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Abstract—This paper presents two attack strategies designed
to evade detection in ADMM-based systems by preventing sig-
nificant changes to the residual during the attacked iteration.
While many detection algorithms focus on identifying false data
injection through residual changes, we show that our attacks
remain undetected by keeping the residual largely unchanged.
The first strategy uses a random starting point combined with
Gram-Schmidt orthogonalization to ensure stealth, with poten-
tial for refinement by enhancing the orthogonal component to
increase system disruption. The second strategy builds on the
first, targeting financial gains by manipulating reactive power
and pushing the system to its upper voltage limit, exploiting
operational constraints. The effectiveness of the proposed attack-
resilient mechanism is demonstrated through case studies on the
IEEE 14-bus system. A comparison of the two strategies, along
with commonly used naive attacks, reveals trade-offs between
simplicity, detectability, and effectiveness, providing insights into
ADMM system vulnerabilities. These findings underscore the
need for more robust monitoring algorithms to protect against
advanced attack strategies.

Index Terms—ADMM, Cybersecurity, Optimal Power Flow,
Distributed Optimization, Data Manipulation.

I. INTRODUCTION

HE Alternating Direction Method of Multipliers
(ADMM) has become a widely used optimization
algorithm across various fields, including power systems,
due to its scalability and effectiveness in solving large-scale,
distributed optimization problems. As the adoption of ADMM
continues to grow, its vulnerability to data manipulation
attacks has become a significant concern. These attacks
can undermine the integrity of the optimization process,
potentially leading to compromised system performance
and security. Consequently, there has been a growing focus
on developing robust detection algorithms to identify and
mitigate such threats. This section provides an overview of
the most relevant detection techniques in the literature.
Alkhraijah et al. [1] introduced two detection mechanisms,
Convergence Consistency (CC) and Solutions Consistency
(SC), which identify data manipulation by monitoring con-
vergence trajectories and consistency across iterations. In [2],
this analysis was extended to the Auxiliary Problem Principle
(APP) algorithm, proposing a neural network-based framework
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trained on shared variable mismatches, highlighting the poten-
tial of data-driven approaches in distributed optimization.

Residual-based detection methods play a pivotal role for
identifying False Data Injection Attacks (FDIAs). Obata et al.
[3]] used intermediate residuals from the ADMM process to
detect attacks early by identifying sudden spikes, while Liao
and Chakrabortty [4] introduced the Round-Robin ADMM
(RR-ADMM) algorithm, tracking spiked values to identify ma-
licious agents. Both approaches rely on detecting abnormalities
to flag malicious behavior. These mechanisms address basic
attack strategies, such as naive false data injection, constant
offset attacks, and random noise injection, forming a foun-
dation for understanding ADMM’s vulnerabilities. Building
on this, our work investigates how residual-based detection
methods like CC and SC can be bypassed through a novel
attack strategy.

Zhai et al. [5] proposed a robust optimization framework
to address wind power uncertainty in integrated power and
gas systems, utilizing Linear Decision Rules (LDRs) and
Automatic Generation Control (AGC) to balance robustness
and scalability. Similarly, Duan et al. [|6] introduced a resilient
DC Optimal Power Flow (DC-OPF) algorithm that combines
Bayesian reputation functions with information estimation to
detect and mitigate data integrity attacks. These methods high-
light the need for dynamic, adaptable frameworks to handle
sophisticated threats. Xu et al. [/] advanced the discussion
on cyberattack resilience, demonstrating the effectiveness of
Artificial Neural Network-based mechanisms to mitigate time-
delay and data manipulation attacks, showcasing the potential
of combining optimization techniques with machine learning
to enhance security, particularly in scenarios requiring rapid
response. Li et al. [8] employed federated deep learning with
Transformer models to achieve high detection accuracy while
maintaining data privacy.

In the broader context of machine learning applications,
Xie et al. [9] reviewed advanced machine learning methods,
including deep reinforcement learning (DRL), convolutional
neural networks (CNNs), and ensemble learning, for tasks like
stability assessment and outage prediction. They highlighted
DRL’s ability to integrate perception and decision-making,
while CNNs excelled in analyzing high-dimensional data
for stability issues. Similarly, Tuyizere and Thabwikuzo [10]
showed that Random Forest models effectively detect and
classify power system disturbances, distinguishing between
natural events and cyberattacks with high accuracy. Chatterjee
et al. [11]] conducted a comprehensive review of cyberattacks
on power systems, focusing on their mechanisms, impacts, and
vulnerabilities across state estimation, AGC, energy markets,



and particularly interesting for this paper voltage control. They
highlighted attack strategies such as FDIA on state estimation
and data integrity attacks on Load Tap Changing (LTC)
transformers, Flexible AC Transmission System (FACTS) de-
vices, and Locational Marginal Prices (LMPs). The review
emphasized the challenges of detecting coordinated, well-
crafted attacks and the urgent need for robust cybersecurity
measures and real-time detection systems.

