
SynFuzz: Leveraging Fuzzing of Netlist to Detect Synthesis Bugs
Raghul Saravanan

George Mason University
Fairfax, Virginia, USA
rsaravan@gmu.edu

Sudipta Paria
University of Florida

Gainesville, Florida, USA
sudiptaparia@ufl.edu

Aritra Dasgupta
University of Florida

Gainesville, Florida, USA
aritradasgupta@ufl.edu

Venkat Nitin Patnala
George Mason University
Fairfax, Virginia, USA
vpatnala@gmu.edu

Swarup Bhunia
University of Florida

Gainesville, Florida, USA
swarup@ece.ufl.edu

Sai Manoj P D
George Mason University
Fairfax, Virginia, USA
spudukot@gmu.edu

Abstract
In the evolving landscape of integrated circuit (IC) design, the in-
creasing complexity of modern processors and intellectual property
(IP) cores has introduced new challenges in ensuring design correct-
ness and security. Recent attacks targeting hardware vulnerabilities
have heightened the need for enhanced security measures through-
out the design flow. The recent advancements in hardware fuzzing
techniques have shown their efficacy in detecting hardware bugs
and vulnerabilities at the RTL abstraction level of hardware. How-
ever, they suffer from several limitations, including an inability
to address vulnerabilities introduced during synthesis and gate-
level transformations. These methods often fail to detect issues
arising from library adversaries, where compromised or malicious
library components can introduce backdoors or unintended behav-
iors into the design. This gap leaves critical flaws undetected and
underscores the need for more comprehensive fuzzing techniques
that extend beyond the RTL level to ensure hardware integrity and
security. In this paper, we present a novel hardware fuzzer, Syn-
Fuzz, designed to overcome the limitations of existing hardware
fuzzing frameworks. SynFuzz focuses on fuzzing hardware at the
gate-level netlist to identify synthesis bugs and vulnerabilities that
arise during the transition from RTL to the gate-level. We analyze
the intrinsic hardware behaviors using coverage metrics specifi-
cally tailored for the gate-level. Furthermore, SynFuzz implements
differential fuzzing to uncover bugs associated with EDA libraries.
We evaluated SynFuzz on popular open-source processors and IP
designs, successfully identifying 7 new synthesis bugs. Additionally,
by exploiting the optimization settings of EDA tools, we performed
a compromised library mapping attack (CLiMA), creating a mali-
cious version of hardware designs that remains undetectable by
traditional verification methods. We also demonstrate how Syn-
Fuzz overcomes the limitations of the industry-standard formal
verification tool, Cadence Conformal, providing a more robust and
comprehensive approach to hardware verification.

1 Introduction
The intricate global semiconductor supply chain demands seamless
collaboration between IC designers and vendors, with various enti-
ties playing vital roles at every stage of the IC life cycle, including
design, verification, fabrication, and integration [9, 24]. For example,
the design of the Apple® A15 chip involved 11 third-party entities to
deliver sophisticated solutions [89]. However, this intricate design
process is prone to trust issues, such as bugs and vulnerabilities,

due to opaque interactions between entities[8, 55, 60, 61, 75]. The
growing dependence on third-party intellectual property (3P-IP)
blocks exponentially expands the scope for exploiting design vul-
nerabilities. These vulnerabilities stem from the interaction of hard-
ware and software components in modern IC designs, especially
system-on-chips (SoCs) and microprocessors [71, 72]. The number
of identified common vulnerability enumerations (CVEs) recorded
in 2024 is close to 29,004, increased by 43% compared to 2021 [29].
Moreover, bugs emerging from the hardware are irreversible and
pose a significant challenge to the integrity of the system.

The hardware vulnerabilities can manifest at various levels of
abstraction within the design flow, including the design phase (Reg-
ister Transfer Level (RTL)), the synthesis stage (gate-level netlist),
and the implementation phase (physical layout) [3, 15, 35, 38, 51,
54, 66, 81, 88, 93, 97]. The sophisticated IC design flow relies on
state-of-the-art Electronic Design Automation (EDA) tools [4, 16–
18, 70, 83, 98] that facilitate seamless transitions across different
hardware abstraction levels. However, the inherent nature of the
hardware design flow exposes EDA tools to potential threats from
adversarial entities, includingmalicious developers or compromised
vendors. These entities, often treated as trusted, can manipulate
the EDA tools to inject subtle but significant bugs, resulting in a
malicious piece of hardware design [90]. Thus, hardware verifica-
tion is essential at each abstraction in the design flow to meet the
functional and security requirements [73, 90].

During the synthesis stage, the IP designs, expressed in Hard-
ware Description Languages (HDL) at the RTL, are translated to an
equivalent gate-level netlist representation through EDA logic syn-
thesis tools. This process involves a variety of logic optimizations
to meet performance, power, and area (PPA) requirements by map-
ping the HDL design to instances of standard-cell gates provided by
the library vendors as binary libraries. These libraries, which are
tailored to a specific technology node, represent the functional and
physical properties of the gates and logic cells used in the design.
The accuracy of this translation and mapping is crucial, as any
inconsistencies can lead to functional errors or vulnerabilities in
the final implementation phase.

To ensure the translated design adheres to the intended behav-
ior specified at the RTL level, formal verification methods such
as Logic Equivalence Check (LEC), often leveraging techniques
such as Bounded Model Checking (BMC) [10, 11], are employed
to compare the gate-level netlist with the RTL design and identify
any discrepancies or unintended changes [41]. However, these for-
mal verification methods face significant scalability challenges and

ar
X

iv
:2

50
4.

18
81

2v
2 

 [
cs

.C
R

] 
 1

7 
M

ay
 2

02
5



Raghul Saravanan, Sudipta Paria, Aritra Dasgupta, Venkat Nitin Patnala, Swarup Bhunia, and Sai Manoj P D

heavily rely on human expertise, limiting their efficacy in bug detec-
tion for complex designs [7, 58, 59, 62, 72, 91, 95, 100]. Hence, there
is a compelling need for methodologies and tools to capture the
bugs and vulnerabilities introduced during the synthesis process.

Hardware fuzzing [49, 52, 53, 56, 57, 67, 92], inspired by software
fuzzing [39, 40, 63], has gained significant traction due to its effec-
tiveness in detecting bugs in complex hardware designs. To date,
numerous proposals have focused on developing hardware fuzzing
methodologies aimed at identifying bugs at the RTL level, particu-
larly in the designs of CPU architectures [21, 53, 56, 80]. However,
these methodologies are inherently limited by the chosen level of
abstraction, which focuses exclusively on the pre-synthesis stage.
This abstraction overlooks the transformations and optimizations
that occur during synthesis, where subtle yet impactful bugs can be
introduced. As a result, existing fuzzing frameworks are inadequate
for detecting synthesis-induced bugs that manifest at the gate-level
netlist stage. This gap underscores the necessity for innovative
fuzzing approaches that can operate effectively at the gate-level
netlist to verify the functional correctness between the RTL and
the gate-level netlist.

Our Proposed Work: In this work, we propose SynFuzz, a
novel hardware fuzzer that leverages fuzzing at the gate-level netlist
aimed at detecting synthesis and library-related bugs. To the best
of our knowledge, this is the very first work on hardware fuzzing at
gate-level netlist. The input to our SynFuzz is a gate-level abstrac-
tion of the design, where the HDL is synthesized and mapped to
library cell gates provided by the standard-cell library. SynFuzz cap-
tures intrinsic hardware behaviors associated with library cell gates,
enabling the detection of subtle inconsistencies introduced during
the synthesis process.

Furthermore, we show that a maliciously modified library, de-
signed to appear more attractive to EDA tools during the optimiza-
tion and synthesis stages, can be exploited to introduce a novel
threat model, termed CLiMA (Compromised Library Mapping
Attack). CLiMA enables flawed library mapping during the synthe-
sis process, enabling targeted attacks on the designs, and resulting
in unintended hardware implementation. We leverage CLiMA to
design a malicious version of the or1200 CPU design, evading a
leading formal verification tool, Cadence® Conformal. In contrast
to software fuzzers [1, 39, 40] that rely on crashes, and hardware
fuzzers that depend on golden models [27, 56] or ISA for validation
[21, 53], EDA libraries lack any equivalent golden models. In this
work, we address this challenge by identifying library bugs in the
context of differential fuzzing. As such, SynFuzz 1) supports conven-
tional hardware and design verification flow 2) detects synthesis and
library vulnerabilities during the synthesis stage 3) does not require
extensive design or EDA tool knowledge 4) is scalable to large and
complex designs. In summary, our key contributions are :

• We propose our new hardware fuzzer, SynFuzz that lever-
ages state-of-the-art gate-level fuzzing at post-synthesis
level to unveil RTL, synthesis and library bugs(Section 4).

• This work introduces a new class of synthesis attack model
CLiMA (Section 6), leveraging malicious library mapping
through the logic synthesis tools.

• We leverage CLiMA to inject bugs in the or1200 CPU de-
sign that evades formal verification methods such as Logic
Equivalence Check (Section 6.1, 6.2).

• We extensively evaluate our fuzzer, SynFuzz, on four pop-
ular and complex open-source CPU designs: 1) the or1200
processor (OpenRISC ISA) [42], 2) the IBEX processor (RISC-
V ISA) [43], 3) the PicoRV32 processor (RISC-V ISA) [43],
and 4) the MIPS processor [64]. Additionally, we test it
on cryptographic cores such as RSA from TrustHub [79]
and Data Encryption Standard (DES) [65], a Digital Signal
Processor (DSP) [50], and several IP peripherals, including
UART [50], GPIO [50].

• SynFuzz found 7 new synthesis bugs across three proces-
sors and one cryptographic core, with all 7 being newly
discovered bugs (Section 5.2). In addition, SynFuzz found
10 existing synthesis translation bugs in popular open-
source EDA synthesis tool Yosys. To evaluate the efficacy
of our fuzzer, we utilized a leading formal verification tool,
Cadence’s Conformal Logic Equivalence Check [20]. Syn-
Fuzz addresses the limitations of the Conformal tool, in-
cluding scalability issues and its heavy reliance on human
expertise (Section 5.5).

2 Background
In this section, we furnish the necessary background on hardware
fuzzing, and the hardware development cycle.

2.1 From Design to Threats: Unpacking the
Modern IC Lifecycle

The recent advancements in technology and the rising demand
for enhanced performance, energy efficiency, and robust security
have significantly increased the complexity of the modern IC design
process. However, throughout the IC development lifecycle, various
threats can emerge at different stages, from design to deployment, as
shown in Figure 1. Starting with defining system-level requirements
and specifications in the design stage, the functional, performance,
and security objectives are outlined for the IC. IP vendors generate
the register-transfer level (RTL) code using hardware description
languages such as Verilog, VHDL, and SystemVerilog, which align
with the design descriptions through data flow between registers
and the logic operations that occur during each clock cycle. The
RTL design undergoes thorough verification to ensure it meets the
functional requirements [6, 12, 36, 78]. This verification is typically
carried out using RTL simulations via EDA tools like Cadence
Xcelium, Synopsys VCS [16, 17, 86, 87] which apply test vectors to
check for correctness and identify any functional bugs in the design.
During this stage, risks such as inaccurate requirements, design
flaws, and Trojan insertion can result in IP theft, data leakage, and
backdoor exploitations and several countermeasures are proposed
to protect against diverse attacks [3, 15, 22, 28, 35, 38, 51, 54, 66, 74,
76, 77, 81, 88, 93, 97].

