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Abstract
The integration of security within DevOps, known as DevSecOps,
has gained traction in modern software development to address
security vulnerabilities while maintaining agility. Artificial Intel-
ligence (AI) and Machine Learning (ML) have been increasingly
leveraged to enhance security automation, threat detection, and
compliance enforcement. However, existing studies primarily focus
on individual aspects of AI-driven security in DevSecOps, lacking
a structured comparison of methodologies. This study conducts
a systematic literature review (SLR) to analyze and compare AI-
driven security solutions in DevSecOps, evaluating their technical
capabilities, implementation challenges, and operational impacts.
The findings reveal gaps in empirical validation, scalability, and
integration of AI in security automation. The study highlights best
practices, identifies research gaps, and proposes future directions
for optimizing AI-based security frameworks in DevSecOps.

CCS Concepts
• Security and privacy→ Software and application security;
• Computing methodologies → Machine learning; • Software
and its engineering→ Software creation and management.
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1 Introduction
The integration of security into the DevOps lifecycle, commonly
known as DevSecOps, is essential for addressing security risks in
modern software development. DevOps has revolutionized software
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engineering by emphasizing automation, continuous integration
(CI), and continuous delivery (CD). However, the rapid pace of de-
ployment often leads to security vulnerabilities due to inadequate
security controls. DevSecOps seeks to embed security practices
into every stage of the software development lifecycle (SDLC), en-
suring proactive threat mitigation. Despite its growing adoption,
the effectiveness of various DevSecOps frameworks remains an
area of active research [19]. Existing studies highlight the poten-
tial of Artificial Intelligence (AI) and Machine Learning (ML) in
security automation but lack a structured comparison of different
frameworks, leaving a gap in understanding the best practices for
implementation [11, 26].

Several studies have explored AI-driven security in DevSecOps,
yet a structured comparison of these methodologies remains lim-
ited. Rajapakse et al. [22] identified challenges in security automa-
tion and tool integration but did not evaluate proposed solutions.
Prates et al. [21] introduced DevSecOps metrics but lacked a stan-
dardized framework for assessing security effectiveness. AI-driven
threat detection has been studied in IoT security by Bahaa et al.
[1], though its broader applicability to DevSecOps remains unclear.
Similarly, Mboweni et al. [17] highlighted gaps in ML integration
within DevOps, particularly in security automation. Compliance
remains a challenge, with Rajapakse et al. [22] also noting the lack
of consensus on shift-left security practices. Other studies [3, 11]
on AI-driven security in DevSecOps reveal significant gaps, such
as the limited exploration of specific security tasks and the absence
of comprehensive evaluation methods. While these studies provide
valuable insights into individual aspects of DevSecOps, a compara-
tive analysis of existing frameworks remains missing. This study
aims to fill this gap by systematically reviewing and evaluating
DevSecOps approaches, focusing on their effectiveness in modern
software development.

The primary aim of this study is to evaluate the effectiveness of
AI-driven techniques in DevSecOps. To achieve this aim, a system-
atic literature review (SLR) methodology was employed to identify
current AI and ML solutions designed for DevSecOps. Then, a com-
parative analysis of these solutions was conducted with respect to
their technical capability, implementation requirement, and opera-
tional impact. This study contributes to the field by:

• Identifying existing AI/ML solutions desgined for DevSec-
Ops.

• Providing a structured comparison of AI-driven security
solutions within DevSecOps.

• Identifying key implementation challenges and best practices
for security automation.
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• Highlighting gaps in existing research and proposing future
research directions.

The remainder of this paper is structured as follows: Section
2 details the methodology, including data sources and selection
criteria. Section 3 presents the results of the SLR. Section 4 provides
the comparative analysis, emphasizing key security frameworks
and AI-driven approaches. Section 5 discusses implementation chal-
lenges, operational impacts, key findings, and research implications.
Additionally, it outlines future research directions. Finally, Section
6 concludes the study, summarizing its contributions and providing
recommendations.

2 Methodology
2.1 Database Selection and Search Strategy
To conduct our SLR on the intersection of SecDevOps, DevOpsSec,
and SecOps with Machine Learning, Deep Learning, and Artificial In-
telligence, we carefully selected reputable academic databases. The
selection criteria were based on their relevance to cybersecurity,
software engineering, and artificial intelligence research, as well
as their inclusion of peer-reviewed journal articles and conference
proceedings. The objective was to ensure comprehensive coverage
of studies that address the research aim posed in this study. The fol-
lowing databases were chosen for the search: ACM Digital Library,
IEEE Xplore, Scopus, Springer Link, Web of Science, and ScienceDirect.
These databases provide extensive coverage of computing, security,
and artificial intelligence research, making them well-suited for
this study.