Unlike conventional attacks that cause detectable perturba-
tions, our approach manipulates the system without altering the
primary residual in the attacked iteration—a behavior we refer
to as residual-evasive —thereby evading standard monitoring
strategies. The main contributions of this paper as illustrated
in Fig. E] are three residual-evasive attacks, which underscore
the vulnerability of distributed OPF algorithms.

1) We demonstrate that even random attack vectors can
bypass residual-based detection.

2) We enhance the effect of random attacks by aligning
them with directions orthogonal to the system’s pro-
jected trajectory, using Gram-Schmidt orthogonalization
to maximize their deviation while preserving stealth.

3) We develop targeted residual-evasive attacks that steer
the system toward specific undesirable states, with a
focus on voltage control—a critical and financially in-
centivized function in power system operations—Dby
exploiting vulnerabilities in the ADMM where natural
fluctuations mask their effects.

The remainder of this paper is organized as follows. Section
[ provides background on ADMM and explains how it applies
to OPF. Section explores vulnerabilities in ADMM and
introduces the notion of residual-evasive attacks, correspond-
ing to our first contribution. Section presents the third
and second contributions in order: we first develop targeted
attacks that steer the system toward specific states, followed
by optimized random attacks that maximize deviation while
remaining undetected. Section [V| evaluates the effectiveness
of the proposed strategies through a comprehensive case study
on the IEEE 14-bus system. Finally, Section [VI| concludes the
paper and discusses future research directions, including ways
to strengthen ADMM against such vulnerabilities.

II. BACKGROUND

ADMM, introduced in the 1970s by Glowinski and Mar-
rocco [[12] and Gabay and Mercier [13]], is an optimization
algorithm designed to solve large-scale convex problems. It
combines the decomposability of dual ascent methods with
the convergence robustness of the method of multipliers,
making it suitable for distributed optimization in fields such as
machine learning, signal processing, and power systems. The
optimization problem it solves is formally written as

min f(z) + g(z) st. Az + Bz =¢ (1)

where f(x) and g(z) are convex functions, and x and z are
optimization variables subject to linear constraints defined by
A, B and c¢. ADMM solves this using an augmented La-
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Fig. 1. Our contribution: Evasion through minimal residual
changes.

grangian, introducing a penalty alongside the usual Lagrangian
for constraint violations:

Ly(z,z,\) 2)
—f(@) +9(z) + X" (Az + Bz = ©) + £ || Av + Bz — ¢l

where A is the dual variable (Lagrange multiplier) and p > 0
is a penalty parameter. The algorithm proceeds iteratively with
updates for z, z, and A:

Update z:

" = arg H;in (f(x) + gHAl +BzF —c+ Ak”%) )
Update z:
1 = argmin (9(2) + 2] A0+ Bz — o+ A ),
Update \:
ML= AF 4 gkt 4 B — ¢

ADMM converges under standard conditions, ensuring that
both residuals—the primary residual r = ||Az* + BzF — ¢||
and the dual residual s = p||BT(z¥ — 2¢~1)||—decrease to
zero, signaling feasibility and stability. These residuals serve
as indicators of the algorithm’s convergence, and when both
fall below predefined tolerances, ADMM is considered to have
converged. This iterative process decomposes the problem
into smaller subproblems, making ADMM well-suited for
distributed computing environments [14].

OPF is a key problem in power system operations, aiming to
determine optimal settings for control variables like generator
outputs, voltage magnitudes, and reactive power injections
to minimize an objective function while meeting physical
and operational constraints. Common objectives include min-
imizing generation costs, power losses, or emissions. OPF
is crucial for ensuring efficient and reliable power system
operation, particularly as the grid evolves to accommodate
renewable energy sources, dynamic loads, and decentralized
energy resources. The problem is inherently non-convex due to
the nonlinear power flow equations, making it computationally
challenging to solve, particularly for large systems. Various



formulations and solution techniques have been developed,
including traditional AC-OPF and simplified DC-OPF models.
Additionally, convex relaxations like semidefinite program-
ming (SDP) and second-order cone programming (SOCP)
offer computationally tractable approximations that provide
near-optimal solutions. A detailed survey of these techniques
is available in [15]].

We apply ADMM to solve the OPF problem by decom-
posing it into subproblems. Leveraging the existing network
structure, we divide the problem into its Transmission System
Operator (TSO) and Distribution System Operator (DSO)
components. The boundary buses between regions are du-
plicated, ensuring each TSO and DSO has its own copy of
the relevant variables. Power flows through transformers are
modeled differently in each region: in the TSO, power flows
are treated as loads at boundary buses, while in the DSO, they
are treated as generators. To ensure consistency across regions,
we enforce the following equality constraints:

Pi = —Pi,copy; di = —i,copy> Vi= V;,(:opy; 0; = @i,copy

where p;, ¢;, V; and ©; represent active power, reactive power,
voltage magnitude, and voltage angle at boundary bus ¢ in the
TSO, and their counterparts p; copy, i copys Vi,copy and ©; copy
represent the corresponding values in the DSO. Let = denote
the vector of variables in the TSO regions:

Vi
i O, .
= " | ,for each boundary bus 7 in the TSO
qi
and let z represent the corresponding variables in the DSO:

W,copy

‘. i cony , for each boundary bus ¢ in the DSO.