In the next phase, EDA tools perform synthesis that translates
the RTL design into a gate-level representation. This step maps
the design onto fundamental hardware components such as logic
gates, flip-flops, buffers, and other standard cells from the technol-
ogy library provided by the semiconductor foundry. However, it is
essential to ensure that the gate-level design meets both functional



SynFuzz: Leveraging Fuzzing of Netlist to Detect Synthesis Bugs

Figure 1: Threat Space in the Modern IC Design Flow

and timing requirements [34] requiring through verification efforts.
The current state-of-the-art techniques, including formal methods,
functional simulations, and fault simulations, are employed to com-
pare the design against the RTL specifications [16, 18, 78]. During
synthesis and post-synthesis verification, issues such as timing vio-
lations, incomplete verification, and malicious modifications can
arise [84]. The adversary can exploit the EDA tool optimizations
during synthesis to introduce bugs that propagate to later stages,
resulting in IP piracy, denial-of-service, confidentiality violations,
etc [32]. Based on these threat spaces identified during the synthesis
stage, this serves as the primary motivation to extend fuzzing method-
ologies to the gate-level netlist. By targeting this critical abstraction
level, it becomes possible to identify synthesis-induced bugs and
vulnerabilities that are otherwise missed by traditional RTL-level
fuzzing approaches.

The design then moves into the physical design phase, where
the gate-level netlist is converted into a layout, followed by physi-
cal verification, preparing the design for tape-out and subsequent
manufacturing at the foundry. At this stage, all verification occurs
in a pre-silicon environment, meaning the design is represented
as RTL, gate-level, or layout models, not yet as physical silicon.
A key advantage of pre-silicon verification is the high degree of
observability, which allows engineers to monitor and debug the
design thoroughly. This level of visibility is not possible in post-
silicon validation. The physical design and fabrication stages are
vulnerable to threats such as overproduction, counterfeit ICs, hard-
ware Trojans, and probing attacks, all of which can significantly
undermine the chip’s reliability and trustworthiness [13].

Once the chip is fabricated, post-silicon verification is employed
which is more complex and costly than pre-silicon verification,
offering limited observability. Its primary goal is to confirm that the
manufactured silicon meets the design specifications and functions
as intended. Throughout both the pre-and post-silicon verification
stages, each level of the design is compared to its previous respective
Golden Reference Model (GRM) to ensure accuracy and reliability.

2.2 Fuzzing
Fuzzing involves bombarding randomized input seeds to the Pro-
gram Under Test (PUT)/Design Under Test (DUT), intending to trig-
ger the existing bugs and vulnerabilities. The generated input seeds
are further mutated based on the coverage feedback obtained from

the DUT/PUT under investigation, as shown in Figure 2. The popu-
lar mutation algorithms used by fuzzers are American Fuzzy Lop
(AFL) mutation algorithms [39] such as bit-flip, swap, arithmetic,
etc. The coverage feedback aids in steering the fuzzer to generate
effective seeds for improved coverage and discard uninteresting in-
puts. Based on the various mechanisms to obtain coverage feedback,
fuzzers are classified as white-box, grey-box, and black-box fuzzing.
The outcomes from the DUT/PUT are analyzed for any crash or
GRM implementation to detect the bugs. Fuzzing has proven its
efficiency in finding vulnerabilities in software [1, 37, 40, 63] and
hardware platforms [16, 26, 30, 31, 33, 41, 44–47, 96]. Industry-based
fuzzing frameworks such as Google’s OSS-Fuzz [82] andMicrosoft’s
Security Risk Detection [63] have proved their efficacy and effec-
tively identified a plethora of security vulnerabilities. The popular
software fuzzer, AFL [39], is predominantly used in software fuzzing
and is predominantly used in the majority of the software fuzzing
techniques [1, 37, 40, 63].

00100101

01110111

11001010...

Input Pool Mutation Coverage
FeedbackDUT/PUT

Mutate Interesting Seeds

00100101

...

01110111

11001010

00111000 00111000

Discard
Unintersting

Inputs

Figure 2: Overview of Fuzzing

In the context of hardware fuzzing, the fuzzing target is at differ-
ent levels of abstraction including RTL or gate-level netlist or phys-
ical layout. There are three ways to fuzz the hardware: 1) fuzzing
hardware like software [92, 94] 2) direct fuzzing on hardware [56]
3) fuzzing hardware like hardware [14, 23, 53]. The existing hard-
ware fuzzers primarily focus on the RTL as their chosen level of
abstraction to identify bugs.

Observation O1: The chosen level of hardware abstraction
and fuzzing methodologies by existing hardware fuzzers are
incapable of discovering synthesis bugs, and EDA library vul-
nerability exploits.



Raghul Saravanan, Sudipta Paria, Aritra Dasgupta, Venkat Nitin Patnala, Swarup Bhunia, and Sai Manoj P D

1

2

3

LIB

LIB

LIB

RTL
Design

EDA
Compiler

EDA
Synthesis

Malicious
Hardware

Figure 3: Overview of our ThreatModels. 1) Malicious Library
Mapping Exploitation 2) EDA Synthesis Tool Exploitation 3)
EDA Compiler Exploitation

3 The Genesis of Synthesis Bugs: Foundations
for Building Effective Fuzzers

The primary challenge in constructing an effective fuzzer for detect-
ing synthesis bugs lies in establishing a comprehensive understand-
ing of the threat model and addressing the inherent complexities of
fuzzing to ensure efficient bug detection. For this purpose, in this
section, we illustrate our threat model in Figure 3, followed by the
prevailing challenges to create a hardware fuzzer to detect the bugs
in Section 3.2.

3.1 Threat Model
Our Threat Model Assumptions: We assume a scenario where

a malicious hardware developer exploits EDA tools or a compro-
mised EDA library vendor leverages the optimization configura-
tions of synthesis tools to craft a malicious hardware design.

Malicious Library Mapping: A legitimate RTL design is pro-
vided; however, during the EDA synthesis stage, a compromised
library binary is provided to foster compromised logic mapping
leading to malicious hardware as shown in Figure 3 1 . The EDA
compiler and synthesis process appear legitimate but are tainted
by the corrupted library.

EDA Synthesis Tool Exploitation: The RTL design is legitimate
and free from malicious intent. However, a malicious hardware
developer exploits the EDA tools during the synthesis stage to inject
bugs as in Figure 3 2 . This malicious intent involves manipulating
the synthesis process to introduce vulnerabilities such as deleting
modules or instances, creating multiple drivers for a single signal, or
driving certain pins with fixed logic constants. These actions result
in unintended design behavior, leading to functional errors in the
gate-level netlist. The trust placed in the EDA tool [16, 86, 98], often
considered a trusted entity in the design flow, enables malicious
activity by providing an avenue for hardware developers to exploit
the synthesis process.

EDA Compiler Exploitation: In this threat model, an attacker
crafts specific HDL behaviors that remain undetected during RTL
compilation but manifest in the synthesized design. These issues

are intentionally subtle, allowing them to bypass checks during the
EDA Compiler stage, which treats the RTL as legitimate, as shown
in Figure 3 3 . Such flaws only surface during synthesis when the
design is transformed into its gate-level representation, potentially
leading to functional discrepancies or security vulnerabilities.

3.2 Prevailing Challenges

Challenge C1: Determine suitable hardware abstractions and
input representations

To detect the bugs associated with the above threat models, deter-
mining the level of hardware abstraction provided to the fuzzer is
critical. The fuzzing target is typically a model of the hardware de-
sign represented at the architecture level, RTL level, post-synthesis
netlist level, and physical level. In addition, the hardware fuzzer
should generate appropriate inputs in the format corresponding
with the targeted hardware abstraction level. Thus, for efficient bug
and vulnerability detection, the key challenges lie in determining
the appropriate hardware abstraction level for fuzzing and crafting
input representations that optimize the discovery of vulnerabilities
within the design flow.

Challenge C2: Extract suitable coverage metrics

The second challenge is to extract suitable coverage feedback
mechanisms with the selected hardware abstraction level that can
detect bugs and vulnerabilities. The chosen coverage metrics should
capture complex hardware behaviors at the chosen abstraction level.
This helps the fuzzers to cover critical regions of the hardware
design and also assists in generating efficient inputs. Hence, the
extraction of coverage metrics for feedback mechanism is crucial.

Challenge C3: To detect bugs through a reliable reference
model

The third challenge pertains to the detection of bugs, which
relies upon the chosen reference model to uncover discrepancies
between the expected behavior and the actual design, highlighting
bugs and vulnerabilities that arise during the synthesis process.
Hence, selecting an accurate and reliable reference model is crucial
for effectively identifying bugs.

Challenge C4: Exploit the bugs and the vulnerabilities intro-
duced through EDA tools

The final and critical challenge is to exploit the bugs and vulnera-
bilities or malicious modifications introduced at the synthesis stage
of the hardware design flow that can evade traditional verification
methods such as LEC, which are commonly used in conventional
industry practices.

4 Design of SynFuzz
To address the challenges outlined in Section 3.2 and detect bugs
associated with the above threat models in Section 3, we present
a novel hardware fuzzer SynFuzz as shown in Figure 4. We fuzz
the hardware at the gate-level netlist abstraction, which is mapped



SynFuzz: Leveraging Fuzzing of Netlist to Detect Synthesis Bugs

to library cells by the EDA synthesis tool, representing the equiv-
alent form of the RTL design, to detect synthesis bugs. The Syn-
Fuzz framework is adaptable to the conventional hardware design
flow. We first introduce how SynFuzz performs mutations and
generates an input seed format, NetInput, which is compatible with
both the RTL and the gate-level netlist (Section 4.1). Next, we illus-
trate how SynFuzz compiles and simulates the RTL and gate-level
netlist using these inputs (Section 4.2). Moving forward, we propose
a coverage metric, which captures intrinsic hardware behaviors at
the gate-level netlist to refine and guide the mutation of interesting
seeds (Section 4.3). Lastly, we describe how SynFuzz cross-verifies
the execution results from the RTL and gate-level netlist to identify
bugs effectively (Section 4.4).

module alu(
    input A,B;
    input [4:0] O,
    output [4:0] R);
r  <=  a + b;
endmodule

RTL Design
RTL Simulation Final Waveform

State

B
ug

 D
et

ec
tio

n

Mutation
engine

Mutated seeds

00100101

01110111
00111000

11001010

Ctrl    Data

.......

......

Discard 
Seeds LibTog

Cov.

No

Input Pool

NetInput

0
1

S0

Netlist Simulation

Final Waveform
State

1
P:A, W:1
P:B, W:1
P:O, W:5
P:R, W:5 NetInput

2

3

4

5

Yes

Figure 4: Overview of SynFuzz

Overview of Workflow: The overall framework of SynFuzz is
shown in Figure 4. First, the randomly generated initial seeds are
mutated ( 1 ), and SynFuzz runs both RTL and gate-level netlist
simulation using the input ( 2 , 3 ). After the completion of the
simulations, SynFuzz compares the final traces of the execution
results of these simulations to detect bugs ( 4 ). The seeds are fur-
ther mutated using the coverage metrics to increase the exploration
of uncovered hardware behaviors and improve the detection of
synthesis bugs ( 5 ).

4.1 NetInput Seed Generation
To address Challenge C1 in Section 3.2 regarding input representa-
tion, SynFuzz proposes an innovative input format, NetInput. The
gate-level netlist, which represents the synthesized equivalent of
the RTL design, retains the same input ports (P) and width (W),
which are concatenated to form a series of bits as shown in Figure
4. This input format is specifically designed to provide identical in-
puts to both the RTL and the gate-level netlist abstraction, ensuring
consistency and compatibility across these two levels of hardware
representation. NetInput ensures that any discrepancies or bugs
identified during the fuzzing process can be directly attributed to
the synthesis bugs. NetInput includes all input space that the RTL

and gate-level netlist can process during the fuzzing process. For
a given NetInput, SynFuzz incorporates AFL-style mutation tech-
niques [39]. For an efficient mutation process, the user annotates
the control and data bits to the mutation engine. As shown in Figure
4 1 , two distinct mutation engines are employed: one tailored for
control bits and the other for data bits. Mutating the control bits
helps uncover different control paths while mutating the data bits
focuses on exploring the datapath.

