories. Table 3 shows the
number of unique committers in each repository and the number
of committers pushing signed commits. Since the table does not
include the commits made via bots or via GitHub web, it only covers
commits pushed directly or merged without squashing. As shown,
less than 20% of the committers have some signed or verified com-
mits. This shows that commit signing is not well adopted, implying
that the use of vigilant mode is also not adopted. We further discuss
some possible reasons for the low adoption in section 6.2.1.

Machine Learning Database Security Web Development
Category

0

5

10

15

20

25

30

Ve
rif

ie
d

co
m

m
its

 (%
)

1.4 2.2

23.7

9.49.4

5.1

29.4

12.7

2.8

7.7

32.0

20.1

0.7

8.0

30.9

12.0

0.6

5.4

25.7

6.8

Time period
2020-2021
2021-2022
2022-2023
2023-2024
post 04-2024

Figure 4: Year-wise proportion of verified (valid or correctly
signed) commits among different categories before and after
GitHub announced vigilant mode and verification badges.
This excludes commits made via bots and GitHub web. Here,
in the legends, the year starts and ends on the 28𝑡ℎ day of
April of the starting and ending year.

We also investigated if the domain of the repositories has any
effect on the usage trends of commit signing. Table 3 shows that
security repositories have the highest proportion of users that has
some verified commits that are correctly signed followed by web
development. Similar observations can be made in fig. 4 where the
proportion of verified commits every year is the most for secu-
rity repositories followed by web-development repositories. The
numbers indicate that developers from the security domain tend
to use commit signing more as compared to developers from other
domains, and might be more concerned about spoofing. Table 4

On the Prevalence and Usage of Commit Signing on GitHub EASE 2025, 17–20 June, 2025, Istanbul, Türkiye

Table 3: Unique committers and committers with some
signed commits across the repositories studied.

Sl No. Repository Domain Unique
Committers

Committers with
correctly signed
commits

1 Machine Learning 1723 82 (4.75%)
2 Database 2504 160 (6.38%)
3 Security 936 173 (18.48%)
4 Web development 1255 134 (10.67%)

shows some insights on commit data for the top-ranked repository
in each of the domains.

We further investigated if there is any difference between usage
trends before and after GitHub released the feature to flag spoofed
commits, i.e., 28𝑡ℎ April 2021 (we refer it as the threshold date in up-
coming sections). Figure 4 shows the proportion of signed commits
made in each domain along with the usage trend of commit signing
each year. It can be observed that for all the domains, there is a rise
in the verified commits after the introduction of the verification
badges (i.e., after the threshold date). For machine learning, security
and web development repositories, the number of verified commits
rise till early 2023 but falls after that. To identify the reason behind
this, we calculated the variation of the proportion of committers
committing verified commits, regularly, each year. We considered
committers with at least 50 verified commits to consider users who
pushed regularly. Figure 5 shows the proportion of old and new
committers having verified commits out of total committers each
year. The trend of committers with verified commits in fig. 5 is
almost similar to the trend of commits in fig. 4 explaining the fall in
the proportion of the commits. However, the reason behind the fall
in the number of committers with regular verified commits in the
2023-2024 time-frame is not clear. Another important observation
here is that the number of new committers committing regularly
has been decreasing, gradually.

5.2 Usability of Commit Signing and
Verification Process in Popular Git Clients

Here, we assess the usability of the features provided by Git CLI,
GitHub Desktop, GitHub Web and Git Kraken for commit signing
and verification.

5.2.1 Commit Signing. The process of commit signing via Git
CLI is highly technical and procedural, involving multiple steps: (i)
generate a public/private key pair, (ii) export the public key and (iii)
configure Git to use the private key. Moreover, the generation of
public/private key pair itself involves answering multiple questions
like choosing the algorithm, key size, and expiry date. Though it
is a one-time setup, it is quite rigorous and not a user-friendly op-
tion. As a CLI might not have an interactive interface, we expect
GUI-based Git clients to fix this gap. In this regard, we investigated
GitHub Desktop and GitKraken. We found that GitHub Desktop
does not support commit signing and solely depends on Git con-
figurations for signing commits. On the other hand, we found that
GitKraken makes setting up commit signing incredibly easy by pro-
viding simple interface for generating and selecting keys. Instead of

generating key pairs manually, one can simply pass the passphrase
of the key to GitKraken and it automatically takes the username
and email id of the user from the GitKraken profile and generates
the key pair accordingly for the user. Similarly, one can select the
key from the available keys via a dropdown. However, this interface
is provided for GPG keys and not for SSH keys. One will have to
use terminal for using SSH keys.