_pi,copy

_Qi,copy
This setup allows independent optimization within each region
while ensuring coordination at the boundaries. For ADMM
applied to OPF, we use A = I, B = —I,c¢ = 0, simplifying
the primary residual to ¥ = ||z% — 2¥|.

III. VULNERABILITIES OF THE ADMM ALGORITHM

One method to detect tampering during ADMM iterations
is to monitor the residual, which decreases as the algorithm
converges, with significant deviations potentially indicating
interference. However, if an attacker modifies the vector z* to
2% = 2¥ + a by introducing an attack vector a, while ensuring

that the residual remains unchanged, i.e.

lz* — 2% = fla* — 25]1?,

the attack can bypass detection. The following theorem formal-
izes this condition. For simplicity, we may omit the superscript
k when the iteration is not relevant.

Theorem 1 (Residual Evasion Criterion). If an attack vector
a satisfies the Residual Evasion Criterion

al(a—2(x—2))=0 3)

the residual r retains its exact numerical value when z is
modified by the attack, i.e., when z, = z + a.

Proof: The claim follows directly from a straightforward
computation:

7“2 = |l — Za||2
= |z~ (z +a)|?
= llz = 2l* + |la|* - 2" (z — 2)
=|lz — 2| + a’(a — 2(z - 2))
= |l —z||* =2
|
With the condition for undetectable attacks established, the
natural question is how to construct an attack vector a that
satisfies this condition. In the next section, we explore methods
for identifying such vectors, addressing both feasibility and
practical challenges.

A. Constructing Random Undetectable Attack Vectors

We demonstrate how to construct attack vectors a that
satisfy the Residual Evasion Criterion. Starting with a initial
random vector, we use orthogonal decomposition to compute
the attack vectors. Orthogonal decomposition expresses a
vector as the sum of two components: one within a subspace
and one orthogonal to it. Formally, for a vector v and a
subspace W, the decomposition is:

v =1 +vl,

where v € W and v, L W. This decomposition is uniquely
defined and has widespread applications in optimization and
numerical linear algebra [16]]. This method simplifies con-
structing the attack vector a by splitting it into parallel and
orthogonal components relative to y = = — z. We express
a = Ay + b, where ) is a scalar, y is the parallel component,
and b is orthogonal to y. To find b, we use the Gram-Schmidt
orthogonalization process (for a detailed introduction refer to
[16]), which ensures b is orthogonal to y by subtracting the
projection of a vector ¢ onto y:
c 'y
yTy?

After constructing a candidate for b, we scale it and choose A
such that the Residual Evasion Criterion is satisfied:

=y +b) My +b-2y)=0
= -2\ = 2)[ly[*.

o
I
o

<
=
\

With the relationship between A, b, and y firmly in place, we
proceed with a specific example to illustrate their selection:

Proposition 1. Setting
A=1

o vl (C_ Ty y)
- I a
le — S5 yll lyll

yields a vector a satisfying Theorem [I| for y = x — z.

and




Proof: We have shown that the Residual Evasion Criterion
is equivalent to:

—( = 2)[lyll* = [1bl|*.

For simplicity, we express b as b = %d, where d = c— —”CyTHyQ )
Using this representation, we calcu{ate:
2 2
Iyl [ 2
o = | ek = fetztane = bl
d]| [l

Substituting ||b|> = ||y||* back into the Residual Evasion
Criterion and setting A = 1 confirms the condition is satisfied.
Since the vector b is constructed using Gram-Schmidt, it is
inherently orthogonal to x — z by design. This can be easily
verified with a straightforward calculation. ]

IV. GOAL-ORIENTED ATTACKS IN ADMM

In this section, we move from adding random noise to a
more targeted approach: designing attacks with specific goals,
such as targeting particular variables or system components,
while minimizing detection risk. Building on the previous
example, we adapt our methodology to achieve these objec-
tives and demonstrate the effectiveness of these strategies in
comparison with existing ones on the IEEE 14-bus system in
Section [V}