4.2 RTL and Netlist Simulation
SynFuzz leverages state-of-the-art EDA simulation tools to per-
form simulations at both the RTL and gate-level netlist abstractions.
The mutated bit-vectors, which serve as input stimuli, are loaded
onto the testbenches to drive simulations of the hardware designs,
as depicted in Figure 4 ( 2 , 3 ). For the gate-level netlist simulation,
SynFuzz incorporates the library environment alongside the netlist.
This environment is crucial for resolving and inferring the mapped
instances of library cell gates, which are provided by the library
vendor. These mapped instances reflect the physical implementa-
tion of the design and play a vital role in synthesis-related bugs
introduced during the mapping process. SynFuzz focuses primarily
on the intrinsic hardware behaviors at the gate-level netlist during
the fuzzing process. In the following section, SynFuzz introduces
a coverage metric designed to capture the unique characteristics of
the hardware at the gate level.

4.3 Library Toggle Coverage
The hardware design represented at the RTL encompasses diverse
and rich combinational and sequential circuits. The combinational
circuits perform logic operations where the output depends solely
on the current inputs, such as adders, multiplexers, and decoders,
while sequential circuits, on the other hand, incorporate memory
elements, where the output depends on both the current inputs
and the stored state, as seen in flip-flops, registers, and finite state
machines. During the synthesis process, these combinational and
sequential components are mapped to their equivalent library gate
cells provided by the standard-cell library. In the following, we
demonstrate the efficacy of our proposed coverage metric in cap-
turing the hardware characteristics associated with the mapped
library gate cells.

Case Study:We illustrate with a case study using a code snippet
presented in Listing 1, similar to D-link hardware authentication
[25]. Firstly, we begin by describing the expected functionality and
then outline the bugs. Finally, we detail how the Library Toggle
coverage metrics are utilized to detect these bugs.

For Listing 1, the system should grant access by verifying the
password (pwd) against the stored value in memory (mem_123), even
when the superuser mode is enabled. This ensures that access is
granted only to authorized users and prevents unauthorized access
to the system. In addition, when the debug mode is enabled (debug),
the system should check whether the input data (in_data) matches
with the input data stored in the memory (mem_456). This access
check prevents unauthorized or invalid inputs from being accepted
under the guise of debug mode.



Raghul Saravanan, Sudipta Paria, Aritra Dasgupta, Venkat Nitin Patnala, Swarup Bhunia, and Sai Manoj P D

Listing 1: Access control code snippet
process (sudo_en , pwd , mem_123 , access_level ,

debug , in_data , mem_456)
begin
if sudo_en = '1' then
access_granted <= '1';
elsif pwd = mem_123 then
access_granted <= '1';
else
access_granted <= '0';
end if;

if debug = '1' then
input_valid <= '1';
elsif in_data = mem_456 then
input_valid <= '1';
else
input_valid <= '0';
end if;
if access_granted = '1' or input_valid = '1' then
system_access <= '1';
else
system_access <= '0';
end if;
end process;

The EDA tools synthesize this RTL code into equivalent library
gate cells, as illustrated in Figure 5. The multiplexers 1 and 2
handle the matching operations for the password pwd and input
data in_data to determine access eligibility. Multiplexers 3 and
4 evaluate the selection of superuser mode or debug mode. The
combinational logic in 5 controls the final system access decision,
while 6 serves as a register to hold the input values.

D
Q

D

Q

0

1

S0

Mux=

D

Q

sudo_en

pwd

mem_123

debug

in_data

mem_456

32

32

32

32

system_access0

1

S0

MuxD
D

Q

Q

D

=

D

Q

0

1

0
1

0

1

S0

Mux

0

1

S0

Mux

1

1

5

3

4

1

2

6

6

6

Figure 5: Hardware Design for Listing 1

For the design in Figure 5, there exist two bugs, b1 and b2, similar
to D-Link hardware authentication. These are analogous to CVE-
2021-34696 [25] (access control bypass), CVE-2021-1071 [69] (access
control bypass), and CVE-2021-1088 [68] (user utilizing debug mode
with insufficient access control). For the bug b1, as observed in Line
4 of the code snippet, if the sudo_en flag is enabled, regardless of the
entered password (pwd), the password check flag (pwd_check) is set,
effectively bypassing the password validation. This compromises
the security of the system by allowing unauthorized access. The
source of this bug is the multiplexer 3 . Similarly, for the bug b2 if
the debug flag is set, then the input check (in_check) is bypassed
which is associated with 4 .

In 1 , 2 , 3 , 4 all the inputs to the MUX and the correspond-
ing select signals should be monitored for their correctness. For the

combinational logic, 5 , it is essential to verify the intermediate
computations and ensure that the logic correctly propagates the
signals to grant system access. The registers 6 can take all possible
combinations for the system access check.

For all of these scenarios, we utilize the library toggle coverage
of the gate cells to monitor and analyze the toggling behavior of
the library gate cells. This metric indicates whether a particular
instance of a mapped library cell is activated or toggled during the
simulation process. By tracking the toggle activity of the instances
3 , 4 , SynFuzz can detect the bugs b1 and b2 in the Listing 1. Fur-
thermore, for the multiplexers 1 and 2 , the input data consists of
constant values, which are declared using assign statements, such
as assign c1 = 1'b0. These expression values play an important
role in granting access when there is a password match, and the
input data is valid. We use expression coverage to verify whether
the values assigned to 1 and 2 are legit. SynFuzz leverages
state-of-the-art industry standard EDA tools such as Synopsys VCS
[86, 87] or Cadence Xcelium [17] to extract the library toggle cov-
erage and expression coverage metrics. These tools have been used
in the industry and academia over the decades which aligns with
the traditional design verification flows. Thus, SynFuzz’s coverage
metrics aid in detecting the bugs b1 and b2 through the library
toggle ane expression coverage metric.

4.4 Bug Detection
Upon the completion of executing both the RTL and gate-level
netlist for a givenNetInput, SynFuzz initiates the verification phase.
Similar to traditional hardware verification, where the gate-level
netlist is compared against the RTL, SynFuzz compares the wave-
form traces of the RTL and gate-level netlist to detect any discrep-
ancies as shown in Figure 4 4 . Initially, SynFuzz checks whether
the output register waveforms of the RTL and gate-level netlist
align. If a mismatch is detected, SynFuzz flags the NetInput for
the presence of a bug, which is then manually analyzed to identify
its root cause. This process ensures that any inconsistencies intro-
duced during synthesis are accurately identified and recorded for
further analysis.

Challenge C5: Absence of GRM for EDA Libraries

However, note that SynFuzz relies on library cells during the
synthesis process to identify bugs, which implies two limitations
1) Absence of GRM for EDA Library 2) Variability in Mapping Al-
gorithms of the EDA tool and Library Characteristics. Although the
gate-level netlist is mapped to library cells to represent the equiva-
lent RTL design, different EDA tools employ distinct algorithms for
mapping the design, and library cells often vary in their logical and
physical characteristics (e.g., timing, power, area). Unlike software
fuzzers that rely on crashes to sanitizers and hardware fuzzers that
rely on golden models, there is no GRM for EDA libraries, which in-
troduces significant challenges in validating the instances of library
cells.

Challenge C6: Variability in Mapping Algorithms and Library
Characteristics



SynFuzz: Leveraging Fuzzing of Netlist to Detect Synthesis Bugs

To address these challenges, in conjunction with SynFuzz , we
introduce DiffLib, which extends the fuzzing process by performing
differential analysis across various libraries and tools. Despite this
extension, the outputs of the gate-level netlist are still compared
solely with the RTL trace. By addressing these limitations, DiffLib
complements SynFuzz , providing a holistic approach to detecting
bugs in the synthesis process, especially those arising from tool or
library-specific inconsistencies.

RTL Design Netlist A
Netlist B

LIB AEDA Tool A +

EDA Tool A LIB B+

RTL Design

LIB +EDA Tool A

EDA Tool B + LIB 

Netlist A
Netlist B

RTL
Trace

RTL
Trace

1) 2)

3)
1) Intra-Tool, Inter-Lib
2) Inter-Tool, Intra-Lib
3) Inter-Tool, Inter-Lib

Legend

RTL Design
Netlist B

LIB AEDA Tool A +

LIB B+EDA Tool B

Netlist A

RTL
Trace

Figure 6: Configurations of DiffLib. 1) Intra-Tool, Inter-Lib 2)
Inter-Tool, Intra-Lib 2) Inter-Tool, Inter-Lib

4.5 DiffLib
We find that differential fuzzing can be applied in three different
ways 1) Intra-Tool, Inter-Lib 2) Inter-Tool, Intra-Lib 3) Inter-Tool,
Inter-Lib as shown in Figure 6. These approaches are designed
to systematically identify inconsistencies in netlist generation by
varying the tools and libraries used during the synthesis process.

Intra-Tool, Inter-Library: In this approach, netlists are gener-
ated using the same EDA synthesis tool with two different standard
cell libraries, as shown in Figure 6 1 . The goal is to identify incon-
sistencies caused by library-specific variations, such as differences
in logical functions, timing, power, or area. By keeping the synthe-
sis tool constant, the impact of these variations on the final netlist
can be isolated. For instance, two libraries may implement the same
logic gate with subtle structural differences, leading to discrepan-
cies in the synthesized netlist. This method provides insight into the
synthesis tool’s ability to handle diverse library properties while
ensuring consistent functionality.

Inter-Tool, Intra-Library: This approach focuses on using dif-
ferent synthesis tools while keeping the standard cell library con-
stant, as shown in Figure 6 2 . The aim is to detect discrepancies
introduced by differences in how each synthesis tool interprets
and handles the same library. Since EDA tools are developed by
different vendors, they may employ unique optimization strategies,
heuristics, and algorithms, leading to variances in the generated
netlists even when using identical library files. This method high-
lights tool-specific behaviors and helps identify potential issues
that may arise from discrepancies in synthesis outcomes when
transitioning between tools in a design workflow.

Inter-Tool, Inter-Library: The Inter-Tool, Inter-Library approach
represents the most comprehensive method, combining the variabil-
ity of both synthesis tools and libraries. By testing with different

EDA tools and libraries, this approach uncovers compounded dis-
crepancies that arise from the interaction between tool-specific
behaviors and library-specific characteristics. For instance, one
tool might prioritize optimizations on power, and the libraries may
offer differing trade-offs for these metrics. This combined analy-
sis provides a holistic view of the variations and inconsistencies
that can occur in practical design flows, offering insights into the
compounded impact of tool and library diversity.

5 Evaluation
The implementation of our proposed fuzzer, SynFuzz, seamlessly
integrates with the conventional industry-standard IC design and
verification flow, enabling efficient bug detection. The experiments
were conducted on a 48-core Intel Xeon processor with 512 GB of
RAM running RHEL Linux Operating System (OS). We extensively
evaluate our fuzzer, SynFuzz, on four popular and complex open-
source CPU designs: 1) the or1200 processor (OpenRISC ISA) [42],
2) the IBEX processor (RISC-V ISA) [43], 3) the PicoRV32 processor
(RISC-V ISA) [43], and 4) the MIPS processor [64]. Additionally, we
test it on cryptographic cores such as RSA from TrustHub [79] and
Data Encryption Standard (DES) [65], a Digital Signal Processor
(DSP) [50], and several IP peripherals, including UART [50], GPIO
[50]. The or1200 processor is an OpenRISC based 32-bit, 5-stage
pipeline processor used in academic research for multiple decades.
IBEX is a 32-bit, 2-stage pipeline processor based on the RISC-V
architecture. PicoRV32 is a compact 32-bit RISC-V processor de-
signed for resource-constrained applications. The MIPS processor, a
widely studied processor in academia, serves as a popular reference
for educational and research purposes.

5.1 Experimental Setup
The proposed components of SynFuzz are designed using Python
scripts and custom TCL scripts to integrate the components.

RTL and Netlist Simulation: We simulate the target hardware
using a leading industry standard EDA tools, Synopsys VCS [87] and
Cadence Xcelium [17]. These tools support a variety of hardware
abstraction levels including RTL, gate-level, and transistor-level. To
extract and analyze the coverage metrics, we deployed custom TCL
and Python scripts. For deriving the netlist, we utilized state-of-the-
art commercial industry standard EDA synthesis tools, Synopsys
Design Compiler [86] and Cadence Genus [16], which efficiently
translate the given RTL design into a gate-level representation with
high performance. In addition, we also used a popular open-source
EDA tool Yosys [98], which is widely adopted in the OpenROAD [2]
flow for RTL synthesis and netlist generation. The above mentioned
EDA tools are widely used in industry and academia for hardware
research and development. They are capable of synthesizing large-
scale designs and can seamlessly scale to complex CPU cores and
full SoC architectures, making them suitable for evaluating real-
world, high-complexity hardware systems.