5.2.2 Verification of Commit Signatures. For the verification
of signed commits, the command git log –show-signature in
Git CLI can be used to show signatures. However, it cannot verify
the signature unless the public key is added in to the local system.
Adding public key for all the users can be tedious task making
the process less user-friendly. We further checked GitHub Desktop
and GitKraken if they provide badges like GitHub web interface.
GitHub Desktop does not provide any badge for this verification,
and hence there is no graphical indication for users to check if the
commit was signed. However, GitKraken provides labels specifying
the status of the signature of the commits [21]. The possible value
for the labels are:

• GOODSIG: The key used to sign is good, and the signature
has good integrity and validity.

• EXPSIG: The signing key has expired, but the signature is
still valid.

• EXPKEYSIG: Although an expired key was used to create
the signature, it is still valid.

• REVKEYSIG: Although the signature was created with a
revoked key, it is still legitimate.

• BADSIG: The inability to verify the signature raises the possi-
bility that there are issues with either the key or the signature
itself.

• ERRSIG: Due to errors such as unsupported algorithms or
missing public keys, a signature could not be validated.

Although the labels provide detailed information about the sig-
natures, the verification will work only if the public keys are there
in the system. As discussed earlier, adding public keys can be a
tedious task making the labels useless.

5.2.3 Verification of Multi-Authored Commit Signatures. A
commit can have multiple authors with one committer and one or
more co-authors. One simple way to do this in Git is to use the
command git commit -m "Some message" –author "<uname>
<email>". This is often used while committing via GitHub’s web
interface where the author is the user and committer is GitHub.
However, this can also be used for spoofing. As of now, there is
no way for the author to sign along with the committer and an
attacker can use the identity of a victim as the author and still sign
the commit. As discussed in section 2.2, GitHub uses specific badges
named “Partially Verified" for such cases. If the victim, enables
vigilant mode, a correctly signed commit but with spoofed author
identity will be marked as “Partially Verified" alerting users that
not all authors may have signed the commit.

Unlike GitHub’s web interface, there are no badges equivalent
to “Partially Verified" in Git CLI, GitHub Desktop and GitKraken.
GitHub Desktop and GitKraken simply list all the authors and
committers similar to the web interface. In order to see both author
and committer in Git CLI, one has to use the command git log

EASE 2025, 17–20 June, 2025, Istanbul, Türkiye Anupam Sharma, Sreyashi Karmakar, Gayatri Priyadarsini Kancherla, and Abhishek Bichhawat

Table 4: Commit details in top-ranked repositories across all four domains with corresponding status of the commit signature.

Status tensorflow/tensorflow (ML) redis/redis (DB) fatedier/frp (Security) facebook/react (Web-dev)

Overall Excluding bots
and GH web Overall Excluding bots

and GH web Overall Excluding bots
and GH web Overall Excluding bots

and GH web

unsigned 86763 9493 312 311 72 72 2335 1252
valid 2206 343 2784 1 344 0 4320 2
unknown_key 24 24 0 0 0 0 0 0
no_user 6 6 0 0 0 0 0 0
unverified_email 278 278 0 0 0 0 0 0

