
Redefining Hybrid Blockchains: A Balanced Architecture 

Syed Ibrahim Omer 
City University of Hong Kong 
github.com/ibitec7/blockchain 

 
 

Abstract.  Blockchain technology has completely revolutionized the field of 
decentralized finance with the emergence of a variety of cryptocurrencies and 
digital assets. However, widespread adoption of this technology by governments 
and enterprises has been limited by concerns regarding the technology’s 
scalability, governance, and economic sustainability. This paper aims to introduce 
a novel hybrid blockchain architecture that balances scalability, governance, and 
decentralization while being economically viable for all parties involved. The new 
semi-centralized model leverages strategies not prevalent in the field, such as 
resource and node isolation, containerization, separation of networking and 
compute layers, use of a Kafka pub-sub network instead of a peer-to-peer 
network, and stakes-based validator selection to possibly mitigate a variety of 
issues related to scalability, security, governance, and economic sustainability. 
Simulations conducted on Kubernetes demonstrate the architecture’s ability to 
achieve over 1000 transactions per second, with consistent performance across 
scaled deployments, even on a lightweight consumer-grade laptop with resource 
constraints. The findings highlight the system’s scalability, security, and economic 
viability, offering a robust framework for enterprise and government adoption. 
 
Keywords.    Hybrid Blockchain, Scalability, Security, Economic Viability, 
Kafka, Kubernetes, Permissioned Systems, Containerization. 

 

1.​ Introduction 

1.1 Background 

The impact that blockchain technology has had on distributed systems and decentralized 
finance is revolutionary. Since its inception, it has led to increased trust and security in the 
systems using this technology. A distributed network of public validators ensures data 
integrity, fault tolerance, and trust by collectively agreeing on a specific state of data. 
However, widespread adoption of the technology by governments and enterprises has been 
limited by the challenges related to its scalability, governance, and economic value. Such 
organizations can not allow public validators to participate and ultimately influence the 
sensitive data that these organizations own. Therefore, they have adopted private and 
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semi-private blockchains that yield at least some authority to the hosting organizations. 
However, trying to host, maintain, and scale an entire distributed system on its own has been 
challenging for these organizations as the entire network is controlled by a single or, at most, 
a small group of organizations. Moreover, as the system scales, the financial burden on these 
organizations to maintain the underlying infrastructure increases. Existing solutions like 
public or permissioned blockchains fail to address all these issues thoroughly. In public 
blockchains, individual validators ensure scalability but compromise governance, as authority 
over sensitive data rests with public participants. Conversely, permissioned blockchains 
prioritize governance and data control but suffer from scalability challenges, reduced public 
trust, and high operational costs. 

1.2 Motivation 

To achieve broader adoption of blockchain technology for enterprise and government use it is 
imperative to tackle the issues related to scalability, economic viability, and governance 
adequately. The solution that such organizations need must be scalable, economical, and offer 
adequate governance for the sensitive data that these organizations possess. There is a need 
for a hybrid blockchain architecture that combines the data integrity and trust of public 
blockchains with the effective governance of private blockchains to provide a scalable and 
economical solution that these organizations can implement sustainably. This hybrid approach 
leverages the strengths of both public and private blockchains while addressing their 
respective shortcomings. Such solutions may also create opportunities for Central Bank 
Digital Currencies, Capital Markets, Supply Chain Management, etc. 

1.3 Research Objectives and Contributions 

By acknowledging the challenges that governments and enterprises have to confront for the 
adoption of blockchain technology, this paper aims to resolve such issues effectively. 
Therefore, the objective of this paper is to: 

●​  Design a novel blockchain architecture that can be implemented practically by 
governments and enterprises. 

●​ Solve the issues related to scalability, governance, and economic viability that are 
hindering existing blockchain solutions. 

●​ Implement and demonstrate the new architecture as a practical and viable proof-of-concept 
solution that solves the issues discussed. 

Given these objectives, this paper contributes the following to the academic state of 
blockchain research: 

●​ Introduction of a semi-centralized blockchain model for effective data governance and 
transparency. 

●​ Separation of networking and consensus aspects of the blockchain architecture as separate 
modules that can scale independently. 
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●​ Introduction of applications as containerized microservices in the blockchain ecosystem 
that enhance scalability, security, and provide consistent performance. 

●​ A stake-based validator selection mechanism for providing economic incentives and safety 
guarantees. 

●​ A demonstration of scalability of the new architecture through simulations with consistent 
performance across scaled deployments even on resource-constrained hardware. 

1.4 Paper Structure 
 
The following paper is divided into 8 sections with each section serving a unique purpose. 
The rest of the paper is structured as follows:  

●​ Section 2 discusses academic work related to the objective of this paper. 

●​ Section 3 presents the proposed architecture of this paper. 

●​ Section 4 provides theoretical analyses for the proposed architecture.  

●​ Section 5 details the experimental setup and simulations to test the new architecture.  

●​ Section 6 presents the results and evaluation of the experiment conducted.  

●​ Section 7 discusses the results of the experiment, evaluates their alignment with the 
theoretical analyses presented in Section 4 and any other challenges or insights.  

●​ Section 8 concludes the paper with the architecture’s limitations, areas for improvement, 
future work and implications. 

2.​ Related Work 

2.1 Overview of Blockchain Architectures 

Currently, there are three broad classes of blockchain architecture that offer varying levels of 
governance: Public blockchains, Permissioned or private blockchains, and hybrid 
blockchains. Public blockchains work based on decentralized authority without relying on a 
single trusted authority. Trust is built as a collective voting consensus among the network 
participants. Permissioned blockchains, however, limit the number of participants who can 
contribute to the network by only granting access to participants with permissions. The 
participants are usually trusted parties and operate on a smaller and more private scale. Hybrid 
blockchains combine different aspects of public and permissioned blockchains to provide a 
policy that balances the purposes of both. Such architectures are ideal for organizations 
aiming for a custom solution without implementing either the extreme of public or private 
chains. 
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2.2 Proof-of-Work 

The original Bitcoin whitepaper introduces the Proof-of-Work consensus model that relies on 
the security of the blockchain by the cryptographic work done on the chain. In this model, 
nodes compete against one another by expending resources and energy to find the correct 
nonce: a number that gives a specific number of leading zeros when hashed together with the 
block header [1]. While this leads to a high degree of cryptographic security, the solution is 
not scalable and efficient, which is crucial for private adoption. On its own, this solution can 
only produce up to one block every ten minutes [2]. Furthermore, the amount of resources 
expended for the security is also impractical. As of December 8, 2024 Bitcoin’s energy 
consumption has been estimated to be around 175.87 TWh per year [3]. For comparison, the 
total annual energy consumption of Pakistan (a country with a population of nearly 240 
million) is 128.96 TWh as of 2023 [4]. Moreover, the paper argues that as long as the honest 
nodes possess more computational power than the attackers, they can outpace the attackers, 
and the probability of the attackers catching up to the chain and compromising the network 
decreases exponentially as more blocks are added. While this strategy guarantees 
unprecedented security for the blockchain, it does not adequately address the vulnerability of 
a potential 51% attack. The paper defends the case for a hypothetical 51% attack where the 
attackers have more computational power than the honest nodes by assuming they will likely 
use the surplus power to put honest work on the chain rather than compromise it since honest 
behavior would benefit them economically [1]. However, this assumption may not hold if a 
government implements such a system because the attackers may not be interested in the 
economic incentive gained. For instance an adversarial state-level attacker or a terrorist 
organization may not be interested in using the computational advantage for economic gain as 
it does not align with their objectives. 

2.3 Proof-of-Stake 

Ethereum 2.0 introduced the Proof-of-Stake consensus model, where validators that decide on 
the next block are chosen based on their stake in the network [5]. With the risk of losing their 
stake, this system assumes that the actors will act honestly. However, this model introduces 
the risk of an unpredictable level of centralization, which may be worse than if the 
governments had a fully decentralized network. If there is some form of centralization in such 
a model, it would be even worse because instead of having a decentralized system, they have 
instead stumbled upon a centralized system that outsources the central authority to a foreign 
entity. Suppose a small faction of validators gains the majority control by having a majority 
collective stake. They may collaborate in compromising or influencing the system at their 
will. Without a central authority to break this monopoly, there is almost no way for the honest 
nodes to gain back authority over the network. This raises serious concerns about the security 
and governance of sensitive data that these validators may have over the hosting 
organizations. This model guarantees the system's security by assuming that the significant 
amount of stake that the attackers would have to put up to compromise the system would be 
highly impractical. While this assumption may hold for decentralized cryptocurrencies, 
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state-level attackers may not have a shortage of funds to gain central control of the system 
through staking. So, such a problem raises concerns related to both security and governance. 

