
ar
X

iv
:2

50
4.

19
12

8v
1 

 [
cs

.L
O

] 
 2

7 
A

pr
 2

02
5

Detecting speculative data flow vulnerabilities

using weakest precondition reasoning

Graeme Smith[0000−0003−1019−4761]

Defence Science and Technology Group, Australia
School of Electrical Engineering and Computer Science,

The University of Queensland, Australia
g.smith1@uq.edu.au

Abstract. Speculative execution is a hardware optimisation technique
where a processor, while waiting on the completion of a computation
required for an instruction, continues to execute later instructions based
on a predicted value of the pending computation. It came to the forefront
of security research in 2018 with the disclosure of two related attacks,
Spectre and Meltdown. Since then many similar attacks have been iden-
tified. While there has been much research on using formal methods to
detect speculative execution vulnerabilities based on predicted control
flow, there has been significantly less on vulnerabilities based on pre-
dicted data flow. In this paper, we introduce an approach for detecting
the data flow vulnerabilities, Spectre-STL and Spectre-PSF, using weak-
est precondition reasoning. We validate our approach on a suite of litmus
tests used to validate related approaches in the literature.

1 Introduction

Modern processors liberally employ speculative execution of instructions to op-
timise performance. Instructions can be executed before earlier instructions in
a program based on predictions of the outcomes of the earlier instructions. The
intention is to use latent processing cycles rather than waiting for the comple-
tion of computations required for the earlier instructions. When a prediction is
found to be correct, the speculatively executed instructions are committed to
memory. When a prediction is found to be incorrect, the speculatively executed
instructions are rolled back, and execution restarted according to the actual
outcome.

While the rollback of incorrect speculation maintains a program’s functional-
ity, traces of speculative execution are left in the processor’s micro-architecture
and can be exploited by an attacker to gain access to otherwise inaccessible (and
hence potentially sensitive) data. The best known such attack, Spectre variant
1 (also known as Spectre-PHT) [22], takes advantage of the pattern history ta-
ble (PHT), a micro-architectural component used to predict the outcome of a
branch instruction. After finding a suitable gadget (i.e., code pattern) in a vic-
tim program, an attacker can train the PHT to expect a particular outcome and
then use this to exploit the gadget. For example, an attacker could train the

http://arxiv.org/abs/2504.19128v1


2 Graeme Smith

PHT to expect the following gadget to execute the body of the if statement.
Then, by providing a value of x greater than array1 size, a value beyond the
end of array1 is accessed in the if statement’s body. This value is subsequently
used to access a particular index of array2, reading the value at that index into
the cache. After rollback, this index can be deduced by a timing attack on the
cache [23]. Note that 512 corresponds to the cache line size in bits allowing the
attacker to determine, from the affected cache line, the value array1[x ].

r0 := x ;
r1 := array1 size;
if (r0 < r1){

r1 := array1[r0];
r2 := array2[r1 ∗ 512];

}

Since the disclosure of such attacks in 2018, a number of formal methods-
based approaches for detecting vulnerable gadgets have been developed [8]. These
have mostly focused on attacks exploiting speculation of control flow in a pro-
gram, such as Spectre-PHT. Significantly less work exists on attacks exploiting
speculation of data flow such as Spectre variant 4 (Spectre-STL)[6]1. This attack
exploits the incorrect prediction that a load is not dependent on an earlier store
and hence can be executed first, missing the Store-To-Load (STL) dependency.
A similar attack, Spectre-PSF[7, 26], relies on the processor incorrectly predict-
ing that a load will depend on an earlier store and speculatively executing the
load using the store’s value, referred to as Predictive Store Forwarding (PSF).

In this paper, we provide a weakest precondition-based approach to detect-
ing the data flow Spectre variants, Spectre-STL and Spectre-PSF, building on
a recent approach for Spectre-PHT [10]. The existing approach is detailed in
Section 2. In Section 3, we describe the data flow variants of Spectre with simple
examples before presenting our formal approach to their detection in Sections 4
and 5. In Section 6 we discuss related formal approaches before concluding in
Section 7.

2 Background

Winter et al. [30] present an information flow logic based on the weakest pre-
condition (wp) reasoning of Dijkstra [15, 16]. The logic introduces additional
proof obligations to standard wp rules to ensure a form of non-interference [19]:
the proof obligations fail when sensitive information can be leaked to publicly
accessible variables or through observation of control flow.

This logic forms the basis of the approach to detecting Spectre-PHT vul-
nerable code by Coughlin et al. [10]. Following [9], that approach employs the
notion of a speculative context to track the effects of speculative execution. This

1 Originally described by Jann Horn at https://project-zero.issues.chromium.

org/issues/42450580.



Detecting speculative data flow vulnerabilities 3

is incorporated in a weakest precondition transformer wps which operates over
pairs of predicates 〈Qs ,Q〉. The predicate Qs represents the weakest precondi-
tion at that point in the program, assuming the processor is speculating, and Q

the weakest precondition when it is not speculating. The security of a program
ultimately depends on the non-speculative predicate Q holding in the program’s
initial state: proof obligations from the speculative state Qs are taken into ac-
count by being transferred to the non-speculative state at points in the program
where speculation can begin.

The rules of wps are defined over a high-level programming language repre-
senting assembly programs. The syntax of an instruction, α, and a program, p,
is defined as follows.

α ::= skip | r := e | r := x | x := e | fence | leak e

p ::= α | p ; p | if (b){p} else {p} | while (b){p}

where r is a register, x is a local or global variable (i.e., a memory location which
in this paper can be an array access of the form a[e]), b a Boolean condition
and e an expression. Both b and e are in terms of registers and literals only,
as in assembly code. The language includes a fence instruction which prevents
reordering of instructions (in the context of a processor’s memory model) and
also terminates current speculative execution. A special ghost instruction2 leak e

is inserted into a program to indicate that the following instruction(s) are part
of a gadget that leaks the value e through a micro-architectural side channel
when executed (speculatively, or otherwise).

Before analysing a program with the logic, leak instructions are inserted for
each gadget of interest during a pre-pass over the code. Since typical gadgets
can be detected syntactically, this is a straightforward task to mechanise. The
expression e of the inserted leak instruction is based on what information leaks
when the gadget is used in an attack. For the example of Section 1, leak r1
would be inserted immediately above the access to array2. After this pre-pass,
the code is analysed using the logic to determine whether the information leaked
is possibly sensitive and hence the gadget causes a security vulnerability. Since
the pre-pass can be customised for different gadgets, the overall approach can
be adapted to a variety of attacks, including new attacks as they are discovered.

2.1 Rules of wps

Skip A skip instruction does not change the 〈Qs ,Q〉 tuple.

wps(skip, 〈Qs ,Q〉) = 〈Qs ,Q〉

Register update For each register or variable v in a program, the logic includes
an expression Γv which evaluates to the security level of the information held
by the variable. The possible values of security levels form a lattice (L,⊑) where

2 A ghost instruction is not part of the actual code and is used for analysis purposes
only.



4 Graeme Smith

each pair of elements a, b ∈ L has a join, i.e., least upper bound, denoted by
a ⊔ b, and a meet, i.e., greatest lower bound, denoted by a ⊓ b. The rule for
updating a register r to the value of an expression e updates both r and Γr

as follows, where ΓE (e) = ⊔r∈regs(e) Γr is the join of the security levels of the
registers, regs(e), to which e refers.

wps(r := e, 〈Qs ,Q〉) = 〈Qs [r , Γr\e, ΓE (e)],Q [r , Γr\e, ΓE (e)]〉

where Q [x1, ..., xn\y1, ..., yn ] replaces each free occurrence of xi (for 1 ≤ i ≤ n)
in Q with yi .

Load Each variable x has a programmer-defined security policy L(x ) denoting
the highest security level that x may hold. This level may vary as the program
executes [25, 24] and hence L(x ) is an expression in terms of other variables.
For example, L(x ) = (if y = 0 then secret else public), where secret , public ∈ L,
captures that variable x may hold secret information when y = 0 and public

information otherwise.
When loading the value of a variable x into a register r , it is possible that the

security level of that value is undefined, e.g., when it has been set to an input
value. Hence, Γr in the non-speculative state Q is updated to the meet of Γx

and its maximum possible value, L(x ).
In the speculative state Qs , r and Γr are updated with values from memory

(referred to as the base state and denoted with a ♭ superscript) when x is not
defined in the speculative context, i.e., an earlier store to x has not occurred,
and x and Γx otherwise. This is required to support concurrency since, during
speculative execution, another thread may change a value in memory (the base
state) but cannot change the corresponding value in the speculative state. Hence,
values in the base state and speculative state can differ. The superscripts avoid
the base state variables being affected by speculatively executed assignments.

Whether or not a variable x has been defined in the speculative context is
captured by a Boolean ghost variable xdef .

wps(r := x , 〈Qs ,Q〉) = 〈(xdef ⇒ Qs [r , Γr\x , Γx ]) ∧

(¬xdef ⇒ Qs [r , Γr\x
♭, Γx♭ ⊓ L(x )[var\var ♭]]),

Q [r , Γr\x , Γx ⊓ L(x )]〉

where var is the list of program variables, and var ♭ the same list with each
element decorated with a ♭ superscript. Note that when xdef holds, we can use
Γx directly, rather than the meet with L(x ).

Store A store to a variable, x := e, sets xdef to true and replaces each occurrence
of variable x and Γx with expression e and security level ΓE (e), respectively, in
both Qs and Q . Additionally, in the non-speculative case non-interference is
ensured by checking that

(i) the security level of e is not higher than the security classification of x , and
(ii) since x ’s value may affect the security classification of other variables, for

each such variable y, y’s current security level Γy ⊓ L(y) does not exceed
its updated security classification when x is set to e.