A. Voltage Control as A Target

Voltage control is crucial for power system stability, making
it a strategic target for adversarial attacks. Network participants
manage reactive power to support voltage stability and receive
financial incentives for compliance. Disrupting these mech-
anisms can have significant economic and operational con-
sequences. Swissgrid, Switzerland’s national TSO, oversees
the high-voltage transmission grid and integrates it with the
European network. It developed a voltage control framework
to regulate reactive power exchange among power plants,
distribution networks, and end-users, aiming to reduce system
losses and improve efficiency. Updated in 2020, the system in-
centivizes compliance through financial rewards and penalties
[17]. Similar voltage control mechanisms are adopted by TSOs
globally, including in Europe (e.g., TenneT, RTE, National
Grid ESO), the United States (e.g., PJM, CAISO), and Asia
(e.g., State Grid Corporation of China, Power Grid Corpora-
tion of India). These efforts highlight the universal necessity of
voltage control for preventing equipment damage, optimizing
power delivery, and maintaining stability. Swissgrid’s frame-
work incentivizes behavior within defined tolerance bands.
Participants exchanging reactive power within these ranges
are financially rewarded, while those outside are penalized.
Active participants, like power plants, receive higher rewards,
while semi-active participants, such as distribution networks
and end-users, receive lower rewards. Compliance is ensured
through real-time monitoring and monthly thresholds. For
active participants, compensation and penalties are calculated
based on the volume of reactive power exchanged and the
deviation from the target voltage range, adjusted by predefined
tolerance limits. Semi-active participants have a similar struc-
ture but include a free exchange zone around zero, where no
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Fig. 2. Voltage control for active role. Uiy is the actual voltage
and Ugyp is the target voltage at the feed-in node. AUty is
the billing tolerance, and AUgp; is the free conformity band.
Wq is the net reactive power exchange for the quarter-hour.
The left side represents capacitance-like behavior (delivering
reactive power), while the right side represents inductance-like
behavior (consuming reactive power). Source: Swissgrid [[17]]

charges apply. The tariff model is recalibrated annually based
on historical data and projected costs, ensuring transparency
and alignment with operational requirements [|18]. Fig.
illustrates compliance zones:

« Financially Compliant Zone (finanziell konform): Within
this tolerance (AUr), reactive power exchanges are
rewarded. The tolerance values are set at 1 kV for the
220-kV level and 2 kV for the 380-kV level.

o Free Compliant Zone: Beyond the compliant zone, within
an additional tolerance (AUgei, set at 1 kV for both
voltage levels), exchange is neither compensated nor
penalized. This zone allows technical flexibility but is not
incentivized as it does not actively support the system.

e Non-Compliant Zone: Exchanges outside the free zone
incur penalties for failing to meet stability requirements.

In this section, we manipulate the set of variables {2} :

i € 2}, where 2 represents the targeted boundary buses
to influence financial rewards. The attacker uses a dual-
pronged strategy targeting both voltage and reactive power at
a boundary bus. The goal is to minimize payment by reducing
|24 while subtly pushing the network towards the voltage
boundary for a brief period. This calculated maneuver lever-
ages the natural fluctuations in the ADMM algorithm, which
reduces the likelihood of detection. Simultaneously, the attack
magnitude is kept small and the Residual Evasion Criterion is
satisfied, both to avoid triggering alarms and to maintain the
system’s perceived stability. This can be formalized as:

min [la|® + ) |2} + af] 4)
=
st. zZidal —V,>0 Vieg, 5)
a(a—2y) =0. (6)
where 2{ = V;, zi = —¢; and V,, is the upper voltage

limit. The objective (@) minimizes the attack magnitude and
payment, while () pushes the system to the upper voltage
boundary, and (€) is the Residual Evasion Criterion. While
the voltage peak may seem suspicious, we show that the final



voltage values remain well within the acceptable range. Fur-
thermore, such transient peaks during the iterative computation
process are entirely normal and can occur even in the absence
of attacks. While our focus has been on the primal residual,
the secondary residual can also indicate an attack. However,
significant deviations in the secondary residual are rare when
the primary residual remains unaffected. Nonetheless, if the
attacker wishes to exercise additional caution, it is straight-
forward to incorporate safety measures into the optimization
problem, for instance adding a constraint to ensure that the
secondary residual does not exceed the average of the previous
three iterations. Notably, the problem defined by {@)—(6) can
be efficiently addressed using standard off-the-shelf solvers.

B. Random Attacks with Maximum Deviation

Building on the previous section, we now examine the
rationale behind setting A and b as defined in Proposition
and explore how to construct attack vectors that maximize
their disruptive impact. Rather than injecting arbitrary pertur-
bations, a carefully designed attack can exploit the system’s
vulnerabilities while remaining undetected. By leveraging the
orthogonal component b, we ensure that the attack influences
the system in directions that significantly deviate from its ex-
pected trajectory, amplifying its disruptive effect. The equation
18] = —(A = 1)?||y||* + |Jy||* is a direct consequence of
the Residual Evasion Criterion and highlights the trade-off
between A and b, where maximizing one requires minimizing
the other. Setting A = 1 maximizes the norm of the orthogonal
component b, which can be computed using Gram-Schmidt
and a random vector c:

cly )
wi??)

y_ (C_
- T
le— eyl

Rather than using a random ¢, a more sophisticated attack
explicitly defines a and finds a suitable ¢ to construct b. By
choosing c already orthogonal to x — 2, we simplify:

a—)\(x—z)—«—b—(x—z)—i—||$”_|Z|
c
Rewriting this component-wise and squaring both sides yields:

2
G (aj =z +2)?

llell? [z — 2|12
If aj = x; — %;, then ¢; = 0, but ¢ # 0 must hold by
definition of a. For simplicity, we assume a; # z; — z; for
7 =1,...,4n where n is the number of boundary buses. If
this condition does not hold, the same reasoning applies to a
subsystem containing only the subvector of ¢ where c; # 0.
Rearranging the terms results in:
) c; + Z c; = 0.

