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Abstract: In the standard privacy-preserving Machine learning as-a-service (MLaaS) model, the client encrypts data
using homomorphic encryption and uploads it to a server for computation. The result is then sent back to the
client for decryption. It has become more and more common for the computation to be outsourced to third-
party servers. In this paper we identify a weakness in this protocol that enables a completely undetectable novel
model-stealing attack that we call the Silver Platter attack. This attack works even under multikey encryption
that prevents a simple collusion attack to steal model parameters. We also propose a mitigation that protects
privacy even in the presence of a malicious server and malicious client or model provider (majority dishonest).
When compared to a state-of-the-art but small encrypted model with 32k parameters, we preserve privacy with
a failure chance of 1.51×10−28 while batching capability is reduced by 0.2%.
Our approach uses a novel results-checking protocol that ensures the computation was performed correctly
without violating honest clients’ data privacy. Even with collusion between the client and the server, they are
unable to steal model parameters. Additionally, the model provider cannot learn any client data if maliciously
working with the server.

1 Introduction

Training ChatGPT3(Brown et al., 2020) took 3.14×
1023 floating point operations or an estimated $4.6M
if replicated using a Tesla V100 cloud instance1.
QuillBot uses a variety of models for grammar check-
ing, paraphrasing, etc, some of which contain billions
of parameters and a took team of engineers to de-
velop2.

One way for a provider to recuperate the cost
of generating machine learning models is to pro-
vide machine learning-as-a-service (MLaaS) where
the provider permits a client to compare their data
with the model. For example, a hospital could pay to
have automated screenings for skin cancer. Moreover,
millions of users pay for their queries to be answered
by ChatGPT or to have their writings improved by
QuillBot’s premium offerings. This incentivizes the
costly training process with financial gain.

The use of MLaaS generates an issue of privacy
for the client, as the data it is using is private and the

1https://lambdalabs.com/blog/demystifying-gpt-3
2https://quillbot.com/blog/compressing-large-

language-generation-models-with-sequence-level-
knowledge-distillation/

client is concerned about possible leak of this private
data to provider. The issue of privacy is especially im-
portant to client as the data is often one-of-a-kind and
cannot be replaced/regenerated, such as in the case of
medical or biometric data. For this reason, for several
years, MLaaS systems have been designed with client
data privacy in mind.

However, as MLaaS becomes more widespread
and the models become more complex, the provider
lacks the computational power needed to provide
MLaaS on its own. Especially in the context of avail-
ability of third-party servers to provide computational
capability, it is in the interest of the provider to out-
source the MLaaS service to a server that will only
provide the computational capability. Even in this
context, the client privacy is crucial. Additionally,
in this context, the privacy of the provider is critical
as well. Specifically, since the development of the
model requires significant computational and finan-
cial investment, it is critical that the model remains a
secret and not revealed to anyone including the client
and the server.

Our work focuses on using oblivious neural net-
works with mulitikey encryption (Chen et al., 2019b).
Here, both the client and model provider each hold a
secret key and both are needed for decryption. The
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result is computed by the third-party server and sent
back to the client and model provider. The model
provider applies their secret key to get a partial de-
cryption and sends it back to the client who is able to
fully decrypt and learn the result.

The protocol in (Chen et al., 2019b) provides pri-
vacy only for the honest-but-curious and collusion
models. In other words, if the server, model provider
or client is only going to try to infer from the data it
has learned, the privacy property is satisfied. How-
ever, if the server is malicious and violates the proto-
col even slightly, it can leak model parameters without
being detected. One way to do this is to encrypt the
model parameters as the return value and send them
to the client instead of sending the actual result of
the model. In this case, the server will not be able
to detect this as the data it sees is encrypted with the
client’s key. It follows that this attack would go com-
pletely undetected by the model provider 100% of the
time.

A simple solution would be to have the model
provider check the result before returning it to the
client but this is insufficient. The output of the model
applied to the private data is, itself, private data as
well. Additionally, it is possible in certain appli-
cations to recreate the original data from the output
(Mai et al., 2018). Therefore, there is a strong need
for a solution that ensures the result was computed
correctly without revealing what the output is to the
model provider.