2.4 Scalability Solutions 

The low transaction throughput, such as 7 transactions per second for Bitcoin and 30 
transactions per second for Ethereum 1.0 [5], along with high latency for transactions and 
resource-heavy consensus mechanisms, required innovative solutions that could address these 
issues. Various strategies have been employed, such as Layer 2 solutions, Sharding, and 
innovations in consensus protocols, to make the technology more scalable and practical for 
widespread use. Innovations in consensus protocols offer the most promising solutions as they 
aim to address scalability issues from the foundation. For instance, Tendermint employs a 
modular architecture that separates consensus and networking, allowing for independent 
scalability, a strategy that is also employed in this paper [6]. Layer 2 solutions are meant to be 
implemented on top of existing blockchain implementations to improve their scalability. 
These solutions try to settle interactions off-chain and only post the final or compressed 
results to the chain to decrease the load on the blockchain. Such solutions include the 
Lightning Network that tries to settle micropayments among users [7], rollups that execute 
transactions off-chain but only post the compressed proof of the transactions to the 
blockchain, and state channels that allow the execution of off-chain interactions privately, 
only posting the results on the chain [8]. However, these solutions rely heavily on localized 
trust, which may not be ideal for the governance needed for enterprise or government use 
cases. Lastly, sharding solutions have been employed to physically partition a blockchain’s 
state and transaction processing workload across multiple smaller chains called shards [8]. 
Therefore, the blockchain can benefit from parallel processing, increasing transaction 
throughput. However, this method can introduce a degree of complexity that makes the 
solution difficult to scale and implement. Managing inter-shard communication is challenging 
as transactions crossing shards can cause increased network congestion and require increased 
synchronization, which can easily lead to high latency and poor performance. 

2.5 Permissioned Blockchains 

Permissioned blockchains aim to resolve the issues related to privacy and governance by 
enabling fine-grained access control. The governance structure of permissioned blockchains 
also aligns well with the regulatory requirements under which such entities must operate. 
Such architectures may also improve performance compared to public blockchains, as there is 
a smaller group of trusted validators for consensus. However, scalability in permissioned 
blockchains is limited as the responsibility for scaling lies primarily with the governing 
entities, which can incur a significant cost when scaling a distributed infrastructure. 
Permissioned blockchains also suffer from increased centralization, which risks a single point 
of failure that can compromise the system. Moreover, this model offers limited transparency 
as the data is not democratized, which may lead to decreased public trust and, in specific 
contexts, failure to adhere to regulatory compliances related to the freedom of information. 
Implementations like Hyperledger Fabric offer a high degree of modularity and 
configurability in the consensus mechanisms and permission policies [9]. However, 
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fundamentally, any possible configuration remains permissioned regardless of the leniency or 
improvisation they offer to achieve a hybrid policy. Regardless, permissioned blockchains lay 
the groundwork for hybrid architectures by offering robust and controlled environments for 
data governance. 

2.6 Hybrid Blockchain Architectures 

Most of the work done on hybrid blockchains has either been an improvisation of 
permissioned blockchains to offer leniency for public validators to participate, or an attempt 
to merge public and private blockchains. This improvisation causes such solutions to solve the 
governance issue at the expense of creating another issue related to security or scalability. For 
instance, Dragonchain, an attempt to merge public and private chains, allows enterprises to 
use private blockchains while interoperating with public blockchains like Ethereum or Bitcoin 
for data anchoring [10]. In doing so, it relies on external public chains for anchoring, creating 
performance and scalability bottlenecks. Moreover, such improvisations lead to 
interoperability issues as seamlessly connecting public and private chains is technically 
complex and often lacks standardized protocols due to distinct operating policies. 
Furthermore, such implementations can introduce the risk of new vulnerabilities, especially at 
integration points. Therefore, for a successful implementation of a hybrid blockchain, it is 
necessary that any new architecture addresses these issues inherently and cohesively 
implements the policy to reduce the risk of vulnerabilities, or performance and scalability 
limitations. Therefore, there is a need for a new hybrid architecture that, from its foundation, 
is designed to offer a hybrid governance policy while being scalable and secure, cohesively 
integrating all its features to avoid bottlenecks and security vulnerabilities. 

2.7 Kafka and Microservices in Blockchain Systems 

Apache Kafka is a distributed event-streaming platform known for its ability to handle 
high-throughput, real-time data pipelines [11]. In blockchain systems, Kafka has the potential 
to be used as a messaging middleware to handle node-to-node communication, reduce delays 
caused by synchronous validation by enabling asynchronous processing, and provide store 
and replay streams for effective auditing, fault tolerance, or debugging. Hyperledger Fabric, a 
permissioned blockchain, utilizes Kafka as an ordering service, ensuring transactions are 
batched and ordered before processing [12]. While effective for ordering transactions, this is a 
limited implementation of Kafka that can potentially be used as a distributed messaging and 
communications tool among nodes. The microservices architecture involves breaking 
applications into smaller, loosely coupled, and independently deployable services. When used 
in the context of blockchains, they have the potential to modularize the blockchain 
functionality, allowing developers to work on each module independently without 
compromising the entire system. Moreover, such applications can improve scalability by 
allowing services to scale independently. Such implementations can also improve fault 
isolation and simplify debugging without jeopardizing the system. Hyperledger Indy is a 
blockchain architecture that uses microservices principles by modularizing identity services 
such as verifiable credentials and decentralized identifiers [13]. However, its implementation 
is limited and lacks general blockchain application. 
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2.8 Summary and Research Gap 

Mainstream public or permissioned blockchain implementations fail to fully address the issue 
of balancing governance, security, scalability, and decentralization needed for enterprise and 
government adoption, prompting the need for hybrid solutions. There has been a significant 
gap in research related to hybrid blockchains, with existing solutions being improvised 
implementations of existing mainstream blockchain solutions, causing new issues related to 
scalability, security, or governance. As highlighted by the Ethereum whitepaper, the 
blockchain trilemma of balancing security, scalability, and decentralization is a complicated 
issue that can not be resolved by an improvised solution or a layer 2 solution [5]. It requires a 
new consensus architecture to be built with clear prior objectives to solve these issues from 
the foundation of the new architecture. Kafka and microservices have been utilized in specific 
limited contexts but have not been implemented to benefit from their full potential due to the 
limitations of existing architectures. There has been a lack of research exploring using such 
technologies to solve governance, scalability, and security issues. 

3.​ Proposed Architecture 

3.1 Architecture Principles and Design Objectives 

The solution that this paper proposes is based on three foundational principles: to offer a 
degree of decentralization with effective governance; implement a solution that is inherently 
designed to be secure, scalable, easily deployable and upgradable; and to formulate a 
consensus policy that is economical for all parties involved. Therefore, to operate on these 
principles practically the  design of the architecture aims to: address the blockchain trilema of 
balancing scalability, security and decentralization; introduce a middleware in the architecture 
that enables governance for the hosting authority while maintaining some form of a 
decentralized system; offer scalability solutions through seamless modularity using 
microservices and the segregation of networking and consensus protocols; offer a secure 
solution that is resilient to malicious actors and offer data integrity through fault tolerance; 
and designing a stake-based validator selection policy that can provide economic incentives 
for all parties while contributing a certain degree of security for the system. 

3.2 System Components and Roles 

The solution comprises two main governing bodies: the validator nodes and the master node. 
The validator nodes are responsible for processing the transactions and reaching a consensus 
on the blockchain’s state. Therefore, the nodes are responsible for governing the consensus 
protocol and ensuring that only valid transactions make it to the blockchain. For instance the 
consensus implementation for this paper is a simple PBFT protocol. While validator nodes are 
primarily responsible for executing the consensus protocol, the master node complements this 
by ensuring that the validator selection process upholds the network's security and fairness. 
The architecture leverages Kafka brokers (Fig. 3.1) to mediate communication between 
nodes, ensuring both isolation and redundancy. Unlike direct communication in a peer-to-peer 
network (Fig. 3.2), this approach mitigates vulnerabilities by preventing malicious actors from 
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exploiting direct channels or sending harmful messages. Kafka’s resilient architecture further 
guarantees seamless operations, even in case of broker failures which prevents it from 
exposing a single point of failure. 