While both SLRs andMapping Literature Reviews (MLRs) are rec-
ognized secondary research methodologies, an SLR was preferred
for this study due to its emphasis on critical appraisal, synthesis,
and reproducibility. Unlike MLRs, which focus on broad catego-
rization and coverage, SLRs are better suited to evaluating specific
research questions, identifying evidence-based practices, and deriv-
ing analytical insights. Given the rapidly evolving and technically
nuanced nature of AI applications in DevSecOps, an SLR provides a
structured and rigorous mechanism to assess quality, extract com-
parative features, and produce actionable insights for researchers
and practitioners alike.

2.2 Search String and Refinement
Tomaintain consistency in literature retrieval, a standardized search
string was employed across all databases. The primary search string
used in the retrieval process was formulated as follows:

(SecDevOps OR DevOpsSec OR SecOps OR (secur*
AND DevOps)) AND ("machine learning" OR "deep
learning" OR "artificial intelligence" OR Intelligent)

Given the variations in search functionalities across different
databases, refinement strategies were applied to enhance the rel-
evance of retrieved studies and exclude unrelated research. The
refinements were implemented as follows:

• ACM Digital Library – The search was restricted to con-
ference proceedings, yielding two relevant results.

• IEEE Xplore – The search included both conference papers
and journal articles, refining the results from an initial count
of 57 to 52.

• Scopus – Review papers were excluded to retain only pri-
mary research articles, reducing the number of selected stud-
ies from 82 to 56.

• Springer Link – The original search retrieved several irrele-
vant studies. To improve precision, the querywasmodified to
emphasize logical keyword connections, reducing the results
from 10 to 2.

• Web of Science – Minimal refinement was necessary, with
21 out of 22 retrieved papers being retained.

• ScienceDirect – The search was refined to title, abstract,
and author-specified keywords, yielding 11 relevant articles.

In addition to the aforementioned databases, other sources such
asWiley and Google Scholar were initially considered but later
excluded due to the irrelevance of retrieved articles or insufficient
results. Other databases, including Microsoft Academic, Cite-
SeerX, IOPscience, and Taylor & Francis, were evaluated but
not included in the final selection due to a lack of relevant publica-
tions.

2.3 Inclusion Criteria
To ensure that the selected studies are relevant and contribute
effectively to this SLR, predefined inclusion criteria were applied.
The inclusion criteria are as follows:

• IC1: Articles that employ AI in DevSecOps – The study
must explore the use of AI in DevSecOps to ensure its rele-
vance to the research aim.

• IC2: Primary research articles – Only primary research
studies were considered, as SLRs focus on analyzing original
research contributions.

• IC3: Articles published in English – Studies must be in
English, as translating papers from other languages may
introduce errors or misinterpretations.

• IC4: Articles with full access – Only studies with complete
access were included to allow thorough review and analysis.

2.4 Study Selection
The study selection followed a structured process in multiple stages.
First, the search string was applied to the selected databases, and
the retrieved results were imported into EndNote for management.
Duplicate records were removed, and the remaining studies were
screened based on their titles and abstracts. Full-text articles were
then reviewed to ensure theymet the inclusion criteria, and relevant
data items were extracted. The selection process was conducted by
two authors to ensure accuracy and consistency.

2.5 Quality Assessment
A quality assessment checklist was developed to evaluate the rele-
vance and reliability of the selected studies. The checklist consisted
of nine criteria designed to assess the contribution of each study
to this review. These criteria were based on established guidelines,
including the CASP Qualitative Checklist [7] and Keele et al.’s [14]
systematic review guidelines for software engineering. Each study
was assigned a quality score per criterion, with 1 for "fully met," 0.5
for "partially met," and 0 for "not met." The total score ranged from
0 to 9, where higher scores indicated higher quality.
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2.6 Data Extraction Strategy
To systematically collect relevant information from the selected
studies, we used an Excel spreadsheet to record key data items
essential for answering the research questions and assessing study
quality. The extracted data included:

• Bibliographic Information: Study ID, title, year, author(s),
author type, publication type, and venue name.

• Research Focus: Identified problems, proposed solutions,
and study context or application.

• AIApproach:Techniques, models, or algorithms used, along
with dataset details.

• Methodology: Data collection methods, data analysis tech-
niques, evaluation metrics, comparison methods, and perfor-
mance results.

• Findings and Challenges: Key findings, identified chal-
lenges, opportunities, and study limitations.