In this paper, we identify a novel attack against
oblivious neural network inference and propose a se-
cure protocol that we call Secure Oblivious Neural
Network Inference, or SONNI, to combat it and en-
sure security in the presence of a dishonest server and
dishonest client/provider (majority dishonest).

The contributions of the paper are as follows:

• We introduce a novel attack, called the Silver Plat-
ter attack, to enable model stealing in the oblivi-
ous neural network inference setting.

• We propose a novel protocol for oblivious neural
network inference that mitigates this novel attack
and does not violate the client’s data privacy.

• We evaluate our protocol in terms of the level of
privacy it provides and the overhead of providing
that privacy.

In Section 2 we provide background of the encryp-
tion schemes employed in this work. In Section 3 we
detail the vulnerability of the existing outsourced neu-
ral network inference protocol and the novel attack we
construct. We propose a solution and prove its secu-
rity in Section 4. We provide related work in Section
5 and closing remarks in Section 6.

2 Background

2.1 Fully Homomorphic Encryption

Traditional encryption schemes require decryption
before any data processing can occur. Homomorphic
encryption (HE) allows arithmetic directly over ci-
phertexts without requiring access to the secret key
needed for decryption, enabling data oblivious proto-
cols. Fully homomorphic encryption (FHE) schemes
support an unlimited number of multiple types of op-
erations. The Cheon-Kim-Kim-Song (CKKS) (Cheon
et al., 2017) cryptosystem supports additions as well
as multiplications of ciphertexts. The message space
of CKKS is vectors of complex numbers.

A small amount of error is injected into each ci-
phertext at the time of encryption to guarantee the
security of the scheme. This error grows each arith-
metic operation performed. Therefore, once a certain
threshold of multiplications are performed the error
grows too large to decrypt correctly. Although the
bootstrap operation reduces this error to allow circuits
of unlimited depth, for the purposes of this work no
such operations are needed. The following operations
are supported:

• Encode: Given a complex vector, return an en-
coded polynomial.

• Decode: Given a polynomial, return the encoded
complex vector.

• Encrypt: Given a plaintext polynomial and public
key, return a ciphertext.

• Decrypt: Given a ciphertext and the correspond-
ing secret key, return the underlying polynomial.

• Ciphertext Addition: Given two ciphertexts, or a
ciphertext and a plaintext, return a ciphertext con-
taining an approximate element-wise addition of
the underlying vectors.

• Ciphertext Multiplication: Given two ciphertexts,
or a ciphertext and a plaintext, return a ciphertext
containing an approximate element-wise multipli-
cation of the underlying vectors.

• Relinearization: Performed after every multipli-
cation to prevent exponential growth of ciphertext
size. This function is assumed to be executed after
every homomorphic multiplication in this work
for simplicity.

• Ciphertext Rotation: Given a ciphertext, an
integer, and an optionally-generated set of
rotation keys, rotate the underlying vec-
tor a specified number of times. For in-
stance, Rotate(Enc([1,2,3,4]),1,kr) returns
Enc([2,3,4,1]).



Figure 1: Standard Outsourced Oblivious Neural Network Inference Model

2.2 Multikey Encryption

Chen et al. (Chen et al., 2019b) extended existing
FHE schemes to operate on multiple sets of secret
key, public key pairs. Consider the case where there
are two key pairs owned by two parties (such as the
Client and Provider). Each party encrypts a value us-
ing their respective public keys. These ciphertexts,
denoted by encc(X) and encp(Y ) can be multiplied
together homomorphically, resulting in encc,p(XY ).
Note that this notation means the ciphertext is now
multikey encrypted by the keys of both the Client and
the Provider and that enck1,k2(V ) = enck2,k1(V ). The
following additional operations are supported:

• PartialDec(ciphertext,secret key) - given a mul-
tikey encrypted ciphertext and one of the secret
keys corresponding to a public key encrypting the
ciphertext, return a partial decryption of the ci-
phertext. This partial decryption does not yield
any additional information.

• Combine(partial decryptions) - given an array of
partial decryptions, return the underlying plain-
text value. This combine function only works if
there is a partial decryption corresponding to each
public key used in the multikey encryption.