Detecting speculative data flow vulnerabilities 5

Such checks are not required in the speculative case since, while speculating,
values are not written to shared memory.

wps(x := e, 〈Qs ,Q〉) = 〈Qs [x , Γx , xdef \e, ΓE (e), true],
Q [x , Γx\e, ΓE (e)] ∧ ΓE (e) ⊑ L(x ) ∧
(∀ y · Γy ⊓ L(y) ⊑ L(y)[x\e])〉

Fence The fence instruction terminates any current speculative execution. Hence,
any proof obligations in the speculative state beyond the fence do not need to
be considered at the point in the program where a fence occurs. Qs is therefore
replaced by true and Q is unchanged.

wps(fence, 〈Qs ,Q〉) = 〈true,Q〉

Leak The instruction leak e leaks the value of expression e via a micro-architectural
side channel, introducing a proof obligation into both Qs and Q .

wps(leak e, 〈Qs ,Q〉) = 〈Qs ∧ ΓE (e) = ⊥, Q ∧ ΓE (e) = ⊥〉

where ⊥ denotes the lowest value of the security lattice. Requiring that the leaked
information is at this level ensures that the attacker cannot deduce anything new
from the information, regardless of the level of information they can observe.

Sequential composition As in standard wp reasoning, sequentially composed
instructions transform the tuple one at a time.

wps(p1 ; p2, 〈Qs ,Q〉) = wps (p1,wps(p2, 〈Qs ,Q〉))

If statement In the case of Spectre-PHT, speculation can begin at an if state-
ment. Hence, it is at this point in the reasoning that the speculative proof obli-
gation manifests itself as a proof obligation in the non-speculative state. For ease
of presentation, we assume that the guard b does not change during speculation,
hence the speculative proof obligation can be evaluated in the context of the
guard.3 The speculative proof obligation is from the opposite branch to the one
that should be executed, with each variable xdef set to false (leaving just the
predicates in terms of base variables) and all ♭ subscripts removed (to identify
these base variables with variables in the non-speculative state).

There is an additional proof obligation ΓE (b) = ⊥ on the non-speculative
state since, in concurrent programs, the value of b can readily be deduced us-
ing timing attacks (even when the statement’s branches do not change publicly
accessible variables) [24, 29]. An if statement might occur within a speculative
context (when nested in or following an earlier if statement, for example). The
branch that is followed speculatively is, in general, independent of that actually
executed later. Hence, the speculative proof obligations from both branches are
conjoined to form the speculative precondition.

Given 〈Qs1,Q1〉 = wps(p1, 〈Qs ,Q〉) and 〈Qs2,Q2〉 = wps (p2, 〈Qs ,Q〉), we
have

3 An alternative rule that does not require this assumption is provided in [10].



6 Graeme Smith

wps(if (b){p1} else {p2}, 〈Qs ,Q〉) =

〈Qs1 ∧ Qs2, (b ⇒ Q1 ∧ Qs2[var
♭, d1, ..., dn\var , false, ..., false]) ∧

(¬ b ⇒ Q2 ∧ Qs1[var
♭, d1, ..., dn\var , false, ..., false]) ∧

ΓE (b) = ⊥〉 .

where d1, ..., dn is the list of ghost variables of the form xdef .

While loop Speculation can also begin at each iteration of a while loop. Sim-
ilarly to standard wp reasoning, we can soundly approximate the weakest pre-
condition of a loop by finding invariants which imply our speculative and non-
speculative postconditions. As with the if rule, a proof obligation ΓE (b) = ⊥
must hold in the non-speculative case.

wps(while (b){p}, 〈Qs ,Q〉) = 〈Invs , Inv〉

where Invs ⇒ Qs , Inv ⇒ ΓE (b) = ⊥ ∧ Invs [var
♭, d1, ..., dn\var , false, ..., false]

and Inv ∧ ¬ b ⇒ Q , and given wps(p, 〈Invs , Inv〉) = 〈Ps ,P〉, then Invs ⇒ Ps

and Inv ∧ b ⇒ P . Like the if rule, the while rule copies the proof obligations in
the speculative precondition to the non-speculative precondition, and maintains
those in the speculative precondition in case the loop is reached within an existing
speculative context.

2.2 Using wps

The property that wps verifies, when the calculated weakest precondition of a
program holds, is value-dependent non-interference based on the definition in
[25]. This property states that, given two initial states s1 and s2 which agree
on the values of variables which are non-sensitive, after executing a prefix of
instructions t of the program on each state, the resulting states will continue
to agree on the values of variables which are non-sensitive. In other words, the
values of variables which are sensitive have no effect on those that are non-
sensitive (and hence the sensitive values cannot be deduced from observations of
the non-sensitive values). Formally, given a program c with precondition P and
postcondition Q4

P ⇒ wps(c,Q) ⇛
∀ s1, s2 ∈ P , t 6 c · ∀ s ′1 · s1 ∼ s2 ∧ s1 →t s ′1 ⇒ ∃ s ′2 · s2 →t s ′2 ∧ s ′1 ∼ s ′2

where t 6 c denotes that t is a prefix of c, s1 ∼ s2 denotes s1 and s2 agree on
non-sensitive values, and s1 →t s ′1 denotes s ′1 is reached from s1 by instructions t .
Note that since the programming language is deterministic, the above property
implies that all states reached from s2 by t agree with the non-sensitive values
of s ′1.

To support its use in a concurrent setting, wps also supports rely/guarantee
reasoning [21, 31]. To detect additional vulnerabilities that arise due to a proces-
sor’s memory model, it is paired with a notion of reordering interference freedom

4
⇛ denotes logical entailment and binds less tightly then implication (⇒).



Detecting speculative data flow vulnerabilities 7

(rif) [11, 12]. These techniques (see [10] for details) are independent of the details
of the logic’s rules and can be equally applied to the extensions to wps in this
paper.

3 Data Flow Spectre Variants

In addition to attacks related to speculation on control flow, such as Spectre-
PHT of Section 1, attacks have been identified based on speculation on data
flow; specifically speculation on dependencies between stores and subsequent
loads. The most well-known of these is Spectre variant 4 (also known as Spectre-
STL) [6]. This attack relies on a processor’s memory disambiguator mispredicting
that a load is independent of an earlier store, and hence executing the load with
a stale value.

3.1 Spectre-STL

We illustrate Spectre-STL on Case 4 of the 13 litmus tests developed by Daniel et
al. [13] and available at https://github.com/binsec/haunted_bench/blob/

master/src/litmus-stl/programs/spectrev4.c. The test is reexpressed in
the language from Section 2. In the code below, idx is an input provided by
the user who may be an attacker, secretarray is a publicly inaccessible array
containing sensitive data and has length array size, and publicarray2 is a pub-
licly accessible array which has length 512*256 (512 is the cache line size in bits,
and 256 the number of integers representable using 8 bits).

r0 := idx ;
r1 := array size;
r0 := r0 & (r1− 1);
secretarray[r0] := 0; // This store may be bypassed
r1 := secretarray[r0];
r2 := publicarray2[r1 ∗ 512];

The code begins by calculating the bitwise AND of idx and array size − 1 to
obtain a valid index of secretarray. This avoids an array bounds bypass as in the
Spectre-PHT attack. The value at the calculated index is set to 0, a non-sensitive
value. This value is then read and used to read a value from publicarray2. The
multiplication by 512 in the final step allows the value read from secretarray to
be deduced via a subsequent timing attack (by detecting the cache line affected
by the read of publicarray2).

This code is secure provided the value used to read publicarray2 is the non-
sensitive value 0. However, if it is run and the memory disambiguator mispredicts
that the load of secretarray[r0] is independent of the prior store then the load
can be executed first. In this case, a sensitive value will be used in the read from
publicarray2. To prevent bypassing the store in this way, a typical mitigation is
to insert a fence instruction after the store to secretarray [26].



8 Graeme Smith

3.2 Spectre-PSF

Spectre-PSF is a variant of Spectre-STL where, rather than mispredicting that
a dependency does not exist between a load and earlier store, the memory dis-
ambiguator mispredicts that a dependency does exist [7, 26]. This behaviour has
been confirmed as being possible on the AMD Zen 3 processor. We illustrate
Spectre-PSF via an exploitable gadget from [26] (based on example code from
AMD). The gadget is reexpressed in the language of Section 2. In the code be-
low, idx is an input provided by the user, A is a public array of size 16, C is a
public array of length C size=2 initialised to [0,0], and B is a public array of
size 512*256.

r0 := idx ;
r1 := C size;
if (r0 < r1) {

C [0] := 64;
r1 := C [r0]; // Value 64 may be forwarded to r1
r1 := A[r1 ∗ r0];
r2 := B [r1 ∗ 512];

}

Ignoring speculation on the branch, the code is secure provided that the
value loaded from C [r0] is 64 only when idx (and hence r0) is 0: the value
loaded from A will be the publicly accessible value at index 0 when idx is either
0 or 1. However, if the processor mispredicts a dependency between the store to
C [0] and the load from C [r0] when idx is 1 then the value 64 can be (incorrectly)
forwarded to the load. That is, r1 will be set to 64 and subsequently value A[64]
will be used in the index of B in the final load. This access of A will be out of
bounds and hence to potentially sensitive data. Again, a fence after the store
can be used to mitigate the vulnerability.

4 Detecting Spectre-STL

The wps logic in Section 2 assumes that speculation starts only at branching
points (of if statements or while loops). To detect the data flow variants of
Spectre, we need to also allow speculation to start at stores. For Spectre-STL,
when a store is reached during execution, we can begin speculating that it is not
required for the following code, and hence can be bypassed (the store executing
later after the following code).

Given the code s ; c1; c2 where s is a store and c1 and c2 are sequences
of instructions, when the code of c1 is not dependent on s , speculation over
c1 will lead to the execution c1; s ; c2, where s has effectively been reordered
after the instructions in c1. When one or more instructions in c1 are dependent
on s , speculating over c1 will lead to the execution spec(c1); s ; c1; c2, where
spec(c1) includes rolling back the speculation’s effects and hence has no affect
on the program, but may alter the processor’s microarchitecture.



Detecting speculative data flow vulnerabilities 9

In practice, the number of instructions in c1 is limited by the processor’s
speculation window , i.e., the upper bound on the number of instructions that
can execute speculatively. This bound will depend on the microarchitectural
components involved in the speculation. For Spectre-STL, it will depend on the
size of the store buffer where bypassed store instructions wait to be executed,
i.e., committed to memory. The size of this buffer can be up to 106 stores5 and
hence, in general, beyond the size of the single procedures we are targeting in
our work. Hence, as in wps we assume speculation can continue to the end of our
code and do not explicitly model a speculation window. This results in a logic
that is sound (as we check vulnerabilities within any sized speculation window),
but can lead to false positives in cases where the actual speculation window is
shorter than the code remaining to be executed.