R L
(aj —xj + 25)
Z#J

With a slight abuse of notation, define A € R***4" such that
Ay=diifi=jand 1ifi#j,y:=a—zd =1—

(ai—yi)?
(c2,---,c2.)T, we arrive at the following theorem:

and ¢2 :=

Theorem 2. If there exists a vector ¢ such that:
Ac® =0, c#0

then it is possible to define an attack a := H ”
satisfies the Residual Evasion Criterion ( Theorem l)

CTy = 07

¢ that

Next, we determine when this system is solvable.

Theorem 3. It is possible to define an attack a := y + %c

satisfying the Residual Evasion Criterion if for j = 1,...,4n

the signs of ¢; := j:a”“;ﬁ“ can be chosen such that ¢y = 0.

Before proving this, we introduce two helpful lemmas. Let
e denote the all-one vector of appropriate size.

Lemma 1. For a matrix A € R" ™ there exists an x

satisfying

Az =0, x>0, x#0 @)

if and only if there exists a y such that
Ay=0, y=0, ey=1L ®)
Proof: Assume z* solves and set y* := eTvc*' Then

T* 1 1
Ay* = A = Ax* = 0=0.
Y P el p*

Since z* > 0 it follows that y* > 0. Additionally, eTy* =1.

Thus y* satisfies (). Conversely, if y* solves (8), then y* # 0
because e’ y* = 1 and y* is also a solution to (7). [ |
We now proceed to the second lemma.

Lemma 2. Let A € R"*"™ be a matrix defined by
() le = ja

Ay = a S
L ifi# .

There exists a vector x satisfying if and only if d; <1 for
j=1,...,nand

PR
=1l
Additionally, the solution is x; = ﬁ forj=1,....n
N J

Proof: By Lemma [1| such an z exists if and only if there
is a y satisfying (8). We show that these conditions hold for
y; = 1= for j =1,...,n. It is straightforward to venfy
that y* 1s also a solution to ( . Since d; < 1, we have y* > 0.
Moreover, el y* Z? 11 d =1. Now for Ay*

= djy; + Zy%
#J
Conversely, assume feasibility and let y* satisfy (8). From

n
diy; + Yy —y; =0.

i=1

(Ay*);

Ay* = 0 and eTy* = 1 we immediately get y] =
Since y > 0 this implies d; < 1. Finally, 1 = eTy* gives
Z? LT 1 = 1 completing the proof. [ ]

We are now prepared for the proof of Theorem [3]
Proof: First, we note that the subsystem

At =0
c#0



is, due to the square, equivalent to system (7). According to
Lemma 2| I this system is feas1ble if and only if d; < 1 for

2
,nand Y " d = 1. Since d; = 1 — (aJHqu‘,J)z
llyll

and ¢ = y + Ter & we immediately conclude that d; < 1
because y # 0. Rearranging the terms in the definition of the
attack vector a gives the second condition:

lell* =

j=1,...

I

el?

la —yl* = Iy1®

and hence,

n

1 - (ai—yi)Q 1 2
S T
DI D D Tl

i=1

lyll* _
lyll?

Therefore, following Lemma [2} we obtain the unique solution

_ (g —y;)?
llylI*

and consequently,

iaj — Y

[yl
This means that if we can adjust the signs of c; such that
cTy = 0, we have identified a vector c that satisfies the system
in Theorem [2| As a result, this constructs an attack vector a
that avoids detection by monitoring ADMM residuals. ]

C; =

V. SIMULATION RESULTS

We conclude by demonstrating the effectiveness of our
proposed attack strategies on the IEEE 14-bus system. First,
we describe the experimental setup, followed by a detailed
analysis of the results, examining how various parameters
influence both the stealth and impact of the attacks.

A. Experimental Setup

The IEEE 14-bus test case, a simplified representation of the
American Electric Power system as of February 1962, consists
of 14 buses, 5 generators, and 11 loads, offering a practical
model for analyzing power systems. Further details about the
test case, including system configuration and parameters, can
be found in [19]. We partition the IEEE 14-bus network into
a TSO part and a DSO part with the boundary defined at
Bus 4 and Bus 5. Hence, duplicate Bus 4 and Bus 5, such
that TSO and DSO both have their own copies to facilitate
independent modeling. Then remove the transformers that
originally connected the regions (i.e., transformers connecting
Buses 5-6, 4-9, and 4-7). In the TSO network the power flows
through these transformers are added to the loads at Buses
4 and 5, respectively. In the DSO network, generators are
introduced at Buses 4 and 5 to represent the power flows
coming from the TSO. A visual representation is provided
in Fig. 3| Lastly, we assume an upper voltage limit of 1.1 p.u.
and a lower voltage limit of 0.9 p.u.

