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Abstract. Phishing attacks represent an increasingly sophisticated and
pervasive threat to individuals and organizations, causing significant fi-
nancial losses, identity theft, and severe damage to institutional repu-
tations. Existing phishing detection methods often struggle to simulta-
neously achieve high accuracy and explainability, either failing to detect
novel attacks or operating as opaque black-box models. To address this
critical gap, we propose a novel phishing URL detection system based
on a first-order Takagi-Sugeno-Kang (TSK) fuzzy inference model op-
timized through gradient-based techniques. Our approach intelligently
combines the interpretability and human-like reasoning capabilities of
fuzzy logic with the precision and adaptability provided by gradient op-
timization methods, specifically leveraging the Adam optimizer for effi-
cient parameter tuning. Experiments conducted using a comprehensive
dataset of over 235,000 URLs demonstrate rapid convergence, and ex-
ceptional predictive performance (accuracy averaging 99.95% across 5
cross-validation folds, with a perfect AUC i.e. 1.00). Furthermore, op-
timized fuzzy rules and membership functions improve interpretability,
clearly indicating how the model makes decisions — an essential feature
for cybersecurity applications. This high-performance, transparent, and
interpretable phishing detection framework significantly advances cur-
rent cybersecurity defenses, providing practitioners with accurate and
explainable decision-making tools.
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1 Introduction

Phishing is a widespread and evolving form of cybercrime that deceives individu-
als into disclosing confidential information such as passwords and financial data.
The most prominent mediums for phishing are emails, social media, and SMS
(smishing), where a malicious message that evokes urgency is sent to the victim.
The message contains a malicious link that redirects the victim to a webpage
similar to an authentic website from a reputable service [I]. As the digital land-
scape continues to grow, phishing represents a persistent and evolving threat to
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cybersecurity. Attackers often use social engineering techniques to exploit hu-
man psychology, creating a sense of urgency or fear to compel victims to act
quickly and divulge sensitive information without verifying the authenticity of
the request [2].

Phishing techniques have significantly evolved in terms of prevalence and
sophistication over time. The impact of phishing is profound and multifaceted.
On an individual level, victims may suffer financial losses, identity theft, and
emotional distress. The consequences can be even more severe for organizations
as it can lead to data breaches, which can cause severe reputational damage and
legal ramifications. Phishing is responsible for 36% of data breaches in the US
[3]. Phishing toolkits have also made it relatively cheap for malicious actors to
launch phishing campaigns [4], possibly leading to the rise in phishing attacks.

Due to the proliferation of sophisticated phishing campaigns, there is a grow-
ing need for detection systems that are accurate and explainable. Explainabil-
ity ensures that the decisions made by a detection system can be understood,
trusted, and validated by human analysts or stakeholders. This is particularly
vital in cybersecurity, where opaque decisions from black-box models can hinder
incident response, compliance, and the continuous refinement of defense strate-
gies. Security teams should understand why the detection system classified a
malicious URL as it did. This transparency fosters trust in the detection sys-
tem, which is crucial for its widespread use - hence the motivation behind using
fuzzy logic-based systems in phishing detection.

Fuzzy logic is a promising approach for handling the inherent uncertainty
and imprecision that characterizes phishing detection. Binary logic systems op-
erate on crisp classifications with rigid boundaries, whereas fuzzy logic reflects
the nuances of human reasoning by allowing degrees of truth rather than abso-
lute states [5]. This approach makes it extremely effective in phishing scenarios
where different indicators — such as the lexical and HTML features of a URL and
webpage, respectively — do not conform to a strict boundary but could have de-
grees of membership in different classes. The Takagi-Sugeno-Kang (TSK) fuzzy
inference system, a powerful variant of fuzzy logic models, excels at modeling
complex, nonlinear systems using interpretable if-then rules coupled with math-
ematical functions [6]. Its structure facilitates extracting meaningful patterns
from ambiguous input data, which is invaluable in the context of phishing, where
attackers constantly innovate to evade detection. However, while TSK systems
are highly interpretable, they rely on some sort of expert knowledge to model
the membership functions and the rules necessary to perform effective classifi-
cation. Without expertise concerning highly evolved and sophisticated phishing
attacks, we must incorporate some learning methodology to form a robust rule
base. To address this, we integrate gradient-based optimization into the TSK
framework, allowing it to fine-tune its parameters on data dynamically. This
hybrid approach harnesses the best of both worlds — retaining the transparency
and human-like reasoning of fuzzy logic while enhancing learning efficiency and
adaptability through gradient descent. In this work, we propose a novel and in-
telligent phishing detection system that leverages this synergy to deliver high
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accuracy without sacrificing explainability, offering a highly effective, transpar-
ent, and forward-looking solution in the ongoing fight against increasingly so-
phisticated phishing attacks.