3 Proposed Model Stealing Attack

In this section, we demonstrate that the existing ap-
proach for using multiparty encryption to provide pri-
vacy in outsourced MLaaS systems suffers from a se-
rious violation of privacy for the provider if the server
behaves maliciously and tries to leak parameters to
the client. We call this attack the Silver Platter attack,
as the adversary is delivered the exact model parame-
ters with little effort. Additionally, this attack will go

unnoticed by the provider.
The outsourced oblivious neural network infer-

ence system based on multi-key FHE (Mukherjee and
Wichs, 2016) consists of three parties, the client, the
model provider and the server (to which the computa-
tion is outsourced).

The client holds some private data x for use as
input to a parameterized function f . The model
provider, referred to henceforth as the provider, holds
a private function f that is comprised of private pa-
rameters. The server holds no private data and is in-
stead responsible for computing f (x) given encryp-
tions of f and x.

In this model, there are two privacy requirements:
the client wants to ensure that the values of x and f (x)
are not released to anyone while the provider wants
to ensure that none learns the (parameters of) func-
tion f . However, existing client server models typ-
ically focus on the privacy requirement of the client
and ignore the privacy requirements of the provider or
server (Boulemtafes et al., 2020; Yang et al., 2023).

These threat models are insufficient, considering
how rampant model stealing attacks have become
(Oliynyk et al., 2023). Hence, we assume the byzan-
tine threat model where any of the parties may be
byzantine. If the server is byzantine, it may be co-
operating with either the client (to steal the model f )
or with the provider (to steal x or f (x)).

In cases where the server is colluding with the
client, it will try to steal some/all model parameters in
place of the value for f (x). In cases where the server
is cooperating with the provider, it is in the best inter-
est of both of them to return f (x) to the client as fail-
ure to do so would raise suspicion on the server and/or
provider and it will cause reputational/financial dam-
age to one or both of them. However, the server and
provider may exchange additional messages that al-



low them to learn f (x) or x
The communication between client, provider and

server is as shown in Figure 1 where we utilize
the oblivious neural network inference protocol from
(Chen et al., 2019b). The client encrypts their data
using fully homomorphic encryption (FHE) and the
provider encrypts their function parameters using a
different public key. These encryptions (along with
the corresponding public keys) are sent to the server.
The server then computes encc,p( f (x)) which is re-
turned to both the client and the provider. Partial
decryptions are obtained with each party’s secret key
and are combined by the client to obtain the full de-
cryption of f (x).

The approach in (Chen et al., 2019b) preserves the
privacy of the client as the provider and server only
sees the encrypted version of the data. It also pre-
serves the privacy of provider if the server is honest-
but-curious, as the server only sees the data in en-
crypted format. However, if server is dishonest, it
can collude with client to reveal the model parame-
ters. We discuss such attacks next.

In step 2 of Figure 1, a malicious server sends an
encryption of the parameters encc,p( f ) instead of the
intended result encc,p( f (x)). encc,p( f ) can be triv-
ially computed from encp( f ) which is obtained by
the server during step 1. This ciphertext is fully de-
crypted only by the client during step 3, revealing pri-
vate model parameters. This attacks appears identical
to normal operation to the provider. In cases where
there are multiple ciphertexts with model parameters,
the attack may be repeated to obtain them all.

The reason we call this the Silver Platter attack
is that this can be repeated ad infinitum without the
provider learning anything about the fact that the
model is being compromised. This paper focuses on
addressing this attack.

4 Attack Mitigation via Oblivious
Results Checking

In this section we propose a protocol that mitigates the
Silver Platter attack and we prove its security. First, in
Section 4.1 we introduce the problem formally. Next,
in Section 4.2 we describe our approach at a high level
before going into details in Section 4.3. We then de-
scribe the special steps needed to prepare the cipher-
text at the beginning of the computation as well as the
work needed to check that the result was computed
correctly. Lastly, in Section 4.4 we analyze our proto-
col and prove its security.

4.1 Problem Statement

In this section, we define the problem statement for
dealing with Silver Platter attack. Here, a party
(client, server or provider) may be honest or dishon-
est. An honest party follows the prescribed protocol,
while a dishonest party could be byzantine and behave
arbitrarily. We assume that the dishonest party intends
to remain hidden. Therefore, it will send messages of
the required type (such as CKKS ciphertexts). How-
ever, the data inside may be incorrect.

Recall that in the multiparty communication, the
client starts with its own data, x, and desires to obtain
a value f (x) where f is a function known to provider.
The actual computation of f (x) is done by a server.