We systematically evaluate several scenarios to investigate
the impact and secrecy of different attack strategies. We start
with naive attacks where a fixed percentage is added during
a single iteration. We compare these simplistic attacks against
the strategy described in Section explicitly focusing on

us 12

TSO

Fig. 3. IEEE 14-bus test case and the split in TSO and DSO.

Random Attacks with Maximum Deviation, i.e. Proposition [T}
Finally, we turn our attention to the optimized attack vectors
derived from problem (@) - (6), assessing their ability to
balance stealth and effectiveness. The attacks are restricted
to boundary buses by design, with Bus 4 consistenly chosen
as the target for controlled comparison across strategies. Each
experiment involves a single attack during the ADMM cal-
culation process to isolate its impact on system stability and
performance. It is important to note that more powerful attacks
could be devised by repeated targeting, increasing instability
and manipulation. However, for the purposes of this study,
we focus on single-step attacks to better understand their
individual characteristics and detectability.

In the clean scenario, i.e., without cyber-attacks, the ADMM
algorithm converges after 214 iterations. To evaluate the im-
pact of attacks, we examine injections at different iterations.
A complete list of attack scenarios can be found in Table [I} To
enhance reproducibility, we have also documented the specific
attack vectors used in Table [lIl in the Appendix. The attack
vector refers to the perturbation introduced in an attacked
iteration k£, modifying the variable z* as 2% = z¥ +a. The ran-
dom vectors are generated using Python numpy.random.rand(),
which produces random numbers sampled from a uniform
distribution over the interval [0, 1).

B. Results

The financial reward depends on the total absolute reactive
power at the boundary buses. Fig. 4] shows this value across
scenarios, with a column plot for mean values and a boxplot
for distribution. In most cases, the mean equals the attack
value, except for attacks from Proposition[I] where the starting
point is randomized. To account for variability, we averaged
10 trials. In the clean scenario, about 0.4 VAR per unit is gen-
erated, covered by the TSO. Naive attacks struggle to balance
impact and stealth; even a 50% reduction in Scenario 13 has
a smaller effect than Proposition [I] The sharp drop in reactive



TABLE 1. Attack scenarios at select iterations on boundary
bus 4 of TSO (x) or DSO (2).

Sum of Absolute Reactive Power at Bou

M

=

power at boundary bus 4 further underscores the limitations of
such simple strategies (Fig. [5). Fig. [] illustrates the influence
of attack timing. The effectiveness of both the random unde-
tectable attack (Proposition [T) and the optimization problem
(@)—(6) varies depending on the iteration at which the attack is
applied. A clear trend emerges: later-stage attacks tend to have
a weaker impact. This is due to Theorem [T} which depends
on the distance between x and z, decreasing as the algorithm
converges. This effect is especially pronounced in Proposition
[} where its influence diminishes beyond a certain iteration. In
contrast, the optimization approach exhibits greater resilience,
sustaining a more distributed impact across iterations, albeit
still influenced by attack timing. Depending on the random
starting point, Proposition [I] can be more or less effective than
the optimization problem {@)—(6) or the naive attacks in the
first 17 scenarios. Its key advantage is higher stealth while still
achieving meaningful impact in many cases. Some random
starting points may outperform the optimization approach, as
the latter only approximates shifting the optimal power flow
solution in a favorable direction. Scenario 22, a lower outlier
in the boxplot, demonstrates that we have not identified the
true optimal solution for the manipulated optimal power flow
problem, as finding this solution would be excessively complex
and computationally infeasible within a reasonable timeframe.

Fig. [f] illustrates the primary residual for selected attack
scenarios within the first 10 iterations. For randomized at-
tacks, the mean residual (dark blue) is shown with individual
scenarios (light blue) and a +1 standard deviation shaded
region. Colors indicate attack types as per the legend. This

Scenario Type Iteration Atk. variable }
1 Clean - - i
2 +10% in ¢ 3 x ‘
3 +3.5% in ¢ 3 T I“
7 —10% in ¢ 3 x bt oy ’ _“l]l]
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Fig. 6. Zoomed-in view of the primary residual, highlighting
noticeable peaks in naive attacks.

