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Abstract—The rapid expansion of Internet of Things (IoT)
devices, particularly in smart home environments, has in-
troduced considerable security and privacy concerns due to
their persistent connectivity and interaction with cloud ser-
vices. Despite advancements in IoT security, effective privacy
measures remain uncovered, with existing solutions often
relying on cloud-based threat detection that exposes sensitive
data or outdated allow-lists that inadequately restrict non-
essential network traffic. This work presents ML-IoTrim, a
system for detecting and mitigating non-essential IoT traffic
(i.e., not influencing the device operations) by analyzing
network behavior at the edge, leveraging Machine Learning
to classify network destinations. Our approach includes
building a labeled dataset based on IoT device behavior and
employing a feature-extraction pipeline to enable a binary
classification of essential vs. non-essential network destina-
tions. We test our framework in a consumer smart home
setup with IoT devices from five categories, demonstrating
that the model can accurately identify and block non-
essential traffic, including previously unseen destinations,
without relying on traditional allow-lists. We implement our
solution on a home access point, showing the framework has
strong potential for scalable deployment, supporting near-
real-time traffic classification in large-scale IoT environments
with hundreds of devices. This research advances privacy-
aware traffic control in smart homes, paving the way for
future developments in IoT device privacy.

Index Terms—IoT, IoT Privacy, Network Traffic, ML

1. Introduction

The number of Internet of Things (IoT) devices is
increasing dramatically, revolutionizing our daily lives, es-
pecially in the smart home field [1]. However, the presence
of these devices introduces several security and privacy
challenges. In recent years, IoT devices have become
frequent targets or sources of security threats affecting
users and other Internet entities [2]. Given their constant
connectivity and communication with cloud services, IoT
devices pose significant privacy risks, as users are often
unaware of what information is being shared and who
is collecting it. Although many solutions in the literature
effectively counter known security threats, such as through
device protection and isolation (e.g., DDoS detection), pri-
vacy concerns remain inadequately addressed [3]. More-
over, most existing solutions are cloud-based, leading to
further exposure of sensitive data during threat detection
processes [3], [4]. Privacy-aware approaches, typically

based on allow-lists, restrict network traffic to only pre-
approved destinations. However, these methods are often
ineffective, as they depend on predefined lists that are fre-
quently incomplete or outdated, particularly when address-
ing advertisements or user tracking [5]. The analysis of the
network behavior of consumer smart devices highlights
frequent communication with non-essential destinations,
not contributing to device operations. This work presents
ML-IoTrim, a system designed for the home gateway for
detecting non-essential IoT traffic by inspecting network
characteristics. The goal is to obtain a centralized smart
home entity capable of automatically detecting and block-
ing non-essential traffic to ensure a privacy-aware environ-
ment. Leveraging recent advances in Machine Learning
(ML) for network traffic analysis, we propose a binary
classification for network destinations. To achieve this, we
first outline a methodology to build a labeled dataset by
observing IoT device behavior over time and identifying
non-essential destinations. Then, we describe a feature-
extraction pipeline that generates statistical information
from network data that can be used to train supervised ML
models. We present experimental results on a consumer
smart home environment with IoT devices deployed in a
large testbed. We show that a global model can effectively
distinguish essential traffic by only relying on network
traffic patterns, with no information on domain names or
IP addresses. Additionally, we successfully classify new
destinations not present in the training set, addressing one
of the main limitations of allow-list approaches, requiring
frequent updates. We implement the framework and test it
on a mini PC acting as a home access point, showcasing
its potential in smart homes. Employing the proposed so-
lution in large-scale environments is possible, classifying
traffic from hundreds of devices in real-time.
We release ML-IoTrim publicly for reproducible re-
search1. The remainder of this paper is organized as fol-
lows: Section 2 discusses the literature on privacy/security
for the smart home, Section 3 introduces the proposed
framework, including the methodology used to obtain the
ground truth labels and the setup of the testbed, Section
4 presents the learning module with the data processing
pipeline and the ML models involved for destination clas-
sification. Experimental results are reported in Section 5,
while in Section 6 we discuss the framework integration
in a real-life home environment. Section 7 concludes the
work and discusses future research directions.