In the multiparty communication considered in
this paper, we follow a secure with abort approach
where security is guaranteed at all times, i.e., the
provider or server never learns the client data, x or the
computed value f (x) but if dishonest behavior is de-
tected, the computation may be aborted. This remains
true in all cases, i.e., even if the provider and server
send additional messages between them privacy will
not be violated. We also want to ensure that the model
parameters are never revealed to the client even if the
server and client collude and send additional mes-
sages between them. However, if everyone behaves
honestly then the client should receive the value of
f (x). Thus, the privacy requirements are as follows:

Liveness Upon providing encc(x) to provider, the
client should eventually learn f (x) if the provider
and server behave honestly.

Provider privacy The client should not learn the
model parameters even if the server is colluding
with the client.

Client privacy The provider should not learn x or
f (x) even if the server is colluding with the
provider.

Oblivious Inference The server should not learn in-
put x, model parameters, or result f (x).

Secure with Abort If any party violates the proto-
col then the computation is aborted and the client
does not learn anything.

As stated, we follow the secure with abort model
for handling collusion between the server and client,
i.e., the provider will abort the computation if it de-
tects that the server or client is trying to steal model
parameters. In this case, the client does not receive
f (x). It also does not learn any model parameters.

In our protocol, the client does not need to abort
as there is no possibility of the provider and server
learning x or f (x).



Figure 2: SONNI sequence diagram.

4.2 Mitigation Approach

In this section, we propose our approach for providing
privacy to provider as well as the client. Specifically,
the approach in (Chen et al., 2019b) already provides
privacy for the client data. We ensure that the cor-
responding privacy is preserved while permitting the
provider to have control over the data being transmit-
ted to the client so that it can verify that the server is
not trying to leak the provider’s private data (namely
the model parameters) to the client.

Our approach is based on the observation that ma-
chine learning algorithms operate on vectors as op-
posed to scalars, making FHE well-suited to the task.
Ciphertexts in FHE encode and encrypt entire vectors
of real values. We take advantage of this fact for our
mitigation strategy. We dedicate some slots of the
ciphertext (and therefore some indices of the under-
lying vector) to verify the computation is performed
correctly. These slots will not contain f (x) values but
rather randomly-generated values for use in a results
checking step.

The basic idea of the protocol is to have the server
compute f (x) in most slots of the ciphertext and g(y)
in other slots, where g is a function that is of the same

form as f (e.g., if f is a linear/quadratic function then
g is also a linear/quadratic function with different pa-
rameters.). Here, g is a random function generated
at the start of the protocol by the provider and y is
a random secret input vector also generated by the
provider. Upon receiving the answer from the server,
the provider will get the decryption of g(y) by re-
questing it from the client. And, if the value of g(y)
matches then the provider will return the result to the
client. Since g and y are only known to the provider,
if g(y) is computed correctly then it provides a confi-
dence to the provider that the server is likely to have
performed honestly. If g(y) is not computed correctly,
then the provider would realize that either server or
client is being dishonest and can refuse to provide the
partial decryption of the encrypted value of f (x) nec-
essary to learn f (x).

We observe that the use of the extra slots for g(y)
reduces the number of slots available to the client.
Also, the approach for providing privacy is proba-
bilistic, i.e., there is a possibility that a dishonest
server could use some of the slots used by f to leak
information without being caught. This probability
will be low if the number of slots used for g are high.
However, in this case, the overhead will be higher as



the number of slots available for f would be lower.
We discuss this in Section 4.4 and show that the prob-
ability of a successful model stealing attack against
our system is negligible.

4.3 Protocol Details

SONNI is built on top of the existing oblivious neu-
ral network inference protocol with added steps. The
protocol is detailed in Algorithm 1.

First in step 1, the client generates a ciphertext
containing the vector x in the first d slots of the ci-
phertext and sends it to the provider. The provider in-
serts the y values in slots d +1..d +m, where m slots
are used for y. Subsequently, provider permutes this
vector in step 3. It also permutes function f and g
in a similar fashion. As an illustration if the f was
x[1]+ 2x[2] and (x[1],x[2]) is permuted to (x[2],x[1])
then f would be changed to 2x[2]+ x[1].