figure highlights a key flaw of the simple attacks: they fail
to control the residual, causing detectable peaks. In contrast,
our approach generates significantly smaller peaks that blend
with normal fluctuations, making detection more difficult.
Similarly, Fig. [7] illustrates the trade-off between stealth and
effectiveness. While random undetectable attacks (Scenarios
58-68) had little impact in Fig. [] their residual effects are
nearly imperceptible. Note the plot’s small scale necessary to
even visualize these changes, which closely resemble the clean
scenario (Scenario 1). Such attacks are valuable when stealth is
paramount, enabling prolonged evasion of detection or subtle
manipulation of system dynamics without raising alarms.
Beyond residual monitoring, one might consider other
ADMM parameters for attack detection, such as computation
time or iteration count. However, as Fig. [§] and Fig. [9] show,
these metrics remain remarkably stable across all attacks,
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Fig. 7. Zoomed-in view of the primary residual, demonstrating
the stealth of the proposed attack.
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Fig. 9. Consistency in ADMM iterations obscure detection.

providing a convenient cover. Attacks can effectively hide
behind this stability, as their impact on these parameters is
either negligible or, in some cases, even reduces iterations
and computation time—though not enough to raise suspicion.
While certain attacks are designed to explicitly disrupt these
parameters, the ones studied here exploit their consistency to
remain undetected.

While ADMM convergence is typically assessed using both
the primal and dual residuals, our approach emphasizes the
primal residual. This focus is justified, as the dual resid-
ual—although not directly controlled—in most cases remains
within typical ranges and does not exhibit significant devi-
ations that would undermine the reliability of the method,
particularly in comparison to naive attack strategies. This
observation is supported by Fig. which also reveals that
the dual residual often exceeds the primal residual. We focus
on the first 10 iterations, where residual fluctuations are most
pronounced before stabilizing. In a similar fashion as before,
for Scenarios 1827, the mean and 41 standard deviation
highlight the variability of randomized attacks.

Detecting attacks within the network itself, rather than
through ADMM monitoring, is another potential approach.
Voltage safety bounds are set at 1.1 and 0.9 p.u., yet Fig.
|E| shows that even under random attacks, the system re-
mains stable with no significant disturbances. This robustness
provides a strategic advantage for an attacker, as it allows
manipulations to remain concealed within normal operating
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—-= Scenario 14
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Fig. 10. Zoomed-in dual residual, illustrating the advantage
over naive strategies.
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Fig. 11. Heatmap of voltage deviations from the baseline,
showing system stability and the potential to conceal attacks.

Variables

conditions. Interestingly, our optimization-based attack (@)—(6)
not only evades detection but even contributes to system
stability, all while generating substantial financial gains for
one party. Voltage deviations remain minor across all attack
scenarios, ensuring the system stays within the financially
favorable range, even with substantial () adjustments. Also on
the network level, measuring balancing errors is a potential
strategy for attack detection. In the context of optimal power
flow, balancing errors are defined as the discrepancies between
the computed power injections and the network’s actual power
demands. These errors emerge when the sum of generated
power, minus the loads and network losses, fails to achieve
the ideal condition of zero balance. However, our results
in Fig. [I2] show that the deviation of the balancing errors
from the baseline remain minimal across all attack scenarios.
This reinforces how the network’s inherent stability can be
leveraged by attackers to conceal their actions.

VI. CONCLUSION

In this paper, we designed two attack strategies that effec-
tively evade detection by avoiding changes to the primary
residual in the attacked iteration. Since many monitoring
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Fig. 12. Heatmap of differences from baseline balancing
errors, showcasing how attackers can exploit system stability.

algorithms rely on residual analysis, this approach enables the
attacks to bypass standard detection mechanisms.

The first strategy uses a random starting point combined
with Gram-Schmidt orthogonalization to ensure stealth. This
approach can be refined by emphasizing the orthogonal com-
ponent to maximize the disruption in the system. The second
strategy extends the first one by allowing to target finan-
cial gains by simultaneously attacking reactive power and
pushing the system to its upper voltage limit, exploiting the
boundaries of operational constraints. An in-depth analysis
and comparison of the two strategies highlighted the trade-offs
between simplicity, detectability and effectiveness, providing
valuable insights into the vulnerabilities of ADMM-based
systems and the mechanisms by which they can be exploited.
These findings emphasize the importance of designing more
robust monitoring algorithms to protect against sophisticated
attack strategies.

Future research could build on the foundation established
in this paper by exploring attacks that target multiple buses or
span multiple iterations. Coordinated strategies could leverage
gradual, iterative adjustments to steer the system toward a
desired state while remaining undetected. Additionally, while
this paper employs a strict Residual Evasion Criterion to
ensure stealth, future work could investigate the potential for
relaxing this condition under practical assumptions, enabling
the design of more adaptable and impactful attack strategies.
These extensions would complement the findings of this
study and contribute to a deeper understanding of system
vulnerabilities. We conclude by noting that in Scenario 81,
the total absolute reactive power remains nearly constant, yet
boundary buses 4 and 5 show significant shifts, including sign
changes. This suggests potential directions for future attack
strategies to expand the scope of this study.