To extend wps to detect Spectre-STL vulnerabilities, we modify the store
rule as follows.

(i) The speculative postcondition Qs is added to the non-speculative precon-
dition. By transferring the speculative postcondition, we effectively ignore
the store, reflecting that it does not occur as part of the speculation. As
in the if statement rule, all ghost variables ydef are replaced by false (to
leave just the predicates in terms of the base variables) and each base vari-
able y♭ is replaced by y (to identify these variables with variables in the
non-speculative predicate).

(ii) The speculative postcondition is also added to the speculative precondition.
This reflects the case where the speculation on the store occurs in the
context of an ongoing speculative execution. In this case, the store (being
bypassed) will have no effect on the ongoing execution. For example, the
rule will not cause a proof obligation Γx = ⊥ to be resolved by a store
x := 0 (where the literal 0 is a non-sensitive value).

The resulting rule is formalised below (where the additions to the original store
rule from Section 2, corresponding to (i) and (ii) above, are underlined).

wpSTL(x := e, 〈Qs ,Q〉) = 〈Qs ∧ Qs [x , Γx , xdef \e, ΓE (e), true],
Q [x , Γx\e, ΓE (e)] ∧ ΓE (e) ⊑ L(x ) ∧ (1)
(∀ y · Γy ⊓ L(y) ⊑ L(y)[x\e]) ∧
Qs [var

♭, d1, ..., dn\var , false, ..., false] 〉

where d1, ..., dn is the list of ghost variables of the form ydef .
To illustrate the utility of this rule, we apply it (along with other rules of

wps ) to the litmus test from Section 3.1 in Figure 1, and to the same litmus test
with a fence inserted to prevent speculation in Figure 2. In both cases, a leak
instruction is added before the access to publicarray2.

The introduced leak instruction adds proof obligations in both the speculative
and non-speculative states that Γr1 is ⊥. Preceding backwards through the proof
of Figure 1, these obligations are transformed by the load to r1 to conditions on

5 https://www.anandtech.com/show/16226/apple-silicon-m1-a14-deep-dive/2



10 Graeme Smith

〈(idxdef ⇒
(secretarray [idx&(array size − 1)]def ⇒ Γsecretarray[idx&(array size−1)] = ⊥) ∧
(¬secretarray [idx&(array size − 1)]def ⇒ Γsecretarray[idx&(array size−1)]♭ = ⊥)) ∧

(¬idxdef ⇒

(secretarray [idx ♭&(array size − 1)]def ⇒ Γsecretarray[idx♭&(array size−1)] = ⊥) ∧

(¬secretarray [idx ♭&(array size − 1)]def ⇒ Γsecretarray[idx♭&(array size−1)]♭ = ⊥)),

Γsecretarray[idx&(array size−1)] = ⊥〉

r0 := idx;

〈(secretarray [r0&(array size − 1)]def ⇒ Γsecretarray[r0&(array size−1)] = ⊥) ∧
(¬secretarray [r0&(array size − 1)]def ⇒ Γsecretarray[r0&(array size−1)]♭ = ⊥),

Γsecretarray[r0&(array size−1)] = ⊥〉

r1 := array size; // array size = array size♭ since array size is a constant

〈(secretarray [r0&(r1 − 1)]def ⇒ Γsecretarray[r0&(r1−1)] = ⊥) ∧
(¬secretarray [r0&(r1 − 1)]def ⇒ Γsecretarray[r0&(r1−1)]♭ = ⊥),

Γsecretarray[r0&(r1−1)] = ⊥〉

r0 := r0 & (r1 -1);

〈(secretarray [r0]def ⇒ Γsecretarray[r0] = ⊥) ∧
(¬secretarray [r0]def ⇒ Γsecretarray[r0]♭ = ⊥), Γsecretarray[r0] = ⊥〉

secretarray[r0] := 0 ; // This store may be bypassed

〈(secretarray [r0]def ⇒ Γsecretarray[r0] = ⊥) ∧
(¬secretarray [r0]def ⇒ Γsecretarray[r0]♭ = ⊥), Γsecretarray[r0] = ⊥〉

r1 := secretarray[r0];

〈Γr1 = ⊥, Γr1 = ⊥〉

leak r1;

〈true, true〉

r2 := publicarray2[r1*512];

〈true, true〉

Fig. 1. Spectre-STL litmus test (code highlighted in gray ).

secretarray[r0]; in the speculative case this condition is dependent on whether
secretarray[r0] is defined during the speculation.

The interesting step is the store to secretarray[0]. Since the value stored is
non-sensitive, the proof obligation is satisfied in the non-speculative case (assum-
ing secretarray[0] is not used in the security classification L of another variable).
Hence, the non-speculative precondition of the store includes only the transferred
condition from the speculative postcondition, i.e., Γsecretarray[r0] = ⊥. The spec-
ulative precondition is equivalent to the speculative postcondition: the second
conjunct of the precondition in rule (1) evaluates to true when secretarray[r0]
is defined and secretarray[r0] is non-sensitive.

Proceding further backwards through the proof, the index used to access
secretarray is replaced with idx &(array size−1). Thus, the final non-speculative
precondition is Γsecretarray[idx &(array size−1)] = ⊥, indicating that the code is
secure provided that this condition holds initially. This is more precise than a



Detecting speculative data flow vulnerabilities 11

〈true, true〉

r0 := idx;

〈true, true〉

r1 := array size;

〈true, true〉

r0 := r0 & (r1 -1);

〈true, true〉

secretarray[r0] := 0; // This store may no longer be bypassed

〈true, Γsecretarray[r0] = ⊥〉

fence;

〈(secretarray [r0]def ⇒ Γsecretarray[r0] = ⊥) ∧
(¬secretarray [r0]def ⇒ Γsecretarray♭[r0] = ⊥), Γsecretarray[r0] = ⊥〉

r1 := secretarray[r0];

〈Γr1 = ⊥, Γr1 = ⊥〉

leak r1;

〈true, true〉

r2 := publicarray2[r1*512];

〈true, true〉

Fig. 2. Spectre-STL litmus test with fence mitigation applied.

simple syntactic analysis which identifies the gadget, but does not define the
conditions under which it can be successfully exploited.

The proof in Figure 2 is identical before the fence instruction is reached (i.e.,
below the fence instruction). At this point, the speculative predicate becomes
true and hence no condition is transferred to the non-speculative precondition
at the store instruction. The result is that the final non-speculative precondition
is true, indicating that the code is always secure.

To further validate our rule, we applied it (along with other required rules
from wps) to the remaining 12 litmus tests of Daniel et al. [13] (see Appendix A)
and for each of the 9 litmus tests with a vulnerability, we applied it to a version
of the litmus test with a fence added as a mitigation. All vulnerabilities were
detected and all tests with mitigations showed the vulnerability could no longer
occur. However, there is one test where we detect a vulnerability and Daniel
et al. do not. This test, Case 9, is the same as Case 4 but includes a loop
after the store which is intended to fill the reorder buffer6, forcing the store
to be evaluated and take effect in memory before the load from publicarray2.
Since our logic supports detection of Spectre-PHT (as well as Spectre-STL), it
allows the loop to speculatively exit early. In general, our logic detects multiple
variants of Spectre including, as in this case, vulnerabilities that arise due to
their combination.

6 The reorder buffer contains all speculated instructions and provides an upper limit
on the number of instructions that can be speculatively executed.



12 Graeme Smith

5 Detecting Spectre-PSF

Store forwarding refers to using the value of a store instruction in a subsequent
load instruction before the store has taken effect in memory. This can be done
safely when the store and load are to the same address. On some processors,
store forwarding can be done speculatively based on a prediction that a store
and subsequent load are to the same address. This leads to the Spectre-PSF
vulnerability described in Section 3.2.

Abstracting from how the prediction is made, our rule reflects that the value
of a store instruction, can be used speculatively in any subsequent load. When
there is no leak or a given load does not cause a leak, the misprediction is benign
and does not manifest in our reasoning. When the load does cause a leak, the
variable associated with the load will appear in the postcondition of the store.
For each subset of such variables, we replicate the speculative proof obligation
with the variables replaced by the value of the store. This captures all possible
predictions including those in which the value of the store is forwarded to more
than one subsequent load. These additional proof obligations are also transferred
to the non-speculative precondition of the store, reflecting that speculation may
have begun at the store. The rule is formalised below (with the additions to the
Spectre-STL store rule from Section 4 underlined).

wpPSF (x := e, 〈Qs ,Q〉) =
〈∀{y1, ..., ym} ⊆ vars(Qs)·

(Qs ∧ Qs [x , Γx , xdef \e, ΓE (e), true])[y1, ..., ym\e, ..., e],

Q [x , Γx\e, ΓE (e)] ∧ ΓE (e) ⊑ L(x ) ∧ (2)
(∀ y · Γy ⊓ L(y) ⊑ L(y)[x\e]) ∧
∀{y1, ..., ym} ⊆ vars(Qs)·

Qs [var
♭, d1, ..., dn\var , false, ..., false][y1 , ..., ym\e, ..., e] 〉

where vars(L(x )) denotes the list of variables occurring free in L(x ), and d1, ..., dn

is the list of ghost variables of the form ydef . Note that when the set {y1, ..., ym}
is the empty set, the predicate in both the speculative and non-speculative pre-
conditions are equivalent to those of the STL rule. Hence, this rule will detect
vulnerabilities to both Spectre-STL and Spectre-PSF.

To illustrate rule (2), we apply it to the litmus test from Section 3.2 in
Figure 3. Each load of an array value (B [r1], A[r1 ∗ r0] and C [r0]) introduces
a potential leak. Note that the leak due to the load of C [r0] does not change
the state tuple 〈Qs ,Q〉 since both the non-speculative and speculative predicates
already imply Γr0 = ⊥. For the non-speculative precondition of the store C [0] :=
64, the postcondition Γr0 = ⊥ is unchanged, the postcondition ΓC [r0] = ⊥ is
transformed to true, and the postcondition ΓA[C [r0]∗r0] = ⊥ is transformed to
ΓA[C [07→64][r0]∗r0] = ⊥ where C [0 7→ 64] is array C with element 0 equal to 64.