2 Background

Over the years, a variety of techniques have emerged for phishing detection.
One of the earliest form of approaches involve blacklisting which even though is
simple, often falls short against novel or rapidly changing phishing sites due to
which the URL repositories that they depend on need to be updated regularly
to be reliable [7][8]. Therefore, it is not considered robust enough to be deployed
in real-time systems or is only suitable as a first layer of defense. Heuristic-based
techniques improved on this by analyzing webpage structures and URL pat-
terns, offering a rule-driven perspective that could identify anomalies indicative
of phishing [9]. However, these static rules suffer from scalability and accuracy
issues [g].

Recently, there has been a profound advent of machine learning for phishing
detection [I0]. ML-based detection typically involves extracting a set of fea-
tures (e.g., URL tokens, page element frequencies, domain reputation metrics)
and training a classifier to distinguish phishing sites from legitimate ones [§].
Common algorithms include Support Vector Machines, Random Forests, and
logistic regression, which can generalize beyond specific known attacks by cap-
turing statistical regularities in phishing websites. Unlike blacklists, ML models
can potentially detect zero-day phishing pages by recognizing tell-tale features
not present in benign sites [8]. In fact, ML-based approaches have been widely
adopted (even built into modern web browsers) due to their ability to scale and
adapt to new phishing strategies [§].

Deep learning approaches represent the latest generation of phishing detec-
tion techniques. Deep neural networks such as Convolutional Neural Networks
(CNNs), Recurrent Neural Networks (RNNs), and transformer-based models
have been applied to phishing detection in various forms. These models can
automatically learn features from raw input (URL strings, email text, or screen-
shots of websites) and have shown excellent accuracy, often exceeding that of
shallow classifiers [I1]]. For example, recurrent models such as LSTMs and BiL-
STMs are among the most widely used deep learning approaches for phishing
detection, capable of capturing sequence patterns in URLSs or email content [IT].
Studies have explored transformer-based architectures (BERT-based models) for
phishing email classification and found to be achieving over 98% accuracy, far
outperforming a traditional classifier on the same task [I2]. However, this in-
crease in accuracy comes at the cost of greater computational requirements and
a lack of interpretability. Machine learning and deep learning models act as com-
plex black boxes, making it unclear why a given site is flagged [I3]. This opacity
poses challenges for security analysts and end-users, motivating research into
more explainable solutions.
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In critical security applications, a detection system’s output often needs to be
understood and verified — for instance, an analyst investigating an alert benefits
from knowing which features were indicative of phishing. Moreover, regulators
and organizational policies are increasingly calling for interpretable and transpar-
ent Al in critical applications such as healthcare and finance [I3]. Explainability
is seen as essential for human oversight, allowing stakeholders to comprehend the
reasons behind an alert and to ensure the system’s decisions are justified [I3]. In
the phishing domain in particular, explainability is a compelling issue because
of its potential benefits for detecting fraud and designing better defenses. An
explainable phishing detector can provide insights into attackers’ tactics (e.g.,
which visual elements or URL tricks fooled the model), helping refine security
measures and user education [I3].

Cybersecurity has employed fuzzy logic to handle uncertainty and linguistic
reasoning in detection systems. Unlike binary logic, a fuzzy logic system works
with degrees of truth, allowing an element (e.g., a website or network event)
to belong partially to multiple categories. This provides a natural way to draw
conclusions from ambiguous or noisy inputs [I4]. In intrusion detection, for exam-
ple, the boundary between normal and malicious behaviour is often not sharply
defined - a slight deviation from normal may or may not indicate an attack.
Traditional binary rules or hard thresholds can therefore cause high false alarm
rates (flagging benign anomalies) or missed detections [14]. Fuzzy logic addresses
this by letting conditions be satisfied to a degree. An intrusion detection sys-
tem can use fuzzy sets for features like CPU usage or packet rates (e.g., “high”,
“medium”, “low”), and a fuzzy inference engine will combine them to output an
alert level. Because an event can be, say, 70% “suspicious” and 30% “normal”,
the system is more tolerant of minor deviations, which keeps false positive rates
low while still catching serious anomalies [14].