 

 

 

 

 

 

 

 

 

 Fig 3.1​ ​ ​ ​ ​                  Fig 3.2 
     The proposed network architecture    ​ ​ ​      A peer-to-peer network 
 
Beyond ensuring fault tolerance and secure communication through Kafka, the master node 
also plays a crucial role in managing the validator nodes, especially in their selection for 
consensus rounds. Unlike a traditional Proof-of-Stake system where monopolies could be 
made yielding control of the system to a faction of validators, in this implementation the 
master node can have the ability to break such monopolies by denying access to such nodes 
from participating in the consensus. In this way, the architecture is split into two separate 
components: the consensus protocol controlled by a decentralized network of validators who 
are responsible for data integrity, and the network protocol controlled by a centralized 
governing body. By balancing the decentralized data integrity with centralized network 
governance, the architecture achieves a harmonious blend of security and efficiency. This 
interdependence is further integrated through a robust Kubernetes deployment. The 
architecture is implemented on a single Kubernetes platform to enable seamless integration 
between the nodes, the master and the middleware. The Kubernetes platform not only ensures 
modularity by enabling each role or process to run as a separate service but also provides 
scalability, fault isolation, and consistent performance. By deploying containerized 
microservices, the architecture guarantees that failures in one service do not compromise the 
overall network, enhancing both reliability and security. Through this combination of 
decentralized consensus, centralized governance, resilient middleware, and modular 
deployment, the architecture achieves a secure, efficient, and fault-tolerant blockchain 
network that is scalable and robust against malicious actors. 
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3.3 Workflow and Processes 

The workflow starts with transactions being submitted to the network, which are routed to the 
validator nodes. The validator nodes process these transactions, create a block and reach 
consensus through a PBFT protocol (the protocol may also be changed depending on the 
configuration). The master node oversees the process, ensuring secure communication and 
fair validator selection. Once the consensus is reached, the finalized transactions are added to 
the blockchain. Therefore, the workflow can be understood as three separate phases: the 
transaction flow, validator selection and consensus process. The transaction flow is not 
restricted by the architecture and can be handled separately. Transactions can be submitted 
directly to the validator nodes by clients for straightforward interactions. Alternatively, a 
separate Kafka cluster may be deployed for a pub-sub model of interactions (Fig 3.3) which 
may enable message queueing and ordering that would be ideal for larger deployments. Next, 
when the validators have prepared the block they would signal the master that they are ready 
for consensus by proposing their stake for the round. The master would then select a random 
subset of the validators to participate in the round using a verifiable random function based on 
the weighted probability of the share of stake each validator has in the network. Existing 
practices in Proof-of-Stake solutions may be employed here such as slashing, rotation of 
validators, staking limits, reward redistribution, etc. to further guarantee the security and 
decentralization of the system. Once the participants are selected for the round and 
broadcasted the consensus protocol begins. The participants execute the protocol as it would 
be in a fully decentralized system except that they communicate through the master using  
pub-sub interactions instead of peer-to-peer interactions. Additionally, the master also 
synchronizes the process by ensuring all participants are ready before proceeding to the next 
phase leading to consistent performance.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig 3.3 
The pub-sub model for transaction messaging and communication 
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3.4 Key Innovations 

This architecture offers a variety of innovations to the current state of hybrid blockchains. 
One of the most notable aspects being its hybrid approach to decentralization, achieved 
through the interoperability between the validator and master nodes. While the decentralized 
validator nodes ensure the integrity and security of data, the centralized master node ensures 
secure and efficient network governance by mediating all communications through a Kafka 
middleware. The separation of the consensus and network protocols also enables both 
components to scale independently. Moreover,  the isolation of nodes through this networking 
strategy not only eliminates vulnerabilities related to direct peer-to-peer communication such 
as Sybil attacks but also enhances the fault-tolerance of the system by leveraging Kafka’s 
replication and failover capabilities. Additionally, deploying the components of the 
architecture as containerized microservices increases the scalability by allowing components 
to scale independently. Furthermore, the utilization of microservices offers fault isolation by 
preventing failed components from compromising the system. Lastly, implementing a stake 
based validator selection policy helps improve trust between the validator and master nodes 
and opens the opportunity for economic incentives. 

3.5 System Strengths and Limitations 

The architecture offers increased protection against a variety of threats prevalent in direct 
peer-to-peer communication such as Sybil attacks or node compromise by moderating the 
influence of nodes across the network. By implementing a network that isolates nodes, the 
security of the network is enhanced significantly. Additionally, Proof-of-Stake policies for 
validator selection make such attacks impractical. By yielding the authority of implementing 
the Proof-of-Stake policy to the master node, the master can mediate in cases where 
monopolies are made in the decentralized network. Another notable strength of the 
architecture is its fault tolerance. This is achieved through the implementation of a fault 
tolerant middleware and containerized microservices that enable harmonious recovery and 
fault isolation. The architecture also accommodates growing network demands by enabling 
the dynamic scaling of Kafka brokers and validator nodes. This scalability is further amplified 
by the implementation of microservices that are easy to scale, debug and upgrade without 
affecting the network. The implementation of the whole architecture as containerized 
microservices on a Kubernetes platform ensures consistent performance across deployments 
and leads to an overall synchronized and coherent system. However, the architecture has its 
limitations as well that must be addressed. The mediation of the master node done through the 
Kafka middleware may introduce increased latency compared to a peer-to-peer network, 
especially if the Kafka cluster is misconfigured or the mediation of the master is 
computationally expensive. Additionally, by allowing the network and consensus to scale 
independently it must be necessary that the two are compatible with each other. For instance, 
if the validators have scaled up too much it may put strain on the network that may not have 
scaled accordingly. Moreover, the careful configuration of Kafka, Kubernetes and the 
microservices in the architecture may introduce complexity that would be a barrier in setting 
up or maintaining the system. The communication through a middleware introduces a 

10 



dependency on its configuration and reliability. Misconfiguration or cascading failures in the 
Kafka middleware could disrupt network operations causing delays, though it would not 
compromise the system. This is because while downtime in Kafka or the master node could 
disrupt immediate network or validator operations, the decentralized nodes retain the ability to 
fork the chain temporarily. This ensures that operations can continue independently until the 
issue is resolved. Once the network is restored, the system can reach consensus to reconcile 
the forks, preserving both data integrity and system resilience. Lastly, the system is not fully 
decentralized which may concern critics as it does not completely eliminate the reliance on a 
centralized third-party. 

4.​ Theoretical Analyses 

4.1 Security 

There are several safety features in the architecture that can prevent attacks and compromise 
of the system. For instance, Sybil attacks pose a significant vulnerability to peer-to-peer 
networks, where an attacker generates multiple fake identities to gain voting power over the 
network and influence its decisions [14]. The architecture prevents such attacks by employing 
a stake-based validator selection mechanism that makes generating multiple fake identities 
economically expensive and impractical. Moreover, by employing additional mechanisms in 
this selection protocol such as validator rotation and Delegated Proof-of-Stake, having 
multiple fake identities does not equate to having the control over the voting mechanism. 
Additionally, mediating network traffic through a central master makes it difficult to generate 
multiple fake identities, as all communications must be authenticated by the master to ensure 
their legitimacy. Another common vulnerability of peer-to-peer networks is a 51% attack 
where a party that has accumulated majority control over the network can compromise it [15]. 
The proposed architecture can prevent such an attack by having the authority of breaking 
monopolies in the stake-based validator selection mechanism since it has the authority to 
mediate the network communications. Moreover, policies can be employed in the validator 
selection mechanism such as slashing, validator rotation, reward redistribution, etc. to further 
mitigate the probability of a 51% attack by making a majority indeterministic of the effects on 
the consensus. Moreover, having a mediated communication channel reduces the odds of a 
node compromise from compromising the system. For instance, if a node is compromised by 
being attacked by a computer virus, the master can prevent the virus from propagating across 
the network by restricting the compromised node from access to the network. Additionally, 
the use of microservices as part of the deployment ensures fault isolation hence reducing the 
probability that a compromised service risks the security of the whole system. The 
containerization of these microservices can help ensure that they have not been tampered with 
by using techniques like image signing and verifying the SHA-256 digest of the image. 
Lastly, the deployment of the architecture on a Kubernetes platform enables the system to 
handle faults gracefully as each pod (a single service component on Kubernetes) would have 
multiple replicas running that would take over the tasks as the issue is resolved. 
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4.2 Scalability 