1. https://github.com/SafeNetIoT/ML-IoTrim
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2. Related Work

Several works in the literature tackled the problem
of user privacy and security in IoT by proposing tools
and frameworks. We comment here on the main work
related to privacy for IoT devices, focusing specifically
on consumer devices for the smart home. The authors
of [6] propose an allow-list-based tool to mitigate IoT
denial of service attacks in the home gateway. However,
considering the continuous updates that such lists require,
allow-list-based solutions have been proven ineffective in
the dynamic field of the IoT [5]. The work in [7] proposes
SPIN, a distributed framework to be deployed in a wide
range of home networks, providing a measurement-based
data model of IoT devices and their security character-
istics. The framework allows visualization and control of
IoT traffic, with a privacy manager allowing consumers to
control their privacy in insecure devices. A reverse firewall
is also implemented to automatically block devices when
required, for example, when a DDoS attack is detected. In
[8], the authors present a framework for early identifica-
tion of privacy threats in the smart home. The authors
present a system model, a threat model, and a set of
privacy metrics to describe the status of devices in the net-
work and notify the user of potential issues in the network.
Similarly, the authors of [9] reduce the smart home devices
to their data-collection capabilities to state the privacy
risks derived by the presence of the devices, depending
on the information the user exposes. However, the work
only describes the model details, and no implementation is
presented. The number of solutions for ensuring IoT secu-
rity and privacy in the smart home keeps increasing; how-
ever, the proposed frameworks usually lack intelligence or
automation, leading to inefficient control of IoT security.
Besides academic works, different commercial solutions
have been released in the last few years to overcome IoT-
related issues in smart environments. Different solutions
have been released to protect IoT devices from external
attackers or to prevent such devices from being the sources
of attacks [10]–[12]. Different anti-virus producers also
extended their operations with IoT-specific tasks for the
smart home [13]. Several companies integrated software
solutions in custom hardware components to obtain a
full ”security-by-design” product, usually serving as a
smart home hub or gateway [14], [15]. Overall, many
different solutions promise to secure IoT devices in the
smart home. However, all these solutions focus mainly
on security attacks, ignoring privacy-related threats, and
often do not properly provide what they promise [3]. The
work in [16] presented a methodology to retrieve non-
essential destinations from an IoT device. However, the
pipeline requires manual controls, making it impossible
for large-scale deployment. Unlike existing solutions, we
provide a framework that can automatically detect non-
essential traffic without prior knowledge on the device or
the network domains.

3. Overview

To meet the outlined objectives, we propose ML-
IoTrim, a framework implemented on the home gateway
to automatically distinguish and block non-required traffic.
The framework identifies non-essential destinations by

Figure 1. Sketch of the ML-IoTrim framework architecture

relying solely on network traffic characteristics and blocks
them accordingly. Classification is performed using pre-
trained machine learning models, which are preloaded
onto the access point. Figure 1 sketches the proposed
architecture with the required components. The system
continuously monitors network traffic from connected
devices and performs periodic analyses to extract fea-
tures. Machine learning classifiers then make decisions on
whether a contacted destination is essential or not for the
device so that specific procedures can block traffic toward
non-essential destinations. First, we present the approach
for collecting information on essential and non-essential
destinations, forming the ground truth for the network
dataset. Next, we describe our testbed setup, followed
by the data collection process, while data analysis and
machine learning classification will be covered in the next
sections.

