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Abstract. This work empirically evaluates machine learning models on
two imbalanced public datasets (KDDCUP99 and Credit Card Fraud
2013). The method includes data preparation, model training, and eval-
uation, using an 80/20 (train/test) split. Models tested include eXtreme
Gradient Boosting (XGB), Multi Layer Perceptron (MLP), Generative
Adversarial Network (GAN), Variational Autoencoder (VAE), and Multiple-
Objective Generative Adversarial Active Learning (MO-GAAL), with
XGB and MLP further combined with Random-Over-Sampling (ROS)
and Self-Paced-Ensemble (SPE). Evaluation involves 5-fold cross-validation
and imputation techniques (mean, median, and Iterativelmputer) with
10, 20, 30, and 50 % missing data. Findings show XGB and MLP outper-
form generative models. Iterativelmputer results are comparable to mean
and median, but not recommended for large datasets due to increased
complexity and execution time. The code used is publicly available on
GitHub (github.com/markushaug/acr-25).
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1 Introduction

In this work, we evaluate the performance of several machine learning algo-
rithms for binary classification on tabular data. We compare the performance of
supervised and unsupervised learning approaches, and study the case of fraud
detection for cyber security. Still, our findings and lessons learned are relevant
to any business application and domain where the solution can be framed as a
binary classification problem including fraud detection, credit approval, medical
diagnosis, or online advertising, to mention a few applications. Indeed, very few
business use cases would have balanced data in terms of negative and positive
ratios. Generally, the positive class samples appear less frequently than those of
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the negative class. However, the positive samples are of high interest when di-
agnosing sicknesses, identifying fraudulent activities or predicting if a customer
will click on an ad.

Binary classification of imbalance data has been a relevant topic for the
machine learning community given that it is challenging to learn statistics from
the under represented samples [8]. Approaches to imbalanced learning include
hyperparameter tuning [19,18,9], sampling the data before training [7,5,18], and
ensembling [22,8].

Cyber security applications are becoming increasingly important given that
cyber crime is on the rise with cost estimations that reach the 400 billion USD
globally [15]. For this experimental study we systematically evaluated several
algorithms on fraud detection datasets, one of the applications of cyber security,
however, the main take aways and findings of this study, apply to any applica-
tion that can be framed as a binary classification problem. The motivation to
compare supervised learning with unsupervised learning algorithms is justified
since fraud patterns might change over time, fraudsters are very creative and try
new possibilities to bypass any system, and therefore, some patterns may never
appear during training or might be recognised in a larger time window when it
is too late [18]. Therefore, an approach that can discriminate between legit and
fraud activity without the need of collecting labels, is very appealing.

In our experiments, we focus first on the evaluation of different approaches
and techniques to deal with imbalanced learning. Here we compare the perfor-
mance of tree based and deep learning approaches in supervised and unsuper-
vised fashion, and test the effect of sampling and ensembling. Then, we inves-
tigate the robustness of the best classifier when dealing with missing data, a
problem that occurs either because certain features might not be available at
the time of data collection, either because of the nature of the process or due to
a system error. In the next section we describe the method.

2 The Method

The method can be seen in Figure 1. Each dataset is initially preprocessed
in a standardized way so that they can be reused for the various models and
sampling methods. The respective properties of the datasets can be seen in
Table 1. Categorical features are first converted into numerical features and
then all numerical features are normalized using a Standard Scaler [12]. Model
training and evaluation follows a 80/20 (train/test) split. The partitioning is not
purely stochastic, but is carried out as part of stratified sampling, so that the
respective imbalance ratio (IR) is retained in all created partitions. Models tested
include XGB [2], MLP [14], GAN [4], VAE [1], and MO-GAAL [20], with XGB
and MLP further combined with ROS and SPE. The experiment was executed in
a 5-fold cross-validation on the training set with scikit-learn pipelines [12]. After
evaluation, XGB was selected to study the effect of imputation techniques (mean,
median, and Iterativelmputer) with 10, 20, 30, and 50 % missing data. This last
step is not represented in Figure 1. The evaluation is based on the number of True



positive (TP), True negative (TN), False positive (FP), and False negative (FN),
considering Precision = TP/(TP + FP), Recall = TP/(TP + FN) and F}-
Score = 2 x Recall x Precision/(Recall + Precision). Finally, significance tests

are performed between imputation techniques. All experiments were conducted
on a 2021 MacBook Pro with the Apple M1 Max and 32 GB of RAM.
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Fig. 1. Graphical representation of the Method. Each dataset goes through a Pre-
Processing stage before Model Training and Evaluation. Models are trained and tested
independently. XGB and MLP are selected and combined with ROS and SPE.

2.1 Datasets

We used two highly imbalanced datasets KDDCUP99 and Credit Card Fraud
2013, see Table 1. A scikit-learn pipeline was used to intially preprocess the
datasets in a standardized way to be reused for the various models and sampling
methods. The categorical features were first converted into numerical features
and then all numerical features were scaled. Finally, a training and test data
partition was created. The partitioning was not purely stochastic, but was carried
out as part of stratified sampling, so that the respective IR was retained in all
created partitions.