These tools were provided with two open source libraries 45nm
[2] and skywater130nm [2] while we use it for DiffLib. Note that,
we simulate the netlist with Zero Delay Simulation (ZDS) condition.
ZDS simulates the netlist without annotating any timing data. It is
mainly meant for checking and validating the functionality of the
design once it is translated into a gate-level netlist.



Raghul Saravanan, Sudipta Paria, Aritra Dasgupta, Venkat Nitin Patnala, Swarup Bhunia, and Sai Manoj P D

Table 1: Bugs detected in the IP designs by SynFuzz
Design Bug Description Location Relevant CWE(s) New Bug ?
RSA [79] B1: Multiple sources driving the modular arithmetic operations Frontend CWE-665, CWE-1419 ✓

PicoRV32 [43] B2: Incorrect memory calculation operations in Memory Interface Memory Interface CWE-131, CWE-119 ✓

B3: Incorrect data forwarding to co-processors Co-Processor Interface CWE-1422 ✓

MIPS [64] B4: Incorrect implementation of sum operations ALU CWE-682, CWE-190 ✓

or1200 [42] B5: Incorrect memory data retrieval from LSU Frontend CWE-125, CWE-119 ✓

B6: Failure of PC updation Frontend CWE-451 ✓

B7: Inaccurate PC updation when NPC vales in SPR changes Program Counter CWE-221, CWE-664 ✓

Seed Generator and Mutation Engine: The seed generator,
implemented using custom Python scripts, is designed to produce
the initial seeds necessary for SynFuzz. The test suite generation is
seamlessly integratedwith both the seed generator and the feedback
engine. Additionally, for the mutation engine, we follow the AFL
mutation algorithm [39], deployed via Python scripts, and perform
mutations based on the feedback provided by the feedback engine.

5.2 Bugs Reported
We now present the synthesis bug detected by SynFuzz. Syn-
Fuzz found seven new bugs in our selected IP benchmarks and
ten existing bugs in open-source EDA synthesis tool Yosys [98]
as outlined in Table 1 and Table 2 respectively. Following this, we
present the exploitation of one of these bugs via EDA tools to inject
vulnerabilities in Section 5.3. Later in Section 6, we present how
a malicious library exploits the EDA synthesis to foster malicious
library mapping.

5.2.1 Bugs in RSA. SynFuzz uncovered a critical bug in the
synthesized netlist of the RSA design, where discrepancies were
observed between the RTL and the gate-level netlist during the
generation of ciphertext. The bug, B1, occurs in the RSA design,
where it fails to generate ciphertext for any given input text. This
issue arises from multiple sources driving the modular arithmetic
operations register, which results in entering an undefined state, as
shown in Figure 7. The RSA performs multiple modular operations
including products and squares as shown in Figure 7. As illustrated
in Figure 7, we can see that both modular product and modular
squares are connected to the same register modreg. Consequently,
the modular operations, which are critical for the cryptographic
computation and essential for generating ciphertext, become un-
available. This not only disrupts the RSA encryption process but
also compromises the system’s ability to perform secure and reli-
able cryptographic functions, leading to a denial of service (DoS)
scenario for the affected hardware module. In Section 5.3, we suc-
cessfully exploit this bug as a motivation to create a multiple driver
in the DES crypto core through the EDA Synthesis Tools. This
bug can be mapped to CWE-665 (Improper Initialization) or CWE-
1419 ( Incorrect Initialization of Resource), resulting in unexpected
behavior or security issues.

5.2.2 Bugs in PicoRV32. The bug B2, resides within the proces-
sor’s memory interface, where the address calculation for subse-
quent memory operations is not accurately updated. This flaw can
result in disruptions to memory access, such as incorrect instruction
fetching or inadvertent data retrieval from unintended memory
locations, thereby compromising the reliability and integrity of the
processor’s operation. This bug is analogous to CWE-131 (Incorrect

D

Q

D

Q

D

Q

modreg

modular
products

modular
squares

32

32

32

32

xxxxxxxx

cypher

Figure 7: Multiple Driver bug in the RSA

Calculation of Buffer Size) or CWE-119 (Improper Restriction of
Operations within the Bounds of a Memory Buffer), which are typi-
cally considered from a software perspective but it is being applied
in a hardware context.

Bug B3: The PicoRV32 processor includes an optional interface
for integrating a custom co-processor to enable hardware accelera-
tion. However, a bug has been identified in the Pico Co-Processor
Interface, where instructions meant for the co-processor are not
fully fetched into the decode stage, leading to incomplete or in-
correct data being forwarded to the co-processor. This bug B3
undermines the reliability of custom instruction execution, limit-
ing the effectiveness and compatibility of hardware acceleration
through the co-processor interface. This is similar to the bug de-
scribed in CWE-1422 (Exposure of Sensitive Information caused by
Incorrect Data Forwarding during Transient Execution).

5.2.3 Bugs in MIPS. The bug B4 resides within the Arithmetic
Logic Unit (ALU) of the MIPS processor. The final output of the
ALU operations fails to update when the computed result of the
addition operation undergoes a change. As a result, any computa-
tional changes in the sum register do not affect the final output of
the ALU, causing the ALU to erroneously retain stale data. Con-
sequently, this will lead to incorrect arithmetic operations. This
bug can be mapped to similar CWEs, such as CWE-682 (Incorrect
Calculation), or it may lead to issues described in CWE-190 (Integer
Overflow or Wraparound).

5.2.4 Bugs in or1200 Processor. The bug B5 is in the front-end
design of the or1200 processor between the Load Store Unit (LSU)
and Debug Unit. The debugging unit, when performing debugging
executions, requests a memory load operation. Upon receiving this
request, the Load-Store Unit (LSU) retrieves the requested data from
memory and makes it available to the debugging unit during the
debugging process. It was detected that an incomplete data retrieval
was performed from the LSU for the debugging request. This will
lead to incorrect data received by the debugger leading to misinter-
pretation of memory states and impeding the debugging entity from
diagnosing the issues in the processor. This bug can be generalized



SynFuzz: Leveraging Fuzzing of Netlist to Detect Synthesis Bugs

Table 2: Detection of synthesis translation bugs in open-source Yosys EDA Tool by SynFuzz
Bug Reference#♦ Bug Description Detected by SynFuzz ?

5105 B8: Incorrect optimization with Large Constant Shift ✓

5099 B9: Incorrect shift optimization ✓

4491 B10: Custom Yosys Passes Result in Faulty Synthesis and Simulation Errors ✓

4395 B11: Incorrect bit operation handling on empty strings ✓

4164 B12: Misoptimization of wide shifts bug ✓

4151 B13: Misoptimization of MUX Tree ✓

3895 B14: Inconsistency Issue with Continuous Assignment Error after FSM Optimization ✓

2969 B15: The optimization of for-loop doesn’t produce the expected behavior ✓

2648 B16: The unextend option incorrectly handle sign bits ✓

1161 B17: Multiple Drivers changes the functionality after optimization ✓
♦ Bug Reference# refers to the Git Issue ID in the Yosys repository [99].

through relevant CWEs such as CWE-125 (Out-of-bounds Read) or
CWE-119 (Improper Restriction of Operations within the Bounds
of a Memory Buffer), which can lead to unpredictable behavior or
security risks.

Bug B6 arises when the instruction 95bf022d fails to execute in
the synthesized netlist, resulting in an incomplete program counter
(PC) update and undefined program flow. The instruction is exe-
cuted, and the program counter fields are in an undefined state.
This discrepancy causes disruptions in the program executions.
Bug B6 can be considered analogous to CWE-451 (User Interface
Misrepresentation of Critical Information), which, if not addressed,
may result in incorrect execution or unintended consequences.

Bug B7 is the inaccurate update of program counter (PC) values
when the values in the Next Program Counter (NPC) stored in
the Special Purpose Registers (SPRs) change. The program counter
is staled at the previous value when the value of NPC updates.
This introduces the vulnerability of incorrect fetching of programs
leading the processor to stall. Bug B7may not have a direct mapping
to a specific CWE, but it leads to issues that can be mapped to
similar CWEs, such as CWE-221 (Information Loss or Omission) or
CWE-664 (Improper Control of a Resource Through its Lifetime).

5.2.5 Bugs in Yosys EDA Tool. Our proposed SynFuzz also dis-
covered ten existing synthesis translation bugs (B8-B17) in the
open-source EDA synthesis tool Yosys. To demonstrate the effi-
cacy of our SynFuzz in detecting translation bugs introduced by
EDA tools, we curated a corpus of existing bugs reported through
public bug trackers [99]. Leveraging this dataset 1, we applied our
proposed comprehensive fuzzing methodology—Inter-Tool, Intra-
Library, Inter-Tool, and Inter-Library fuzzing strategies—as outlined
in Section 4.5. Our analysis revealed that the netlists generated by
commercial EDA tools such as Synopsys Design Compiler and Ca-
dence Genus consistently adhered to the RTL-level functional spec-
ification. In contrast, the netlists produced by the open-source tool
Yosys exhibited translation-induced functional bugs. The existing
bugs in the open-source Yosys EDA tool detected by SynFuzz are
detailed in Table 2, along with their corresponding bug reference
numbers as reported in publicly available bug trackers.

5.3 Bug Exploitation
Based on the detection of multiple driver bugs in RSA, we inten-
tionally replicate and introduce similar vulnerabilities into one of
1The RTL designs provided to SynFuzz were sourced from publicly available code
snippets listed in the bug trackers of the Yosys EDA tool.

our benchmarks, the Data Encryption Standard (DES), by exploit-
ing EDA tools. This approach demonstrates how EDA tools can
be leveraged to introduce malicious modifications into hardware
designs.

Assumption: For this purpose, we assume the role of a mali-
cious hardware developer who exploits the state-of-the-art features
of an EDA tool to transform a benign piece of hardware into a
compromised or malicious component.

Multiple Driver Exploit: In the context of our findings from
Bug B1, the creation of multiple-driver bugs involves introducing
conditions where library-mapped cell gates are driven by multiple
sources, leading to undefined or incorrect behavior. To successfully
introduce such vulnerabilities, an attacker must first conduct a
thorough analysis of the design to identify critical registers and
computational components that are integral to the functionality of
the IP. These components serve as prime targets for manipulation
due to their significance in the operational integrity of the design.

In our specific exploit, we focused on the substitution box (S-box)
of DES, which is a crucial computational block responsible for the
non-linear substitution of data. The S-box is essential for ensuring
the security of the encryption process, making it an ideal target for
introducing a vulnerability. Once the critical components, such as
the S-box, have been identified, an attacker can utilize advanced
EDA tool features to deliberately create a multiple-driver scenario
within the design.

This process involves deploying sophisticated EDA tool com-
mands to establish multiple connections to the targeted compo-
nents, effectively creating conflicts in the driver-load connectivity.
The attacker can specify the desired drivers and loads within the
tool, intentionally assigning multiple sources to drive the same
gate or node. By doing so, the attacker introduces ambiguity in
the design’s behavior, which could lead to undefined outputs, func-
tional failures, or exploitable vulnerabilities during operation. This
exploitation highlights the risks of trusted EDA tools being misused
to introduce subtle vulnerabilities, emphasizing the need for robust
security, thorough validation, and secure-by-design principles in
modern hardware workflows.

5.4 Coverage Analysis
In this section, we present the coverage reports for the benchmarks
utilized by our fuzzer. For relatively smaller designs, such as UART,
GPIO, DES, MIPS, RSA, and DSP, the fuzzer is executed for up to 8



Raghul Saravanan, Sudipta Paria, Aritra Dasgupta, Venkat Nitin Patnala, Swarup Bhunia, and Sai Manoj P D

hours. If the design achieves 100% coverage before this time, the
fuzzer is terminated early. For larger designs, including or1200,
IBEX, MIPS, and PicoRV32, the experiments are conducted for 12
hours to ensure comprehensive fuzzing. As mentioned in Section
4.3, we extract the library coverage for our designs.