20
21

-20
22

20
22

-20
23

20
23

-20
24

po
st

04
-20

24

Time period

0

1

2

3

4

5

6

%
 o

f c
om

m
itt

er
s

w
ith

 a
t l

ea
st

 5
0

ve
rif

ie
d

co
m

m
its

0.3 0.2 0.0 0.00.3 0.0 0.0 0.0

Category = Machine Learning

20
21

-20
22

20
22

-20
23

20
23

-20
24

po
st

04
-20

24

Time period

1.0
1.3

1.6
1.3

0.4 0.3 0.1 0.0

Category = Database

20
21

-20
22

20
22

-20
23

20
23

-20
24

po
st

04
-20

24

Time period

4.1

5.0

6.6

3.0

0.3
0.0 0.0 0.0

Category = Security

20
21

-20
22

20
22

-20
23

20
23

-20
24

po
st

04
-20

24

Time period

1.8 1.8
1.5 1.7

0.0 0.0 0.0 0.0

Category = Web Development

Type of committers
Old
New

Figure 5: Proportion of old and new committers with at least 50 verified (valid or correctly signed) commits each year. The rise
and fall trend in the proportion of committers with verified commits could be the reason behind similar trend in fig. 4. The
drop in the proportion in the last interval could be due to the shorter range (4 months less than other intervals with 12 months).

–format=fuller –show-signature. However, not all users may
be aware of these additional options for performing such actions.

5.3 Improper Way of Handling Unverified
Emails by GitHub

358056

285

646

10

1927

2

38586

Figure 6: Distribution of commits among different status
listed in table 2.

Figure 6 shows the distribution of the commits among different
status listed in table 2, where around 646 commits had an unverified

email address associated with it. An account is said to have an
unverified email address if a GitHub account has added an email
address to the GitHub profile but is not yet verified. These 646
commits are signed commits. The number of unsigned commitswith
unverified email address is unknown as the status listed in table 2
except “unsigned" status is assigned to only those commits which
were signed in somemanner. Important point of concern is that even
if the email address is not verified, the commits still gets associated
to the user account which should not happen ideally. After further
investigation, we found that an attacker can use any email address
without being verified and if the owner of the email ignores the
verification mail, all commits made via that email will be associated
with the attacker’s account. However, when the actual owner tries
to add the email address to the account, GitHub prevents it from
getting added with the message, “Email is already in use" even if
the email is still unverified, as shown in fig. 7. Moreover, when the
attacker adds the email address, a verification mail would be sent
to the actual owner. Figure 7 shows a sample email which gets sent
when someone adds an email to a GitHub account. The recipient of
the mail can either click on the “Verify" button (verifying can lead
to addition of the mail to the attackers account) or ignore the mail
if its not triggered by the owner. If the owner ignores it, the owner
can never use the email in its account in future.

This can lead to another kind of spoofing where an attacker
can use the victim’s email address to push malicious commits. Any

On the Prevalence and Usage of Commit Signing on GitHub EASE 2025, 17–20 June, 2025, Istanbul, Türkiye

malicious activity would then be attributed to the committer’s email
address which is present in the commit metadata. Ideally, if the
email in the metadata of the commit is unverified, it should not
be associated with any user account in GitHub. Instead, it should
remain unassociated with a no_user status as listed in table 2.

6 Discussion
6.1 Limitations
We discuss some limitations of our study next. Firstly, we extracted
commits only from the main branch of the repositories. Sometimes
commits from pull requests are squashed into one commit and
merged and the original commits linked to the pull request are not
present in the main branch. Our setup might have missed some
commits while fetching them from the REST API. However, we
were still able to analyze 399,520 commits made by real users (ex-
cluding commits made by bots and the web interface), which is a
sufficiently large dataset. Secondly, we could not analyze the usage
trends of the vigilant mode provided by GitHub. Vigilant mode
is a significant way to tackle commit spoofing. However, there is
no way of checking if a user has enabled vigilant mode via the
REST API. Only way to check this is to check the verification badge
assigned to a user’s unsigned commit. If it is marked as unverified
then the user has enabled the vigilant mode. However, to check this
we need to crawl commit page of repositories, which is not allowed
as per the robots.txt of GitHub. Finally, we plan to perform a
user study in the future to study the usability and awareness of
commit signing on Git clients.

6.2 Observations and Recommendations
6.2.1 Low Adoption of Commit Signing. As discussed above,
only 9.65% of all commits were signed correctly. Only 8.55% of the
committers in the crawled repositories had some verified commits,
especially in the main or master branch of the repositories. The
lower adoption implies that the users may not be aware of commit
signing, including settings like the vigilant mode, which helps users
prevent commit spoofing. If the users are aware but choose not to
perform commit signing, the possible reasons could be:

(1) Though setting up commit signing is a one-time setup, the
process is quite involved, as it requires knowledge of CLI
tools like ssh-keygen and gpg, encryption algorithms and
involves steps like generating public/private key pair, ex-
porting and sharing public keys and configuring Git to use
the keys.