Table 1. Characteristics of the datasets used. Data from [13,17].

Dataset Negative Positive IR NaN Values Numerical Categorical
Samples Samples Features Features
Credit Card 284315 492 577.88 0 29 0

KDDCUP99 60593 250436 4.13 0 34 7




2.2 Hyperparameters

Table 2. Hyperparameters found for the Credit Card dataset.

Model

Parameters

XGB (Nor-
mal)

Vanilla XGB with default parameters from [21]

XGB + ROS

objective = Vanilla XGB with default parameters from [21]

XGB + SPE

Vanilla XGB with default parameters from [21]

MLP (Nor-
mal)

batch_size = 2048, epochs = 50, learning_rate = 0.01, optimizer = Adam, layers = [256, 256, Dropout(0.3),
256, Dropout(0.3), 1], activation = [ReLU, ReLU, ReLU, sigmoid], metrics = [f1, fn, fp, tn, tp, precision,
recall], loss = binary_crossentropy

MLP + ROS

MLP (Normal), sampling_strategy = 1

MLP + SPE

estimator = MLP (Normal), n_estimators = 50

VAE epochs = 10, batch_size = 32, Ir=0.001, dropout-rate = 0.2

GAN epochs = 10, latent-dim = 29, batch_size = 32, d-optimizer = SGD with learning rate = 0.0002,
g-optimizer = Adam with learning rate = 0.00001 & beta-1 = 0.5

MO-GAAL contamination = Proportion of fraud cases in training partition, n_sub_generators = 3, learning rate
discriminator = 0.01, learning rate generator = 0.0001, epochs = 2
Table 3. Hyperparameters found for the KDDCUP99 dataset.

Model Parameters

XGB  (Nor-
mal)

objective = binary:logistic, booster = gbtree, colsample-bytree = 0.7, device = cpu, eval-metric = aucpr,
gamma = 0.3, learning-rate = 0.3, max-depth = 6, max_leaves = 64, n_estimators = 1000

XGB + ROS

Vanilla XGB with default parameters from [21], sampling_strategy = 1

XGB + SPE

Vanilla XGB with default parameters from [21], n_estimators (SPE) = 50

MLP  (Nor-
mal)

epochs = 50, batch_size = 2048, learning-rate = 0.02, optimizer = Adam, layers = [128, 64, 1], activation
= [relu, tanh, sigmoid], metrics = [f1, recall, precision], loss = binary_crossentropy

MLP + ROS

estimator = MLP (Normal), sampling_strategy = 1

MLP + SPE

estimator = MLP (Normal), n_estimators = 50

VAE latent_dim = 2, batch_size = 32, learning_rate = 0.001, KL_beta = 1.0, encoder_neuron_list=[128, 64, 32],
decoder_neuron_list=[32, 64, 128], activation = ReLU, dropout_rate = 0.2
GAN epochs = 10, latent_dim = 121, batch_size = 32, d_optimizer = Adam with learning rate = 0.0001 &
beta_l = 0.5, g_optimizer = Adam with learning rate = 0.0001 & beta_l = 0.5 & clipvalue = 1.0
MO-GAAL contamination = Proportion of fraud cases in training partition, n-sub_generators = 3, learning rate
discriminator = 0.01, learning rate generator = 0.0001, epochs = 2
Tables 2 and 3 present the nine setups per dataset, which include XGB,

MLP, VAE, GAN, MO-GAAL, XGB and MLP with ROS and SPE. For XGB,

we tested

different setups. First, a vanilla XGB model with standard parame-

ters [21]. Second, a XGB model was fine-tuned using RandomSearchCV across
parameters such as n_estimators, maz_leaves, learning_rate, gamma, max_depth,
subsample, reg_alpha, reg_lambda, scale_pos_weight, with RandomSearch yielding
the most promising results on the KDD dataset. These tuned hyperparameters
were then compared to the performance of the vanilla XGB model, XGB +
ROS and XGB + SPE, and the best performing model was selected for further
evaluation.



The setup for the MLPs was taken from [3]. Furthermore, hyperparameter
tuning based on scikit-learn’s RandomSearchCV was performed for the KDD-
CUPY99 dataset. VAE was trained in an unsupervised fashion on the negative
classes to learn the underlying probability distribution, following [1]. GAN was
implemented following [16]. GAN and VAE were not combined to ROS or SPE,
as these were trained using the information of the negative class only. MO-GAAL
was trained using the parameters from [6], whereby n_sub_generators was reduced
to 3 and the number of epochs to 2, as already [6] reported large execution time.
The python library PyOD was used to implement VAE and MO-GAAL [20].

3 Results

The models’ performance can be seen in Figures 2 and 3 and their training times
in Figure 4. Figures 2 and 3 show that XGB outperforms all models and its
performance is similar on both datasets. MLP is the second best. MO-GAAL is
able to learn and detect anomalies on KDDCUP but not on Credit Card Dataset.
VAE and GAN show poorer generalization performance for both datasets. As
seen in Figure 4, it is clear that training on KDDCUP takes longer time than
that taken on Credit Card for all models, being XGB the most efficient and
MO-GAAL the least.
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Fig. 2. Models’ performance on the credit card dataset, based on 5-fold cross-validation
on the training data. For XGB and MLP, only the best sampling combinations are
shown.