There are three key aspects of the architecture that enable it to be scalable: the separation 
consensus and network protocols handled by different entities, the deployment of the 
architecture as containerized microservices and the simplicity of the network compared to a  
complex peer-to-peer network. As discussed earlier, the separation of networking and 
consensus protocols enables scalability by allowing these two protocols to scale 
independently and easily. For instance, the consensus protocol can simply be scaled by 
incentivizing third-parties to participate in the network that would increase the supply of 
validator nodes. Alternatively, the network protocol can easily be scaled horizontally as the 
infrastructure is mostly network intensive rather than both network and compute intensive in 
the case of peer-to-peer network where nodes have to handle the load of both the networking 
and compute of the entire network. Additionally, the deployment of applications as 
containerized microservices allows bottlenecks to be identified and resolved easily without 
significantly compromising the system. This approach also enables modularity by allowing 
future extensions and upgrades to be seamlessly integrated into the architecture. Lastly, by 
having a simpler architecture compared to a peer-to-peer network the architecture can have 
improved scalability compared to a peer-to-peer network. The theoretical network complexity 
of a peer-to-peer network is approximately O(n2), where n is the number of nodes; in this 
model, every node is connected to every other node in the network, resulting in quadratic 
scaling [16]. In contrast, the complexity of the new architecture is approximately O(n) or 
O(bn), where n is the number of nodes and b is the number of Kafka brokers, meaning that the 
network scales linearly as the every node is only connected to a fixed number of Kafka 
brokers. Fig 4.1 illustrates the difference in complexity in both architectures as the network 
scales by adding more nodes. The peer-to-peer network is more feasible till around the point 
where the number of nodes are equal to the Kafka brokers, after which the new architecture 
becomes more feasible for larger deployments. 

 

 

 

 

 

 

 

 

 

Fig 4.1 
The proposed network complexity with three brokers compared to a peer-to-peer network 
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4.3 Governance 

The architecture also enables effective governance of sensitive data without compromising 
too much on the benefits of decentralization. It achieves this by having a completely 
decentralized consensus protocol that improves the data integrity of the system that is separate 
from the network protocol. The network protocol on the contrary, is governed by a centralized 
master node that ensures the security of the network by allowing certain validators to 
participate in the consensus. By keeping these two protocols separate, the degree of 
centralization in the system is predetermined and constant. The only aspect of centralization 
that the system has is through the network protocol and that is known to be governed by a 
trusted authority. This constant, predetermined level of decentralization is in contrast to 
Proof-of-Stake and Proof-of-Work systems where the centralization of the system is 
unpredictable and is difficult to overcome once created. Moreover, the limited scope of 
centralization to the network protocol does not allow it to mediate or influence the 
decentralized consensus protocol which is a necessary guarantee for the protection of 
decentralization in the system. Furthermore, data privacy can be ensured by not directly 
revealing the identification of data to the validator nodes and rather aliasing the data using 
public keys that can offer anonymity. Additionally, another technique known as 
zero-knowledge proofs may be employed for the verification of data without having to reveal 
it, however, discussing the use of this technique is out of the scope for this paper. 

4.4 Economic Viability 

A number of features of this architecture make it economically viable when deployed in 
practice. The infrastructure involved in the architecture would be cheaper to scale when 
compared to a peer-to-peer network. This is because unlike peer-to-peer networking where 
nodes have to directly manage the load of the entire network by being connected to every 
other node, in the proposed architecture they only need to be able to handle the load from the 
central Kafka cluster. This leads to nodes having mostly compute-intensive infrastructure 
instead of both a compute-intensive and network-intensive infrastructure for the case of 
peer-to-peer networks making it cheaper to scale. Alternatively, the central Kafka cluster 
would have mostly network-intensive infrastructure and would also be cheaper to scale. 
Moreover, unlike permissioned or private blockchains where hosting, maintaining, and 
scaling an entire distributed infrastructure on its own would be extremely expensive, in the 
new architecture the distributed system can be scaled by incentivizing more nodes to 
participate in the network. Therefore, the cost and responsibility to scale the decentralized 
infrastructure would be handled by third-parties significantly reducing the financial burden of 
scaling on the hosting entities who would only have to scale the networking capabilities. 
Furthermore, having a stake-based validator mechanism introduces economics to the 
architecture providing opportunities for all parties to benefit from financially. For instance, by 
having stakes in the network, the validators can be rewarded by a proportional share of 
transaction fees from the consensus round. Alternatively, by having large pools of stakes 
deposited with the central authority, the central authority can benefit from the time value of 
money such a policy could provide. This notion is further reinforced by the assumption that if 
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the validators have invested in physical infrastructure for the system, it would be unlikely that 
their contribution would be of the short-term and that their stakes would remain in the 
long-term until they withdraw. Therefore, the validators can benefit from frequent cash-flows 
from the transaction fees and the central authority can benefit from the time-value of the 
stakes the validators have kept in the network.  

4.5 Comparative Analysis 

By comparing the proposed hybrid architecture to existing hybrid solutions that are prevalent, 
the architecture has a more defined and integrated approach to hybrid governance. This is 
because existing solutions are mostly improvised solutions such as lenient policies in 
permissioned blockchains or an integration of public and private blockchains. Permissioned 
blockchains with lenient policies are not fully decentralized solutions as they often provide 
leniency by allowing a trusted consortium to participate and not public validators. In contrast, 
the proposed architecture allows for the participation of public validators and is fully 
decentralized, but the decentralization is limited to the consensus protocol only. The other 
network protocol is centralized, allowing the hosting entity to govern its sensitive data 
effectively, but also fault-tolerant to prevent a single point of failure. While the lenient 
permissioned blockchain solution offers a spectrum of solutions with varying intensity of 
decentralization that apply to the entire blockchain, the proposed architecture clearly defines 
the centralized and decentralized aspects of the blockchain. The other prevalent solution of 
trying to merge public blockchains and private blockchains risks exposing vulnerabilities or 
creating performance bottlenecks at the integration points of the two blockchains. Such 
mergers focus on partly processing the data in private chains and the rest in public chains or 
vice versa. Since the two public and private blockchains operate at fundamentally different 
principles, they are not very compatible with each other leading to issues in integration to 
arise. The proposed architecture however, offers a more intricately and cohesively integrated 
solution where the network and consensus protocols are inter-dependent and both are used as 
a medium for the whole process of processing the data. The integration of these protocols as 
containerized microservices further strengthens the cohesiveness of the architecture reducing 
the risk of compromising the whole system. 

4.6 Potential Bottlenecks and Limitations 

The use of Kafka as a middleware for communications between validator nodes may 
introduce some additional network overhead that would not be prevalent in a peer-to-peer 
network. Whether this additional overhead would lead to significantly degraded performance 
would have to be tested. Kafka is known for high throughput and low-latency data streaming 
and is well optimized to reduce the effects of degraded performance from additional network 
overhead. It is also possible that the proposed architecture has improved performance 
compared to peer-to-peer networks. This is because in peer-to-peer networks all validators 
would have to receive and process messages independently that may cause more variation in 
performance due to the variation in network overhead each validator experiences. In contrast, 
broadcasting to Kafka would offer a more consistent platform for networking that may reduce 
the synchronization time among nodes causing better performance. Another potential 
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limitation is the centralization of the networking protocol. The central Kafka cluster would 
need to have an adequate number of brokers to offer significant fault tolerance to prevent the 
effect of a single point of failure. A significantly lower number of Kafka brokers compared to 
the number of participants would not only have degraded performance but a higher risk of 
having a single point of failure. 

5.​ Implementation 

5.1 Scope of Evaluation 

For the purpose of this paper, the scope of evaluation for this implementation is the scalability 
and performance of the architecture. By evaluating scalability this paper aims to gauge how 
well the architecture can sustain increasing workload requirements. Similarly, by evaluating 
the performance of the architecture this paper aims to determine the practicality of the 
architecture using metrics like throughput and latency. This limited scope is chosen to validate 
the architecture’s feasibility for large-scale and practical deployments which would require 
even tougher requirements. Moreover, testing aspects like security, fault tolerance or 
economic incentives would require specialized frameworks and methodologies which are out 
of the scope of this research, though some of these aspects are touched upon briefly by this 
implementation. For instance, the security and fault tolerance of the architecture is tested by 
simulating fraudulent transactions to check if the system correctly identifies them and how 
well it can gracefully continue its operations. But comprehensive analysis, such as simulated 
Sybil or 51% attacks or intentional failure of Kafka nodes or validator nodes is not tested. 
Rigorous testing and evaluation of the security, fault tolerance and economic incentives of the 
architecture could be the foundation of any future work to test the system’s practicality. 