In addition, for each subset of global variables in the non-speculative post-
condition, we need to transfer the required predicate to the non-speculative
precondition. There are two global variables, A[C [r0]∗ r0] and C [r0], and hence
four subsets including the empty set. The speculative postcondition with vari-
ables of the form ydef set to false, and variables of the form y♭ replaced by y is



Detecting speculative data flow vulnerabilities 13

〈..., idx < C size ⇒ ΓA[C [idx ]∗idx ] = ⊥ ∧ ΓA[64∗idx ] = ⊥ ∧ ΓC [idx ] = ⊥ ∧
ΓA[C [07→64][idx ]∗idx ] = ⊥) ∧ (idx ≥ C size ⇒ ...)〉

r0 := idx;

〈..., Γr0 = ⊥ ∧ (r0 < C size ⇒ ΓA[C [r0]∗r0] = ⊥ ∧ ΓA[64∗r0] = ⊥ ∧ ΓC [r0] = ⊥ ∧
ΓA[C [07→64][r0]∗r0] = ⊥) ∧ (r0 ≥ C size ⇒ ...)〉

r1 := C size;

〈..., Γr0 = ⊥ ∧ Γr1 = ⊥ ∧
(r0 < r1 ⇒ ΓA[C [r0]∗r0] = ⊥ ∧ ΓA[64∗r0] = ⊥ ∧ ΓC [r0] = ⊥ ∧

ΓA[C [07→64][r0]∗r0] = ⊥) ∧ (r0 ≥ r1 ⇒ ...)〉

if (r0 < r1){

〈..., ΓA[C [r0]∗r0] = ⊥ ∧ ΓA[64∗r0] = ⊥ ∧ Γr0 = ⊥ ∧ ΓC [r0] = ⊥ ∧
ΓA[C [07→64][r0]∗r0] = ⊥〉

C[0] := 64; // Value 64 may be forwarded to r1

〈as below〉

leak r0;

〈(A[C [r0] ∗ r0]def ∧ C [r0]def ⇒ ΓA[C [r0]∗r0] = ⊥ ∧ Γr0 = ⊥ ∧ ΓC [r0] = ⊥) ∧
(A[C [r0] ∗ r0]def ∧ ¬C [r0]def ⇒ ΓA[C [r0]♭∗r0] = ⊥ ∧ Γr0 = ⊥ ∧ ΓC [r0]♭ = ⊥) ∧

(¬A[C [r0] ∗ r0]def ∧ C [r0]def ⇒ ΓA[C [r0]∗r0]♭ = ⊥ ∧ Γr0 = ⊥ ∧ ΓC [r0] = ⊥) ∧

(¬A[C [r0] ∗ r0]def ∧ ¬C [r0]def ⇒ ΓA[C [r0]♭∗r0]♭ = ⊥ ∧ Γr0 = ⊥ ∧ ΓC [r0]♭ = ⊥),

Γr0 = ⊥ ∧ ΓC [r0] = ⊥ ∧ ΓA[C [r0]∗r0] = ⊥〉

r1 := C[r0];

〈Γr0 = ⊥ ∧ Γr1 = ⊥ ∧ (A[r1 ∗ r0]def ⇒ ΓA[r1∗r0] = ⊥) ∧
(¬A[r1 ∗ r0]def ⇒ ΓA[r1∗r0]♭ = ⊥), Γr0 = ⊥ ∧ Γr1 = ⊥ ∧ ΓA[r1∗r0] = ⊥〉

leak r1*r0;

〈(A[r1 ∗ r0]def ⇒ ΓA[r1∗r0] = ⊥) ∧ (¬A[r1 ∗ r0]def ⇒ ΓA[r1∗r0]♭ = ⊥),

ΓA[r1∗r0] = ⊥〉

r1 := A[r1*r0];

〈Γr1 = ⊥, Γr1 = ⊥〉

leak r1;

〈true, true〉

r1 := B[r1];

〈true, true〉

}

〈true, true〉

Fig. 3. Spectre-PSF litmus test

ΓA[C [r0]∗r0] = ⊥ ∧ Γr0 = ⊥ ∧ ΓC [r0] = ⊥. Hence, the required predicates for
each subset of global variables are as follows.

– For the empty set {}, we have ΓA[C [r0]∗r0] = ⊥ ∧ Γr0 = ⊥ ∧ ΓC [r0] = ⊥.
– For {A[C [r0] ∗ r0]}, we have Γr0 = ⊥ ∧ ΓC [r0] = ⊥ since ΓA[C [r0]∗r0] = ⊥ is

true when A[C [r0] ∗ r0] is 64.
– For {C [r0]}, we have ΓA[64∗r0] = ⊥ ∧ Γr0 = ⊥ since ΓC [r0] = ⊥ is true when

C [r0] is 64.



14 Graeme Smith

– For {A[C [r0] ∗ r0],C [r0]}, we have Γr0 = ⊥.

Conjoining the four predicates above gives us the condition required for the leaks
not to be exploitable via either Spectre-STL (the empty-set case) or Spectre-
PSF: ΓA[C [r0]∗r0] = ⊥ ∧ ΓA[64∗r0] = ⊥ ∧ Γr0 = ⊥ ∧ ΓC [r0] = ⊥.

The overall non-speculative precondition for the program is derived under the
assumptions that C size and the input idx are non-sensitive, and that idx ≥ 0
and all elements of arrays A and C are non-sensitive. To keep the presentation
simple, we elide the speculative precondition above the store C [0] := 64 and the
non-speculative proof obligation due to Spectre-PHT, i.e., the non-speculative
proof obligation when idx ≥ C size.

When idx = 0, the precondition simplifies to true since each array index
evaluates to 0 which is in the range of the respective arrays (recall from Sec-
tion 3.2 that C is of size 2 and A of size 16). When idx = 1, A[64∗ idx ] accesses a
memory location beyond the end of array A and hence data which is potentially
sensitive. Hence, the code is not provably secure: the Spectre-PSF vulnerability
discussed in Section 3.2 is detected.

Adding a fence instruction after the store will prevent speculative store for-
warding. This situation is also correctly evaluated by our logic. The fence’s spec-
ulative precondition is true and hence no proof obligations are transferred to the
non-speculative precondition of the store. This results in the precondition of the
program when idx is 0 or 1 evaluating to true.

The above litmus test (in both fenced and unfenced form) constitutes the
only litmus test for Spectre-PSF in the literature. Other approaches for detecting
Spectre-PSF are based on an explicit semantics of the microarchitectural features
that give rise to the vulnerability [20] or, like us, rely on this single litmus test
for validation [26].

6 Related Work

Cauligi et al. [8] provide a detailed comparison of 24 formal semantics and tools
for detecting Spectre vulnerabilities. While all approaches support Spectre-PHT,
only 5 out of 24 [7, 20, 13, 5, 26] support Spectre-STL (and only 2 of these [20, 26]
have support for Spectre-PSF). Three of the five are based on explicit models
of a processor’s microarchitecture [7, 20, 13] and two on more abstract semantics
[5, 26].

Of the former approaches, Cauligi et al. [7] and Guanciale et al. [20] model
program instructions by translation to sequences of fetch, execute and commit
microinstructions. Additional state information and associated microinstructions
provide the prediction and rollback facilities required to model speculative exe-
cution. This level of detail has the potential to detect more vulnerabilities than
abstract approaches, and in fact Guanciale et al. [20] independently discover
Spectre-PSF (which they call Spectre-STL-D). However, such detailed models
also add complexity to analysis.

Cauligi et al.’s approach [7] is supported by symbolic execution as is the ap-
proach of Daniel et al. [13]. The latter work addresses scalability issues inherent



Detecting speculative data flow vulnerabilities 15

with symbolic execution by removing redundant execution paths, and represent-
ing aspects of the microarchitectural execution symbolically rather than explic-
itly. These optimisations are validated using a set of litmus tests including those
for Spectre-STL that we adopt in this paper. Later work by the authors [14]
looks at modelling and implementing a hardware taint-tracking mechanism to
mitigate vulnerabilities to Spectre, including Spectre-STL.

Fabian et al. [17] (not included in the above comparison) also employ sym-
bolic execution for detecting Spectre vulnerabilities, including Spectre-STL. They
define a framework for composing semantics of different variants of Spectre al-
lowing to detect leaks due to a combination of, for example, Spectre-PHT and
Spectre-STL. Our approach also allows the detection of such vulnerabilities as
the proof obligations for each of the different Spectre variants is checked. We have
confirmed this by applying the approach to Listing 1 of [17] (see Appendix B).

Barthe et al. [5] provide a higher-level semantics of speculative execution for
a simple while language (similar to the language in this paper). Rather than
modelling speculation via microinstructions, the semantics includes high-level
directives which, for example, force a particular branch to be taken, or indicate
which store is to be used by a load. The approach is implemented in the Jasmin
verification framework [2, 3].

Ponce de León and Kinder [26] provide an axiomatic semantics for specu-
lative execution (based on the work of Alglave et al. [1]) which is significantly
less complex than the operational semantics of other approaches. The semantics
defines which executions are valid via constraints on various relations between
loads and stores in a program. Their approach is validated for Spectre-STL and
Spectre-PSF using the same litmus tests as in this paper, and supported by
bounded model checking.

Our work differs from the existing approaches by having its basis in weak-
est precondition (wp) reasoning. This opens the opportunity to adapt existing
program analysis tools such as Boogie [4] or Why3 [18] which automate such
reasoning (see [28] for work in this direction). Such tooling requires the user to
provide annotations, particularly loop invariants, to programs but is able to han-
dle greater nondeterminism than symbolic execution or model checking where
nondeterminism can adversely affect scalability.

Our work is also based on an approach [10] which can be combined with
rely/guarantee reasoning for analysis of concurrent programs [21, 31] and the
proof technique, reordering interference freedom (rif), for taking into account
processor weak memory models [11]. Its underlying logic can also be extended
to support controlled release of sensitive information via declassification [27].