3.1. Methodology

The first step towards developing the framework is to
obtain a network dataset with associated information on
the destinations categorized as essential or non-essential
for the device, to be used to train the machine learning
models. While collecting network traffic can be achieved
using tools such as tcpdump or Wireshark, distinguishing
between essential and non-essential destinations poses
a greater challenge. IoT device manufacturers typically
do not provide documentation on the standard network
behavior of their devices, despite the release of recent
IETF standards trying to enforce this transparency (e.g.,
the Manufacturer Usage Description [17]). To address this,
we adapted the pipeline introduced in [16], which analyzes
network traffic from consumer IoT devices to distinguish
required network destinations. The procedure relies on a
custom access point with the MonIoTr framework, able to
monitor IoT devices to collect and control their network
traffic [18]. Each device is analyzed separately using a
two-step procedure to (i) retrieve the list of destinations
and (ii) distinguish the nature of each destination. For
the first step, we distinguish destinations contacted as
the device is booted (Power-on destinations) from task-
specific ones contacted during the execution of device
operations (Activity destinations). To collect a complete
set of destinations, we repeat the following procedure 10
times:(i) the device is unplugged, (ii) the traffic capture
is started, and (iii) the device is plugged and powered on
to connect to the access point. Then, (iv) we reset the
packet capture and save the temporary dump to trace the
power-on destinations separately. (v) We trigger the device



TABLE 1. LIST OF IOT DEVICES INCLUDED IN OUR TESTBED

Cathegory Device Destinations (Req/Non-Req) Non-Required Traffic
Speaker Amazon Echo dot 3 2/48 92.6%
Speaker Amazon Echo dot 4 2/46 94.2%
Camera Yi Pro Home Camera 1/36 91.6%

Appliance Yeelight Bulb 1S 1/0 0%
Appliance Tp-Link Kasa Bulb LB120 1/3 2.6%
Appliance Tp-Link Tapo Plug P110 2/2 0.9%

Hub SwitchBot Hub Mini 1/0 0%
Video Roku TV Stick 1/120 81.1%

with a set of activities, and finally, (vi) the traffic capture
is stopped. The full procedure produces two PCAP files
that are later processed to obtain the list of the remote
destinations’ domain names and IP addresses.
The next step is to analyze the destinations on the obtained
lists to distinguish the essential from non-essential ones.
The following steps are executed for each destination:
first, the traffic from/to the destination is blocked; then,
the device is powered off and then immediately back on
to reset the device DNS tables. As the device is powered
on, it is triggered with a set of operations. During the
execution of the different functions, we check if they have
been properly executed or not: if all the functions are
successful even when the traffic towards the destination
is blocked, then the destination is added to the list of
non-essential destinations, and the script continues to the
next destination maintaining the block to that destination.
In cases in which at least one of the tested functions
does not produce the expected outcome, the destination is
marked as essential for the device operations and can not
be blocked: the destination is added to the list of essential
destinations and is removed from the block-list during
the analysis of successive destinations. The procedure is
repeated at least 30 times until an 80% consensus among
the iterations is reached.

The entire procedure is automated using shell scripts that
interact with the MonIoTr software for traffic collection
and blocking. We use Tcpdump for traffic capturing, while
we process the PCAP files using the tshark command
line tool, part of the Wireshark programming suite. We
extract all the DNS type A requests and save the re-
quested domain name with the corresponding IP address
in the response. With this procedure, we obtain a CSV
file with the (Domain name, IP address) pairs for
each destination involved in the device communication
from both device boot and activity execution steps. To
automatically trigger the device and execute the defined
set of functions for the different devices, we use the adb2

interface to control an Android smartphone and interact
with the different apps. The smartphone is connected to
a separate access point to force communication with IoT
devices through cloud services. Devices requiring voice
commands are triggered with text-to-speech tools. For
traffic blocking, we implement an IP blocker to filter
out communication with a specific IP address, while DNS
Override is implemented to block the translation of a net-
work domain name, thus interrupting the communication
with the destination. Finally, to check the results of the
function execution, we use device-specific probe scripts to
ensure the expected outcome is achieved successfully. For
android-triggered functions, the probe scripts are based on
screenshot comparisons. For voice-triggered devices, the

2. https://developer.android.com/tools/adb

Figure 2. Data processing pipeline from raw traffic to Machine Learning
classification.

automated outcome control is implemented by analyzing
the produced traffic based on specific Uplink thresholds,
analogously to [16].