64910

17335

45656

17785

1990 738 2484 3291 4334

67.51

68.43

68.74

70.15

100 100 99.76 97.53 99.41

0

20

40

60

80

100

120

0
10000
20000
30000
40000
50000
60000
70000

C
ov

er
ag

e 
(%

)

N
o 

of
 L

ib
ra

ry
 C

el
ls

Designs

# of Library Cells Coverage

Figure 8: Coverage Results for benchmarks in SynFuzz

The coverage performance evaluation of SynFuzz highlights the
effectiveness and adaptability of the fuzzer across a diverse range
of designs. As outlined in Figure 8, or1200 is the largest design
with 64190 library cells. For smaller designs such as UART, GPIO,
DSP, RSA, and DES, the fuzzer achieves exceptional coverage, close
to 99%. For larger designs like or1200, PicoRV32, and IBEX, with
higher library cell counts, the fuzzer achieves notable coverage
values of 67.51 %, 68.43 %, and 70.15%. These results are in line with
some of the existing works [23, 53], and underline the proposed
fuzzer’s capability to handle complex architectures effectively, even
within a limited fuzzing duration. On Overall, the results affirm the
fuzzer’s robustness and scalability, excelling in smaller designs and
performing admirably on larger ones, making it a versatile tool for
comprehensive synthesis bug detection.

Furthermore, we present the utilization of cell mapping as ap-
plied to our benchmarks in Figure 9. Our complex and diverse set
of hardware designs effectively maps to approximately 91.70% of
the cells available in the library. This high mapping percentage
underscores our intent to thoroughly test the library cells under
various conditions to evaluate their performance and robustness.
Among the available cells, OR2X2, XNOR2X1, and XOR2X1, as well
as TBUFX2, are the least utilized mapping cells. In contrast, INVX1,
BUFX2, and NAND2X1 are the most highly utilized cells, reflecting
their critical role and frequent occurrence in our designs.

5.5 Comparison with Logic Equivalence
Checking

We also compare our SynFuzz with another industry standard
approach - Logic Equivalence Check (LEC)[20], which is a popular
technique used for the formal verification of hardware designs. Dur-
ing LEC, the structural and functional features of the synthesized
design are compared against the RTL as a reference model after the
synthesis to determine whether the two designs exhibit the same
behavior. The semiconductor industry relies on commercial EDA
tools such as Cadence Conformal [19] for LEC. LEC operates by
mapping and comparing specific structural and functional points,

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

AN
D

2X
1

AN
D

2X
2

AO
I2

1X
1

AO
I2

2X
1

BU
FX

2
BU

FX
4

D
FF

PO
SX

1
D

FF
SR

FA
X1

H
AX

1
D

FF
SR

IN
VX

1
IN

VX
2

IN
VX

8
M

U
X2

X1
N

AN
D

2X
1

N
AN

D
3X

1
N

O
R2

X1
N

O
R3

X1
O

AI
21

X1
O

R2
X1

O
R2

X2
XN

O
R2

X1
XO

R2
X1

TB
U

FX
2

# 
of

 C
el

ls
 M

ap
pe

d 

Library Cells

or1200 PicoRV32 IBEX MIPS UART DSP GPIO RSA DES

Figure 9: Cell Mapping utilized by our benchmarks

such as inputs, outputs, and intermediate signals, between the syn-
thesized design and the RTL. These mapped comparison points are
critical for identifying any discrepancies and ensuring that both
designs exhibit the same behavior.

However, there are two challenges in performing these com-
parisons. Firstly, as modern hardware designs grow increasingly
complex and larger in scale, the mapped comparison points in-
crease exponentially; consequently, the complexity of LEC rises.
This can increase the verification period to map the comparison
points and verification period producing ambiguous results. Sec-
ondly, conventional LEC-based verification can perform poorly (or
fail) under the following scenarios: structural optimizations intro-
duced by EDA tools during synthesis and P&R under strict design
constraints; technology translation from one standard cell library
to another having different process corners or missing logic func-
tions; untracked port/net/gate renaming introduced by EDA tools
or designers; and functional/structural design transformations for
IP protection like state-space transformation [77].

To ensure proper evaluations, the translated information must
be accurately fed into the LEC tool, a process that demands sig-
nificant human expertise and effort. The intricate nature of the
mapping and comparison points, coupled with the nuances of de-
sign transformations and tool-specific optimizations, necessitates
a deep understanding of both the design and the LEC tool’s op-
eration, hindering the efficiency in bug detection. The LEC fails
to detect bugs found by our SynFuzz. Thus, in contrast to Syn-
Fuzz, the existing formal tools are not scalable for large designs, are
prone to errors, and require significant human expertise to operate
effectively.

6 CLiMA: Compromised Library Mapping
Attack

In this section, we present our Compromised Library Mapping At-
tack (CLiMA), which exploits the optimizations of EDA synthesis
tools to produce a malicious version of the hardware design. We are
familiar with the fact that during the synthesis process, library bi-
naries provided by fabrication vendors are fed to the EDA synthesis
tool to map the design to library gate cells. However, an adversary
or a malicious library vendor can exploit the optimizations of the
EDA tool to manipulate the mapping process and create a malicious
version of the hardware. To show the practicality of this attack,



SynFuzz: Leveraging Fuzzing of Netlist to Detect Synthesis Bugs

we developed a malicious version of an open-source 45 nm library
and used it to create a malicious variant of the or1200 CPU design.
The CLiMA attack is non-detectable by traditional formal hardware
verification methods such as LEC. Based on the malicious mapping
process there exist two scenarios 1) Random Mapping Exploita-
tion 2) Targeted Mapping Exploitation. Before we present these
attacks we provide some background on the library binary and the
EDA tool optimizations which are being exploited.

Background: The library file (.lib) contains comprehensive in-
formation about the available gate cells, including their respective
parameters such as functionality, area, power consumption, and
timing characteristics. This detailed description serves as the foun-
dation for mapping the RTL design to the appropriate standard-cell
gates during the synthesis process. These are compiled by the li-
brary compilers which often emit the provided library in a binary
format (.db). Since these binaries are not readable any alterations
made are non traceable. A malicious vendor can manipulate the
library file parameters (.lib) before it is compiled into a binary file
(.db), masking the abnormalities. This tampered binary file (.db)
when used by the synthesis tool, can lead to incorrect functionality
or security vulnerabilities in the final design. After this, when sim-
ulating the netlist with the library environment (usually in .v), the
tampered binary file causes incorrect gate mapping resulting in a
functional mismatch.

To successfully execute this attack, the attacker must analyze
the parameters of the library file to identify which attributes need
to be tampered with to make it appear more attractive to the EDA
tool. This involves understanding how the EDA tool prioritizes
gate selection during synthesis based on characteristics such as
functionality, timing, power, and area. By carefully manipulating
these parameters, the attacker can influence the synthesis process
to favor the maliciously modified gate cells, embedding vulnerabili-
ties or altering the design’s intended behavior without detection.
In addition, there are design constraint commands such as max-
imum/minimum area, and power which influence the synthesis
process. In our attack, we target for optimizing the synthesis pro-
cess with minimum area constraint. In our malicious version of
45nm, we manipulate the functionality and area of certain cells to
make it attractive for the EDA tool during the synthesis process.
However, one can also do the same by exploiting minimum dynamic
power and leakage power parameter constraints.

6.1 Random Mapping Exploitation
For implementing this attack, we selected the ALU of the or1200
processor as our target module. The ALU is a critical component
responsible for performing arithmetic and logical operations, mak-
ing it an ideal candidate for demonstrating the potential impact of
a malicious library mapping attack. By focussing on the ALU, we
demonstrate how a tampered library will lead to incorrect arith-
metic operations. In our malicious version of 45nm library, the
targeted cell is an AND2X1 gate where 2X1 denotes a two-input
AND gate with a standard drive strength of X1. The functionality
of the AND2X1 gate in the malicious version of the library is mod-
ified to perform an OR logic operation instead. Additionally, the
area of these cells is intentionally reduced to be smaller than the
area of the existing OR gate cells (OR2X1, OR2X2) in the library.

Table 3: Instance Mapping Before and After CLiMA

Library Cells Original After CLiMA
# Area # Area

AND2X1 384 901.05 598 805.20
AND2x2 - - 355 999.60
A0121X1 39 109.81 65 183.02
A0122X1 556 1826.51 557 1829.80
BUFX2 1662 3899.88 1627 3817.75
INVX1 2005 2822.84 2008 2827.06

NAND2X1 725 1360.97 750 1407.90
NAND3X1 105 246.38 55 129.05
NOR2X1 361 847.08 324 760.26
NOR3X1 89 250.60 55 154.86
OAI21X1 218 613.84 216 608.21
OR2X1 439 1030.11 - -
OR2X2 2 5.63 1 2.81
Total 6585 13914 6611 13525.58

As a result, the synthesis tool prioritizes mapping the AND2X1
cells for implementing OR logic, aiming to achieve the minimum
area requirements specified during the optimization process. This
malicious version of the library is compiled with library compilers
and passed on to the EDA tools for the synthesis process.

As outlined in Table 3, a significant reduction in the design area
can be observed before and after the execution of the library map-
ping attack. Post-attack, there are no OR2X1 cells mapped in the
design, as the malicious AND2X1 cells, modified to implement OR
logic, appear more attractive to the EDA tool for meeting minimum
area requirements. Specifically, 439 OR2X1 cells were replaced with
AND2X1 cells due to the CLiMA attack. When simulating the netlist
with the library environment, 598 cells implement AND functional-
ity instead of OR functionality using the malicious AND2X1 cells,
resulting in an erroneous change in the ALU’s functionality. Hence,
the root cause for this incorrect logic implementation is hard to
find as this is masked in the malicious library.

Table 4: Design parameter deviations before and after the
targeted mapping attack

Instances Area (𝜇𝑚2) Power (𝜇𝑊 )
Before 1056 2783.59 179
After 1056 +0 % + 0 %

6.2 Targeted Mapping Exploitation
In this attack, instead of randomly mapping cells, specific cells are
deliberately targeted to create malicious behavior as shown in Fig-
ure 10. By modifying the functionality or characteristics of these
chosen cells, the attacker ensures that the synthesis tool prioritizes
their use in critical parts of the design, embedding vulnerabilities
or altering functionality in a controlled and intentional manner.
For implementing this attack, we specifically targeted the operand
multiplexer module, modifying its behavior to introduce incorrect
register forwarding of data. This deliberate manipulation ensures
that the synthesized design mishandles data flow between reg-
isters, disrupting the forwarding to computing modules. Table 4
presents the number of cell instances and the incurred area and



Raghul Saravanan, Sudipta Paria, Aritra Dasgupta, Venkat Nitin Patnala, Swarup Bhunia, and Sai Manoj P D

Table 5: Comparison with existing HW Fuzzing Frameworks
Fuzzer Targeted Abstraction Input Simulator Coverage Metric Target Design Synthesis Bugs

TheHuzz [53] RTL (HW) Assembly Synopsys VCS FSM, Branch, toggle,
conditional RISC-V ✗

Processor Fuzz [21] RTL (HW) Assembly Verilator Control path register,
ISA-transition RISC-V ✗

RFUZZ [56] FIRRTL Series of bits Any Mux Toggle Peripherals, RISC-V ✗

DifuzzRTL [49] RTL (SW) Assembly Any Register Coverage RISC-V CPU ✗

Trippel et al [92] RTL (SW) Byte Sequence Verilator Edge Coverage AES,HMAC,KMAC, Timer ✗

HyperFuzzer [27] RTL (SW) Series of bits Verilator High-level SoC ✗

SoCFuzzer [48] RTL (HW) Byte Sequence Xilinx ISA Randomness, target output,
input coverage SoC ✗

HyPFuzz [23] RTL (HW)
Assertion Cover
Properties,
Byte Sequence

Jasper Gold,
Synopsys VCS

FSM, Branch, toggle,
conditional RISC-V ✗

SynFuzz (This work) Library mapped
gate-level netlist Series of bits Cadence Xcelium Library Toggle Coverage,

Expression
CPU Designs, RSA, DES,
UART, GPIO, DSP ✓

power overhead before and after the targeted mapping attack. The
results clearly demonstrate that the attack does not introduce any
additional overhead, making it practically viable with no adverse
impact on the performance of the design.