(2) No recommendation by GitHub to users or enforcement by
repository maintainers leading to unawareness.

(3) Commit signing needs multiple keys for different systems.
Users migrating to new devices may forget to generate new
keys, and managing keys across multiple devices can be
challenging.

(4) Enabling vigilant mode will mark all older unsigned commits
as “Unverified”. This is something that cannot be avoided and
one way to adjust with this situation would be to document
the transition of the workflow.

6.2.2 Usability of Git Clients for Commit Signing. As dis-
cussed in sections 5.2.1 and 6.2.1, the process of setting up commit

signing in Git CLI is tricky. Therefore, we need applications that pro-
vide user-friendly interface that handles the most part. For example,
in GitKraken, the user needs to only input the passphrase for gener-
ating keys while all other information is taken from their GitKraken
profile [21]. Similar interface is provided in the preferences of the
applications for exporting the public key that can be shared with
trusted third-parties like GitHub. However, GitHub Desktop com-
pletely relies on local Git configuration for commit signing. Having
user-friendly interfaces in Git clients will encourage users to use
it. Secondly, there needs to be such badges as in GitHub web or
status as in table 2. Although GitKraken has additional labels, that
works given the public key is imported in the local system. Doing
this manually by a user for commits can be a tedious task. Instead,
the applications can either use REST API calls to a third party like
GitHub on behalf of the user to display verification status or can
verify the signature by fetching the public keys on demand by users
if the origin of the repository is a trusted third party like GitHub. For
example, one can get the public key of a user in GitHub via a REST
API call or via the URL https://github.com/username.keys.

In addition to this, when a repository is cloned, the Git client
in use should report the distribution of verified and unverified
commits, as users rarely check the commit history for verification.

6.2.3 Association of User Accounts and Commits. Currently,
GitHub associates user accounts with commits based on the email
address in the meta data of the commit. However, associating the
commits without any verification is not ideal as it leads to commit
spoofing. Here, we propose an alternative way to associate commits
with user accounts in GitHub. As per GitHub REST API documen-
tation, different event gets created in GitHub based on the activity
performed [17]. GitHub has around 17 events [15] out of which
a new commit can be introduced to a repository either via a “Pu-
shEvent" or “PullRequestEvent". GitHub should associate a commit
with a user account if the identity (username and email address) in
the commit matches with identity of the user responsible for the
event. If the identity does not match, it should remain unassoci-
ated with a clear message that GitHub is not sure if it associates
to some account in GitHub. It is better not to associate instead of
incorrectly associating it, in case of uncertainty. As GitHub already
creates events during any activity performed, this process can be
performed while creating such events. Although commit signing
is the best way to ensure ownership and integrity, this approach
is a better alternative for unsigned commits. The details of this
approach in different scenarios are described below:
• Push local commits to GitHub: When a user pushes locally
created commits to GitHub, all the commits created by the user
would correctly get associated with the user account as the
identity in the commit will match the identity of the actor in
the “PushEvent" triggered. For commits whose identity does
not match with the actor of the event, GitHub can perform
a check if the association between the user mentioned in the
commit, and the commit with the SHA already exists in GitHub.
If it exists then the pushed commit can be associated as the one
that already exists otherwise it can be left unassociated. This
helps when a repository is cloned and pushed as a different
repository. The overhead of doing this is slightly more than
searching for the user to get the public key for verifying commit

EASE 2025, 17–20 June, 2025, Istanbul, Türkiye Anupam Sharma, Sreyashi Karmakar, Gayatri Priyadarsini Kancherla, and Abhishek Bichhawat

Attacker goes to GitHub Settings Emails and
adds some email address of the victim

1

If the victim does not use the email with the GitHub
profile, it gets added to attackers profile, but remains
"Unverified"

2

Verification mail similar to above goes to victims's
mail. The victim will ignore this mail as it is instructed
by the mail (highlighted in red) to ignore if it is not
triggred by the victim

3

The attacker pushes a commit having victim's email in
the commit meta data, and GitHub associates the
commit with the attacker. But, since the username
looks similar to victim's name having commit mail
address same as victim's, arbitrary user may think that
this account belongs to victim.