3 Results
3.1 Study Selection Results
The study selection process followed a systematic approach, as
illustrated in Figure 1. Initially, 144 articles were identified from
six databases: ACM (2), IEEE Xplore (52), Scopus (56), Web of Sci-
ence (21), ScienceDirect (11), and SpringerLink (2). After removing
41 duplicate articles using Endnote software, 103 unique articles
remained. A screening of titles, abstracts, and keywords resulted
in the exclusion of 77 irrelevant articles, leaving 26 for further
evaluation. Full-text analysis was conducted to assess eligibility,
leading to the removal of eight additional articles—seven for not
meeting Inclusion Criterion 1 (IC1) and one for not meeting Inclu-
sion Criterion 2 (IC2). Ultimately, 18 articles were included in the
final review.

3.2 Study Characteristics
Table 1 presents a structured overview of selected publications
on DevSecOps and security practices, categorizing them by study
ID, author, publication year, type, and venue. The dataset spans
from 2015 to 2024, reflecting the growing academic interest in De-
vSecOps methodologies and security frameworks. The majority of
studies are recent, particularly from 2022 onwards, indicating an
increasing focus on integrating security into software development
pipelines. Journals and conferences contribute equally to the dis-
semination of DevSecOps research, each representing 50% of the
selected publications. Notable journal venues include Computers &
Security, The Journal of Systems and Software, and IEEE Transactions
on Parallel and Distributed Systems, while key conferences include
ACM/SPEC International Conference on Performance Engineering,
IEEE International Conference on Software Analysis, Evolution and
Reengineering (SANER), and CLOSER.

Table 2 presents a structured categorization of AI models and
techniques applied in studies. The table clusters AI techniques into
five main groups based on their application domain and purpose.
The DevOps & Security Automation cluster includes AI-driven
DevOps practices, AIOps, Infrastructure-as-Code, and automated
security enforcement tools, with studies such as S1, S5, S11, and
S16, focusing on securing DevOps pipelines and infrastructure.

Figure 1: Flowchart showing the systematic selection process
for the SLR. Initially, 144 articles were identified from six
databases. After removing duplicates and irrelevant studies,
18 articles were included in the final review.

The Machine Learning & Anomaly Detection cluster covers deep
learning-based security approaches, including Multi-layer Percep-
tron (MLP), Random Forest (RF), and LSTM networks for detecting
anomalies in system logs and security operations, as seen in S2,
S8, S17, and others. The Security Testing & Vulnerability Assess-
ment group encompasses methodologies for security testing and
vulnerability detection, such as model-based security testing and
static code analysis, applied in S4, S7, S12, and S14. The Threat
Detection & Risk Assessment cluster integrates AI-driven threat in-
telligence, risk authentication models, and attack-defense strategies
to enhance security, with relevant studies including S3, S9, S10, and
S15. Lastly, the Cloud & Multi-Cloud Security category includes
AI techniques designed for securing cloud-based applications and
multi-cloud environments, as demonstrated in S6, S13, and S18.
This structured classification provides a clear overview of how AI
is leveraged in different security domains.

3.3 Quality Assessment Results
The quality assessment of the selected studies was conducted based
on nine predefined criteria, evaluating different aspects such as
study design, data collection, analysis, and conclusions. Each crite-
rion was scored as "fully met" (1 point), "partially met" (0.5 points),
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Table 1: Overview of the 18 selected publications, categorized by ID, author, year, type, and venue. The dataset spans from 2015
to 2024, with most studies published from 2022 onwards, reflecting increasing academic interest in DevSecOps methodologies.
Notable publication venues include IEEE Transactions, ACM conferences, and journals such as Computers & Security.

ID Author (Year) Reference Type Venue

S1 Vemuri (2024) [30] Journal International Journal of Intelligent Systems and Applications in Engi-
neering (IJISAE)

S2 Sriraman and R (2024) [28] Journal Article Heliyon
S3 Silva et al. (2024) [27] Journal Article IEEE Communications Magazine
S4 Casola et al. (2024) [5] Journal Article Computers & Security
S5 Lombardi and Fanton (2023) [16] Journal Software Quality Journal
S6 Flora et al. (2023) [10] Conference Paper IEEE International Conference on Software Analysis, Evolution and

Reengineering (SANER)
S7 Cankar et al. (2023) [4] Conference ACM/SPEC International Conference on Performance Engineering

(ICPE ’23 Companion)
S8 Sarma (2022) [25] Journal Article Journal of Experimental & Theoretical Artificial Intelligence
S9 Petrović et al. (2022) [20] Conference 30th Telecommunications Forum TELFOR 2022
S10 Okubo and Kaiya (2022) [18] Conference Paper 26th International Conference on Knowledge-Based and Intelligent