7 Conclusion

This paper has presented a weakest precondition-based approach for detect-
ing vulnerabilities to the major data flow variants of Spectre, Spectre-STL and
Spectre-PSF. The approach extends an existing approach for Spectre-PHT and
can detect vulnerabilities to all three attacks including when the attacks occur



16 Graeme Smith

in combination. The approach has been validated with a set of litmus test used
to validate related approaches and tools in the literature. A deeper evaluation of
the approach, including its use on concurrent programs, requires automated tool
support which is left to future work. Since it is based on weakest precondition
reasoning, such support can be built on an existing auto-active program analyser
such as Boogie or Why3.

Acknowledgements Thanks to Kirsten Winter, Robert Colvin and Mark Beau-
mont for feedback on this paper.

References

1. Alglave, J., Maranget, L., Tautschnig, M.: Herding cats: Modelling, simula-
tion, testing, and data mining for weak memory. ACM Trans. Program. Lang.
Syst. 36(2), 7:1–7:74 (2014). https://doi.org/10.1145/2627752, http://doi.

acm.org/10.1145/2627752
2. Almeida, J., Barbosa, M., Barthe, G., Blot, A., Grégoire, B., Laporte, V., Oliveira,

T., Pacheco, H., Schmidt, B., Strub, P.: Jasmin: High-assurance and high-speed
cryptography. In: Thuraisingham, B., Evans, D., Malkin, T., Xu, D. (eds.) Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS 2017. pp. 1807–1823. ACM (2017). https://doi.org/10.
1145/3133956.3134078

3. Almeida, J., Barbosa, M., Barthe, G., Grégoire, B., Koutsos, A., Laporte, V.,
Oliveira, T., Strub, P.: The last mile: High-assurance and high-speed cryptographic
implementations. In: 2020 IEEE Symposium on Security and Privacy, SP 2020. pp.
965–982. IEEE (2020). https://doi.org/10.1109/SP40000.2020.00028

4. Barnett, M., Chang, B.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A
modular reusable verifier for object-oriented programs. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.P. (eds.) Formal Methods for Components
and Objects, 4th International Symposium, FMCO 2005. Lecture Notes in Com-
puter Science, vol. 4111, pp. 364–387. Springer (2005). https://doi.org/10.1007/
11804192_17

5. Barthe, G., Cauligi, S., Grégoire, B., Koutsos, A., Liao, K., Oliveira, T., Priya, S.,
Rezk, T., Schwabe, P.: High-assurance cryptography in the spectre era. In: 42nd
IEEE Symposium on Security and Privacy, SP 2021. pp. 1884–1901. IEEE (2021).
https://doi.org/10.1109/SP40001.2021.00046

6. Canella, C., Bulck, J.V., Schwarz, M., Lipp, M., von Berg, B., Ortner, P., Piessens,
F., Evtyushkin, D., Gruss, D.: A systematic evaluation of transient execution at-
tacks and defenses. In: Heninger, N., Traynor, P. (eds.) 28th USENIX Security
Symposium, USENIX Security 2019, Santa Clara, CA, USA, August 14-16, 2019.
pp. 249–266. USENIX Association (2019)

7. Cauligi, S., Disselkoen, C., von Gleissenthall, K., Tullsen, D.M., Stefan, D., Rezk,
T., Barthe, G.: Constant-time foundations for the new Spectre era. In: Donaldson,
A.F., Torlak, E. (eds.) Proceedings of the 41st ACM SIGPLAN International Con-
ference on Programming Language Design and Implementation, PLDI 2020. pp.
913–926. ACM (2020). https://doi.org/10.1145/3385412.3385970

8. Cauligi, S., Disselkoen, C., Moghimi, D., Barthe, G., Stefan, D.: SoK: Practical
foundations for software Spectre defenses. In: 43rd IEEE Symposium on Secu-
rity and Privacy, SP 2022. pp. 666–680. IEEE (2022). https://doi.org/10.1109/
SP46214.2022.9833707



Detecting speculative data flow vulnerabilities 17

9. Colvin, R.J., Winter, K.: An abstract semantics of speculative execution for
reasoning about security vulnerabilities. In: Sekerinski, E., et al. (eds.) Formal
Methods. FM 2019 International Workshops - Revised Selected Papers, Part II.
Lecture Notes in Computer Science, vol. 12233, pp. 323–341. Springer (2019).
https://doi.org/10.1007/978-3-030-54997-8_21

10. Coughlin, N., Lam, K., Smith, G., Winter, K.: Detecting speculative execution
vulnerabilities on weak memory models. In: Platzer, A., Rozier, K.Y., Pradella,
M., Rossi, M. (eds.) Formal Methods - 26th International Symposium, FM 2024.
Lecture Notes in Computer Science, vol. 14933, pp. 482–500. Springer (2024).
https://doi.org/10.1007/978-3-031-71162-6_25

11. Coughlin, N., Winter, K., Smith, G.: Rely/guarantee reasoning for multicopy
atomic weak memory models. In: Huisman, M., Pasareanu, C.S., Zhan, N. (eds.)
Formal Methods - 24th International Symposium, FM 2021. Lecture Notes in
Computer Science, vol. 13047, pp. 292–310. Springer (2021). https://doi.org/

10.1007/978-3-030-90870-6_16

12. Coughlin, N., Winter, K., Smith, G.: Compositional reasoning for non-multicopy
atomic architectures. Formal Aspects Comput. 35(2), 8:1–8:30 (2023). https://
doi.org/10.1145/3574137

13. Daniel, L., Bardin, S., Rezk, T.: Hunting the haunter - efficient relational sym-
bolic execution for Spectre with Haunted RelSE. In: 28th Annual Network and
Distributed System Security Symposium, NDSS 2021. The Internet Society (2021)

14. Daniel, L., Bognar, M., Noorman, J., Bardin, S., Rezk, T., Piessens, F.: Prospect:
Provably secure speculation for the constant-time policy. In: Calandrino, J.A.,
Troncoso, C. (eds.) 32nd USENIX Security Symposium, USENIX Security 2023.
pp. 7161–7178. USENIX Association (2023)

15. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall (1976), https://www.
worldcat.org/oclc/01958445

16. Dijkstra, E.W., Scholten, C.S.: Predicate Calculus and Program Semantics.
Springer-Verlag, Berlin, Heidelberg (1990)

17. Fabian, X., Guarnieri, M., Patrignani, M.: Automatic detection of speculative ex-
ecution combinations. In: Yin, H., Stavrou, A., Cremers, C., Shi, E. (eds.) Pro-
ceedings of the 2022 ACM SIGSAC Conference on Computer and Communica-
tions Security, CCS 2022. pp. 965–978. ACM (2022). https://doi.org/10.1145/
3548606.3560555

18. Filliâtre, J., Paskevich, A.: Why3 - where programs meet provers. In: Felleisen, M.,
Gardner, P. (eds.) Programming Languages and Systems - 22nd European Sympo-
sium on Programming, ESOP 2013. Lecture Notes in Computer Science, vol. 7792,
pp. 125–128. Springer (2013). https://doi.org/10.1007/978-3-642-37036-6_8

19. Goguen, J.A., Meseguer, J.: Security policies and security models. In: 1982 IEEE
Symposium on Security and Privacy, 1982. pp. 11–20. IEEE Computer Society
(1982). https://doi.org/10.1109/SP.1982.10014

20. Guanciale, R., Balliu, M., Dam, M.: InSpectre: Breaking and fixing microarchitec-
tural vulnerabilities by formal analysis. In: Ligatti, J., Ou, X., Katz, J., Vigna, G.
(eds.) CCS ’20: 2020 ACM SIGSAC Conference on Computer and Communica-
tions Security. pp. 1853–1869. ACM (2020). https://doi.org/10.1145/3372297.
3417246

21. Jones, C.B.: Specification and design of (parallel) programs. In: IFIP Congress.
pp. 321–332 (1983)

22. Kocher, P., Horn, J., Fogh, A., Genkin, D., Gruss, D., Haas, W., Hamburg, M.,
Lipp, M., Mangard, S., Prescher, T., Schwarz, M., Yarom, Y.: Spectre attacks: Ex-



18 Graeme Smith

ploiting speculative execution. In: 2019 IEEE Symposium on Security and Privacy,
SP 2019. pp. 1–19. IEEE (2019). https://doi.org/10.1109/SP.2019.00002

23. Liu, F., Yarom, Y., Ge, Q., Heiser, G., Lee, R.B.: Last-level cache side-channel
attacks are practical. In: 2015 IEEE Symposium on Security and Privacy, SP
2015. pp. 605–622. IEEE Computer Society (2015). https://doi.org/10.1109/

SP.2015.43

24. Murray, T.C., Sison, R., Engelhardt, K.: Covern: A logic for compositional verifi-
cation of information flow control. In: 2018 IEEE European Symposium on Security
and Privacy, EuroS&P 2018. pp. 16–30. IEEE (2018). https://doi.org/10.1109/
EuroSP.2018.00010

25. Murray, T.C., Sison, R., Pierzchalski, E., Rizkallah, C.: Compositional verification
and refinement of concurrent value-dependent noninterference. In: IEEE 29th Com-
puter Security Foundations Symposium, CSF 2016. pp. 417–431. IEEE Computer
Society (2016). https://doi.org/10.1109/CSF.2016.36

26. Ponce de León, H., Kinder, J.: Cats vs. Spectre: An axiomatic approach to modeling
speculative execution attacks. In: 43rd IEEE Symposium on Security and Privacy,
SP 2022. pp. 235–248. IEEE (2022). https://doi.org/10.1109/SP46214.2022.