3.2. Testbed

To obtain a labeled network dataset, we need to set
up an IoT network with different devices, apply the out-
lined methodology, and collect the network data. For this
purpose, we selected eight consumer smart home devices,
including different categories and brands, as reported in
Table 1. We set an Intel NUC mini PC to act as a Wi-Fi
access point, installing the required software and scripts
for the collection and analysis pipelines. All the devices
are connected to the access point using Wi-Fi technology,
and they are connected to the power through a smart
plug that allows automated power-on/off procedures. To
reduce the number of executions, we define a subset of
functions to be tested for each device, and we proceed
with the steps of the previously presented methodology to
collect the list of all destinations and categorize each one
as essential or non-essential for the device. The triggering
and probe scripts are adjusted for each device to success-
fully control and check the outcome of the executions.
The procedure outputs the list of essential/non-essential
destinations for each device. The next step is to collect the
network data to train/evaluate the classification models:
we collect the traffic from the eight devices in our testbed
for 4 months, producing one PCAP file per device per
day. The devices are periodically rebooted and triggered
during traffic collection, alternating periods of activity to
inactive periods to have a realistic smart home scenario.
Table 1 also reports the results of a preliminary analysis
on the nature of the network traffic, reporting the number
of essential/non-essential destinations contacted by each
device.

4. Learning Module

The ML-IoTrim learning module consists of the
feature-extraction methodology and the subsequent clas-
sification. The pipeline is summarized in Figure 2.

4.1. Feature Extraction

For the feature extraction process, we analyze the
devices individually. The first step is to extract the DNS
packets from all the traffic to obtain the pairs of domain
names and the corresponding IP addresses of all the
contacted destinations. Then, each PCAP file for each
device is processed individually, and the set of features
is extracted with the following pipeline:



• First, we group packets by destination, checking
the previously extracted DNS queries and substi-
tuting the IP with the domain name, when possi-
ble.

• Then, we perform a time-window aggregation,
grouping packets involving the same destination
into non-overlapping time windows of fixed du-
ration. The value for the window length will be
discussed in the results.

• Finally, we compute a set of statistical values
on top of packet headers for each time window
for each destination for each device: we extract
different statistics from packet size, interarrival
times, and other TCP/IP information.

To compute the set of features, the packets in each time
window are divided into different sets distinguished by
protocol (TCP, TLS, UDP, Any) and direction (Uplink,
Downlink, Any). For each of the 12 sets obtained with
the different combinations, the following features are com-
puted (16 total):

• Number of packets
• 8 Statistics on packet size: sum, mean, median,

standard deviation, minimum and maximum val-
ues, first and third quartiles

• 7 Statistics on Interarrival Time (IAT): mean, me-
dian, standard deviation, minimum and maximum
values, first and third quartiles

In addition to the 192 features already listed, the following
features are computed for each time window:

• TCP over UDP packet/byte ratios (2 features)
• TLS over TCP packet/byte ratios (2 features)
• Uplink over Downlink packet/byte ratios (2 fea-

tures)
• Number of unique UDP and TCP local and remote

ports (4 features)
• Number of unique TCP and UDP flows, identified

with the tuple <device, local port, remote IP,
remote port, protocol> (2 features)

The obtained set of 204 features is completed with a last
column representing the ground truth label (essential/non-
essential), assigned using the destinations lists obtained in
the first steps of the presented methodology. We compute
the different features aggregating packets with time win-
dows of 10, 60, 600, and 3600 seconds to study the impact
of such parameter on the classification performance.

4.2. Machine Learning Classification

The labeled dataset obtained after feature extraction
can be used to train supervised machine-learning models
for binary classification. As a first operation, the features
are normalized per device to allow an easier generaliza-
tion of the features between different types of devices
and improve the model accuracy. We refer to different
ML models based on decision trees and neural networks.
However, we report the results for the two models that
obtained the best results: the Random Forest Classifier
(RFC) and a custom neural network properly designed
on top of the selected features. Given the nature of the
aforementioned features, RFC achieves the best results.