The strength of fuzzy logic lies in encoding expert knowledge as if-then rules
and handling imprecise data gracefully. A fuzzy phishing detector might use rules
such as “IF URL has many hex characters (high) AND page has login form (yes)
THEN phishing likelihood = high,” with each condition measured in fuzzy terms
(e.g., “many” could be a fuzzy set on the number of hexadecimal characters in
the URL). Such a system can integrate multiple soft signals to reach a decision.
Studies indeed show that fuzzy rule-based classifiers can achieve high detection
rates while minimizing false alerts by smoothing the boundary between benign
and malicious content [I5]. For example, Almseidin et al. (2022) used fuzzy rule
interpolation for phishing website detection and reported a 97.6% detection rate
with significantly reduced false positives, thanks to the fuzzy system’s ability
to interpolate between known rules and handle uncertainty in the input [I5].
This illustrates how fuzzy logic’s “gray area” reasoning is well-suited to security
problems where strict binary logic falters.

Takagi-Sugeno-Kang (TSK) fuzzy systems are a specific type of fuzzy infer-
ence model distinguished by their use of crisp outputs in the rule consequents.
In a TSK system, each fuzzy rule has an output defined by a mathematical
function (often a linear combination of the inputs, or a constant) rather than
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a linguistic term. For example, a TSK rule might be: IF URL-length is High
AND Domain-Age is Low THEN Phish-Risk = 0.8, where 0.8 is a crisp value
indicating risk. During inference, all applicable rules fire to a certain degree and
the TSK model computes a weighted average of the rule outputs, yielding a
final numerical score or decision. This design means that “in such systems con-
sequents are functions of inputs” [I6], and the output is obtained by a weighted
interpolation of those functions [6], [I6]. TSK fuzzy systems have proven to be
powerful and convenient, especially for control and approximation tasks. Takagi
and Sugeno’s seminal work showed that fuzzy rule systems of this type can be
applied to industrial processes such as the water-cleaning process and a con-
verter in steel-making process [6]. Additionally, they have also been proven to
be universal approximators for various multivariate continuous functions [I7].

To fully realize the potential of fuzzy systems in complex domains, researchers
have incorporated various optimization techniques to automatically learn or tune
fuzzy rules and membership functions. Genetic Algorithms (GAs) are one preva-
lent approach for optimizing fuzzy systems. GAs can optimize both the structure
and parameters of a fuzzy system [I8] — for example, selecting which rules to
include and fine-tuning the membership function shapes to maximize detection
accuracy on training data. As a global search method, a GA can find near-
optimal solutions even when the problem landscape is multimodal or discontin-
uous. The downside is that evolutionary searches can be computationally inten-
sive; evaluating many candidate fuzzy systems against data is time-consuming,
and convergence may require a large number of generations.

In contrast to evolutionary methods, gradient-based optimization provides a
more direct way to train fuzzy systems when they are formulated to be differen-
tiable. The Adam optimizer has become a cornerstone in optimization due to key
factors such as automatically scaling the gradients to handle parameters with
varying magnitudes and its effective handling of sparse or noisy gradients [19].
Adam also requires less intensive tuning and remains stable across a wider range
of learning rates when compared to the Stochastic Gradient Descent (SGD)
[20]. Tt also offers practical advantages such as its ability to work effectively
with mini-batch training and linear scaling with the number of parameters while
maintaining a low memory footprint [I9]. Due to its effectiveness for convex
and non-convex optimization landscapes [19], and due to its balance of speed,
stability, and ease of use [20], this makes an ideal choice for an optimizer.