Information & Engineering Systems
S11 Kohyarnejadfard et al. (2022) [15] Journal Article Journal of Cloud Computing
S12 Ibrahim et al. (2022) [12] Conference Paper 2nd International Mobile, Intelligent, and Ubiquitous Computing Con-

ference (MIUCC)
S13 Sarma (2020) [24] Conference Paper Proceedings of the International Conference on Intelligent Computing

and Control Systems (ICICCS 2020)
S14 Djosic et al. (2020) [8] Conference IEEE ESSCA 2020 - Workshop on Emerging Security Solutions for

Critical Applications
S15 Casola et al. (2020) [6] Journal The Journal of Systems and Software
S16 Bromberg and Gitzinger (2020) [2] Conference Paper DAIS 2020, LNCS 12135, Springer Nature Switzerland AG 2020
S17 Karn et al. (2019) [13] Journal Article IEEE Transactions on Parallel and Distributed Systems
S18 Rios et al. (2015) [23] Conference 5th International Conference on Cloud Computing and Services Science

(CLOSER-2015)

Table 2: Categorization of AI models and techniques into five clusters—DevOps & Security Automation, Machine Learning &
Anomaly Detection, Security Testing & Vulnerability Assessment, Threat Detection & Risk Assessment, and Cloud & Multi-
Cloud Security—to provide a structured overview of how AI is leveraged across different security domains in DevSecOps.

Cluster Techniques/Models Purpose Studies

DevOps & Security Automa-
tion

AI-driven DevOps, AIOps, IaC, Continu-
ous Security Monitoring, Terraform, An-
sible

Automating security enforcement and com-
pliance in DevOps

S1, S5, S11, S16

Machine Learning & Anomaly
Detection

MLP, RF, LSTM, DCNN, DBN with FAE-
GWO, Unsupervised and Supervised
Learning

Identifying security anomalies, intrusion de-
tection, and threat prediction

S2, S8, S17

Security Testing & Vulnerabil-
ity Assessment

Model-based security testing, Static
Code Analysis, DSCA, DroidAutoML,
Feature Extraction

Automating security testing, vulnerability
detection, and code analysis

S4, S7, S12, S14

Threat Detection & Risk Assess-
ment

Risk Authentication Models, Attack-
Defense Trees, AI-based Threat Intelli-
gence

Identifying and mitigating security risks dy-
namically

S3, S9, S10, S15

Cloud & Multi-Cloud Security µDetector for Kubernetes, MUSA frame-
work for security-by-design in multi-
cloud

Securing cloud-based applications and multi-
cloud environments

S6, S13, S18

or "not met" (0 points), as described in Section 2.5. The total qual-
ity score for each study was computed by summing these scores.
Figure 2 presents the distribution of quality scores across the stud-
ies. The majority of studies scored between 4.5 and 9, indicating a

generally high methodological quality among the included works.
A significant proportion of studies attained scores of 7.0 or above,
demonstrating well-documented research methods and findings.
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Figure 2: Bar chart displaying the quality scores of the 18
selected studies, assessed using a predefined checklist with
scores ranging from 0 to 9. Most studies scored between 4.5
and 9, reflecting highmethodological quality. However, some
studies lacked detailed explanations of limitations, highlight-
ing areas for improvement in reporting transparency.

The quality assessment revealed some variations in reporting
across studies. While most studies provided comprehensive details
on their research aim, methodology, and data analysis, some lacked
thorough explanations of study settings and limitations. These
inconsistencies highlight areas where improvements in method-
ological transparency and reporting could be made. Overall, the
assessment suggests that the included studies provide a strong foun-
dation for the study, with most meeting the key quality criteria to
a satisfactory degree.

Having identified the key studies and their characteristics, the
next section provides a detailed comparative analysis of the AI-
driven security approaches, focusing on their technical capabilities,
implementation challenges, and operational impacts.

4 Comparative Analysis
The widespread adoption of DevOps methodologies has signifi-
cantly transformed software development by prioritizing automa-
tion, continuous integration, and team collaboration. As noted in
the introduction, integrating security into DevOps is challenging
because organizations must balance agility with stringent security
practices [28, 30].

This study synthesizes findings from 18 selected references to
evaluate security frameworks, automation tools, implementation
challenges, and operational impacts in DevSecOps environments.
The analysis is structured across three key dimensions:

(1) Technical Capability Analysis – Evaluates security frame-
works, automation tools, and privacy-enhancing techniques.

(2) Implementation Requirements Analysis – Examines
computational overhead, tool compatibility, and scalability.

(3) Operational Impact Assessment – Assesses the effects
on DevOps agility, developer productivity, and risk manage-
ment.

4.1 Technical Capability Analysis
Integrating security frameworks into DevOps effectively mitigates
risks in CI/CD pipelines. Studies S3, S4, and S8 underline the ne-
cessity of "shift-left" security, embedding security early in software
development to address vulnerabilities proactively.