TABLE 2. GLOBAL MODEL RESULTS UNDER DIFFERENT
AGGREGATION WINDOWS

Model w = 10s w = 60s w = 600s w = 3600s
RFC 99.88% 100% 99.89% 99.62%
ANN 98.81% 99.46% 99.27% 98.03%
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Figure 3. F1 Score of the ANN classification evaluated on single devices

However, we also investigate the performance of Artificial
Neural Networks (ANNs) for the given task to enrich
and confirm the outcome of the proposed methodology.
We propose a fully-connected neural network with a first
linear hidden layer that transforms the input from 204
(the number of available features) values to 128 neurons;
then two additional linear hidden layers are used with 64
and 32 neurons. Finally, the last layer has a single neuron,
which produces the network’s final output, assuming value
greater than 0.5 if the destination is essential.

5. Results

In the first analysis case, we train a global model
using the RFC and NN models with the dataset contain-
ing information from all eight devices considered in our
testbed. The data is split following a time-oriented division
to simulate a real-life scenario in which the models are
trained and evaluated in different periods. We opt for a
train-test-validation split with 0.7, 0.15, and 0.15 ratios.
We report the F1 Score obtained in the test set by the

two models when using different aggregation windows
in Table 2. Results show good performance for the two
models, with almost optimal classification for the RFC
with an F1 score close to 100%.

The value of the aggregation window w slightly in-
fluences the classification performance, obtaining better
results for w = 60s and w = 600s. To further under-
stand the performance of each device, we proceed with
the model evaluation when the devices in the test sets
are considered individually. Figure 3 reports the results
for the ANN classifier using the two window values of
w = 60s and w = 600s. We can observe that for all
the devices, the classification is close to the optimum,
except for the Roku TV stick. However, the results for
this last device are still good, with an F1 Score over 90%.
Overall, we can state that one single classifier trained on
all the devices can effectively distinguish the destinations
as essential/non-essential, even if different categories are
involved. To validate the proposed model, we proceed with
verifying its consistency over time. To do so, we repeat
our analysis, this time reducing the training set’s size. We
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Figure 4. Long-term consistency of the global model over time. The
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train the model using the first 30 days of data from all
eight devices, representing 25% of the full dataset. Then,
the model is evaluated with the remaining data, 5 days
at a time for each device. We report the F1-Score over
each 5-day set, which maintains over 90% for all the
devices, as shown in Figure 4. This clearly confirms the
model’s capacity to handle new data over time. Finally, we
conclude investigating on the model’s ability to classify
new destinations for the devices. Figure 5 reports the
number of unique destinations contacted by the devices
during the collection period. We excude the Switchbot
hub mini and the Yeelight bulb as they are characterized
by only essential traffic. Similarly, Tapo Plug and Kasa
Bulb contacted all the destinations at boot time, and are
thus excluded from the analysis. The plot highlights that
most of the destinations are contacted within the first
days of traffic collection. After inspecting the distribution,
we selected the first 15 days of traffic for the training
set, while we used the remaining part for the evaluation.
Destinations present in the training set have been excluded
from the evaluation set. The results are optimal for all
four devices, as new destinations are properly recognized
as non-essential with 100% accuracy.
The presented results have shown optimal classification

using a single global model. However, the training set
should contain part of the traffic from each device to
classify. As a further analysis, we want to discuss how the
model adapts to new devices not involved in the training
set. For this purpose, we perform an all-vs-one approach
and repeat eight iterations in which the models are trained
with seven devices and tested with the remaining one. We
report the results of this analysis in Figure 6, using the
RFC model with an aggregation window of w = 60s.
We observe that the model does not generalize well when
tested on devices not considered in the training set. The
classification is optimal for some devices, while it is
extremely low for others. We see that for devices of
similar logic or similar brands, the classification works
perfectly: for example, Amazon Echo Dot 3 and 4 obtain
an almost perfect classification even if the destinations
have different IP addresses and domain names. However,
the classification is comparable to random guessing for
devices not having a corresponding device with a similar
type or same brand in the training set (i.e., the Yi Camera).
To understand more about this, we need to extend our
study to more devices.
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6. System Implementation