4

When the victim tries to add the email address to own
GitHub account, GitHub fails to do so saying that it is
already in use. Even though the attacker could not
verify it via email verification as shown in step 2.

5

Figure 7: Email triggered when a user adds an email address to the GitHub account. If an attacker adds the email address to the
account, the mail is sent to the owner. The owner has only two options: either to click on verify or ignore, as the mail clearly
says (marked in red) to ignore if the owner does not trigger it. When ignored, the owner can never use the email address.

signature that is already in place except that after searching the
user, GitHub will also need to search the commit to check if it
is already associated with the user.

• Merge commits via Pull Request in GitHub: For every
action on a pull request in GitHub, a “PullRequestEvent" is
created [15]. The action can be anyone of the opened, edited,
closed, reopened, assigned, unassigned, review_requested, re-
view_request_removed, labeled, unlabeled, and synchronize.
And for every such event, the commits linked to the pull re-
quest can identified via the “commits_url" attribute [18]. Once
the identity in the linked commits and the identity of the actor
of the pull request matches, the actor can be associated with
commit so that association is retained when new commits are
added based on “edit" action by other user. This way commits
via pull request can be associated correctly. However, any com-
mits made by any other committer merged locally might not
get associated if the merged branch is not present in GitHub.

One major advantage of this approach is that the ownership of
old commits still remains associated and verified. This is a better
alternative for vigilant mode, too, because when the vigilant mode
is enabled, all legitimate but unsigned commits are marked as un-
verified. However, our approach will ensure that the ownership
of all commits are also retained. As the data transfer to GitHub
happens via SSH or HTTPS, we assume that the path from the
local machine to GitHub is secured as similar transfer happens for
commits pushed via the web interface. Once it reaches GitHub, this
approach can be used to verify ownership and associating commits.

6.2.4 Handling of Unverified Email in GitHub. As discussed
in section 5.3, if an email address is not already added in the profile
of a user in GitHub, an attacker can add it to their own account
(with a name similar to that of the actual user of the email address).
The attacker cannot get it verified because the email verification
will go to the actual owner. Since the verification mail asks the
owner to ignore the mail as shown in fig. 7, the owner will ignore
it. However, the owner can never use the email address as GitHub

does not allow this to happen, saying that it is already in use. We
propose the following workflow to handle such unverified emails:

• Commit with email address which is unverified should never
be associated with the user account.

• The email verification mail should have an option to report
instead of asking user to ignore. Reporting should immedi-
ately remove it from the account in which it was added.

• Unless the email address get verified via email verification
mail, if any other user tries to add the same email address
the later should be allowed to do so giving chance to the
actual user. If the later is the actual owner, it will get verified
and if not the event will get reported provided the mail has
an option to do so.

7 Conclusion
In this study, we conducted a longitudinal and cross-domain analy-
sis of the prevalence of commit signing, focusing on real user data
by excluding bot and web-based commits. Our findings indicate an
increase in signed commits after GitHub introduced vigilant mode,
followed by a decline around 2023-2024. Among the domains, se-
curity developers exhibited the highest usage of commit signing.
Additionally, we found that GitKraken offers the most convenient
commit signing experience, while GitHub web is the most acces-
sible for verifying commits. We also identified some unexpected
behavior related to unverified email handling in GitHub, which can
prevent legitimate users from using their email addresses. In future,
we plan to perform a rigorous user study to assess the usability and
ease of commit signing among popular Git clients.

Acknowledgments
We thank the anonymous reviewers for their feedback. This work is
supported in part by the Prime Minister’s Research Fellow (PMRF)
grant, Science and Engineering Research Board-SRG grant, and the
Google India Research Award.