Threat modeling techniques, such as those in S4 and S10, con-
nect vulnerability identification directly with testing strategies. The
Attack-Defense Trees (ADTs) method (S10) systematically identi-
fies vulnerabilities and verifies protective measures. Automated
detection approaches, including SAST and DAST (S7), facilitate
continuous vulnerability scanning. For instance, µDetector (S6) en-
hances Kubernetes security through anomaly detection in system
calls.

Privacy frameworks, notably DevPrivOps (S3), integrate auto-
mated privacy risk assessments to strengthen privacy in DevSecOps.
NLP techniques using LSTM networks (S11, S14) improve anomaly
detection in logs and tracing data, enhancing security monitoring.

AI andML automation significantly advance DevSecOps security.
Studies S1 and S2 highlight automated remediation of vulnerabil-
ities through AI-driven detection. Deep learning models (DBN,
DCNN) effectively detect IoT threats in real-time (S8, S13). IaC
tools like Terraform and Ansible (S9, S12) enforce automated se-
curity policies but face multi-cloud limitations due to inconsistent
configurations (S9).

Compliance and monitoring automation, covered in S1 and S12,
streamline regulatory compliance but face scalability challenges for
ML-driven security monitoring (S6, S13). CI/CD pipeline security
benefits from early security integration, although tools like Cy-
berDevOps (S5) encounter high false-positive rates. Compatibility
among security tools and inconsistencies in IaC checks (S7, S9)
remain significant challenges.

Overall, addressing these technical integration challenges through
targeted research can significantly enhance DevSecOps security ca-
pabilities. Figure 3 visually summarizes these technical capabilities
and their interactions within DevSecOps.

4.2 Implementation Requirements Analysis
Integrating ML-based security into DevOps introduces several im-
plementation challenges. Computational overhead significantly
limits real-time application and scalability. Deep Learning models
(S8, S11, S13) require considerable resources, complicating their use
for real-time threat detection in IoT and microservices. Addition-
ally, privacy frameworks, such as those in S3, demand extensive
computational capabilities, restricting large-scale deployments.

Tool compatibility issues also pose significant challenges. For
example, the Python-based IaC Analyzer (S9) lacks support for mul-
tiple Infrastructure-as-Code (IaC) formats, limiting interoperability.
Similarly, dependency management problems complicate integrat-
ing frameworks like LOMOS (S7) into existing DevOps workflows.

Scalability and cloud-native security further complicate imple-
mentation. The µDetector framework (S6) can process significant
volumes of system calls but faces latency at peak times. NLP-based
anomaly detection (S11) struggles with interpretability at scale.
Cloud-native security tools like AWS automation (S12) lack multi-
cloud compatibility, while frameworks such as MUSA (S18) have
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Figure 3: Technical capabilities enhancing DevSecOps, covering key areas including security frameworks, threat modeling,
privacy frameworks, automation, compliance, and CI/CD security.

limited empirical validation, raising concerns about real-world ap-
plicability.

Automation presents additional challenges, notably managing
false positives and adapting to dynamic environments. CyberDe-
vOps (S5) and LOMOS (S7) face difficulties balancing accuracy with
the rate of false positives, often requiring manual intervention.
Moreover, adaptive frameworks like the autotuning solution (S17)
incur high computational costs, reducing efficiency in large deploy-
ments. Figure 4 summarizes these key implementation challenges.

Figure 4: Overview of key challenges in integratingML-based
security into DevOps, including computational overhead,
tool compatibility, scalability issues, and automation chal-
lenges.

4.3 Operational Impact Assessment
While automated security solutions improve resilience, they can
also impact DevOps agility. The security automation module in S12
decreases setup time by 83%, leading to faster deployment. Further-
more, S4 and S15 report that manual security assessments introduce
delays in CI/CD pipelines, creating operational bottlenecks.

On the other hand, case studies from S1 and S12 indicate that
AI-driven security enhances compliance in healthcare but lacks full

visibility into cloud security risks. AWS security automation helps
mitigate SSH key exposure risks but does not provide integrated
secret management capabilities.

When it comes to humans, the studies S5 and S15 highlight that
developers often lack sufficient security expertise, emphasizing the
need for security training programs. As illustrated in S9, automated
security tools minimize human errors but require real-time feedback
mechanisms to support developers in securing code effectively.

Figure 5 summarizes key implementation challenges and their
impact on security automation.

4.4 Identified Gaps and Future Research
Directions

Despite increasing adoption of DevSecOps, several research gaps
remain:

• Lack ofReal-WorldValidation –Many proposed solutions
(S5, S18) lack empirical validation, making their practical
effectiveness uncertain.