We implement the proposed framework in an Intel
NUC mini PC acting as an access point for an IoT
network. We install the MonIoTr framework to collect
and control the traffic, the feature extraction and model
inference scripts, and we load the pre-trained models. The
capturing scripts are set to save the data in a unique
PCAP file for each device and rotate the files after a
defined rotation period r. After a cycle, the PCAP files
for all the devices are processed to extract the aggregated
features, and the machine learning models are evaluated
on all the time windows for all the destinations found.
In cases where the rotation period is greater than the
aggregation window, each file may contain more aggre-
gated windows per destination: in such cases, majority
voting is performed on the evaluations to take the decision
on the destination. After the inference phase, the scripts
pass the decision to the IoTrim blocker module: essential
destinations cause no special actions in the access point,
while if destination is detected as non-essential, it will
cause the access point to block it for the specified device,
using IP block and DNS override scripts. To analyze the
scalability and real-time functioning of the system, we
evaluate our framework using different rotation periods.
To make decisions in real-time, the system should execute
the full process in an overall time lower than the rotation
period for all the considered devices, to produce the
outcome before new data are ready to be processed. We
perform several executions using an aggregation window
w = 60s and different values for the rotation period r, and
we compute the average feature extraction and inference
times during each execution. The system is evaluated with
the traffic of 50 active smart cameras. Table 3 reports the
per-device average feature extraction and inference time,
and the cumulative processing time for all the devices.



TABLE 3. AVERAGE FEATURE EXTRACTION AND INFERENCE TIME
UNDER DIFFERENT ROTATION PERIOD VALUES

Rotation Feature Model Total Process
Period Extraction Inference (50 devices)
r = 60s 1.06s 6.61ms 53.6s
r = 120s 1.47s 6.45ms 74.1s
r = 180s 1.93s 7.27ms 96.9s
r = 300s 2.36s 7.12ms 118.5s
r = 600s 3.51s 7.51ms 175.4s
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Figure 7. Number of supported devices when using different number of
threads to process the data. Values are reported using different rotation
periods r

The required time to evaluate the models starting from
the PCAP files remains lower than the rotation period
in all the considered use cases, showing the real-time
capability of the system. We can increase the number of
supported devices by executing the process in a multi-
threaded fashion. To complete our discussion, we estimate
the number of supported devices when multiple threads
are used to process the traffic, running the solution with
different rotation periods. We process the data from n
devices in a multi-threaded architecture with n concurrent
threads. We can repeat the procedure k times until the
cumulative processing time equals the rotation period.
The number of supported devices N is then computed
as N = n×k, and is reported in Figure 7, under different
values of r and n. Commenting the obtained results, we
can conclude that the system can effectively support real-
time detection and blocking of non essential traffic scaling
to hundreds of devices, if run in a multi-threaded system.

7. Conclusions

The great diffusion of IoT devices around the user
is introducing potential security/privacy threats in home
environments. This work presented a framework to reduce
information exposure in the communication of smart home
devices intelligently detecting and blocking non-essential
traffic. After presenting the methodology for distinguish-
ing the essential/non-essential destinations to build a la-
beled dataset containing traces from 8 different devices,
we refer to Machine Learning supervised classification
techniques to distinguish the destinations. We show that it
is possible to detect the non-essential traffic from different
categories of devices, only relying on their network traces.
Our solution is time-consistent and can be trained globally
to work on single devices. Moreover, the solution can
successfully classify new destinations even if not present
in the training set. The work concludes with a practical

implementation of the intelligent detection framework in
a smart home system, in which the access point can
dynamically detect and block non-essential destinations
from hundreds of devices in a real time fashion. However,
as a negative aspect, we show that the model does not
adapt well to devices not present in the training set, which
requires further studies in the field. In future research, we
plan to extend our testbed with more devices and build
per-category models to further investigate the scalabil-
ity/universality of our solution. To advance the research,
we release the code and data publicly.
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