0

1

S0

Mux

0

1

S0

Mux

D

Q

D

Q

D

Q

D

Q

32

32

32

32

operand_a

muxed_a

muxed_b

operand_b

ex_freeze

id_freeze

MUX2X1

MUX2X1

DFFPOSX1

OR2X1

AND2X1

Figure 10: Targeted Library Mapping Attack in or1200 pro-
cessor

7 Related Works
In this section, we outline the limitations of existing works in Table
5 and demonstrate how SynFuzz effectively detects synthesis bugs.

Observation O2: Comparing our work with previous
approaches is not directly suitable due to inherent dif-
ferences in abstraction levels and coverage metrics. The
methodologies and evaluation criteria of prior works fo-
cus on specific metrics and levels of abstraction that are
not aligned with the scope and objectives of our chosen
level of abstraction, input format, coverage, and refer-
ence model. As such, a direct comparison would not
yield meaningful insights and may lead to inaccurate
and false interpretations.

The majority of popular fuzzing frameworks, such as TheHuzz
[53], DifuzzRTL [49], and ProcessorFuzz [21] are CPU design fuzzers,
operating at the RTL level of abstraction and typically compare
their outputs with ISA simulators, such as Spike simulator. How-
ever, the chosen level of abstraction and the input strategies used

in these existing works are not efficient in uncovering synthesis
bugs.

Prior works, as summarized in Table 5, have explored fuzzing
hardware at different levels of abstraction. For instance, RFuzz
[56] was an early effort aimed at fuzzing RTL designs by directly
adopting software fuzzers and using metrics like multiplexer tog-
gles for coverage. However, it fails to scale effectively and often
misses bugs in complex designs. In contrast, Trippel et al. [92] pro-
posed fuzzing hardware-like software, rather than directly applying
software fuzzers to hardware designs. While this approach holds
promise, the translated hardware models do not support HDL con-
structs or accurately account for intrinsic hardware characteristics.
Moreover, the coverage metrics used in these approaches are not
suitable for hardware abstractions.

Additionally, works such as [27] proposed leveraging hyper-
properties— higher-level properties describing security policies by
comparing system behaviors. Although useful for certain applica-
tions, these methods require significant human intervention and
deep design knowledge, limiting their scalability for complex SoC
designs. Later efforts [21, 23, 53] focused on fuzzing hardware at
its native hardware abstraction level, as detailed in Table 5. These
frameworks were designed to account for the unique characteris-
tics of hardware systems, making them efficient at detecting bugs.
However, they still rely on coverage metrics aligned with the tra-
ditional IC design flow and remain restricted to higher levels of
abstraction. Based on the motivation of compiler fuzzing from soft-
ware, TransFuzz [85] is proposed to fuzz the tools and compare the
performance with Verismith, an open-source hardware tool fuzzer,
but never focus on synthesis bugs introduced in the design.

It is important to note that a direct comparison between our work
and these prior approaches is unsuitable. The abstraction levels,
input strategies, and coverage evaluation metrics used in these
existing works differ significantly from ours and do not apply to
gate-level netlist abstraction. Notably, none of the prior frameworks
focus on fuzzing at the gate-level netlist abstraction, which is the
core of our methodology for identifying synthesis bugs, library
bugs, and their vulnerabilities.

In contrast, our proposed SynFuzz 1) supports conventional
hardware design and verification methods, 2) captures intrinsic
hardware characteristics at gate-level netlist, 3) is efficient in de-
tecting bugs and vulnerabilities associated with the synthesis and
malicious library vendors, 4) does not require extensive design



SynFuzz: Leveraging Fuzzing of Netlist to Detect Synthesis Bugs

knowledge or expertise in hardware design, and 5) is scalable large
to designs with several thousands of library cells.

8 Discussion and Limitations
RTL and Netlist Accessibility: SynFuzz relies on access to

RTL designs and EDA tools to effectively detect synthesis bugs.
Verification engineers typically have access to these RTL codes dur-
ing the design and verification process, enabling them to simulate
and analyze the design behavior. Additionally, RTL codes can be
acquired from third-party vendors at a cost, providing flexibility
for organizations or engineers who require pre-designed or special-
ized modules for their projects. This accessibility facilitates the use
of SynFuzz to validate both custom and third-party designs for
potential synthesis vulnerabilities.

FPGA Synthesis Bugs: SynFuzz can be extended to fuzz FPGA-
based frameworks to detect synthesis bugs in FPGA synthesis tools
such as Xilinx Vivado [5] and others. In FPGA designs, device-
specific library files, often referred to as bitstream libraries or tech-
nology libraries, define the mapping of high-level designs to FPGA-
specific resources like Look-Up Tables (LUTs), Flip-Flops, and Block
RAMs (BRAMs). These libraries play a critical role in determining
the final implementation of the design on the FPGA. By targeting
these device-specific libraries, SynFuzz can identify bugs that arise
due to incorrect mapping of RTL logic to FPGA primitives. One can
also perform DiffLib in the context of device libraries. Extending
SynFuzz to FPGA frameworks allows for comprehensive valida-
tion of FPGA primitives ensuring robust and reliable hardware
implementations on programmable platforms.

Fuzzing Temporal Characteristics: As mentioned in Section
5.1, all the simulations are under Zero Delay Simulation conditions
ignoring all the timing intent. SynFuzz is not suitable for detect-
ing any timing bugs and vulnerabilities. However, one can extend
SynFuzz to detect timing vulnerabilities introduced by the library
cells.

9 Conclusion
Hardware bugs are increasingly prevalent at different levels of
abstraction during various stages of modern IC design. Existing
fuzzing frameworks fall short in detecting bugs associated with
synthesis and library bugs. To address this gap, we present our
novel framework, SynFuzz, which focuses on fuzzing at the library
mapped gate-level netlist. SynFuzz demonstrates its efficiency by
identifying 7 new synthesis bugs in popular open-source designs.
We presented DiffLib to extensively fuzz the EDA library in differ-
ent EDA tools to uncover library vulnerabilities. By strategically
exploiting EDA tool optimization settings, we presented and cre-
ated a compromised library mapping attack that is undetectable by
LEC. While traditional LEC methods face limitations in identify-
ing such issues, SynFuzz overcomes these challenges, providing
a more robust and comprehensive solution for synthesis bug de-
tection. Compared to Conformal, a formal LEC verification tool,
SynFuzz eliminates the need for tool-specific and design knowl-
edge while addressing other limitations.

Responsible disclosure. The bugs have been reported to respec-
tive design maintainers.

References
[1] [n. d.]. LibFuzzer. https://www.llvm.org/docs/LibFuzzer.html Last Accessed :

6/1/2024.
[2] [n. d.]. OpenRoad. https://theopenroadproject.org/ Last Accessed : 6/1/2024.
[3] Khitam Alatoun, Bharath Shankaranarayanan, Shanmukha Murali Achyutha,

and Ranga Vemuri. 2021. SoC Trust Validation Using Assertion-Based Security
Monitors. In International Symposium on Quality Electronic Design (ISQED).

[4] Aldec. [n. d.]. Riviera-PRO: Advanced Verification Platform. https://www.aldec.
com/en/products/functional_verification/riviera-pro Last Accessed : 6/1/2024.

[5] AMD. [n. d.]. AMD Vivado Design Suite. https://www.amd.com/en/
products/software/adaptive-socs-and-fpgas/vivado/vivado-buy.html Last ac-
cessed: 09/09/2024.

[6] N. Nalla Anandakumar, M. Sazadur Rahman, Mridha Md Mashahedur Rahman,
Rasheed Kibria, Upoma Das, Farimah Farahmandi, Fahim Rahman, and Mark M.
Tehranipoor. 2022. Rethinking Watermark: Providing Proof of IP Ownership in
Modern SoCs. Cryptology ePrint Archive, Paper 2022/092.

[7] Armaiti Ardeshiricham, Wei Hu, Joshua Marxen, and Ryan Kastner. 2017. Reg-
ister transfer level information flow tracking for provably secure hardware
design. In Design, Automation & Test in Europe Conference & Exhibition (DATE).

[8] Nitay Artenstein. 2017. BROADPWN: REMOTELYCOMPROMISINGANDROID
AND iOS VIA A BUG IN BROADCOM’S Wi-Fi CHIPSETS. In BlackHat USA.

[9] A.Yeh. [n. d.]. Trends in the Global IC Design Service Market. https://www.
digitimes.com/news/a20120313RS400.html&chid=2 Last Accessed : 6/1/2024.

[10] Kimia Zamiri Azar, Hadi Mardani Kamali, Houman Homayoun, and Avesta
Sasan. 2018. SMT Attack: Next Generation Attack on Obfuscated Circuits with
Capabilities and Performance Beyond the SAT Attacks. IACR Trans. Cryptogr.
Hardw. Embed. Syst. (2018), 97–122.

[11] Kimia Zamiri Azar, Hadi Mardani Kamali, Houman Homayoun, and Avesta
Sasan. 2020. NNgSAT: Neural Network guided SAT Attack on Logic Locked
Complex Structures. In 2020 IEEE/ACM International Conference On Computer
Aided Design (ICCAD).

[12] Kimia Zamiri Azar, Hadi Mardani Kamali, Houman Homayoun, and Avesta
Sasan. 2021. FromCryptography to Logic Locking: A Survey on the Architecture
Evolution of Secure Scan Chains. IEEE Access (2021).

[13] Swarup Bhunia and Mark Tehranipoor. 2018. Hardware Security: A Hands-on
Learning Approach (1st ed.). Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA.

[14] Pallavi Borkar, Chen Chen, Mohamadreza Rostami, Nikhilesh Singh, Rahul
Kande, Ahmad-Reza Sadeghi, Chester Rebeiro, and Jeyavijayan Rajendran.
2024. WhisperFuzz: White-Box Fuzzing for Detecting and Locating Timing
Vulnerabilities in Processors. arXiv preprint arXiv:2402.03704 (2024).

[15] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx.
2018. Foreshadow: Extracting the Keys to the Intel SGX Kingdomwith Transient
Out-of-Order Execution. In USENIX Security Symposium.

[16] Cadence. [n. d.]. Cadence Webpage. https://www.cadence.com/en_US/home.
html Last Accessed : 6/1/2024.

[17] Cadence. [n. d.]. Fastest Simulator to Achieve Verification Closure for IP and SoC
Designs. https://www.cadence.com/en_US/home/tools/system-design-and-
verification/simulation-and-testbench-verification/xcelium-simulator.html
Last Accessed : 6/1/2024.

[18] Cadence. [n. d.]. JasperGold Formal Verification Platform. https://www.
cadence.com/enUS/home/tools/system-design-and-verification/formal-and-
static-verification/jasper-gold-verification-platform.html Last accessed:
11/18/2023.

[19] Cadence Inc. [n. d.]. Conformal Smart LEC. https://www.cadence.
com/en_US/home/tools/digital-design-and-signoff/logic-equivalence-
checking/conformal-smart-lec.html Last accessed: 01/19/2025.

[20] Cadence Inc. [n. d.]. ogic Equivalence Checking. https://www.cadence.com/en_
US/home/tools/digital-design-and-signoff/logic-equivalence-checking.html
Last accessed: 01/19/2025.

[21] S. Canakci, C. Rajapaksha, L. Delshadtehrani, A. Nataraja, M. Taylor, M. Egele,
and A. Joshi. 2023. ProcessorFuzz: Processor Fuzzing with Control and Status
Registers Guidance. In IEEE International Symposium on Hardware Oriented
Security and Trust (HOST).