Furthermore, we observe that the combination of MLP + ROS led to an
improvement in anomaly detection for both datasets. Particularly in the case of
the credit card dataset, large improvements were achieved by oversampling the
positive class.

Finally, since XGB performed best for both datasets, it was used to study
the effect of missing data with random deletion of 10, 20, 30, and 50 % of
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Fig. 3. Models’ performance on the KDDCUP99 dataset, based on 5-fold cross-
validation on the training data. For XGB and MLP, only the best sampling combi-
nations are shown.
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Fig. 4. Training times in seconds (Execution Time). XGB proves to be the most effi-
cient model, while MO-GAAL stands out due to its very long training time. For XGB
and MLP, only the best sampling combinations are shown.

the data, see results in Figure 5. For the Credit Card dataset, XGB + SPE
and for the KDDCUP99 dataset, XGB without any sampling methods were the
baseline models (see Tables 2 and 3). Three imputation methods (Mean, Median,
Iterativelmputer) were evaluated in ten independent runs to avoid coincidences.
No significant differences between the imputation methods on both datasets
(p > 0.05,n = 5) were found.

We also found enormously high execution times for the IterativeImputer for
the KDDCUP99 dataset.
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Fig. 5. XGB performance with missing data using imputation techniques on credit

card and KDDCUP dataset. The error bars represent the standard deviations of the
measurements, each of which was performed ten times.

4 Discussion
This section discusses the main findings.

4.1 On the general performance

In preliminary experiments we observed other metrics such as Matthews Corre-
lation Coefficient (MCC) and Geometric Mean, and noticed that F1, Precision,



and Recall are the most relevant to drive conclusions. The results show that
XGB and MLP combined to sampling or ensembling achieved the best perfor-
mance for both datasets. The results confirm the great popularity of XGB in the
machine learning community for tabular data. In recent years, the use of XGB
has led to many wins in machine learning competitions, with MLPs just behind
XGB in terms of popularity [2, 1].

ROS and MLP on the credit card dataset produced a jump in precision, but
this was at the expense of deteriorating recall. Exactly the opposite could be
observed with Random-Under-Sampling (RUS) in [6] in combination with XGB
and other models. SPE applied to MLP had a negative effect in performance on
the credit card dataset. [10] evaluated the performance of MLPs in combination
with several sampling methods, including RUS.

We therefore recommended to evaluate several techniques for coping with
imbalanced data for each dataset. However, it must also be mentioned that due
to the limited time frame of this research, no in-depth experiments with different
hyperparameters for SPE were conducted. Besides, future work could investigate
classifier performance on different imbalance ratios as it was done in [18].

4.2 On generative models

The generative models (VAE, GAN, MO-GAAL) achieved significantly poorer
results compared to XGB and MLP. This could be due to their complexity. In
particular, the optimization of the hyperparameters for generative models proved
to be more difficult, as several MLPs with different objectives were often trained
here and the implementation and execution of the optimization for XGB and a
simple MLP were significantly simpler. Our results are similar to those obtained
by [6] on another dataset called PaySim dataset [11].

4.3 On imputation methods

The investigation of the three imputation methods showed that for the Credit-
Card dataset, the IterativeImputer outperforms Mean and Median imputation
methods on 10 % and 20 % of missing data. On the KDDCUP99 dataset, there
is no difference on whichever method is used for imputation, except for the
execution time. Iterativelmputer posses an enormous processing time, which is
particularly evident in the KDDCUP99 dataset.

The IterativeImputer complexity increases with an increasing number of fea-
tures (columns) and size of the dataset (rows) and impairs the practicability
of the method. The complexity O is defined as O(knp® min(n,p)), where k is
the number of maximum iterations, n is the number of entries in the dataset
and p is the number of features. It is important to note at this point that the
TterativeImputer can be adjusted by parameters to counteract a high runtime
[12]. In this case, however, these parameters were not optimized as this was not
possible due to time constraints for this project.



5 Conclusion

This work contributes to a better understanding of the problem of imbalance
classification, considering a systematic evaluation of supervised and unsuper-
vised learning models. We demonstrate on two representative datasets for cyber-
security that supervised learning algorithms outperform unsupervised learning
approaches. Moreover, depending on the model and the dataset, some sampling
and ensembling techniques can help improve recognition. But these should be
used carefully depending on the performance. We observed that Random Over-
sampling and Self-Paced Ensembling should be tested on each dataset and model
before its application. Interestingly, there was no difference on the imputation
methods tested (Iterativelmputer, mean and median), except that Iterativelm-
puter is not recommended for large datasets due to increased complexity and
execution time.
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draft including figures and tables, paper writing and revisions. G.V. supervision,
experimental design, paper writing and revisions.
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