On the Prevalence and Usage of Commit Signing on GitHub EASE 2025, 17–20 June, 2025, Istanbul, Türkiye

References
[1] 2013. China, GitHub and the man-in-the-middle | GreatFire Analyzer —

en.greatfire.org. Retrieved October 10, 2024 from https://en.greatfire.org/blog/
2013/jan/china-github-and-man-middle

[2] 2014. Gitstar Ranking. https://gitstar\protect\discretionary{\char\hyphenchar\
font}{}{}ranking.com/

[3] 2021. Flag unsigned commits with vigilant mode — GitHub Changelog. Re-
trieved December 12, 2024 from https://github.blog/changelog/2021-04-28-flag-
unsigned-commits-with-vigilant-mode/

[4] Hammad Afzali, Santiago Torres-Arias, Reza Curtmola, and Justin Cappos. 2018.
le-git-imate: Towards Verifiable Web-based Git Repositories. In Proceedings of
the 2018 on Asia Conference on Computer and Communications Security (Incheon,
Republic of Korea) (ASIACCS ’18). Association for Computing Machinery, New
York, NY, USA, 469–482. https://doi.org/10.1145/3196494.3196523

[5] Yasir Ali and Sean Smith. 2004. Flexible and Scalable Public Key Security for SSH.
In Public Key Infrastructure, Sokratis K. Katsikas, Stefanos Gritzalis, and Javier
López (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 43–56.

[6] D Arkhipkin, W Betts, Jerome Lauret, and A Shiryaev. 2008. An SSH key man-
agement system: Easing the pain of managing key/user/account associations.
Journal of Physics: Conference Series 119 (07 2008). https://doi.org/10.1088/1742-
6596/119/7/072005

[7] LLC Axosoft. 2025. GitKraken Legendary Git Tools. https://desktop.github.com/.
[8] Felix Rej Bottolfsen. 2024. Investigation of Commit Spoofing. Master’s thesis.

NTNU.
[9] Alan Cao and Brendan Dolan-Gavitt. 2022. What the fork? finding and analyzing

malware in github forks. In Proc. of NDSS, Vol. 22.
[10] Parker N Collier. 2024. A Quantitative Analysis of Security Keys and Commit

Signing on Github. (2024).
[11] Mike Doyle. 2022. Demystifying the Pl0x GitHub attack. https://www.arnica.io/

blog/demystifying-the-pl0x-github-attack.
[12] Runhan Feng, Ziyang Yan, Shiyan Peng, and Yuanyuan Zhang. 2022. Automated

detection of password leakage from public GitHub repositories. In Proceedings of
the 44th International Conference on Software Engineering (Pittsburgh, Pennsyl-
vania) (ICSE ’22). Association for Computing Machinery, New York, NY, USA,
175–186. https://doi.org/10.1145/3510003.3510150

[13] Git. 2025. Git–distributed-even-if-your-workflow-isnt. https://git-scm.com.
[14] GitHub. [n. d.]. Build software better, together — github.com. Retrieved October

10, 2024 from https://github.com/about
[15] GitHub. 2022. GitHub event types — GitHub Docs. Retrieved October 10, 2024

from https://docs.github.com/en/rest/using-the-rest-api/github-event-types?
apiVersion=2022-11-28

[16] GitHub. 2022. REST API endpoints for commits — GitHub Docs. Retrieved October
10, 2024 from https://docs.github.com/en/rest/commits/commits?apiVersion=
2022-11-28

[17] GitHub. 2022. REST API endpoints for events — GitHub Docs. Retrieved October
10, 2024 from https://docs.github.com/en/rest/activity/events?apiVersion=2022-
11-28#about-github-events

[18] GitHub. 2022. REST API endpoints for pull requests — GitHub Docs. Retrieved
October 10, 2024 from https://docs.github.com/en/rest/pulls/pulls?apiVersion=
2022-11-28#about-pull-requests

[19] Inc. GitHub. 2025. GitHub - Build and ship software on a single, collaborative
platform. https://github.com/.

[20] Inc. GitHub. 2025. GitHub Desktop. https://desktop.github.com/.
[21] GitKraken. 2023. Commit Signing with GPG. https://help.gitkraken.com/

gitkraken-desktop/commit-signing-with-gpg/ Accessed: 2025-01-31.
[22] Danielle Gonzalez, Thomas Zimmermann, Patrice Godefroid, and Max Schae-

fer. 2021. Anomalicious: Automated Detection of Anomalous and Potentially
Malicious Commits on GitHub. In 2021 IEEE/ACM 43rd International Conference
on Software Engineering: Software Engineering in Practice (ICSE-SEIP). 258–267.
https://doi.org/10.1109/ICSE-SEIP52600.2021.00035