Additionally, to permute the computation, the
provider can also change f to be 2x[2]+x[1]+0∗y[1],
where y[1] is one of the values used for the computa-
tion of g(y). Likewise, the computation of g can use
some of the values in the x vector with coefficient 0.
It could use any arithmetic operation that uses y (re-
spectively, x) while computing the value of f (x) (re-
spectively g(y)) in such a way that the final answer
will be independent of the y (respectively x) value.
This will prevent the server from performing data-
flow techniques to determine the slots used for f and
g.

Since the server is not aware of the placement of x
and y in the ciphertext and it uses the permuted input,
it computes permuted f (x) and g(y) in step 6. This
value is sent to both the client and the provider.

In step 10, the client uses the mask provided by
the provider to compute encc,p(g′(y)), where g′(y)
denotes g(y) masked by a random vector known to
the provider (similarly f ′(x) denotes f (x) masked by
that same random vector). This value and the partial
decryption provided by provider is used to compute
g′(y). If g′(y) is computed correctly, then the model
owner is convinced that the entire vector was com-
puted correctly.

Since the computation of g′(y) by the client may
have a small error due to the use of FHE whereas
the value computed by the provider is the exact value
of g′(y), we use g′c(y) to denote the value computed
by the client and g′p(y) to be value computed by the
provider. Each value is quantized such that q(g′c(y))
will be equal to q(g′p(y))

Then, in steps 11-14, the client and provider per-
form a privacy-preserving comparison protocol to en-
sure q(g′c(y)) was computed correctly. After this

passes, the client and provider jointly decrypt the re-
sult ciphertext containing f (x) and only the client
learns f (x). One of the concerns in this step is a
malicious provider that tries to compromise the pri-
vacy of the client. Specifically, in this step, if the
provider specifies the incorrect indices such that the
indices correspond to f ′(x) instead of g′(y), then the
provider could learn the value of f (x). To prevent
this, the proof that the client computes the value of
g′(y) correctly is achieved via a zero-knowledge ap-
proach discussed later in this section.

The above protocol has two important stages, ci-
phertext preparation (lines 2-5) and result checking
(11-14). Next, we provide additional details of these
steps. Ciphertext preparation refers to the manipu-
lation done by the provider before it sends the data
to server to compute f (x) and g(y) whereas the re-
sult checking refers the the computation between the
client and provider so that it can verify that g(y) was
computed correctly by the server.

4.3.1 Ciphertext Preparation

The security of our proposed protocol relies on the
client and server not knowing the indices of the y val-
ues. To achieve this, the client appends m zeroes to
the end of their data vector x before encryption. This
ciphertext is sent to the provider. Then, through a
series of masking multiplications, rotations, and addi-
tions, the ciphertext is shuffled as shown in Algorithm
2. We note that we do not require arbitrary ciphertext
shuffling for the security of our protocol. Our secu-
rity rests on the server not being able to guess which
slots correspond to x values and which slots corre-
spond to y values. The vectors of function parameters
are shuffled in the same manner prior to encryption.
The provider finally adds random y values to the zero
indices in the ciphertext.

4.3.2 Result Checking

If the provider does not verify that the ciphertext they
are decrypting does not contain model parameters,
the Silver Platter attack will succeed. However, the
provider should not learn f (x) so it is not permissi-
ble to have the provider decrypt the result, examine
it, and return it to the client. Indeed, if this were al-
lowed, the protocol would be open to an attack where
the provider works with the server to learn x in a sim-
ilar manner. Our idea is to give the client access only
to the computed g(y). If the client is able to correctly
tell the provider the values of g(y), then the provider
will help the client decrypt the final result and gain
access to f (x).

The provider generates a random vector rand ∈



Algorithm 1 Secure Oblivious Neural Network Inference
1: C sends to P : encc(x[1],x[2], ...x[d],0, ...0)

2: P computes encc,p(x[1],x[2], ...x[d],y[1],y[2],y[m])
3: P computes encc,p(perm(x,y))
4: P computes PermuteParameters( f ,g) using the same permutation.
5: P sends to S : encc,p(perm(x,y)), PermutaParameters( f ,g)

6: S computes and sends to P and C : encc,p(perm( f (x),g(y)))
7: P computes rand = [−1,1]d+m