In summary, current phishing detectors either cannot detect novel attacks (if
using blacklists/heuristics) or cannot explain their decisions (if using complex
ML/DL methods). The proposed approach addresses this gap by leveraging a
TSK fuzzy system — which inherently provides interpretability through its rule
base — and optimizing it with Adam to maximize accuracy. This combination
promises a new level of high-performance phishing detection with explainability,
directly tackling the trade-off that has defined the state of the art so far. The
remainder of this paper will detail the development of such a model and demon-
strate how it meets the twin objectives of effectiveness and interpretability in
phishing detection.
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3 Methodology

This section details our approach to developing a first-order Takagi-Sugeno-
Kang (TSK) fuzzy inference system for phishing URL detection, optimized using
gradient-based techniques.

3.1 Data Collection and Preprocessing

Our experiments utilized a comprehensive phishing URL dataset collected from
UCI which contains 235,795 records with 54 features which indicate the lexical
features of the URL and the HTML features of the webpages [21]. The dataset
includes 100,945 phishing URLs and 134,850 legitimate URLs.

Feature selection is crucial as including redundant features could degrade
the performance of the system by introducing noise and increasing training time.
Having a lot of features also inhibits the interpretability of the system since there
would be an increase in the antecedent and consequent variables of the fuzzy sys-
tem. We employed mutual information analysis to identify the most informative
features for phishing detection. Mutual information helps in identifying features
with high predictive relevance, greatly enhancing efficiency and interpretability
by focusing on influential variables only. The mutual information scores for the
features in our dataset are shown in Fig. Il
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Fig. 1: Mutual Information Scores



Explainable Phishing Detection 7

The feature "URLSimilarityIndex" was excluded as it serves as a strong
proxy signal for legitimacy, potentially leaking target-label correlations into the
feature space, which may artifically inflate performance metrics, while obscuring
the model’s ability to learn generalizable patters from lexical and HTML features
of the URL and webpage respectively. The data was split into training (80%)
and testing (20%) sets using stratified sampling to maintain class distribution.
All features were standardized using z-score normalization to have zero mean
and unit variance, ensuring that features with different scales contribute equally
to the model.

3.2 System Architecture

The proposed system utilizes a first-order Takagi-Sugeno-Kang (TSK) fuzzy in-
ference model with differentiable parameters, enabling end-to-end gradient op-
timization. Each feature is represented as a collection of Gaussian membership
functions defined by the center (mean) and width (standard deviation) param-
eters. Gaussian membership functions provide smooth differentiability, which is
essential for gradient-based methods, while also maintaining computational sim-
plicity. Each input feature is then fuzzified using the Gaussian MFs. For each
feature x;, the membership degree p,,(x;) to the j-th fuzzy set is calculated as:

i ) = exp (-0l 1)

The rule firing strength of each rule is calculated using the product t-norm
operator. For rule Ry, the firing strength cy is:

ag = H KAy, () (2)
=1

where k; indicates the MF of feature ¢ used in rule k.
Each rule has a linear consequent function in the following form:

felw) = be + Y wii; (3)
=1

where by, is the bias term and wy; are the linear coefficients for rule &
The final output is computed as the weighted average of rule consequents:

y = 221 o [ ()
Dy Qe

where m is the number of rules.

A sigmoid function transforms continuous outputs into probabilities, suitable
for binary classification tasks. The sigmoid ensures that predictions are proba-
bilistically interpretable, directly mapping output values into a meaningful scale.

(4)
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Therefore, for the binary phishing detection task, the output is passed through
a sigmoid function:

1
“Tve ®

By formulating the architecture in this way, we can ensure interpretable
rule-based reasoning while making the model flexible for gradient-based opti-
mization. The system parameters include the Gaussian MF parameters (centers
and widths) and the consequent parameters (linear coefficients and biases), all
of which are optimized during training.

Each rule in the system takes the form:

p=o0o(y)

IF T is Alj AND T2 is A2j AND ... AND In is Anj THEN Yy = bj + Wj1T1 +
Wj2X2 “+ ..+ WijnTn

where A;; represents the fuzzy set for feature ¢ in rule j, and b;,wj; are the
consequent parameters for rule j.