[23] Egor Homakov. 2012. wow how come I commit in master? O_o · rails/rails@b839657
— github.com. Retrieved October 10, 2024 from https://github.com/rails/rails/
commit/b83965785db1eec019edf1fc272b1aa393e6dc57

[24] Sameera Horawalavithana, Abhishek Bhattacharjee, Renhao Liu, Nazim Choud-
hury, Lawrence O. Hall, and Adriana Iamnitchi. 2019. Mentions of Security
Vulnerabilities on Reddit, Twitter and GitHub. In IEEE/WIC/ACM International
Conference on Web Intelligence (Thessaloniki, Greece) (WI ’19). Association for
Computing Machinery, New York, NY, USA, 200–207. https://doi.org/10.1145/
3350546.3352519

[25] GitHub Inc. 2025. GitHub REST API documentation. https://docs.github.com/en/
rest?apiVersion=2022-11-28.

[26] Apu Kapadia. 2007. A Case (Study) For Usability in Secure Email Communication.
IEEE Security & Privacy 5, 2 (2007), 80–84. https://doi.org/10.1109/MSP.2007.25

[27] Joscha Lausch, Oliver Wiese, and Volker Roth. 2017. What is a Secure Email?
https://doi.org/10.14722/eurousec.2017.23022

[28] Mark Maney. 2023. Trying to identify spoofing in GitHub? May the 4th be with
you! https://www.arnica.io/blog/trying-to-identify-spoofing-in-github-may-

the-4th-be-with-you.
[29] Bill Marczak, Nicholas Weaver, Jakub Dalek, Roya Ensafi, David Fifield, Sarah

McKune, Arn Rey, John Scott-Railton, Ron Deibert, and Vern Paxson. 2015.
An Analysis of China’s “Great Cannon”. In 5th USENIX Workshop on Free and
Open Communications on the Internet (FOCI 15). USENIX Association, Wash-
ington, D.C. https://www.usenix.org/conference/foci15/workshop-program/
presentation/marczak

[30] Michael Meli, Matthew McNiece, and Bradley Reaves. 2019. How Bad Can
It Git? Characterizing Secret Leakage in Public GitHub Repositories. https:
//doi.org/10.14722/ndss.2019.23418

[31] Daniel Pletea, Bogdan Vasilescu, and Alexander Serebrenik. 2014. Security and
emotion: sentiment analysis of security discussions on GitHub. In Proceedings of
the 11th Working Conference on Mining Software Repositories (Hyderabad, India)
(MSR 2014). Association for Computing Machinery, New York, NY, USA, 348–351.
https://doi.org/10.1145/2597073.2597117

[32] Nikita Popov. 2021. Changes to Git commit workflow. https://news-web.php.net/
php.internals/113839.

[33] Tom Preston-Werner. 2012. Public Key Security Vulnerability and Mitigation —
github.blog. Retrieved October 10, 2024 from https://github.blog/news-insights/
the-library/public-key-security-vulnerability-and-mitigation/

[34] Scott Ruoti, Jeff Andersen, Daniel Zappala, and Kent Seamons. 2015. Why Johnny
Still, Still Can’t Encrypt: Evaluating the Usability of a Modern PGP Client. (10
2015).

[35] Scott Ruoti and Kent Seamons. 2019. Johnny’s Journey Toward Usable Secure
Email. IEEE Security & Privacy 17, 6 (2019), 72–76. https://doi.org/10.1109/MSEC.
2019.2933683

[36] Santiago Torres-Arias, Anil Kumar Ammula, Reza Curtmola, and Justin Cap-
pos. 2016. On Omitting Commits and Committing Omissions: Preventing
Git Metadata Tampering That (Re)introduces Software Vulnerabilities. In 25th
USENIX Security Symposium (USENIX Security 16). USENIX Association, Austin,
TX, 379–395. https://www.usenix.org/conference/usenixsecurity16/technical-
sessions/presentation/torres-arias