[22] Rajat Subhra Chakraborty and Swarup Bhunia. 2009. HARPOON: An
obfuscation-based SoC design methodology for hardware protection. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 28, 10
(2009), 1493–1502.

[23] Chen Chen, Rahul Kande, Nathan Nguyen, Flemming Andersen, Aakash Tyagi,
Ahmad-Reza Sadeghi, and Jeyavijayan Rajendran. 2023. HyPFuzz: Formal-
Assisted Processor Fuzzing. 1361–1378.

[24] James C. Chen, Hsin Rau, Cheng-Ju Sun, Hung-Wen Stzeng, and Chia-Hsun
Chen. 2009. Workflow design and management for IC supply chain. In Interna-
tional Conference on Networking, Sensing and Control. 697–701.

[25] Cisco. [n. d.]. CVE-2021-34696 in Cisco Routers. https://sec.cloudapps.
cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-asr900acl-

https://www.llvm.org/docs/LibFuzzer.html
https://theopenroadproject.org/
https://www.aldec.com/en/products/functional_verification/riviera-pro
https://www.aldec.com/en/products/functional_verification/riviera-pro
https://www.amd.com/en/products/software/adaptive-socs-and-fpgas/vivado/vivado-buy.html
https://www.amd.com/en/products/software/adaptive-socs-and-fpgas/vivado/vivado-buy.html
https://www.digitimes.com/news/a20120313RS400.html&chid=2
https://www.digitimes.com/news/a20120313RS400.html&chid=2
https://www.cadence.com/en_US/home.html
https://www.cadence.com/en_US/home.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/simulation-and-testbench-verification/xcelium-simulator.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/simulation-and-testbench-verification/xcelium-simulator.html
https://www.cadence.com/en US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform.html
https://www.cadence.com/en US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform.html
https://www.cadence.com/en US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/logic-equivalence-checking/conformal-smart-lec.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/logic-equivalence-checking/conformal-smart-lec.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/logic-equivalence-checking/conformal-smart-lec.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/logic-equivalence-checking.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/logic-equivalence-checking.html
https://sec.cloudapps.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-asr900acl-UeEyCxkv
https://sec.cloudapps.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-asr900acl-UeEyCxkv
https://sec.cloudapps.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-asr900acl-UeEyCxkv


Raghul Saravanan, Sudipta Paria, Aritra Dasgupta, Venkat Nitin Patnala, Swarup Bhunia, and Sai Manoj P D

UeEyCxkv Last Accessed : 6/1/2024.
[26] Edmund M. Clarke, William Klieber, Miloš Nováček, and Paolo Zuliani. 2012.

Model Checking and the State Explosion Problem. Springer, 1–30.
[27] Michael R. Clarkson and Fred B. Schneider. 2008. Hyperproperties. In 2008 21st

IEEE Computer Security Foundations Symposium. 51–65.
[28] Aritra Dasgupta, Sudipta Paria, and Swarup Bhunia. 2025. HIPR: Hardware IP

Protection through Low-Overhead Fine-Grain Redaction. Cryptology ePrint
Archive, Paper 2025/553. https://eprint.iacr.org/2025/553

[29] NIST National Vulnerability Database. [n. d.]. https://nvd.nist.gov/ Last
Accessed : 6/1/2024.

[30] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In
Proceedings of the Theory and Practice of Software, 14th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems. Springer-
Verlag, 337–340.

[31] Stephanie Drzevitzky. 2010. Proof-Carrying Hardware: Runtime Formal Verifi-
cation for Secure Dynamic Reconfiguration. In 2010 International Conference on
Field Programmable Logic and Applications. 255–258.

[32] Carson Dunbar and Gang Qu. 2014. Designing Trusted Embedded Systems from
Finite State Machines. ACM Trans. Embed. Comput. Syst. 13 (2014), 153:1–153:20.
https://api.semanticscholar.org/CorpusID:14568179

[33] Farimah Farahmandi, Yuanwen Huang, and Prabhat Mishra. 2017. Trojan
localization using symbolic algebra. In 2017 22nd Asia and South Pacific Design
Automation Conference (ASP-DAC). 591–597.

[34] Nusrat Farzana, Fahim Rahman, Mark Tehranipoor, and Farimah Farahmandi.
2019. SoC Security Verification using Property Checking. In IEEE International
Test Conference (ITC).

[35] Tian Feng, Haojie Pei, Zhou Jin, and Xiao Wu. 2022. A survey and perspective
on electronic design automation tools for ensuring SoC security. In International
SoC Design Conference (ISOCC).

[36] Domenic Forte, Swarup Bhunia, and Mark M. Tehranipoor. 2017. Hardware
Protection through Obfuscation.

[37] Antonis Geralis. [n. d.]. LibFuzzer. https://github.com/planetis-m/libfuzzer
Last accessed: 11/18/2023.

[38] Prokash Ghosh, V. N. Dwaraka Mai, Aditya Chopra, and Baljinder Sood. 2023.
Self-Checking Performance Verification Methodology for Complex SoCs. In
International Symposium on Quality Electronic Design (ISQED).

[39] Google. [n. d.]. Americal Fuzzy Loop. https://github.com/google/AFL Last
Accessed : 6/1/2024.

[40] Google. [n. d.]. OSS-Fuzz. https://google.github.io/oss-fuzz/ Last Accessed :
6/1/2024.

[41] Daniel Grosse, Ulrich Kuhne, and Rolf Drechsler. 2005. HW/SW Co-Verification
of a RISC CPU using Bounded Model Checking. In 2005 Sixth International
Workshop on Microprocessor Test and Verification. 133–137.

[42] OpenRISC Working Group. [n. d.]. OpenRISC. https://openrisc.io/ Last
accessed: 11/18/2023.

[43] RISC-V Working Group. [n. d.]. RISC-V. https://riscv.org/ Last accessed:
11/18/2023.

[44] Xiaolong Guo, Raj Gautam Dutta, Jiaji He, and Yier Jin. 2017. PCH framework
for IP runtime security verification. In 2017 Asian Hardware Oriented Security
and Trust Symposium (AsianHOST). 79–84.

[45] Xiaolong Guo, Raj Gautam Dutta, and Yier Jin. 2017. Eliminating the Hardware-
Software Boundary: A Proof-Carrying Approach for Trust Evaluation on Com-
puter Systems. IEEE Transactions on Information Forensics and Security 12, 2
(2017), 405–417.

[46] Xiaolong Guo, Raj Gautam Dutta, Prabhat Mishra, and Yier Jin. 2017. Automatic
Code Converter Enhanced PCH Framework for SoC Trust Verification. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems 25, 12 (2017), 3390–
3400.

[47] Matthew Hicks, Cynthia Sturton, Samuel T. King, and Jonathan M. Smith.
2015. SPECS: A Lightweight Runtime Mechanism for Protecting Software from
Security-Critical Processor Bugs. SIGPLAN Not. 50, 4 (Mar 2015), 517–529.

[48] Muhammad Monir Hossain, Arash Vafaei, Kimia Zamiri Azar, Fahim Rahman,
Farimah Farahmandi, and Mark Tehranipoor. 2023. SoCFuzzer: SoC Vulnerabil-
ity Detection using Cost Function enabled Fuzz Testing. In Design, Automation
& Test in Europe Conference & Exhibition (DATE).

[49] Jaewon Hur, Suhwan Song, Dongup Kwon, Eunjin Baek, Jangwoo Kim, and
Byoungyoung Lee. 2021. DifuzzRTL: Differential Fuzz Testing to Find CPU
Bugs. In IEEE Symposium on Security and Privacy (SP).

[50] IEE. [n. d.]. CAD for Assurance. https://github.com/
CommonEvaluationPlatform/CEP/tree/master Last accessed: 09/09/2024.

[51] Yeongjin Jang, Sangho Lee, and Taesoo Kim. 2016. Breaking Kernel Address
Space Layout Randomization with Intel TSX. In ACM SIGSAC Conference on
Computer and Communications Security.

[52] Nursultan Kabylkas, Tommy Thorn, Shreesha Srinath, Polychronis Xekalakis,
and Jose Renau. 2021. Effective Processor Verification with Logic Fuzzer En-
hanced Co-Simulation. In IEEE/ACM International Symposium on Microarchitec-
ture.

[53] Rahul Kande, Addison Crump, Garrett Persyn, Patrick Jauernig, Ahmad-Reza
Sadeghi, Aakash Tyagi, and Jeyavijayan Rajendran. 2022. TheHuzz: Instruction
Fuzzing of Processors Using Golden-Reference Models for Finding Software-
Exploitable Vulnerabilities. In USENIX Security Symposium (USENIX Security).

[54] Kyungsu Kang, Sangho Park, Byeongwook Bae, Jungyun Choi, SungGil Lee,
Byunghoon Lee, and Jong-Bae Lee. 2019. Seamless SoC Verification Using
Virtual Platforms: An Industrial Case Study. In Design, Automation & Test in
Europe Conference & Exhibition (DATE).

[55] Paul Kocher, Jann Horn, Anders Fogh, , Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. 2019. Spectre Attacks: Exploiting Speculative
Execution. In IEEE Symposium on Security and Privacy (S&P’19).

[56] Kevin Laeufer, Jack Koenig, Donggyu Kim, Jonathan Bachrach, and Koushik Sen.
2018. RFUZZ: Coverage-Directed Fuzz Testing of RTL on FPGAs. In IEEE/ACM
International Conference on Computer-Aided Design (ICCAD).

[57] T Li, H Zou, Luo D, and Qu W. 2021. Symbolic simulation enhanced coverage-
directed fuzz testing of RTL design. In IEEE International Symposium on Circuits
and Systems (ISCAS).

[58] Xun Li, Vineeth Kashyap, Jason K. Oberg, Mohit Tiwari, Vasanth Ram Rajarathi-
nam, Ryan Kastner, Timothy Sherwood, Ben Hardekopf, and Frederic T. Chong.
2014. Sapper: A Language for Hardware-Level Security Policy Enforcement. In
International Conference on Architectural Support for Programming Languages
and Operating Systems.

[59] Xun Li, Mohit Tiwari, Jason K. Oberg, Vineeth Kashyap, Frederic T. Chong,
Timothy Sherwood, and BenHardekopf. 2011. Caisson: AHardware Description
Language for Secure Information Flow. SIGPLANNot. 46, 6 (June 2011), 109–120.

[60] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval
Yarom, and Mike Hamburg. 2018. Meltdown: Reading Kernel Memory from
User Space. In USENIX Security Symposium.

[61] Yu Liu, Yier Jin, Aria Nosratinia, and Yiorgos Makris. 2017. Silicon Demonstra-
tion of Hardware Trojan Design and Detection in Wireless Cryptographic ICs.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems 25, 4 (2017),
1506–1519.

[62] Xingyu Meng, Shamik Kundu, Arun K. Kanuparthi, and Kanad Basu. 2022. RTL-
ConTest: Concolic Testing on RTL for Detecting Security Vulnerabilities. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 41, 3
(2022), 466–477.

[63] Microsoft. [n. d.]. Microsoft Security Risk Detection. https://www.microsoft.
com/en-us/research/project/project-springfield/ Last Accessed : 6/1/2024.

[64] MIPS Technologies. [n. d.]. MIPS. https://mips.com/ Last Accessed : 6/1/2024.
[65] MIT-LL. [n. d.]. Common Evalution Platform. https://github.com/

CommonEvaluationPlatform/CEP/tree/master Last accessed: 09/09/2024.
[66] Pratheema Mohandoss and Archana Rengaraj. 2018. Pre-Silicon DFT Verifica-

tion on SoC Slim Model. In International Workshop on Microprocessor and SOC
Test and Verification (MTV).

[67] Sujit Kumar Muduli, Gourav Takhar, and Pramod Subramanyan. 2020. Hyper-
Fuzzing for SoC Security Validation. In IEEE/ACM International Conference On
Computer Aided Design (ICCAD).

[68] NVIDIA. [n. d.]. CVE-2021-1088 in NVIDIA GPU and Tegra Hardware. https:
//nvidia.custhelp.com/app/answers/detail/a_id/5263 Last Accessed : 6/1/2024.