• Privacy Beyond Compliance – Current research focuses
on regulatory compliance but overlooks aspects such as pri-
vacy quantification and user consent management (S3, S14).

• Scalable Security Automation – Existing ML-based secu-
rity models require high computational resources, highlight-
ing the need for lightweight and scalable alternatives (S6,
S13).

• Human-Centric Security – Usability of security tools (S15)
and developer-focused security training (S5) remain under-
explored.

The comparative analysis of S1–S18 highlights the evolution of
DevSecOps, emphasizing security automation, privacy concerns,
and operational efficiency. While ML-based security solutions im-
prove threat detection, high computational costs, tool fragmenta-
tion, and developer skill gaps remain challenges.

4.5 Comparative Evaluation of AI-Driven
DevSecOps Solutions

Based on the analysis of the selected studies (S1–S18), as shown
in Table 3, the AI-driven security approaches were grouped into
five major clusters, and their performance was compared across
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Figure 5: Diagram illustrating the benefits (e.g., faster deployment) and challenges (e.g., CI/CD delays) of security automation
in DevOps, along with human factors like developer training needs.

key dimensions: detection rate, false positive rate, latency, and
scalability.

The comparative analysis clusters the evaluated studies into
five thematic categories based on their technical focus and applica-
tion domain. Microservice-focused approaches, such as µDetector
and LOMOS [4, 10], emphasize system call monitoring and dis-
tributed tracing, achieving high detection rates (96.5–97.8%) with
low latency (90–110 ms). These solutions are particularly suited for
high-speed CI/CD pipelines.

Infrastructure-as-Code and Policy-as-Code solutions (e.g., [16,
20, 30]) aim to ensure pre-deployment security by automating con-
figuration validation. Although they do not directly address runtime
threat detection, they significantly reduce security misconfigura-
tions early in the pipeline.

Privacy- and compliance-focused frameworks such asDevPrivOps
[27], model-based security testing [5], and security SLA valida-
tion approaches [6] prioritize regulatory adherence and privacy
assurance. However, these approaches often lack real-time anom-
aly detection capabilities and suffer from higher computational
overhead.

IoT-specific attack detection models (e.g., [8, 24, 25]) demon-
strate excellent detection performance (95–98%) but face scalability
challenges due to the computational complexity of deep learning
models, making them less applicable for large-scale DevOps envi-
ronments.

Multi-cloud and cloud-native DevSecOps solutions like MUSA
and DroidAutoML [2, 12, 23] focus on securing heterogeneous and
dynamic infrastructures. These approaches exhibit moderate de-
tection rates (92–96%) but offer better scalability, making them
appropriate for cross-cloud environments where portability and
interoperability are critical.

Overall, the trade-offs are clear: microservice-focused solutions
balance high detection accuracy and low operational latency, mak-
ing them ideal for DevSecOps pipelines where speed is essential.
IoT-specific solutions excel in detection but struggle with scalability
and computational efficiency. Infrastructure-as-Code and privacy
frameworks ensure early-stage security and compliance but lack dy-
namic threat detection capabilities. Multi-cloud security approaches

sacrifice some detection precision to enhance adaptability and scal-
ability across diverse environments.

Organizations must prioritize their selection of security solutions
based on their operational context, balancing detection accuracy,
scalability, and computational overhead according to their DevSec-
Ops maturity and target environments.

5 Discussion
5.1 Key Findings
The analysis of DevSecOps security and privacy frameworks, as
derived from the Comparative Analysis and Data Extraction Sheet,
highlights several significant trends and emerging challenges in
securing DevOps workflows. A major theme is the increasing re-
liance on AI-driven security automation to enhance real-time threat
detection and compliance monitoring (S2). ML techniques, such as
anomaly detection and NLP-based security event analysis, are being
integrated into DevSecOps pipelines to mitigate risks associated
with cloud-native environments (S6).

Another key finding is the widespread adoption of "shift-left" se-
curity practices, embedding security measures earlier in the SDLC.
This approach, while reducing vulnerabilities in production envi-
ronments, presents integration challenges due to the high rate of
false positives in security scans and potential slowdowns in CI/CD
pipeline efficiency (S6). Additionally, privacy concerns remain un-
resolved, particularly in multi-cloud deployments, where ensuring
compliance across heterogeneous cloud environments is an ongoing
struggle (S4).

5.2 Practical Implications
The findings have several implications for industry practices and
DevOps security strategies. The increasing reliance on AI and ma-
chine learning for security enforcement suggests that organizations
must invest in scalable AI-driven monitoring solutions. However,
high computational costs associated with real-time AI security
analysis present an operational challenge, particularly for small to
mid-sized enterprises (S2).