https://en.greatfire.org/blog/2013/jan/china-github-and-man-middle
https://en.greatfire.org/blog/2013/jan/china-github-and-man-middle
https://gitstar\protect \discretionary {\char \hyphenchar \font }{}{}ranking.com/
https://gitstar\protect \discretionary {\char \hyphenchar \font }{}{}ranking.com/
https://github.blog/changelog/2021-04-28-flag-unsigned-commits-with-vigilant-mode/
https://github.blog/changelog/2021-04-28-flag-unsigned-commits-with-vigilant-mode/
https://doi.org/10.1145/3196494.3196523
https://doi.org/10.1088/1742-6596/119/7/072005
https://doi.org/10.1088/1742-6596/119/7/072005
https://desktop.github.com/
https://www.arnica.io/blog/demystifying-the-pl0x-github-attack
https://www.arnica.io/blog/demystifying-the-pl0x-github-attack
https://doi.org/10.1145/3510003.3510150
https://git-scm.com
https://github.com/about
https://docs.github.com/en/rest/using-the-rest-api/github-event-types?apiVersion=2022-11-28
https://docs.github.com/en/rest/using-the-rest-api/github-event-types?apiVersion=2022-11-28
https://docs.github.com/en/rest/commits/commits?apiVersion=2022-11-28
https://docs.github.com/en/rest/commits/commits?apiVersion=2022-11-28
https://docs.github.com/en/rest/activity/events?apiVersion=2022-11-28#about-github-events
https://docs.github.com/en/rest/activity/events?apiVersion=2022-11-28#about-github-events
https://docs.github.com/en/rest/pulls/pulls?apiVersion=2022-11-28#about-pull-requests
https://docs.github.com/en/rest/pulls/pulls?apiVersion=2022-11-28#about-pull-requests
https://github.com/
https://desktop.github.com/
https://help.gitkraken.com/gitkraken-desktop/commit-signing-with-gpg/
https://help.gitkraken.com/gitkraken-desktop/commit-signing-with-gpg/
https://doi.org/10.1109/ICSE-SEIP52600.2021.00035
https://github.com/rails/rails/commit/b83965785db1eec019edf1fc272b1aa393e6dc57
https://github.com/rails/rails/commit/b83965785db1eec019edf1fc272b1aa393e6dc57
https://doi.org/10.1145/3350546.3352519
https://doi.org/10.1145/3350546.3352519
https://docs.github.com/en/rest?apiVersion=2022-11-28
https://docs.github.com/en/rest?apiVersion=2022-11-28
https://doi.org/10.1109/MSP.2007.25
https://doi.org/10.14722/eurousec.2017.23022
https://www.arnica.io/blog/trying-to-identify-spoofing-in-github-may-the-4th-be-with-you
https://www.arnica.io/blog/trying-to-identify-spoofing-in-github-may-the-4th-be-with-you
https://www.usenix.org/conference/foci15/workshop-program/presentation/marczak
https://www.usenix.org/conference/foci15/workshop-program/presentation/marczak
https://doi.org/10.14722/ndss.2019.23418
https://doi.org/10.14722/ndss.2019.23418
https://doi.org/10.1145/2597073.2597117
https://news-web.php.net/php.internals/113839
https://news-web.php.net/php.internals/113839
https://github.blog/news-insights/the-library/public-key-security-vulnerability-and-mitigation/
https://github.blog/news-insights/the-library/public-key-security-vulnerability-and-mitigation/
https://doi.org/10.1109/MSEC.2019.2933683
https://doi.org/10.1109/MSEC.2019.2933683
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/torres-arias
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/torres-arias

	Abstract
	1 Introduction
	2 Background
	2.1 Commit Spoofing
	2.2 Commit Signing, Badges and Vigilant Mode

	3 Related Works
	3.1 Attacks and Vulnerabilities on GitHub
	3.2 Commit Spoofing
	3.3 Measurement and Usability Studies

	4 Study Methodology and Setup
	4.1 Data Collection
	4.2 Data Analysis

	5 Results and Findings
	5.1 Prevalence and Variation in Commit Signing Usage Across Domains and Over Time
	5.2 Usability of Commit Signing and Verification Process in Popular Git Clients
	5.3 Improper Way of Handling Unverified Emails by GitHub

	6 Discussion
	6.1 Limitations
	6.2 Observations and Recommendations

	7 Conclusion
	Acknowledgments
	References