5.2 Simulation Environment and Tools 

The architecture is deployed on a local Kubernetes cluster as containerized microservices. 
Communication between the services is done through exposing the external network port 
(9092) instead of the internal port (29092). This is done intentionally to force communications 
to route through additional network layers such as the host network stack rather than directly 
within the container network which is optimized for internal communication. By doing so 
additional latency is introduced which may be similar to latency in practical situations by 
utilizing realistic network overhead making the test more realistic overall. The microservices 
are deployed as containerized images as it would be the case in a realistic setup. The 
applications themselves are programmed using Rust, a low-level systems programming 
language. This programming language was chosen because it offers zero cost abstractions 
which are necessary for testing the performance as abstraction overheads such as garbage 
collectors, interpreters and JVM may impact performance significantly making observations 
of performance inaccurate in gauging the architecture’s potential. Additionally, the language 
offers excellent concurrency support which is necessary for running processes concurrently 
and safely. Lastly, the memory safety the language offers ensures secure and reliable 
deployments free of memory related vulnerabilities. The Kubernetes in its entirety is deployed 
on a lightweight consumer-grade laptop. The relevant hardware specifications of this device is 
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a Ryzen 5 7535 HS processor which has 6 CPU cores, 12 threads, 3.3GHz base and 4.6 GHz 
turbo clock speeds. Additionally, the device has 32 GB of DDR5 RAM with transfer speeds of 
up to 4800 MT/s. Since multiple nodes are simulated which spawn multiple processes, and 
that the number of CPU threads are limited to 12, the tasks are designed to run 
asynchronously. This however, introduces a run-time dependency to handle the execution of 
multiple threads that may impact performance slightly. This is important to note as there may 
be some additional performance cost due to the restrictions of the setup. Moreover, any 
realistic deployment would have better resource isolation and likely leverage true parallelism 
instead of asynchronous process management which would improve performance 
significantly.  

5.3 Experimental Design 

By conducting this experiment it is hypothesized given the nature of the architecture that the 
architecture should be able to scale linearly with impact on performance being minimal as 
more nodes are added to the network. In order to test this hypothesis, the number of 
participating nodes will be used as the independent variable which would be varied to observe 
its impact on the dependent variables which are the performance metrics. To ensure the 
isolation of the effect of the independent variable the control variables are kept constant. 
These control variables include the amount of CPU and memory resources each node is 
allocated, the same network hardware and configurations for all nodes and the same 
application for each node to execute. The control group for the experiment are the master 
node and the central Kafka cluster and would not be modified among experiment runs. The 
treatment group would be the validator nodes as the number of network participants will be 
scaled to test how well the network can handle the increased load. Aspects of the experiment 
that would be randomized are the assignment of users and their key-pairs, the transactions 
performed, the stakes proposed and the number of fraudulent transactions simulated. The 
transaction model followed is an account based model and each node is responsible for 
keeping track of each user’s balance. The sample size of data collected is 130 blocks of 512 
transactions or 66560 transactions to allow for ample data to draw generalized conclusions of 
the architecture’s performance. The performance data is collected by timing different 
operation phases within the node’s application and are written to a CSV file. The CSV file is 
extracted when the experiment is concluded and is analyzed to gauge the performance of the 
architecture. 

5.4 Experimental Configurations 

There are a number of components for the experiment that can be configured. For instance, 
for the nodes in the network the transaction throughput, batch size for the transmission of 
messages, block size and the number of validators  to be chosen for each round. For the 
purposes of this experiment the transactions are transmitted in batches of 64 with the block 
size being 512 transactions. These settings can be configured by mounting configuration maps 
to the pods in Kubernetes. Moreover, Kubernetes also offers some configurations that can be 
tweaked to affect performance. A total of 10 CPU threads and 30 GB RAM are allocated to 
the local Kubernetes cluster. The exact distribution of these resources are presented in table 
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5.1. Additionally, the Kafka cluster, consumers and producers also have a number of 
configurations that can be used to balance aspects of networking such as throughput and 
latency. Table 5.2 presents some of the primary configurations that Kafka has to offer that 
affect performance significantly along with their purpose and setting for this experiment.  

 

Table 5.1 
The Kubernetes services and their corresponding minimum and 

 maximum resource limits requests 

 

Table 5.2 
The different Kafka configuration settings, their purpose and their 

 setting for this experiment 
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Service Minimum Resource Limit Maximum Resource Limit 

Validator Nodes 2 CPU threads and 4 GB RAM 3 CPU threads and 6 GB RAM 

Master Node 1 CPU thread and 2 GB RAM 2 CPU threads and 4 GB RAM 

Transaction Simulator Pod 1 CPU thread and 2 GB RAM 2 CPU threads and 4 GB RAM 

Kafka Pod  1 CPU thread and 2 GB RAM 2 CPU threads and 4 GB RAM 

Zookeeper Pod 1 CPU thread and 2 GB RAM 2 CPU threads and 4 GB RAM 

Kafka Configuration Purpose Setting 

linger.ms How long the producer waits for messages to accumulate 
before sending them 

10 

min.batch.size The minimum batch size of messages to be accumulated 
before being sent or received 

64000 

compression.type The message compression to be used to transmit messages 
across the network 

lz4 

acks The level of acknowledgement to be reached among 
partitions before sending or receiving messages (a higher 

setting ensures greater data integrity) 

1 

Number of Kafka 
Brokers 

The number of Kafka brokers in the network to set the 
degree of fault tolerance 

1 

Number of Topic 
Partitions 

The number of partitions for each topic (a large number of 
partitions may enable to parallel transmission of messages)  
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5.5 Metrics for Evaluation 

Several metrics are used for the evaluation of the performance and scalability of the 
architecture. To gauge the throughput of the architecture two particular metrics are used: the 
processing rate for individual transactions (transaction TPS) and the processing rate for 
transactions in block creation and consensus (block TPS). For the purpose of this paper the 
block TPS is more indicative of the architecture’s improved performance as it evaluates the 
performance of the new network and consensus protocol, an innovation offered in this paper. 
However, both metrics are limited by resource constraints and the inability to leverage parallel 
processing that can significantly optimize performance, an important limitation to note. 
Moreover, the introduction of a runtime overhead due to asynchronous processing of tasks 
may also incur some effect on the performance. To evaluate the network latency and 
synchronization delays, the time taken for all the nodes to synchronize before each phase is 
also noted. Additionally, the time taken for each consensus phase to execute is noted to 
identify bottlenecks in the architecture. Another key metric, Time to Finality (TTF) is also 
measured which notes the maximum time it takes for a transaction to be committed to a block 
since its inception. This metric is aimed to evaluate the architecture’s performance from a 
user’s perspective to ensure the performance is practical enough to be deployed as a more 
convenient system for secure transactions. 

5.6 Limitations and Assumptions 

The scalability analysis of this experiment is limited by the consumer-grade hardware used in 
the simulation, which lacks the resource isolation and parallelism offered by dedicated server 
deployments. This may result in sub-optimal performance metrics that are not indicative of 
practical deployments. Additionally, deploying the architecture locally may not account for 
actual distributed network limitations such as varying geographical locations, bandwidth 
limitations, and high-latency links. There are also several limitations on the performance such 
as the run-time overhead discussed earlier for asynchronous processing. Moreover, the Kafka 
cluster configuration is intentionally simplified with one broker which provides a baseline but 
does not fully capture the trade-offs between fault-tolerance and performance in multi-broker, 
high-partition setup. The fixed resource allocation for the Kubernetes pods also introduces a 
limitation over dynamic scaling, which could improve throughput and latency in practical 
situations. Lastly, certain aspects of the architecture are not tested comprehensively enough 
such as the security and economic incentives which limits the scope of this experiment. There 
are also some assumptions under which the experiment relies on. All the nodes in the network 
are assumed to be homogeneous with similar hardware and network capabilities which may 
not be true in a practical deployment. Additionally, the transactions are assumed to be 
generated uniformly in batches of 64 and having a constant throughput. This assumption may 
not hold in actual deployments where transactions are produced randomly with varying 
throughput in peak and off-peak hours. Lastly, the configurations of the experiment are 
assumed to be kept constant. Certain configuration parameters such as the transaction batch 
size, block size and Kafka configurations may have to be adjusted dynamically to account for 
the difference in workloads. 
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6.​ Evaluation and Results 

6.1 Evaluation Overview 

Given this setup's hardware constraints, the experiment yielded excellent results. The average 
Block TPS is around 1030 transactions per second, a good throughput figure for the 
consensus performance. The pool processing throughput has been around  412 transactions 
per second, which is better than anticipated, given that parallel processing could not be 
utilized. The median time to finality has been 2.2 seconds, which is solid performance 
considering users would only have to wait around 2.2 seconds before their transaction gets 
included in the blockchain. As shown in Table 6.1, the block consensus time is approximately 
500 ms, with synchronization time accounting for just 43 ms, showcasing efficient node 
communication. Across scaled deployments, this figure has only marginally decreased, which 
is favorable for scalability as scaling the number of nodes does not impact performance 
significantly enough. 