8: P computes encc,p(perm( f ′(x),g′(y))) = mult(encc,p(perm( f (x),g(y))),rand)
9: P sends to C : decp(encc,p(perm( f ′(x),g′(y)))),encp(rand)

10: C computes g′(y)

11: C sends to P : hash1 = h(q(g′(y)))
12: P computes g′(y)
13: P computes hash2 = h(q(g′(y)))
14: If hash1 ̸= hash2, P aborts

15: P sends to C : rand
16: C computes f (x)

Algorithm 2 Ciphertext shuffle

indices← /0

for i = 0 to m do
index← random(0,d +m)
while index ∈ indices do

index← random(0,d +m)
end while
indices.add(index)

end for
indices.sort()
i← 0
for index ∈ indices do

maskedvalue← mult(ct,eindex) ▷ ei denotes a
zero vector with a 1 at index i

maskedvalue ← rotate(maskedvalue,d + i −
index)

ct← mult(ct,1− eindex)
ct← add(ct,maskedvalue)
i← i+1

end for

Rd+m that contains in each index a random nonzero
real value. This vector is sent to the client. Both the
provider and the client compute:

encc,p(perm( f ′(x),g′(y)))
= mult(encc,p(perm( f (x),g(y))),rand)

They also compute a partial decryption of this re-
sultant ciphertext. The provider sends their partial de-
cryption to the client that combines the partial decryp-
tions to recover g′(y) = g(y)× rand (and additionally
f ′(y) = f (y)× rand).

The provider computes g′(y), as they know g, y,
and rand due to having generated each in plaintext at
the start of the computation. Now, the provider needs
to be convinced that they have the same value of g′(y)
as the client without revealing these values to each
other. If the client were to send g′(y) to the provider,
the provider could take advantage of this by storing
f (x) or x in lieu of g′(y) (or an obfuscated version
thereof). Similarly, the provider cannot simply send
g′(y) to the client because the client could simply lie
and state that the values are the same.

A secure two-party computation protocol is
needed to prove to the provider that the values of
g′(y) are the same without revealing those values to
the other. This protocol can work on plaintext val-
ues because g′(y) exists in plaintext to both parties at
this point in the protocol (as decryption has already
occurred). Both parties compute h(g′(y)) for some
low-collision hash function h. The client sends their
result to the provider and the provider verifies that the
hashes are identical.

Due to the approximate nature of arithmetic un-
der FHE, the value of g′(y) decrypted by the client is
likely to be slightly different than the value computed
in plaintext by the provider. To mitigate this, we use
a simple uniform quantization scheme with intervals
large enough that the noise from homomorphic com-
putations will not affect the performance. Therefore,
the client and provider compute h(q(g′(y))) instead of
h(g′(y)) for a quantization scheme q.

Once the provider is convinced that g′(y) was
computed correctly, they share the random vector
rand with the client to for use in recovering f (x).



4.4 Security Analysis

In this subsection, we evaluate the theoretical prob-
abilities of attacks successfully working against the
proposed system. We refer to the probability of break-
ing the homomorphic encryption scheme as ε1 and the
probability of breaking the incorporated hash function
as ε2. These values are negligible, given proper selec-
tion of encryption security parameters and hash func-
tion.

Theorem 1. Let d be the dimensionality of the client’s
secret data x and m be the number of ciphertext slots
dedicated to containing y values. The probability
of successfully performing the Silver Platter attack
against SONNI to steal k scalar model parameters is
upper bounded by ( d

d+m )
k
+ ε1 + ε2.

Proof. The probability of successfully performing the
attack depends on the server passing the result check-
ing step of the protocol. The provider performs the
ciphertext shuffle locally and, due to ciphertext in-
distinguishability, the server is unable to differentiate
any permutations. Therefore, the server must guess
which slots of the ciphertext will not be checked dur-
ing the result checking step. To hide a single scalar
value in the result ciphertext without being found out
results in one of the d slots dedicated to the results
being selected instead of one of the m slots, or a prob-
ability of d

d+m . Stealing a second value in this cipher-
text is therefore a probability of d−1

d+m−1 which is less
than the original probability, so the optimal strategy
is to independently steal one parameter per result ci-
phertext for a total probability of ( d

d+m )
k

for k model
parameters. The only other ways to successfully per-
form the attack are to break the hash function or the
homomorphic encryption scheme, thus the theorem is
proved. We note that no modifications may be made
to the ciphertext by the client, lest the decryption fail
(from the client and provider attempting to partially
decrypt different ciphertexts).