The centers and width of the Gaussian MFs are decided by performing k-
means clustering on the feature values, where the number of clusters per feature
is decided by the number of MFs used to represent the feature. The standard
deviation of membership functions is computed by determining the spread of
points in their respective clusters. By doing so, we ensure a warm start instead
of randomly initializing the parameters of the MFs, which leads to a significant
reduction in the training time and faster convergence to the optimal solution. For
binary features, we create tight Gaussian MFs that are centered at each unique
value. The consequent parameters are initialized randomly to values between -1
and 1.

3.3 Parameter Optimization

We implement a gradient-based optimization approach to tune all parameters of
the TSK fuzzy system which includes the centers (c¢;;) and widths (o;;) of the
Gaussian membership functions and the linear coefficients (wj;) and bias terms
(b;) of each rule.

The optimization is formulated as:

N
. 1 )
melnﬁ(ﬁ) =N ;BCE(ykuyk) + X613 (6)

where:

— 0 represents all parameters of the model
BCEF is the binary cross-entropy loss

— yi is the true label for the k-th example

J is the predicted probability from the model
— ) is the regularization coefficient

[|0]]3 is the L2 regularization term
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The Adam optimizer is used for parameter updates due to its effectiveness
with noisy gradients and ability to adapt learning rates [19]. For each parameter
0;, the update rule is:

A —} @
f)l( ) te
where mg‘” and f;l@ are the bias-corrected first and second moment estimates
of the gradient, and n is the learning rate. To ensure model robustness, we
incorporate early stopping to prevent overfitting.

3.4 Evaluation Metrics

To comprehensively evaluate the performance of our optimized first-order TSK
fuzzy system for phishing detection, the following metrics were employed:

1. Accuracy: The proportion of correctly classified instances.

2. Precision: The proportion of true positive predictions among all positive
predictions, measuring the model’s ability to avoid false positives.

3. Recall: The proportion of true positive predictions among all actual positives,
measuring the model’s ability to detect phishing URLs.

4. F1 Score: The harmonic mean of precision and recall, which balances the
trade-off between false positives and false negatives

5. Area Under the ROC Curve (AUC): Measuring the model’s ability to dis-
criminate between classes across various threshold settings.

4 Results and Discussion

This section presents the experimental outcomes of our proposed first-order TSK
fuzzy inference system, where we focus on the training dynamics and conver-
gence, membership function evaluation, rule interpretability and inference be-
haviour, feature and rule sensitivity analysis, model performance evaluation us-
ing k-fold validation and a benchmark comparison with traditional classifiers.
For initial analysis, we selected the top 30 features according to their mutual
information score, set the number of rules to 10, and set the number of mem-
bership functions of the continuous features to 3. The learning rate is set at
0.005.

Figure 2 illustrates the loss and accuracy curves of our model over the course
of training. The left plot shows the evolution of both training and validation
losses, while the right plot depicts the progression of training and validation
accuracies. One noteworthy observation from these curves is the model’s ability
to converge rapidly within the first 5 epochs. Within the first 5 epochs, both
training and validation losses sharply decrease and then stabilize quite quickly
thereafter. This demonstrates the Adam optimizer’s effectiveness in converging
at near-optimal solutions in the parameter space efficiently and rapidly. Fur-
thermore, we observe a remarkably close alignment between the training and
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Fig.2: Training and Validation Loss Curves (left), Training and Validation Ac-
curacy Curves (right)

validation curves throughout the training process. The tightly matched trajec-
tories of the loss curves indicate that the model is effectively generalizing be-
yond the training data, avoiding overfitting or underfitting. The accuracy curves
further prove the model’s strong performance, quickly surpassing 99.9% accu-
racy on both the training and validation sets within the first few epochs. This
high accuracy persists throughout the entire training duration, underscoring the
robustness and effectiveness of our TSK fuzzy inference system in accurately
classifying phishing URLs.
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Membership Degree
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Fig. 3: MFs of feature "NoOflmages"

Figure Bl illustrates how the Gaussian MFs for the feature "NoOflmages"
evolved from their initial k-means based positions to their optimized final state.
The MFs became significantly narrower, sharpening their definitions and reduc-
ing overlaps, with new centers located around -0.11, 0.35, and 14.46 from -0.13,
1.15, and 19.84, respectively. This underscores the model’s ability to fine-tune
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itself, better reflecting the underlying data distribution and improving its dis-
criminative performance.
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Fig. 4: Rule activations for 3 samples in Test data