9833774

27. Smith, G.: Declassification predicates for controlled information release. In: Riesco,
A., Zhang, M. (eds.) 23rd International Conference on Formal Engineering Methods
(ICFEM 2022). Lecture Notes in Computer Science, Springer (2022)

28. Smith, G.: A Dafny-based approach to thread-local information flow analysis. In:
11th IEEE/ACM International Conference on Formal Methods in Software En-
gineering, FormaliSE 2023. pp. 86–96. IEEE (2023). https://doi.org/10.1109/
FormaliSE58978.2023.00017

29. Smith, G., Coughlin, N., Murray, T.: Value-dependent information-flow security on
weak memory models. In: ter Beek, M.H., McIver, A., Oliveira, J.N. (eds.) Formal
Methods - The Next 30 Years - Third World Congress, FM 2019. Lecture Notes
in Computer Science, vol. 11800, pp. 539–555. Springer (2019). https://doi.org/
10.1007/978-3-030-30942-8_32

30. Winter, K., Coughlin, N., Smith, G.: Backwards-directed information flow analysis
for concurrent programs. In: 34th IEEE Computer Security Foundations Sympo-
sium, CSF 2021. pp. 1–16. IEEE (2021). https://doi.org/10.1109/CSF51468.

2021.00017

31. Xu, Q., de Roever, W.P., He, J.: The rely-guarantee method for verifying shared
variable concurrent programs. Formal Aspects of Computing 9(2), 149–174 (1997).
https://doi.org/10.1007/BF01211617



Detecting speculative data flow vulnerabilities 19

A Spectre-STL Litmus tests

Below we apply our logic to the 13 litmus tests for Spectre-STL developed
by Daniel et al. [13] and available at https://github.com/binsec/haunted_

bench/blob/master/src/litmus-stl/programs/spectrev4.c. The tests are
reexpressed in the language from Section 2. In the tests, idx is an input provided
by the user who may be an attacker. This value is not sensitive, i.e., L(idx ) = ⊥.
secretarray is a publicly inaccessible array which may contain sensitive data and
has length array size = 16. This value is not sensitive, i.e., L(array size) = ⊥.
publicarray is a publicly accessible array which has length array size. For all in-
dices i of publicarray, L(publicarray[i ]) = ⊥. publicarray2 is a publicly accessible
array which has length 512*256 (512 is the cache line size in bits, and 256 the
number of integers representable using 8 bits). For all indices i of publicarray2,
L(publicarray2[i ]) = ⊥. Hence, the only sensitive data is in secretarray or parts
of memory outside of the defined arrays and variables.

The speculative precondition is elided whenever there are no points where
speculation can start (stores or branches) earlier in the code.

Case 1

data, data slowptr and data slowslowptr are local (pointer) variables and can
point to sensitive data. To express this test in our simple programming language,
all expressions involving referencing (&) and dereferencing (*) of pointers have
been resolved.

The code is insecure since the non-speculative precondition requires an ele-
ment of secretarray to have security level ⊥.

〈..., Γsecretarray[idx&(array size−1)] = ⊥〉
r0 := idx ;
〈..., Γsecretarray[r0&(array size−1)] = ⊥〉
r1 := array size;
〈..., Γsecretarray[r0&(r1−1)] = ⊥〉
r0 := r0 & (r1− 1);
〈..., Γsecretarray[r0] = ⊥〉
r1 := secretarray;
〈..., Γsecretarray[r0] = ⊥〉
data := r1;
〈(¬secretarray[r0]def ⇒ Γsecretarray[r0]♭ = ⊥) ∧ Γsecretarray[r0] = ⊥,
Γsecretarray[r0] = ⊥〉

data slowptr := r1;



20 Graeme Smith

〈(¬secretarray[r0]def ⇒ Γsecretarray[r0]♭ = ⊥) ∧ Γsecretarray[r0] = ⊥,

Γsecretarray[r0] = ⊥〉
data slowslowptr := r1;
〈(¬secretarray[r0]def ⇒ Γsecretarray[r0]♭ = ⊥) ∧ Γsecretarray[r0] = ⊥,
Γsecretarray[r0] = ⊥〉

secretarray[r0] := 0 // This store may be bypassed
〈(secretarray[r0]def ⇒ Γsecretarray[r0] = ⊥) ∧
(¬secretarray[r0]def ⇒ Γsecretarray[r0]♭ = ⊥), Γsecretarray[r0] = ⊥〉

r1 := secretarray[r0];
〈Γr1 = ⊥, Γr1 = ⊥〉
leak r1;
〈true, true〉
r2 := publicarray2[r1 ∗ 512];
〈true, true〉

Case 2

The code is insecure since idx may be greater than the length of publicarray.

〈..., Γpublicarray[idx ] = ⊥〉
r0 := idx ;
〈..., Γpublicarray[r0&(array size−1)] = ⊥ ∧ Γr0 = ⊥ ∧ Γpublicarray[idx ] = ⊥〉
r1 := array size;
〈..., Γpublicarray[r0&(r1−1)] = ⊥ ∧ Γr0 = ⊥ ∧ Γr1 = ⊥ ∧ Γpublicarray[idx ] = ⊥〉
r0 := r0 & (r1− 1);
〈..., Γpublicarray[r0] = ⊥ ∧ Γr0 = ⊥ ∧ Γpublicarray[idx ] = ⊥〉
idx := r0 // This store may be bypassed
〈(publicarray[idx ]def ⇒ Γpublicarray[idx ] = ⊥) ∧
(¬publicarray[idx ]def ⇒ Γpublicarray[idx ]♭ = ⊥), Γpublicarray[idx ] = ⊥〉

leak idx ; // note that Γidx = ⊥ is true since L(idx ) = ⊥
〈(publicarray[idx ]def ⇒ Γpublicarray[idx ] = ⊥) ∧
(¬publicarray[idx ]def ⇒ Γpublicarray[idx ]♭ = ⊥), Γpublicarray[idx ] = ⊥〉

r1 := publicarray[idx ];
〈Γr1 = ⊥, Γr1 = ⊥〉
leak r1;
〈true, true〉
r2 := publicarray2[r1 ∗ 512];
〈true, true〉

Case 3

The code is secure since there is no store to bypass.

〈..., true〉
r0 := idx ;



Detecting speculative data flow vulnerabilities 21

〈..., Γr0 = ⊥〉
r1 := array size;
〈..., Γr0 = ⊥ ∧ Γr1 = ⊥ ∧ Γpublicarray[r0&(r1−1)] = ⊥〉
r0 := r0 & (r1− 1);
〈..., Γr0 = ⊥ ∧ Γpublicarray[r0] = ⊥〉
leak r0;
〈..., Γpublicarray[r0] = ⊥〉
r1 := publicarray[r0];
〈..., Γr1 = ⊥〉
leak r1;
〈..., true〉
r2 := publicarray2[r1 ∗ 512];
〈true, true〉

Case 4

See Section 4.

Case 5

case5 ptr and toleak are local variables. case5 ptr is initially set to secretarray.
The code is insecure since it requires that elements of secretarray (the initial

value of case5 ptr) have security level ⊥.

〈..., Γtoleak = ⊥ ∧ Γcase5 ptr [idx&(array size−1)] = ⊥〉
r0 := idx ;
〈..., Γtoleak = ⊥ ∧ Γcase5 ptr [r0&(array size−1)] = ⊥〉
r1 := array size;
〈..., Γtoleak = ⊥ ∧ Γcase5 ptr [r0&(r1−1)] = ⊥ ∧ Γpublicarray[r0&(r1−1)] = ⊥〉
r0 := r0 & (r1− 1);
〈..., Γtoleak = ⊥ ∧ Γcase5 ptr [r0] = ⊥ ∧ Γpublicarray[r0] = ⊥〉
r1 := publicarray;
〈..., Γtoleak = ⊥ ∧ Γcase5 ptr [r0] = ⊥ ∧ Γr1[r0] = ⊥〉
case5 ptr := r1; // This store may be bypassed
〈(case5 ptr [r0]def ⇒ Γcase5 ptr [r0] = ⊥) ∧ (¬case5 ptr [r0]def ⇒ Γcase5 ptr [r0]♭ = ⊥) ∧
Γtoleak = ⊥, Γcase5 ptr [r0] = ⊥ ∧ Γtoleak = ⊥〉

r1 = case5 ptr [r0];
〈Γtoleak = ⊥ ∧ Γr1 = ⊥, Γr1 = ⊥ ∧ Γtoleak = ⊥〉
toleak = r1;
〈Γtoleak = ⊥, Γtoleak = ⊥〉
r1 := toleak ; // if ¬toleakdef then toleak = toleak ♭ since toleak is local
〈Γr1 = ⊥, Γr1 = ⊥〉
leak r1;
〈true, true〉
r2 := publicarray2[r1 ∗ 512];
〈true, true〉



22 Graeme Smith

Case 6

case6 idx , case6 array and toleak are local variables. case6 idx is initially set to
0, and case6 array is initially set to [secretarray, publicarray].

The code is insecure since it requires elements of secretarray (the initial value
of case6 array[case6 idx ]) to have security level ⊥.

〈..., Γtoleak = ⊥ ∧ Γcase6 array[case6 idx ][idx&(array size−1)] = ⊥〉
r0 := idx ;
〈..., Γcase6 array[1][r0&(array size−1)] = ⊥ ∧ Γtoleak = ⊥ ∧ Γcase6 idx = ⊥ ∧
Γr0&(array size−1) = ⊥Γcase6 array[case6 idx ][r0&(array size−1)] = ⊥〉

r1 := array size;
〈... Γcase6 array[1][r0&(r1−1)] = ⊥ ∧ Γtoleak = ⊥ ∧ Γcase6 idx = ⊥ ∧
Γr0&(r1−1) = ⊥ ∧ Γcase6 array[case6 idx ][r0&(r1−1)] = ⊥〉

r0 := r0 & (r1− 1);
〈... Γcase6 array[case6 idx ][r0] = ⊥ ∧ Γtoleak = ⊥ ∧ Γcase6 idx = ⊥ ∧
Γr0 = ⊥〉

case6 idx := 1; // This store may be bypassed
〈(case6 array[case6 idx ][r0]def ⇒ Γcase6 array[case6 idx ][r0] = ⊥) ∧
(¬case6 array[case6 idx ][r0]def ⇒ Γcase6 array[case6 idx ][r0]♭ = ⊥) ∧
Γtoleak = ⊥ ∧ Γcase6 idx = ⊥ ∧ Γr0 = ⊥,
Γcase6 array[case6 idx ][r0] = ⊥ ∧ Γtoleak = ⊥ ∧ Γcase6 idx = ⊥ ∧ Γr0 = ⊥〉

r1 := case6 idx ;
〈(case6 array[r1][r0]def ⇒ Γcase6 array[r1][r0] = ⊥) ∧
(¬case6 array[r1][r0]def ⇒ Γcase6 array[r1][r0]♭ = ⊥) ∧
Γtoleak = ⊥ ∧ Γr1 = ⊥ ∧ Γr0 = ⊥,
Γcase6 array[r1][r0] = ⊥ ∧ Γtoleak = ⊥ ∧ Γr1 = ⊥ ∧ Γr0 = ⊥〉

leak r0;
〈(case6 array[r1][r0]def ⇒ Γcase6 array[r1][r0] = ⊥) ∧
(¬case6 array[r1][r0]def ⇒ Γcase6 array[r1][r0]♭ = ⊥) ∧