Theorem 2. The probability of the provider work-
ing with the server to successfully steal any amount
of client data x or f (x) is upper bounded by ε1 + ε2.

Proof. The provider and server together only learn
encryptions and hashes during the protocol. If the
provider is able to break the hash, a new attack is en-
abled. The server can manipulate the results cipher-
text such that the client returns h(q( f ′(x)))) in place
of h(q(g′(x)))) to the provider who can then learn
q( f ′(x)) via breaking the hash. Therefore, being able
to break either a hash or an encryption is the only way
to learn new information about x or f (x), proving the
theorem.

Table 1: Probability of successful Silver Platter attack
against SONNI. Vector size of 1024 is used.

m Parameters Stolen P(Success)

4

10 0.952
128 0.513
256 0.237
512 0.0311

32

10 0.720
128 0.011
256 6.34×10−5

512 7.07×10−11

512

10 9.25×10−4

128 2.88×10−43

256 1.02×10−96

512 1.23×10−307

In Figure 3, we analyze Theorem 1 quantitatively.
We assume in this analysis that the attack will be per-
formed in one round, rather than stealing one param-
eter per transaction (as that becomes incredibly costly
from a financial perspective when the number of pa-
rameters reaches thousands or millions). In FHE ap-
plications it is a common practice to use 128-1024
size vectors (Jindal et al., 2020). We consider the case
where the ciphertext has 1024 slots, some of which
(d) are allocated to the client and some (m) are allo-
cated to the provider. When m = 1, i.e., only one slot
is allocated to the provider for verification of g(y),
the probability of a successful Silver Platter is quite
high. However, even with a few slots for the provider,
the probability of a successful Silver Platter decreases
sharply. Table 1 demonstrates this. With m = 32, i.e.,
32 slots allocated to provider, the probability of steal-
ing 10 parameters is 0.720, the probability of stealing
128 parameters is 0.011, and so on. The probability of
stealing 512 parameters is 7.07×10−11. We note that
modern machine learning models often include thou-
sands or millions of parameters. The simple projec-
tion matrix model featured in (Sperling et al., 2022)
includes 32768 parameters. Even if the adversary
maximizes their chance of successfully performing
the attack by stealing a single model parameter at a
time over 32768 transactions and if only 2 ciphertext
slots dedicated to verification of g(y), the probabil-
ity of stealing all these parameters is 1.51× 10−28.
Stealing just half of the parameters has a chance of
1.23× 10−14 of success. Batching capability is re-
duced by only 0.2% while privacy is maintained with
only a negligible chance of being violated.

In the case where even a small number of model
parameters leaking is undesirable, using an m value of
512 ensures that Silver Platter attacks are extremely
unlikely to be successful. Even stealing 10 in this cir-
cumstance has only a 9.25×10−4 chance of succeed-
ing.



Figure 3: Probability of performing a Silver Platter attack without being detected based on the number of ciphertext slots
dedicated to checked values.

We note that a failed attempt at model stealing in
this circumstance is more dire than a failed attempt
at breaking an encryption scheme, for instance. It is
anticipated that the server and provider will have a fi-
nancial relationship which would be compromised if
the server is found to be dishonest. Also, the server
is likely to be a company that provides a server farm.
That means that risking this relationship for dishonest
behavior that is very likely to be caught is not worth-
while. This may risk legal or financial consequences.

Also, our protocol preserves client privacy. This
is especially important for a client as its data, x or
f (x), is often impossible to replace, as the data cor-
responds to medical information, biometric informa-
tion, etc. By contrast, revealing a very small num-
ber of parameters does not significantly affect the
provider. As discussed in Section 3, the Silver Platter
is undetectable for the provider if one uses the exist-
ing approach (Chen et al., 2019b). With the level of
security provided to both the client and provider, we
can provide privacy guarantees to both of them with a
reasonable overhead.