6.2 Descriptive Statistics 

Table 6.1 presents the five-number summary of the average performance metrics of the three 
deployments. The average time for the entire process was 2.3 seconds, with the time to 
finality being 2.2 seconds. Most of this time was spent pooling and processing transactions, 
contributing roughly 1.8 seconds to the total processing time, whereas the time spent in 
consensus contributes roughly 0.5 seconds. The pre-prepare and prepare phases of the 
consensus contribute to 43% of the total consensus time each. Table 6.2 presents the 
percentage change in the consensus performance among scaled deployments. Across the 
deployments, the consensus performance has changed negligibly, even with the shift from 
single-node to multi-node deployment. This can be credited to the resource isolation of the 
architecture that guarantees consistent performance. The commit time is an exception, where 
the highest percentage change was observed. However, this can be attributed to the fact that it 
was already negligibly low and barely affected the overall performance. 

Table 6.1 
The 5 number summary of the architecture’s performance 
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 Pool  
TPS 

Block 
 TPS 

Pooling 
Time (ms) 

Consensus 
Time (ms) 

Sync 
Time (ms) 

Total 
Time (ms) 

Time to 
Finality (ms) 

Min 406.55 1016.45 1559.75 491.42 41.17 2063.44 1998.25 

Q1 407.07 1028.98 1566.42 495.17 42.37 2071.47 2005.63 

Median 407.45 1031.83 1756.60 496.28 43.01 2263.51 2196.29 

Q3 407.87 1034.11 2591.76 497.69 43.93 3097.58 3030.37 

Max 409.39 1042.08 9824.61 504.06 51.81 10339.69 10271.36 



 

Table 6.2 
The percentage change in consensus performance among scaled deployments 

 

6.3 Correlation Analysis 

Fig 6.1 presents the correlation matrix of the average performance metrics among all scaled 
deployments. The strongest positive correlation among the performances is among the Time 
to Finality, Consensus Time, Synchronization Time, and the number of failed transactions 
detected. The perfect correlation between the time to finality and number of failed 
transactions indicates that an increase in fraudulent transactions directly delays finalizing 
valid transactions. This is because fraudulent transactions increase the processing load before 
a valid block can be created. The number of failed transactions, synchronization time, and 
consensus time also have a strong correlation, though it is not perfect. An explanation for this 
is that as the number of fraudulent transactions in the system increases, the time taken for 
nodes to synchronize among one another also increases due to increased load on the nodes, 
which causes an increase in the overall consensus time. Moreover, any notable negative 
correlation among the metrics seems to be between the Block TPS and the consensus time, 
synchronization time, Time to Finality, and the number of failed transactions. The explanation 
for the negative correlation between the block throughput and the consensus and 
synchronization times is relatively straightforward. As the time for block consensus 
decreases, the speed at which that block can be committed increases. The negative correlation 
of the block throughput with the number of failed transactions stems from the fact that an 
increase in fraudulent transactions causes an increase in synchronization time among nodes. 
This increase delays the total consensus time and causes a decreased block throughput. The 
negative correlation between the Time to Finality and the block throughput is because as the 
throughput decreases, the time taken for a transaction to be committed to a block increases, 
which causes an increased Time to Finality. 
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 Block  
TPS 

Preprepare 
Time 

Prepare 
Time 

Commit 
Time 

Sync 
Time 

Consensus 
Time 

Single Node to 
3-Node 

-1.83% +1.15% +0.04% +77.36% +8.20% +1.89% 

3-Node to 
4-Node 

-1.10% -0.15% +0.39% +25.48% +1.57% +1.12% 



 

 

 

 

 

 

 

 

 
 
 
 
 
 

Fig 6.1 
Heatmap of the Pearson Correlation Matrix of the average performance metrics 

among all scaled deployments 

6.4 Potential Bottlenecks and Optimization Insights 

Transaction processing and verification are significant bottlenecks in this experiment. On 
average, roughly 83% of the total processing time for the blockchain is spent on pooling and 
processing the transactions. The pool processing throughput is roughly 60% slower than the 
block creation and consensus throughput. While a lot of this performance setback is attributed 
to the lack of parallel processing of transactions, any future implementation should ensure 
adequate resources to enable parallel processing to overcome this bottleneck. Another 
identified bottleneck is the processing time for block creation and validation. In particular, the 
time taken for the prepare and pre-prepare phases is around 200 milliseconds each, which 
accounts for 84% of the consensus time. Most of this degraded performance is attributed to 
the resource constraints of the setup since both these phases include the computationally 
expensive processes of Merkle root generation, block creation, and hashing, which can be 
improved significantly using parallel processing. 

In contrast, the commit phase, where votes are aggregated, and blocks are compared and 
committed, only took an average of 13 milliseconds. Lastly, the time to finality becomes a 
significant bottleneck in cases where there are a significant number of fraudulent transactions. 
The time to finality can take up to 4 to 6 seconds for cases where most transactions are 
fraudulent (three times the number of valid transactions in this case). While such situations 
occurring in practice by chance are rare, it would be the case in a DDoS (Distributed Denial 
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of Service) attack aimed at slowing down the system. Although such an attack would be 
highly impractical to implement in practice (at this particular point of the architecture, the 
transactions are most distributed), this still exposes a vulnerability in the implementation that 
should be addressed before practical deployment. 

6.5 Trend Analysis 

Fig 6.2 shows the distribution of the block throughput among the three deployments. The 
distribution median decreases as the number of nodes participating in the consensus increases.  
This indicates a decreasing trend in block throughput as the number of participants in the 
network increases. The decreasing trend is attributed primarily to the significant increase in 
the commit time across the deployments, referring back to Table 6.2. The secondary 
contributor to this trend is the increase in the synchronization time among the nodes, which 
causes a decrease in block throughput. Moreover, as the number of participants in the network 
increases, so does the variability in the block throughput, with the deployment of 4 nodes 
having the highest variability. This variability can be attributed to the fact that with more 
nodes, there is a higher degree of uncertainty with which they can execute the processes 
simultaneously, which causes higher variability in synchronization time and, thus, the block 
throughput. 

 

 

 

 

 

 

 

 

 
Fig 6.2 

A histogram showing the distribution of Block throughput across 
the three deployments 

Fig 6.3 presents the trend that the block throughput follows across the consensus rounds in 
different deployments. The distribution is stationary, with no trend in increasing mean while 
progressing through the consensus rounds. This highlights the consistent performance the 
deployment offers across consensus rounds with varying stress levels, such as an increasing 
number of fraudulent transactions. This means that the throughput is independent of the stress 
put on the system. There is, however, a clear distinction in the block throughput among 
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different deployments. The block throughput experiences a gradual decrease as the number of 
participating nodes in the deployment increases. 

 

 
 

 
 

 
 

Fig 6.3 
The block throughput across consensus rounds and deployments 

Fig 6.4 compares the trend of the time to finality with the trend of the number of failed 
transactions across consensus rounds. As observed, the time to finality follows an identical 
trend to the number of failed transactions. This highlights how directly the two are related to 
each other. For this experiment, an exponential increase in fraudulent transactions led to an 
exponential increase in the time to finalize the transactions. 