Γtoleak = ⊥ ∧ Γr1 = ⊥, Γcase6 array[r1])[r0] = ⊥ ∧ Γtoleak = ⊥ ∧ Γr1 = ⊥〉
leak r1;
〈(case6 array[r1][r0]def ⇒ Γcase6 array[r1][r0] = ⊥) ∧
(¬case6 array[r1][r0]def ⇒ Γcase6 array[r1][r0]♭ = ⊥) ∧
Γtoleak = ⊥, Γcase6 array[r1][r0] = ⊥ ∧ Γtoleak = ⊥〉

r2 := (case6 array[r1])[r0];
〈Γtoleak = ⊥ ∧ Γr2 = ⊥, Γr2 = ⊥ ∧ Γtoleak = ⊥〉
toleak = r2;
〈Γtoleak = ⊥, Γtoleak = ⊥〉
r1 := toleak ; // if ¬toleakdef then toleak = toleak ♭ since toleak is local
〈Γr1 = ⊥, Γr1 = ⊥〉
leak r1;
〈true, true〉
r2 := publicarray2[r1 ∗ 512];
〈true, true〉



Detecting speculative data flow vulnerabilities 23

Case 7

case7 mask a local variable which is initially set to MAXINT .

The code is insecure since idx & MAXINT (where MAXINT is the initial
value of case7 mask) may be greater than the length of publicarray.

〈..., Γtoleak = ⊥ ∧ Γpublicarray[idx&case7 mask ] = ⊥
r0 := array size;
〈..., Γpublicarray[idx&(r0−1)] = ⊥ ∧ Γtoleak = ⊥ ∧ Γidx = ⊥ ∧ Γr0 = ⊥ ∧
Γpublicarray[idx&case7 mask ] = ⊥ ∧ Γcase7 mask = ⊥〉

r0 := r0− 1;
〈...Γpublicarray[idx&r0] = ⊥ ∧ Γtoleak = ⊥ ∧ Γidx = ⊥ ∧ Γr0 = ⊥ ∧
Γpublicarray[idx&case7 mask ] = ⊥ ∧ Γcase7 mask = ⊥〉

case7 mask := r0; //This store may be bypassed
〈(publicarray[idx&case7 mask ]def ⇒ Γpublicarray[idx&case7 mask ] = ⊥) ∧
(¬publicarray[idx&case7 mask ]def ⇒ Γpublicarray[idx&case7 mask ]♭ = ⊥) ∧
Γtoleak = ⊥ ∧ Γidx = ⊥ ∧ Γcase7 mask = ⊥,
Γpublicarray[idx&case7 mask ] = ⊥ ∧ Γtoleak = ⊥ ∧ Γidx = ⊥ ∧ Γcase7 mask = ⊥〉

r0 := idx ; // if ¬idxdef then idx = idx ♭ since idx is local
〈(publicarray[r0&case7 mask ]def ⇒ Γpublicarray[r0&case7 mask ] = ⊥) ∧
(¬publicarray[r0&case7 mask ]def ⇒ Γpublicarray[r0&case7 mask ]♭ = ⊥) ∧
Γtoleak = ⊥ ∧ Γr0 = ⊥ ∧ Γcase7 mask = ⊥,
Γpublicarray[r0&case7 mask ] = ⊥ ∧ Γtoleak = ⊥ ∧ Γr0 = ⊥ ∧ Γcase7 mask = ⊥〉

r1 := case7 mask ; // if ¬case7 maskdef then case7 mask = case7 mask ♭ since local
〈(publicarray[r0&r1]def ⇒ Γpublicarray[r0&r1] = ⊥) ∧
(¬publicarray[r0&r1]def ⇒ Γpublicarray[r0&r1]♭ = ⊥) ∧ Γtoleak = ⊥ ∧ Γr0 = ⊥ ∧ Γr1 = ⊥,
Γpublicarray[r0&r1] = ⊥ ∧ Γtoleak = ⊥ ∧ Γr0 = ⊥ ∧ Γr1 = ⊥〉

leak r0 & r1;
〈(publicarray[r0&r1]def ⇒ Γpublicarray[r0&r1] = ⊥) ∧
(¬publicarray[r0&r1]def ⇒ Γpublicarray[r0&r1]♭ = ⊥) ∧ Γtoleak = ⊥,
Γpublicarray[r0&r1] = ⊥ ∧ Γtoleak = ⊥〉

r1 := publicarray[r0 & r1];
〈Γtoleak = ⊥ ∧ Γr1 = ⊥, Γr1 = ⊥ ∧ Γtoleak = ⊥〉
toleak := r1;
〈Γtoleak = ⊥, Γtoleak = ⊥〉
r1 := toleak ; // if ¬toleakdef then toleak = toleak ♭ since toleak is local
〈Γr1 = ⊥, Γr1 = ⊥〉
leak r1;
〈true, true〉
r2 := publicarray2[r1 ∗ 512];
〈true, true〉

Case 8

case8 mult is a local variable which is initially set to 200.



24 Graeme Smith

The code is insecure since idx∗200 (where 200 is the initial value of case8 mult)
may be greater than the length of publicarray.

〈..., Γtoleak = ⊥ ∧ Γpublicarray[idx∗case8 mult] = ⊥〉
case8 mult := 0; //This store may be bypassed
〈Γidx = ⊥ ∧ Γcase8 mult = ⊥ ∧
(publicarray[idx ∗ case8 mult ]def ⇒ Γpublicarray[idx∗case8 mult] = ⊥) ∧
(¬publicarray[idx ∗ case8 mult ]def ⇒ Γpublicarray[idx∗case8 mult]♭ = ⊥) ∧ Γtoleak = ⊥,

Γidx = ⊥ ∧ Γcase8 mult = ⊥ ∧ Γpublicarray[r0∗case8 mult] = ⊥ ∧ Γtoleak = ⊥〉
r0 := idx ; // if ¬idxdef then idx = idx ♭ since idx is local
〈Γr0 = ⊥ ∧ Γcase8 mult = ⊥ ∧
(publicarray[r0 ∗ case8 mult ]def ⇒ Γpublicarray[r0∗case8 mult] = ⊥) ∧
(¬publicarray[r0 ∗ case8 mult ]def ⇒ Γpublicarray[r0∗case8 mult]♭ = ⊥) ∧ Γtoleak = ⊥,

Γr0 = ⊥ ∧ Γcase8 mult = ⊥ ∧ Γpublicarray[r0∗case8 mult] = ⊥ ∧ Γtoleak = ⊥〉
r1 := case8 mult ; // if ¬case8 multdef then case8 mult = case8 mult ♭ since local
〈Γr0 = ⊥ ∧ Γr1 = ⊥ ∧ (publicarray[r0 ∗ r1]def ⇒ Γpublicarray[r0∗r1] = ⊥) ∧
(¬publicarray[r0 ∗ r1]def ⇒ Γpublicarray[r0∗r1]♭ = ⊥) ∧ Γtoleak = ⊥,

Γr0 = ⊥ ∧ Γr1 = ⊥ ∧ Γpublicarray[r0∗r1] = ⊥ ∧ Γtoleak = ⊥〉
leak r0 ∗ r1;
〈(publicarray[r0 ∗ r1]def ⇒ Γpublicarray[r0∗r1] = ⊥) ∧
(¬publicarray[r0 ∗ r1]def ⇒ Γpublicarray[r0∗r1]♭ = ⊥) ∧ Γtoleak = ⊥,
Γpublicarray[r0∗r1] = ⊥ ∧ Γtoleak = ⊥〉

r0 := publicarray[r0 ∗ r1];
〈Γtoleak = ⊥ ∧ Γr0 = ⊥, Γr0 = ⊥ ∧ Γtoleak = ⊥〉
toleak := r0;
〈Γtoleak = ⊥, Γtoleak = ⊥〉
r1 := toleak ; // if ¬toleakdef then toleak = toleak ♭ since toleak is local
〈Γr1 = ⊥, Γr1 = ⊥〉
leak r1;
〈true, true〉
r2 := publicarray2[r1 ∗ 512];
〈true, true〉

Case 9

The code is insecure since it requires elements of secretarray to have security
level ⊥.