5 Related Work

Oblivious neural network inference aims to evaluate
machine learning models without learning anything
about the data and has seen much attention in recent
years (Mann et al., 2023). XONN achieves this with
a formulation similar to garbled circuits (Riazi et al.,
2019). There is a privacy concern related to outsourc-
ing these computations. Namely, that the model will
be learned by the server. FHE has been used for in-
ference that not only protects sensitive client data, but
also prevents learning the provider’s private data (i.e.
the model) (Chen et al., 2019b). As we discuss thor-
oughly in this work, this approach is open to the unde-
tectable Silver Platter Attack. Our work protects not
only client data, as is expected in the classical obliv-

ious neural network inference formulation, but also
that of the provider.

Model stealing attacks aim to learn models from
black-box access. Broadly speaking, this either at-
tempts to steal exact model values or general model
behavior. Our work examines the former scenario.
This falls into three categories: stealing training
hyperparameters (Wang and Gong, 2018), stealing
model parameters (Lowd and Meek, 2005; Reith
et al., 2019), and stealing model architecture (Oh
et al., 2019; Yan et al., 2020; Hu et al., 2019), often
using side-channel attacks.

Gentry’s seminal work constructing the first FHE
scheme (Gentry, 2009) paved the way for more
privacy-preserving applications on the cloud. Con-
cerns over data privacy led to the development of
multi-key encryption featuring multiple pairs of pub-
lic and private keys. The first use of multi-key FHE
was proposed by López et al. (López-Alt et al., 2012).
Work followed suit, improving speed as well as sup-
porting more modern schemes (Chen et al., 2019b;
Chen et al., 2019a; Ananth et al., 2020). These
schemes are developed for secure cloud computation.
Specific optimizations have been proposed for feder-
ated learning (Ma et al., 2022).

Threshold HE schemes requiring a subset of
key holders collaborating to decrypt ciphertexts have
been devised as early as 2001 (Cramer et al., 2001;
Damgård and Nielsen, 2003). Threshold FHE
schemes have also seen popularity over the years both
shortly after the advent of FHE (Myers et al., 2011)
and in recent years using modern FHE schemes (Jain
et al., 2017; Sugizaki et al., 2023; Chowdhury et al.,
2022; Jain et al., 2017). As we demonstrate in this pa-
per, these techniques alone are not sufficient to ensure
data privacy in the outsourced server setting, as these
methods do not verify that the proper value is being
computed prior to decryption.

Collusion attacks are often not considered in the
context of FHE systems, as they tend to use the client-
server model and only account for the privacy of the



client, even in the biometrics setting where privacy
is highly desired (Engelsma et al., 2022; Drozdowski
et al., 2019; Sperling et al., 2022). Our work shows
that assuming the honest-but-curious threat model for
the participants in the MLaaS setting opens the way
for undetectable and 100% successful attacks.

6 Conclusion

In this paper, we demonstrated that the current ap-
proach to oblivious neural network inference (Chen
et al., 2019b) suffers from a simple attack, namely the
Silver Platter attack. It permits the server to reveal all
model parameters to the client in a way that is com-
pletely undetected by the provider.

We also presented a protocol to deal with the Sil-
ver Platter attack. The protocol relied on the obser-
vation that FHE based techniques utilize vector-based
computation. We used a few slots in this vector to
compute a function g(y) that could be verified by the
provider so that it can gain confidence that the server
is not trying to steal the model parameters with the
help of the client. Our protocol provided a tradeoff
between the overhead (the number of slots used for
verification) and the probability of a successful attack.
We demonstrated that even with a small overhead in
terms of the number of slots used for verification, the
probability that a server can steal several parameters
remains very small. Modern machine learning models
often involve billions of parameters. We showed that
the probability of stealing even 1% of the parameters
is very small.

Future work directions include finding a modified
shuffle method that allows the evaluation of functions
that incorporate rotations to work on shuffled cipher-
texts. Some matrix-vector multiplication methods re-
quire rotation, for instance, which is not supported by
this work (Halevi and Shoup, 2014). Extensions of
this work could also include devising a protocol that
does not increase the multiplicative depth of the cir-
cuit, leading to a reduced overhead. Our protocol is
secure against majority dishonest attacks, but it is not
clear if it is the server or the client who is dishonest
when the results checking step fails. Future work can
tackle the problem of what to do logistically when the
check fails. If the server is malicious it should indeed
be blacklisted, but this should not open the way to
a dishonest client attempting to get an honest server
blacklisted. We leave that as an open problem.
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