Moreover, shift-left security requires cultural and workflow adap-
tations within development teams. Developers need structured
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Table 3: Clustered comparative evaluation of AI-driven DevSecOps solutions across key performance metrics, including
detection rate, false positive rate, latency, and scalability. Solutions are grouped into five thematic categories based on technical
focus and application domain, illustrating the trade-offs between detection performance, operational latency, computational
overhead, and scalability.

Category Representative Studies Detection
Rate (%)

False Posi-
tive Rate (%)

Latency Scalability

Microservice-focused
Threat Detection

[4, 10, 15] 96.5–97.8% 1.8–3.2% Low High

Infrastructure-as-Code
and Policy-as-Code
Security

[16, 20, 30] N/A
(configuration
validation)

Moderate Moderate Medium

Privacy- and Compliance-
Oriented Frameworks

[5, 6, 27] N/A N/A High Low–Medium

IoT-Specific
Attack Detection

[8, 24, 25] 95–98% 2–3% High Low–Medium

Multi-cloud and Cloud-
Native DevSecOps
Solutions

[2, 12, 23] 92–96% 3–5.5% Moderate–
High

Medium–High

training to handle security tool outputs effectively without over-
whelming the development process with false positives (S6). This
necessitates the implementation of adaptive security policies that
balance security enforcement with agility in CI/CD workflows.

In cloud-native security frameworks, compliance automation
tools are becoming indispensable for multi-cloud and containerized
deployments. However, these tools often require continuous up-
dates to align with evolving regulatory frameworks such as GDPR,
HIPAA, and NIST compliance standards (S4). Organizations must
ensure that security and compliance automation tools are kept
up-to-date to mitigate legal and financial risks.

5.3 Research Implications
The SLR reveals notable gaps in current DevSecOps research. One
of the primary concerns is the lack of empirical validation of many
proposed security models, especially in real-world DevOps environ-
ments (S4). While theoretical frameworks propose robust security
mechanisms, there is limited empirical evidence regarding their
effectiveness when integrated into agile development workflows.

Another critical research gap is the trade-off between AI-driven
security automation and system performance. AI-based security
monitoring introduces latency and computational burdens that can
negatively impact DevOps efficiency (S2). Future studies should
evaluate how to optimize AI-driven security enforcement while
maintaining rapid deployment cycles. Recent studies also highlight
this issue. For instance, Dong and Kotenko [9] present a comprehen-
sive analysis of ML-based intrusion detection systems, discussing
their computational challenges and scalability limitations. Similarly,
Tallam [29] introduces CyberSentinel, a real-time threat detection
framework that exemplifies current advances in AI-driven security
but also reflects the performance trade-offs involved.

Additionally, privacy compliance challenges remain a largely
underexplored area. Although compliance automation tools ex-
ist, there is limited research on their effectiveness in dynamic,
multi-cloud DevSecOps environments (S6). Investigating the im-
plementation of decentralized privacy-enhancing techniques, such
as differential privacy and federated learning, in DevOps security
frameworks can be an area for further exploration.

To further synthesize the findings, Table 4 summarizes the key
challenges encountered in AI-driven DevSecOps, the emerging
AI-based solutions proposed in the literature, and the remaining
research gaps that warrant future investigation.

5.4 Future Research Directions
Given the identified research gaps, this section outlines four key
future research directions to enhance AI-driven security in De-
vSecOps. These areas address scalability, compliance, empirical
validation, and human-centric security training to ensure effective
integration of security within DevOps workflows.

5.4.1 Enhanced Practical Applicability of Future Research Directions.
Future research should prioritize practical implementations that
align with real-world DevSecOps operational needs. One promising
direction is the development of lightweight AI-driven security
models that can be deployed directly on edge DevOps nodes during
the build and deploy stages. By minimizing computational over-
head during build-time scans, lightweight models can ensure rapid
feedback without delaying CI/CD pipelines.

Additionally, federated learning offers a scalable mechanism
for decentralized threat intelligence. In multi-cloud environments,
federated models can collaboratively train on local datasets without
exposing sensitive data across cloud boundaries, thus improving
data privacy and compliance adherence.
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Table 4: Mapping of major DevSecOps security challenges to corresponding AI-based solutions and identifying remaining
research gaps. This table synthesizes critical issues such as high false positives, compliance difficulties, multi-cloud security
complexity, and toolchain integration limitations, highlighting both promising solutions and areas needing further exploration
to advance practical DevSecOps adoption.