 

 

 

 

 

 

 

 
 

Fig 6.4 
Time to Finality across consensus rounds compared to the number 

of failed transactions across consensus rounds 
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6.7 Conclusion and Implications 

Overall, evaluating the architecture’s performance and scalability has shown promising 
results. The new consensus and network protocol yields an average block throughput of 1030 
transactions per second. This indicates a robust baseline for the architecture’s throughput, 
especially given the constraints of the hardware setup. The median time to finality of 2.2 
seconds is also noteworthy, as it suggests that users can expect prompt verification and 
completion of their transactions, which is essential for a convenient user experience and any 
practical deployment. The architecture’s ability to scale without significantly impacting key 
performance metrics also indicates its potential for scalability. Most of the metrics have been 
affected by less than 1% across scaled deployments, indicating the architecture’s robustness 
under increasing stress of scaled deployments. The consistent performance is not only among 
scaled deployments but also among consecutive consensus rounds, indicating a well-tested 
performance benchmark. However, certain observations have also been made that reinforce 
the claim of this paper that this implementation is a proof-of-concept and not a 
ready-to-deploy implementation. The significantly lower transaction pool processing 
throughput and the significant amount of time that the prepare and pre-prepare phases take of 
the total consensus time indicate potential optimization areas. Moreover, the potential area of 
vulnerability for DDoS attacks discussed earlier must also be resolved in any future work 
focusing on the security of the architecture. The implementation also needs to be stressed for 
scalability till the point of failure (granted there are enough hardware resources) to find the 
limit to which the architecture can sustain the load, and trends in scalability tend not to apply. 
Such a test would demonstrate the scalability of the architecture more comprehensively. In 
conclusion, this proof-of-concept implementation has remained successful as it has 
demonstrated the architecture’s excellent performance and scalability, whose assessment was 
the focus of this implementation. The results of this implementation highlight the 
architecture’s worthiness for future work to be conducted on it. In the scheme of extensive 
testing that this architecture has to go through before practical deployment, it has indeed 
passed the first test with excellent results. 
 

7.​ Discussion 

7.1 Key Observations 

The key observations to be noted from the results of this experiment is that the proposed 
architecture’s implementation is lightweight, high-performing and highly scalable. The results 
back this claim as the validator nodes have performed exceptionally while being provided 
with only a single CPU core to process transactions and reach consensus proving that the 
solution is lightweight. Moreover, the high block throughput figure of 1030 transactions per 
second indicates the architecture’s potential for application where high transaction throughput 
is key. Lastly, the minimal change in block throughput and synchronization time among nodes 
across scaled deployments indicates the architecture’s scalability without significantly 
degraded performance. 
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7.2 Implementation Challenges 

While the results of the implementation and the architecture itself have rightfully been 
discussed extensively, the discussion of challenges experienced during the process of the 
implementation are also equally necessary. The two particularly notable challenges during 
development were data races and the Kubernetes deployment setup. The most challenging 
data race issues were not within the source code but within the implementation of the 
architecture using Kafka particularly in multi-node implementations. There were a variety of 
issues such as the difference in the scheduling of tasks, tasks not being executed exactly at the 
same instant in time and broadcasting of messages in channels that are not actively listened in 
on yet. The lack of task scheduling led to some cases where tasks were executed completely 
before their prior tasks that needed to provide the necessary data leading to a deadlock. This 
was resolved by implementing an automaton to schedule tasks in order, shown in Fig 7.1. This 
automaton ensured that the workflow was executed sequentially with the next task not starting 
before the prior tasks had started. The next issue that was causing the data race was the fact 
that tasks were not executing exactly at the same time that caused a different state of data 
being obtained. For instance, this caused a difference in block timestamps of the blocks 
created by the validators if half the nodes created the block in one second and the rest in the 
other second. Since the timestamps were hashed to form the block hash, this led to different 
block hashes and a failure to reach consensus. This issue was resolved by using a more 
general timeframe such as the timestamp in multiples of 5 seconds that allowed for less room 
for different timestamps. Lastly, the issue of messages being broadcasted in channels not 
being listened on was caused by the issue that some nodes moved ahead in the consensus and 
broadcasted pre-prepare or prepare messages before other nodes could reach that phase and 
actively listen on those channels. This issue was resolved by opening a messaging channel for 
communication among nodes that synchronized the consensus among them and ensured no 
node progressed before all other nodes were ready to progress within a given timeout.  

 

 

 

 

 

 

 

 

Fig 7.1 
The automaton implemented to schedule tasks and ensure the correct 

 order of execution 
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The implementation of the architecture on Kubernetes was also an issue that took up some 
time. In particular, deciding the adequate amount of resources to allocate to each node 
required some repeated trial and error to find the right amount of resources without starting to 
degrade performance. Moreover, the implementation itself led to another form of race 
condition where if all the pods were deployed simultaneously, some would begin running 
before the others and since the pods were designed to be executed in a sequential order it led 
to some issues. This issue was resolved by ensuring certain pods had started running before 
others were deployed to ensure the entire deployment was successful. 

7.3 Broader Context and Comparison 

The high block throughput speeds of the architecture indicate its potential to be used in 
practical situations where high operational throughput is necessary. For context, VisaNet 
processes 1667 transactions globally during typical operations [17]. The proof-of-concept 
implementation approaching Visa’s average operational throughput indicates its substantial 
potential for handling real-world transaction loads. Another example is PayPal, which 
typically handles 193 transactions per second globally [18]. The implementation’s throughput 
of 1030 transactions per second significantly outperforms this benchmark, suggesting 
enhanced capability of processing transactions at scale. Table 7.1 compares the performance 
of the implementation to some common benchmarks in the blockchain ecosystem. As it can 
be observed the architecture clearly outperforms Bitcoin and Ethereum in block throughput 
and time to finality indicating better suitability to be deployed at scale. The performance 
observed is similar to that of high-performing blockchains like Ripple and SKALE, indicating 
it is a viable proposal for this architecture. The proposal appears to have a better balance 
between time to finality and block throughput as Ripple and SKALE have high performance 
in a certain benchmark with some compromise on the other. Overall, the architecture meets 
the performance requirements of large-scale deployments and can offer competitive 
benchmarks to industry standard solutions. 

 

Table 7.1 
Comparison of performance benchmarks with industry standard solutions [19] [20] 
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Architecture Block Throughput 
(transactions per second) 

Time to Finality 

Proposed Architecture 1030 ~ 2.2 seconds 

Bitcoin 7 ~ 1 hour 

Ethereum 1.0 15-25 ~ 6 minutes 

Ripple (XRP) 1500 ~ 4 seconds 

SKALE Network 400 - 700 ~ 1.46 seconds 



7.4 Implications for Scalability 

In section 4, it was broadly discussed that the architecture would likely have high scalability 
because of two reasons: the separation of network and consensus as separate applications and 
the use of a microservices architecture that can scale deployments easily. The results from the 
implementation and the experiences during development both validate this claim. As it was 
observed from the experiment, there was negligible impact on performance and block 
throughput as the nodes were scaled.  Referring back to table 6.2, the impact on performance 
by adding additional nodes was around 1% which can be considered as negligible change. 
This is because, by separating the consensus nodes and the network nodes, the network was 
able to handle increased throughput due to better resource isolation and utilization. If it was 
the case for a peer-to-peer network where such isolation may not exist, then it is possible that 
the two protocols would have to compete for resources under stressed environments leading 
to further degraded performance. Moreover, the results validate the notion that Kafka would 
be a high-throughput message streaming platform as despite the additional overhead of Kafka, 
most of the time utilized is in computing rather than inter-node communication and 
synchronization. This is because the time spent in inter-node communication and 
synchronization only accounts for 43 milliseconds of the total 490 milliseconds of consensus 
time. The scalability of architecture due to the microservices architecture has been highlighted 
during the development phase. During the debugging phase, it was easier to identify issues in 
the implementation using the microservices architecture than it would be with a monolithic 
architecture. This is because the use of microservices easily pointed out areas where faults 
would occur as certain services would fail prompting a focus to that particular service. Apart 
from debugging, application development and adding features once the implementation was 
finished was also simpler. This is because the development could be focused on implementing 
certain features without being concerned how they would be able to integrate with the whole 
implementation. Moreover, despite the obstacle of initial deployment on Kubernetes, it was 
relatively straightforward to scale the resources and replicas of the services once the setup 
was complete. Scaling was as simple as changing a number in the configuration files of the 
deployed pods or simply running a command on the terminal. Overall, the theoretical analysis 
was accurate in identifying the aspects of the blockchain that would improve scalability. 