[69] NVIDIA Corportation. [n. d.]. CVE-2021-1071 in NVIDIA Hardware. https:
//nvidia.custhelp.com/app/answers/detail/a_id/5147 Last Accessed : 6/1/2024.

[70] University of California Berkley. [n. d.]. ABC. https://people.eecs.berkeley.
edu/~alanmi/abc/ Last Accessed : 6/1/2024.

[71] Sudipta Paria, Aritra Dasgupta, and Swarup Bhunia. 2023. DIVAS: An LLM-
based End-to-End Framework for SoC Security Analysis and Policy-based Pro-
tection. arXiv:cs.CR/2308.06932

[72] Sudipta Paria, Aritra Dasgupta, and Swarup Bhunia. 2024. DiSPEL: A Framework
for SoC Security Policy Synthesis and Distributed Enforcement. In 2024 IEEE
International Symposium on Hardware Oriented Security and Trust (HOST). 271–
281. https://doi.org/10.1109/HOST55342.2024.10545407

[73] Sudipta Paria, Aritra Dasgupta, and Swarup Bhunia. 2024. Navigating SoC
Security Landscape on LLM-Guided Paths. In Proceedings of the Great Lakes
Symposium on VLSI 2024 (GLSVLSI ’24). Association for Computing Machinery,
New York, NY, USA, 252–257. https://doi.org/10.1145/3649476.3660393

[74] Sudipta Paria, Aritra Dasgupta, and Swarup Bhunia. 2024. SPELL: An End-
to-End Tool Flow for LLM-Guided Secure SoC Design for Embedded Systems.
IEEE Embedded Systems Letters 16, 4 (2024), 365–368. https://doi.org/10.1109/
LES.2024.3447691

[75] Sudipta Paria, Pravin Gaikwad, Aritra Dasgupta, and Swarup Bhunia. 2024.
LATENT: Leveraging Automated Test Pattern Generation for Hardware Trojan
Detection. In 2024 IEEE 33rd Asian Test Symposium (ATS). 1–6. https://doi.org/
10.1109/ATS64447.2024.10915238

[76] Md Moshiur Rahman, Rasheed Almawzan, Aritra Dasgupta, Sudipta Paria, and
Swarup Bhunia. 2024. United We Protect: Protecting IP Confidentiality with
Integrated Transformation and Redaction. In 2024 IEEE Physical Assurance and
Inspection of Electronics (PAINE). 1–7. https://doi.org/10.1109/PAINE62042.2024.

https://sec.cloudapps.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-asr900acl-UeEyCxkv
https://eprint.iacr.org/2025/553
https://nvd.nist.gov/
https://api.semanticscholar.org/CorpusID:14568179
https://github.com/planetis-m/libfuzzer
https://github.com/google/AFL
https://google.github.io/oss-fuzz/
https://openrisc.io/
https://riscv.org/
https://github.com/CommonEvaluationPlatform/CEP/tree/master
https://github.com/CommonEvaluationPlatform/CEP/tree/master
https://www.microsoft.com/en-us/research/project/project-springfield/
https://www.microsoft.com/en-us/research/project/project-springfield/
https://mips.com/
https://github.com/CommonEvaluationPlatform/CEP/tree/master
https://github.com/CommonEvaluationPlatform/CEP/tree/master
https://nvidia.custhelp.com/app/answers/detail/a_id/5263
https://nvidia.custhelp.com/app/answers/detail/a_id/5263
https://nvidia.custhelp.com/app/answers/detail/a_id/5147
https://nvidia.custhelp.com/app/answers/detail/a_id/5147
https://people.eecs.berkeley.edu/~alanmi/abc/
https://people.eecs.berkeley.edu/~alanmi/abc/
https://arxiv.org/abs/cs.CR/2308.06932
https://doi.org/10.1109/HOST55342.2024.10545407
https://doi.org/10.1145/3649476.3660393
https://doi.org/10.1109/LES.2024.3447691
https://doi.org/10.1109/LES.2024.3447691
https://doi.org/10.1109/ATS64447.2024.10915238
https://doi.org/10.1109/ATS64447.2024.10915238
https://doi.org/10.1109/PAINE62042.2024.10792848
https://doi.org/10.1109/PAINE62042.2024.10792848


SynFuzz: Leveraging Fuzzing of Netlist to Detect Synthesis Bugs

10792848
[77] Md Moshiur Rahman and Swarup Bhunia. 2023. Practical Implementation of

Robust State-Space Obfuscation for Hardware IP Protection. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems (2023).

[78] Jeyavijayan Rajendran, Michael Sam, Ozgur Sinanoglu, and Ramesh Karri. 2013.
Security analysis of integrated circuit camouflaging. Proceedings of the 2013
ACM SIGSAC conference on Computer & communications security (2013).

[79] Hassan Salmani, Mohammad Tehranipoor, and Ramesh Karri. 2013. On design
vulnerability analysis and trust benchmarks development. In 2013 IEEE 31st
International Conference on Computer Design (ICCD). 471–474.

[80] Raghul Saravanan and SaiManoj Pudukotai Dinakarrao. 2024. The Emergence of
Hardware Fuzzing: A Critical Review of its Significance. arXiv:cs.CR/2403.12812
https://arxiv.org/abs/2403.12812

[81] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian Steck-
lina, Thomas Prescher, and Daniel Gruss. 2019. ZombieLoad: Cross-Privilege-
Boundary Data Sampling. In ACM SIGSAC Conference on Computer and Com-
munications Security.

[82] Kostya Serebryany. 2017. OSS-Fuzz - Google’s continuous fuzzing service for
open source software. In USENIX Security Symposium.

[83] Siemens. [n. d.]. Questa Advanced Verification. https://eda.sw.siemens.com/en-
US/ic/questa/ Last accessed: 11/18/2023.

[84] Flavien Solt, Katharina Ceesay-Seitz, and Kaveh Razavi. 2024. Cascade: CPU
Fuzzing via Intricate Program Generation. In USENIX Security Symposium.

[85] Flavien Solt and Kaveh Razavi. 2025. Lost in Translation: Enabling Con-
fused Deputy Attacks on EDA Software with TransFuzz. In USENIX Secu-
rity. Paper=https://comsec.ethz.ch/wp-content/files/mirtl_sec25.pdfURL=https:
//comsec.ethz.ch/mirtl

[86] Synopsys. [n. d.]. Synopsys Webpage. https://www.synopsys.com/ Last
accessed: 11/18/2023.

[87] Synopsys. [n. d.]. VCS: The Industry’s highest Performance Simulation So-
lutions. https://www.synopsys.com/verification/simulation/vcs.html Last
accessed: 11/18/2023.

[88] Shibo Tang, Xingxin Wang, Yifei Gao, and Wei Hu. 2022. Accelerating SoC
Security Verification and Vulnerability Detection Through Symbolic Execution.
In International SoC Design Conference (ISOCC).

[89] TechInsights. [n. d.]. Apple iPhone 15 Pro Teardown. https://www.techinsights.
com/blog/apple-iphone-15-pro-teardown Last Accessed : 6/1/2024.

[90] Mark Tehranipoor, Kimia Zamiri Azar, Navid Asadizanjani, Fahim Rahman,
Hadi Mardani Kamali, and Farimah Farahmandi. 2024. SoC Security Verification
Using Fuzz, Penetration, and AI Testing. 183–229.

[91] Mohit Tiwari, Jason K Oberg, Xun Li, Jonathan Valamehr, Timothy Levin, Ben
Hardekopf, Ryan Kastner, Frederic T. Chong, and Timothy Sherwood. 2011.
Crafting a usablemicrokernel, processor, and I/O systemwith strict and provable
information flow security. In International Symposium on Computer Architecture
(ISCA).

[92] Timothy Trippel, Kang G. Shin, Alex Chernyakhovsky, Garret Kelly, Dominic
Rizzo, and Matthew Hicks. 2022. Fuzzing Hardware Like Software. In USENIX
Security Symposium (USENIX Security).

[93] Sriram R. Vangal, Jason Howard, Gregory Ruhl, Saurabh Dighe, HowardWilson,
James Tschanz, David Finan, Arvind Singh, Tiju Jacob, Shailendra Jain, Vasantha
Erraguntla, Clark Roberts, Yatin Hoskote, Nitin Borkar, and Shekhar Borkar.
2008. An 80-Tile Sub-100-W TeraFLOPS Processor in 65-nm CMOS. IEEE
Journal of Solid-State Circuits 43, 1 (2008), 29–41.

[94] Verilator. [n. d.]. Welcome to Verilator. https://www.veripool.org/verilator/
Last accessed: 11/18/2023.

[95] Fanchao Wang, Hanbin Zhu, Pranjay Popli, Yao Xiao, Paul Bodgan, and Shahin
Nazarian. 2018. Accelerating Coverage Directed Test Generation for Functional
Verification: A Neural Network-Based Framework. In Great Lakes Symposium
on VLSI.

[96] Bruce Wile, John Goss, and Wolfgang Roesner. 2005. Comprehensive Functional
Verification: The Complete Industry Cycle. Morgan Kaufmann Publishers Inc.

[97] Rafal Wojtczuk. [n. d.]. Xen Security Advisory 7 (CVE-2012-0217) - PV priv-
ilege escalation. https://lists.xen.org/archives/html/xen-announce/2012-
06/msg00001.html Last accessed: 11/18/2023.

[98] Yosys. [n. d.]. SymbiYosys Documentation. https://symbiyosys.readthedocs.io/
en/latest/ Last accessed: 11/18/2023.

[99] Yosys. [n. d.]. SymbiYosys Documentation. https://github.com/YosysHQ/
yosys/issues Last accessed: 09/09/2024.

[100] Danfeng Zhang, Yao Wang, G. Edward Suh, and Andrew C. Myers. 2015. A
Hardware Design Language for Timing-Sensitive Information-Flow Security.
In International Conference on Architectural Support for Programming Languages
and Operating Systems.

https://doi.org/10.1109/PAINE62042.2024.10792848
https://arxiv.org/abs/cs.CR/2403.12812
https://arxiv.org/abs/2403.12812
https://eda.sw.siemens.com/en-US/ic/questa/
https://eda.sw.siemens.com/en-US/ic/questa/
Paper=https://comsec.ethz.ch/wp-content/files/mirtl_sec25.pdf URL=https://comsec.ethz.ch/mirtl
Paper=https://comsec.ethz.ch/wp-content/files/mirtl_sec25.pdf URL=https://comsec.ethz.ch/mirtl
https://www.synopsys.com/
https://www.synopsys.com/verification/simulation/vcs.html
https://www.techinsights.com/blog/apple-iphone-15-pro-teardown
https://www.techinsights.com/blog/apple-iphone-15-pro-teardown
https://www.veripool.org/verilator/
https://lists.xen.org/archives/html/xen-announce/2012-06/msg00001.html
https://lists.xen.org/archives/html/xen-announce/2012-06/msg00001.html
https://symbiyosys.readthedocs.io/en/latest/
https://symbiyosys.readthedocs.io/en/latest/
https://github.com/YosysHQ/yosys/issues
https://github.com/YosysHQ/yosys/issues

	Abstract
	1 Introduction
	2 Background
	2.1 From Design to Threats: Unpacking the Modern IC Lifecycle
	2.2 Fuzzing

	3 The Genesis of Synthesis Bugs: Foundations for Building Effective Fuzzers
	3.1 Threat Model
	3.2 Prevailing Challenges

	4 Design of SynFuzz
	4.1 NetInput Seed Generation
	4.2 RTL and Netlist Simulation
	4.3 Library Toggle Coverage
	4.4 Bug Detection
	4.5 DiffLib

	5 Evaluation
	5.1 Experimental Setup
	5.2 Bugs Reported
	5.3 Bug Exploitation
	5.4 Coverage Analysis
	5.5 Comparison with Logic Equivalence Checking

	6 CLiMA: Compromised Library Mapping Attack
	6.1 Random Mapping Exploitation
	6.2 Targeted Mapping Exploitation

	7 Related Works
	8 Discussion and Limitations
	9 Conclusion
	References