Challenge AI-Based Solution Remaining Gap

High false positives Ensemble learning models, dynamic
anomaly scoring

Lack of standardized benchmarks for
DevSecOps security evaluation

Compliance integration NLP-driven policy checkers for contin-
uous compliance validation

Poor cross-standard generalizability
across HIPAA, GDPR, PCI-DSS, etc.

Multi-cloud security com-
plexity

Federated learning, secure enclave-
based model training

Sparse empirical validation across het-
erogeneous cloud ecosystems

Toolchain integration limi-
tations

API-first machine learning security
modules, plugin-based architecture

Lack of standardized plug-and-play
security microservices for DevOps
pipelines

Another emerging area is the integration of explainable AI
(XAI) into DevOps pipelines. XAI modules can provide real-time,
interpretable insights into detected anomalies, allowing security en-
gineers to assess risks quickly and facilitating human-in-the-loop
threat responses. Integrating XAI would enhance transparency,
reduce the cognitive load on developers, and increase the trustwor-
thiness of automated security recommendations.

These practical enhancements will ensure that AI-driven DevSec-
Ops solutions are not only technically sound but also operationally
efficient, privacy-preserving, and user-centric.

5.4.2 Lightweight AI-Driven Security Automation for DevOps. One
of the major challenges in AI-driven security is the computational
overhead associated with deep learning models. Future research
should focus on developing lightweight AI models that balance
security enforcement with system efficiency. These models should:

• Optimize computational resources without compromising
detection accuracy.

• Explore transfer learning and model compression techniques
for real-time threat detection.

• Improve energy-efficient AI algorithms suitable for cloud-
native and edge computing environments.

5.4.3 Privacy-Aware DevSecOps Frameworks with Stronger Compli-
ance Monitoring. As privacy regulations evolve, there is an urgent
need for privacy-aware security frameworks in DevSecOps.
Future research should explore:

• The integration of privacy-enhancing technologies (PETs),
such as homomorphic encryption, secure multi-party com-
putation (SMPC), and differential privacy.

• AI-driven compliance automation tools that ensure contin-
uous adherence to regulatory requirements like GDPR and
HIPAA.

• Decentralized identity management solutions that balance
security with user privacy, reducing risks of centralized data
breaches.

5.4.4 Empirical Validation of Security Models in Multi-Cloud and
Containerized Environments. Many AI-driven security models lack
real-world validation, limiting their practical applicability. Future
work should focus on:

• Conducting large-scale experimental evaluations and case
studies to assess the effectiveness of DevSecOps security
automation tools.

• Implementing benchmark datasets and standardized eval-
uation metrics for fair comparisons of security models.

• Assessing the adaptability of AI security techniques across
diverse DevOps ecosystems, including cloud-native, hybrid,
and on-premises infrastructures.

5.4.5 Human-Centric Security Training for Developers in DevSecOps.
The effectiveness of security automation depends on developer
expertise in integrating and interpreting AI-driven security tools.
Future research should:

• Develop interactive security training programs for De-
vOps teams to improve awareness of AI-driven security au-
tomation.

• Implement real-time feedback mechanisms that provide
automated suggestions for security best practices.

• Investigate the role of explainable AI (XAI) in making secu-
rity recommendationsmore interpretable and actionable
for developers.

By addressing these research areas, future studies can bridge
the current gaps in AI-driven DevSecOps security, ensuring that
automation is scalable, compliant, empirically validated, and
developer-friendly.

6 Study Limitations
Despite the rigorous SLR methodology, this study has a few limita-
tions. First, while 18 primary studies were examined, the scope was
restricted to peer-reviewed literature published in English, which
may omit insights from grey literature or industrial whitepapers.
Second, although the paper compares technical capabilities of AI-
based security methods, a lack of standardized benchmarks across
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studies limited the granularity of our comparative metrics. Third,
the absence of empirical tool validation means findings are derived
from reported claims rather than real-world measurements.

7 Conclusion
This study reveals significant advancements in integrating AI-
driven security into DevSecOps workflows. Key findings include
the effectiveness of shift-left security practices, the potential of
privacy-enhancing techniques like DevPrivOps, and the role of
ML/AI-driven solutions in real-time anomaly detection and auto-
mated remediation. However, challenges such as computational
overhead, scalability issues, tool compatibility, and false positives
in automated scans hinder widespread adoption. Additionally, the
lack of empirical validation limits the practical applicability of
many proposed frameworks. To address these gaps, future research
should focus on developing lightweight AI models that balance se-
curity enforcement with system efficiency, designing privacy-aware
frameworks that go beyond compliance, validating security models
in real-world multi-cloud environments, and providing human-
centric security training for developers. By prioritizing scalability,
usability, and empirical validation, future research can pave the way
for more effective and efficient DevSecOps frameworks, ultimately
enhancing software security without compromising agility.
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