〈..., Γsecretarray[idx&(array size−1)] = ⊥〉
r0 := idx ;
〈..., Γsecretarray[r0&(array size−1)] = ⊥〉
r1 := array size;
〈..., Γsecretarray[r0&(r1−1)] = ⊥)〉
r0 := r0 & (r1− 1);



Detecting speculative data flow vulnerabilities 25

〈..., Γsecretarray[r0] = ⊥〉
secretarray[r0] := 0; //This store may be bypassed
〈(secretarray[r0]def ⇒ Γsecretarray[r0] = ⊥) ∧
(¬secretarray[r0]def ⇒ Γsecretarray[r0]♭ = ⊥), Γsecretarray[r0] = ⊥〉

i := 0; // if ¬idef then i = i♭ since i is local
〈(secretarray[r0]def ⇒ Γsecretarray[r0] = ⊥) ∧
(¬secretarray[r0]def ⇒ Γsecretarray[r0]♭ = ⊥), Γi = ⊥ ∧ Γsecretarray[r0] = ⊥〉

while(i < 200){
〈(secretarray[r0]def ⇒ Γsecretarray[r0] = ⊥) ∧
(¬secretarray[r0]def ⇒ Γsecretarray[r0]♭ = ⊥), Γsecretarray[r0] = ⊥〉

r1 := i ; // if ¬idef then i = i♭ since i is local
〈(secretarray[r0]def ⇒ Γsecretarray[r0] = ⊥) ∧
(¬secretarray[r0]def ⇒ Γsecretarray[r0]♭ = ⊥), Γsecretarray[r0] = ⊥〉

i := r1 + 1;
〈(secretarray[r0]def ⇒ Γsecretarray[r0] = ⊥) ∧
(¬secretarray[r0]def ⇒ Γsecretarray[r0]♭ = ⊥), Γsecretarray[r0] = ⊥〉

}
〈(secretarray[r0]def ⇒ Γsecretarray[r0] = ⊥) ∧
(¬secretarray[r0]def ⇒ Γsecretarray[r0]♭ = ⊥), Γsecretarray[r0] = ⊥〉

r1 := secretarray[r0];
〈Γr1 = ⊥, Γr1 = ⊥〉
leak r1;
〈true, true〉
r2 := publicarray2[r1 ∗ 512];
〈true, true〉

Case 10

The remaining cases involve function calls. We model these by inlining the func-
tion code which is followed by a fence. The fence ensures that all stores in the
function are executed before it returns. We use the suffix ret to denote the
return value of the function.

The code is insecure since fidx may be greater than the length of publicarray.

〈..., Γpublicarray[fidx ] = ⊥〉
r0 := idx ;
〈..., Γr0&(array size−1) = ⊥ ∧ Γpublicarray[r0&(array size−1)] = ⊥ ∧ Γpublicarray[fidx ] = ⊥〉
r1 := array size;
〈..., Γr0&(r1−1) = ⊥ ∧ Γpublicarray[r0&(r1−1)] = ⊥ ∧ Γpublicarray[fidx ] = ⊥〉
r0 ret := r0 & (r1− 1);
〈..., Γr0 ret = ⊥ ∧ Γpublicarray[r0 ret] = ⊥ ∧ Γpublicarray[fidx ] = ⊥〉
fence;
〈..., Γr0 ret = ⊥ ∧ Γpublicarray[r0 ret] = ⊥ ∧ Γpublicarray[fidx ] = ⊥〉
fidx := r0 ret ; //This store may be bypassed



26 Graeme Smith

〈Γfidx = ⊥ ∧ (fidxdef ⇒
(publicarray[fidx ]def ⇒ Γpublicarray[fidx ] = ⊥) ∧
(¬publicarray[fidx ]def ⇒ Γpublicarray[fidx ]♭ = ⊥)) ∧

(¬fidxdef ⇒
(publicarray[fidx ]def ⇒ Γpublicarray[fidx♭] = ⊥) ∧
(¬publicarray[fidx ]def ⇒ Γpublicarray[fidx♭]♭ = ⊥)),

Γfidx = ⊥ ∧ Γpublicarray[fidx ] = ⊥〉

r0 := fidx ; // if ¬fidxdef then fidx = fidx ♭ since fidx is local
〈Γr0 = ⊥ ∧ (publicarray[r0]def ⇒ Γpublicarray[r0] = ⊥) ∧
(¬publicarray[r0]def ⇒ Γpublicarray[r0]♭ = ⊥), Γr0 = ⊥ ∧ Γpublicarray[r0] = ⊥〉

leak r0;
〈(publicarray[r0]def ⇒ Γpublicarray[r0] = ⊥) ∧
(¬publicarray[r0]def ⇒ Γpublicarray[r0]♭ = ⊥), Γpublicarray[r0] = ⊥〉

r1 := publicarray[r0];
〈Γr1 = ⊥, Γr1 = ⊥〉
leak r1;
〈true, true〉
r2 := publicarray2[r1 ∗ 512];
〈true, true〉

Case 11

The code is insecure since it requires that toleak is initially non-sensitive.

〈..., Γtoleak = ⊥〉
r0 := idx ;
〈..., Γr0&(array size−1) ∧ Γtoleak = ⊥ ∧ Γpublicarray[r0&(array size−1)] = ⊥〉
r1 := array size;
〈..., Γr0&(r1−1) ∧ Γtoleak = ⊥ ∧ Γpublicarray[r0&(r1−1)] = ⊥〉
r0 := r0 & (r1− 1);
〈..., Γr0 ∧ Γtoleak = ⊥ ∧ Γpublicarray[r0] = ⊥〉
leak r0;
〈..., Γtoleak = ⊥ ∧ Γpublicarray[r0] = ⊥〉
r1 := publicarray[r0];
〈..., Γtoleak = ⊥ ∧ Γr1 = ⊥〉
toleak ret := r1;
〈true, Γtoleak = ⊥ ∧ Γtoleak ret = ⊥〉
fence;
〈Γtoleak = ⊥ ∧ Γtoleak ret = ⊥, Γtoleak = ⊥ ∧ Γtoleak ret = ⊥〉

r0 := toleak ret ; // if ¬toleak retdef then toleak ret = toleak ret ♭ since toleak ret local
〈Γtoleak = ⊥ ∧ Γr0 = ⊥, Γtoleak = ⊥ ∧ Γr0 = ⊥〉
toleak := r0; //This store may be bypassed
〈Γtoleak = ⊥, Γtoleak = ⊥〉
r1 := toleak ; // if ¬toleakdef then toleak = toleak ♭ since toleak is local
〈Γr1 = ⊥, Γr1 = ⊥〉
leak r1;



Detecting speculative data flow vulnerabilities 27

〈true, true〉
r2 := publicarray[r1 ∗ 512];
〈true, true〉

Case 12

The code is secure since there is no store to bypass.

〈..., true〉
r0 := idx ;
〈..., Γr0&(array size−1) = ⊥ ∧ Γpublicarray[r0&(array size−1)] = ⊥〉
r1 := array size;
〈..., Γr0&(r1−1) = ⊥ ∧ Γpublicarray[r0&(r1−1)] = ⊥〉
r0 ret := r0 & (r1− 1);
〈..., Γr0 ret = ⊥ ∧ Γpublicarray[r0 ret] = ⊥〉
fence;
〈..., Γr0 ret = ⊥ ∧ Γpublicarray[r0 ret] = ⊥〉
r0 := r0 ret ;
〈..., Γr0 = ⊥ ∧ Γpublicarray[r0] = ⊥〉
leak r0;
〈..., Γpublicarray[r0] = ⊥〉
r1 := publicarray[r0];
〈Γr1 = ⊥, Γr1 = ⊥〉
leak r1;
〈..., true〉
r2 := publicarray2[r1 ∗ 512];
〈true, true〉

Case 13

The code is secure since the only store is followed by a fence (and hence cannot
be bypassed).

〈..., true〉
r0 := idx ;
〈..., Γr0&(array size−1) = ⊥ ∧ Γpublicarray[r0&(array size−1)] = ⊥〉
r1 := array size;
〈..., Γr0&(r1−1) = ⊥ ∧ Γpublicarray[r0&(r1−1)] = ⊥〉
r0 := r0 & (r1− 1);
〈..., Γr0 = ⊥ ∧ Γpublicarray[r0] = ⊥〉
leak r0;
〈..., Γpublicarray[r0] = ⊥〉
r1 := publicarray[r0];
〈..., Γr1 = ⊥〉
toleak ret := r1;



28 Graeme Smith

〈true, Γtoleak ret = ⊥〉
fence;
〈Γtoleak ret = ⊥, Γtoleak ret = ⊥〉
r1 := toleak ret ; // if ¬toleakdef then toleak ret = toleak ret ♭ since toleak ret local
〈Γr1 = ⊥, Γr1 = ⊥〉
leak r1;
〈true, true〉
r2 := publicarray2[r1 ∗ 512];
〈true, true〉

B Combination of Spectre-PHT and Spectre-STL

Below we apply our logic to Listing 1 from Fabian et al. [17] which involves a
vulnerability arising from a combination of Spectre-PHT and Spectre-STL. The
tests are reexpressed in the language from Section 2. In the test, secret is a
pointer to a sensitive value, and public a pointer to a non-sensitive value. p is a
local variable and A a publicly accessible array.

The speculative precondition is elided whenever there are no points where
speculation can start (stores or branches) earlier in the code.

To express this test in our simple programming language, pointers are modelled
as arrays of length 1.

The code is insecure since it requires that the value at secret is non-sensitive.

〈..., Γpublic[0] = ⊥ ∧ Γsecret[0] = ⊥ ∧ Γp[0] = ⊥〉
r0 := 0;
〈..., Γpublic[0] = ⊥ ∧ Γsecret[0] = ⊥ ∧ Γr0 = ⊥ ∧ Γp[0] = ⊥〉
r1 := secret ;
〈..., Γpublic[0] = ⊥ ∧ Γr1[0] = ⊥ ∧ Γr0 = ⊥ ∧ Γp[0] = ⊥〉
p := r1;
〈(p[0]def ⇒ Γp[0] = ⊥) ∧ (¬ p[0]def ⇒ Γp[0]♭ = ⊥) ∧ Γpublic[0] = ⊥,
Γpublic[0] = ⊥ ∧ Γp[0] = ⊥ ∧ Γr0 = ⊥〉

r1 := public; // if ¬publicdef then public = public♭ since public is local
〈(p[0]def ⇒ Γp[0] = ⊥) ∧ (¬ p[0]def ⇒ Γp[0]♭ = ⊥) ∧ Γr1 = ⊥,

Γr1[0] = ⊥ ∧ Γp[0] = ⊥ ∧ Γr0 = ⊥〉
p := r1; // This store may be bypassed
〈(p[0]def ⇒ Γp[0] = ⊥) ∧ (¬ p[0]def ⇒ Γp[0]♭ = ⊥), Γp[0] = ⊥ ∧ Γr0 = ⊥)〉

if (r0! = 0)
〈(pdef ⇒ Γp[0] = ⊥) ∧ (¬ pdef ⇒ Γp[0]♭ = ⊥), Γp[0] = ⊥〉

r1 := p[0];
〈Γr1 = ⊥, Γr1 = ⊥〉
leak r1;
〈true, true〉
r2 := A[r1 ∗ 512];
〈true, true〉

〈true, true〉