7.5 Key Takeaways 

Choosing an efficient consensus algorithm was a pivotal decision in achieving high 
throughput and low latency in the implementation of the experiment. The choice of Practical 
Byzantine Fault Tolerance (PBFT) as the consensus algorithm was not only appropriate given 
the resource constraints of the hardware, but also an excellent opportunity to test the new 
architecture’s effectiveness in networking and communication. This is because PBFT requires 
substantial inter-node communication during the consensus process that would be just enough 
to stress the Kafka network and get accurate data on its performance. Another critical decision 
during this implementation phase was the use of asynchronous processing for tasks. This 
ensured that the CPU spent the least possible time being idle ensuring efficiency. Moreover, 
using asynchronous processing was the closest the implementation could get to resembling 
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true parallelism in a practical deployment given the hardware constraints. It allowed for 
multiple threads to run concurrently regardless of the fact if there were enough CPU cores to 
execute them simultaneously. During development, the choice of using a microservices 
architecture was helpful in easily developing, debugging and deploying the implementation. 
Moreover, adding features and services to the implementation was easier this way and the 
architecture was more cohesive and integrated. The deployment of these microservices in a 
Kubernetes platform offered consistently replicable environments with configurability that is 
necessary in the context of high performance computing and experimentation. A crucial 
decision during the development of the new architecture was the choice to use Kafka as the 
inter-node communication middleware instead of utilizing a peer-to-peer network.  This was 
an important decision as Kafka is a dedicated solution to high-throughput communication that 
has excellent scalability and configurability for a variety of use cases. This solution also led to 
the efficient utilization of network usage as the networking was not strained on the nodes and 
instead outsourced to a system that was optimized to handle such network loads. 

7.6 Takeaways for Future Development 

Before any future work is done on this architecture, it is important to learn from the lessons of 
this paper’s implementation to speed up development and improve effectiveness. The most 
crucial takeaway from the implementation challenges in section 7.2 was to have an idea of 
task scheduling and orchestration ready before development. The development of the 
architecture as microservices led to this oversight as applications were developed 
independently without in-depth consideration of how they would integrate together and 
execute the entire process. This oversight cost a lack of synchronization, data races and 
challenges in deployment that required major refactoring in the code base of the applications. 
Having a superficial idea of the orchestration of the services in the context of the whole 
system helped in developing the architecture more coherently. Moreover, before deploying a 
new service or feature on Kubernetes, it is necessary to test the application for bugs natively 
first. The testing workflow should be as follows: test the application itself to check if it has 
any bugs, test the application in a native single-node deployment to check if it integrates well 
with the Kafka middleware and other services and then finally test the application in a native 
multi-node deployment to check if it can integrate and synchronize with other nodes in the 
system. Using this framework tends to be easier in identifying the issues and resolving them 
effectively and timely. It is important to note that while the microservices architecture allows 
for applications to work independently and isolate faults, considerations on how the services 
will collaborate to orchestrate a system needs to be taken into account to have a cohesive 
implementation. 

7.7 Broader Implications 

The proposal of the architecture and its development and implementation as a viable 
proof-of-concept solution has introduced a novel solution to the academic state of hybrid 
blockchains. Application of hybrid blockchains is particularly in demand where adequate 
governance is needed with the data integrity, fault tolerance and trust of public blockchains. 
Such applications include governments and enterprises where transparency of data can be a 
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requirement or highly preferable. For instance, if a Central Bank Digital Currency would be 
implemented it would be highly preferable, if not a requirement, to ensure data transparency, 
but at the same time effective governance will also be necessary for the protection of personal 
data. In such an application, allowing public validators to participate in the process would not 
only align with principles of democracy but also with the right to the freedom of information 
whereas the control of the network protocol by a trusted government entity would ensure 
adequate governance. The use of a stake-based validator selection model opens the 
opportunity for economic incentives that would be beneficial for both the hosting entity and 
the participants. Furthermore, the use of Apache Kafka for managing the communication 
protocol in a consensus is a novel contribution that introduces the discussion to utilize modern 
distributed frameworks more extensively in the blockchain ecosystem. The use of Kafka and 
other distributed frameworks in solving issues related to scalability, performance and 
governance can contribute substantially to the current understanding of possible solutions to 
address them. The use of microservices in deploying the entire architecture has also expanded 
the possibility of using microservices in the blockchain ecosystem. Prior blockchain 
implementations had seen limited application of microservices which did not provide 
substantial evidence for the advantages of utilizing them in a broader scope. 

8.​ Conclusion 

8.1 Summary 

The purpose of this paper was to develop a hybrid blockchain architecture that solves the 
issues related to scalability, governance and economic viability effectively. Solving these 
issues is necessary for the deployment of blockchains in government and enterprise 
applications. Current hybrid blockchain solutions could not address all these issues effectively 
by compromising on certain aspects. These solutions were mostly improvised solutions on top 
of existing mainstream permissioned and public blockchains. Therefore, there was a need to 
develop a new blockchain architecture that would aim to tackle the issues related to 
scalability, governance and economic viability from its foundation. There were significant 
gaps in research and applications that utilized the solutions that the proposal offered. For 
instance, the implementation of Kafka as a middleware solution to manage communication 
among decentralized and isolated nodes, and the use of a microservices architecture to enable 
fault isolation and scalability. By proposing, developing, implementing and testing a 
comprehensive case was made for the viability for the architecture in practical use cases and 
providing a viable proof-of-concept to work on. The key findings of the implementation 
having a block throughput of 1030 transactions per second, 2.2 second time to finality and a 
43 millisecond synchronization time across scaled deployments highlight the architecture’s 
potential for practical application and effective scalability and performance 

8.2 Success of Objectives 

To recap, the research objectives of this paper were to: introduction of a semi-centralized 
blockchain for effective governance and transparency, separation of network and consensus 
protocols to enable independent scalability, introduction of the microservices architecture for 
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the blockchain applications, an implementation of a stake-based validator selection 
mechanism for economic incentives and a demonstration of the architecture as a viable 
proof-of-concept solution. The semi-centralized model with effective governance and 
transparency was achieved by proposing a centralized network protocol for inter-node 
communication and selection that offered governance of data, and having a decentralized 
consensus protocol of public validators that enabled transparency. This separation separation 
also fulfilled the second objective of separating the network and consensus protocols for 
independent scalability. This was implemented by introducing a Kafka middleware that 
handled communication between the nodes and offering effective governance of data. This 
implementation also enabled scalability as the Kafka brokers could be scaled easily to match 
the requirements of the network. The microservices architecture was achieved by developing 
the blockchain applications as modular, containerized services and deploying them on a 
Kubernetes platform. This enabled fault isolation and individual scalability along with 
consistent performance due to the highly replicable environments offered by both Kubernetes 
and containerization. A stake-based validator selection model was also implemented by 
yielding the authority to a central master node governed by the hosting entity. This provided 
economic incentives for both the host and the participants as the host could benefit from the 
time-value of the stakes and the participants could get frequent cash flows of transaction fees. 
Lastly, the architecture was also practically developed and implemented to test its potential 
for practical adoption. The results obtained from the experiment showcased the architecture’s 
excellent scalability and performance proving it to be a viable proof-of-concept solution.   

8.3 Future Work 

There are mainly three effective directions for future work on this proposal: test the 
architecture more comprehensively, test other aspects of the architecture or to develop further 
variations of this architecture tailored to certain use cases or improve on the current 
implementation. To test the architecture more comprehensively, it needs to be optimized with 
all performance bottlenecks addressed adequately. For instance, the bottleneck identified for 
transaction processing must be addressed by enabling parallel processing or other solutions. 
Moreover, adequate resources must be provided to ensure applications do not compete for 
resources causing degraded performance. Any new tests should be conducted on a dedicated 
distributed environment with resource isolation to better replicate the environment in practical 
use cases. Next, some of the other aspects of the architecture that can be tested are its security, 
governance, and economic viability that have not been tested in depth in this paper. The 
testing of these aspects may require different frameworks discussed here such as vulnerability 
reports for testing security or field experiments to test the economic viability and governance. 
For instance, some of the tests for security may require simulating Sybil and 51% attacks, 
penetration testing and testing the architectures ability to recover from failures. Lastly, certain 
variations or extensions can be made to the architecture for certain improvements or use 
cases. For instance, an interesting variation that could be discussed is the possibility of the 
central network protocol being decentralized. This would mean that the architecture would be 
split into separate consensus and network protocols, both of which are being governed by two 
distinct decentralized entities that have different incentives in common. Some questions to ask 
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in such an implementation might be to discuss whether such an implementation would truly 
be decentralized and whether the difference in both the entities’ incentives be enough to 
guarantee honesty in the system and prevent any centralization in the network. 
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