Figure [ illustrates the activation patterns of fuzzy rules for 3 distinct sam-
ples from the test dataset, offering insights into how the model applies its rule
base differently depending on the input characteristics. Sample 1 evenly engages
all ten rules, whereas sample 2 predominantly activates rule 3 (33.87%) while
still partially engaging the other rules. This suggests a stronger but not exclusive
alignment with the conditions described by Rule 3. Most strikingly, Sample 3
demonstrates remarkable rule specialization, with Rule 1 overwhelmingly acti-
vated at 97.21%, effectively dominating the decision-making process. This strong
specialization of Rule 1 indicates a clear-cut case where the sample features align
closely with specific conditions encoded by this rule.

From an interpretability standpoint, these varying activation patterns high-
light the transparency of the TSK fuzzy system. Such clarity in rule activation
aids practitioners in understanding precisely why certain predictions were made,
providing valuable insights for debugging, model improvement, and explaining
decisions to stakeholders, establishing trust and confidence in the model.

If the model uses 3 features, and 3 MFs for each feature, the TSK rules after
optimization will be of the form:

— (IF f; is LOW) AND (IF f, is MEDIUM) AND (IF f3 is HIGH), then
y=0b1+0.5f +0.9f2+0.3f3
— (IF f, is MEDIUM) AND (IF f, is MEDIUM) AND (IF f3 is HIGH), then
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— (IF f, is HIGH) AND (IF f, is LOW) AND (IF f5 is MEDIUM), then
y=bs+0.6f1+0.7f,—0.1fs
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Fig.5: Model Scaling Performance

Figure [l illustrates that optimal model configurations involve a moderate
complexity — specifically between 15 to 35 features and approximately 20 to 40
rules. Such configurations provide the best balance between model accuracy and
interpretability, ensuring high performance without unnecessary complexity or
diminishing returns.

Table 1: Cross-validation performance comparison of the TSK-Fuzzy model
against ensemble classifiers

Model Accuracy Precision Recall F1 Score AUC
TSK-Fuzzy (Ours) 0.9995 0.9995 0.9998 0.9996 1.0000
Random Forest 0.9997 0.9996 0.9999 0.9998 1.0000
XGBoost 0.9997 0.9997  0.9998 0.9997 1.0000
Light GBM 0.9998 0.9998 0.9999 0.9998 1.0000

The proposed gradient-optimized first-order TSK-Fuzzy model achieves strong
predictive performance, achieving an average accuracy of 99.95%, F1 score of
99.96%, and an AUC of 1.00 across 5-fold cross-validation. When benchmarked
against widely-used ensemble classifiers, including Random Forest, XGBoost,
and Light GBM, the TSK-Fuzzy system performs competitively, with only marginal
differences in predictive performance. While it did not outperform these meth-
ods in absolute terms, it offers the unique advantage of interpretability through
rule-based fuzzy reasoning. This makes it particularly well-suited for applications
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that demand transparent and explainable decision-making, such as phishing de-
tection within cybersecurity frameworks.

5 Conclusion and Future Work

In this work, we presented a gradient-optimized first-order Takagi-Sugeno-Kang
(TSK) fuzzy inference system for phishing URL detection, integrating inter-
pretable fuzzy logic with the adaptive learning capabilities of gradient descent us-
ing the Adam optimizer. Our model demonstrated strong convergence, minimal
overfitting, and robust generalization across five cross-validation folds, achieving
near-perfect classification performance while maintaining transparency through
interpretable rule structures. The ability of the TSK system to visually demon-
strate rule activation patterns and evolve membership functions during training
underscores its strength in providing intelligible decision boundaries for security-
critical applications.

For future work, we aim to incorporate adversarial training strategies to
improve the model’s resilience against evasion attacks, ensuring robustness in
real-world deployment. We also plan to extend this approach to multi-modal
phishing detection tasks involving emails, social media messages, and web traffic,
broadening the model’s utility beyond URL analysis. Finally, investigating real-
time deployment feasibility and conducting user studies on the interpretability
of the fuzzy rule explanations will help translate the research into actionable,
practitioner-focused tools.
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