In detection, many strategies focus on singular aspects,
like monitoring residuals. However, a more robust algorithm
could integrate multiple detection mechanisms. For example,
in addition to residuals, analyzing changes in voltage, active
power, and reactive power during ADMM iterations could help

identify spikes indicative of an attack. This approach was
exemplified in Fig. [5] where a naive attack left the residual
unchanged but caused clear peaks in other parameters. Imple-
menting multifaceted detection, however, presents challenges.
Balancing false positives and false negatives is crucial, as set-
ting the right threshold for detecting peaks is key to avoiding
missed attacks without overloading the system. As detection
strategies become more complex, careful calibration is needed
to balance sensitivity and accuracy. Machine learning-based
methods also offer promising potential for attack detection.
Research, such as [20] and [21]], shows how these techniques
can detect patterns missed by traditional methods, providing
an extra layer of security. Combining these methods with the
insights from this paper could lead to a more resilient ADMM
framework.
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APPENDIX

TABLE II. Attack Vector Values

Scenario Attack Vector
18 [0.02121068 0.0130993 0.12314844 0.0864099 ]
19 [0.07341862 0.06317238 0.11244587 0.03505106]
20 [0.05369313 0.00871949 0.12110739 0.07501809]
21 [0.01541827 0.07886334 0.11617012 0.05745474]
22 [0.06255644 0.01532933 0.11979587 0.06895177]
23 [0.05273261 0.09606387 0.10602196 0.00201061]
24 [0.06933667 0.02945763 0.11788314 0.06067893]
25 [0.04830191 0.05887625 0.11715014 0.06107415]
26 [0.01850385 0.08056118 0.11569358 0.05510166]
27 [0.03478083 0.10240982 0.10712628 0.00895416]
28 [6.52923e-05 1.11296e-04 9.81143e-05 -1.25645e-04]
29 [8.28166e-05 1.71912e-05 1.57168e-04 -1.01030e-04]
30 [2.33227e-05 9.23689¢-05 1.45938e-04 -1.08116e-04]
31 [6.57201e-05 9.67342e-05 1.21174e-04 -1.17061e-04]
32 [1.17634e-04 7.47446e-05 6.61172e-05 -1.35156e-04]
33 [8.55322¢-05 8.13466e-05 1.20480e-04 -1.16682¢-04]
34 [8.27203e-05 8.71954e-05 1.16819e-04 -1.18198e-04]
35 [3.01434e-06 7.89714e-05 1.58809e-04 -1.02943¢-04]
36 [5.52432¢-05 1.04791e-04 1.18457e-04 -1.18312¢-04]
37 [1.28545e-04 4.18002e-05 8.94557e-05 -1.25657¢-04]
38 [0.00033554 0.00060707 0.00127095 0.00013236]
39 [6.06571e-04 4.56323e-04 1.23767e-03 7.72225e-05]
40 [0.0001615 0.00090441 0.00112068 -0.00011829]
41 [0.0004926 0.00083299 0.00106443 -0.00021075]
42 [0.00025234 0.00065363 0.00126768 0.00012666]
43 [8.81615e-04 3.67449¢e-05 1.15372¢-03 -6.53645¢-05]
44 [5.56211e-04 5.30295e-04 1.23234e-03 6.85818e-05]
45 [0.00024766 0.00066986 0.00126115 0.00011582]
46 [6.42585e-04 6.34219e-04 1.13597¢-03 -9.14259-05]
47 [0.00028043 0.00027531 0.00136882 0.00029301]
48 [1.10091e-04 7.24838e-05 -4.05319¢-05 -1.30556e-04]
49 [7.70328e-05 1.04375e-04 -1.01420e-04 -9.45919¢-05]
50 [3.68833e-05 1.29133e-04 -8.66583e-05 -1.02549¢-04]
51 [4.36177e-05 1.26842e-04 -4.52692e-05 -1.26574e-04]
52 [8.86995e-05 1.02790e-04 -6.93971e-05 -1.13192e-04]
53 [7.31012e-05 9.23426e-05 -8.29755e-06 -1.48735e-04]
54 [1.51510e-05 8.37389¢-05 2.48265e-05 -1.67940e-04]
55 [5.45215e-05 1.22520e-04 -8.69528e-05 -1.02553e-04]
56 [9.88206e-05 8.50837e-05 -3.48270e-05 -1.33582e-04]
57 [1.14445e-04 6.52528e-05 -4.08441e-05 -1.30529¢-04]

Continued on next page...



Scenario Attack Vector
58 [1.52442¢-04 6.38828e-05 2.64114e-04 -1.48861e-04]
59 [0.00013494 0.00018196 0.00018477 -0.00018379]
60 [2.31975e-04 5.33502e-05 1.48807¢-04 -2.01080e-04]
61 [0.00010482 0.00014033 0.00025586 -0.00015195]
62 [1.73608e-04 3.61746e-05 2.53083e-04 -1.54066e-04]
63 [1.47308e-05 1.81783e-04 2.49261e-04 -1.54410e-04]
64 [1.91624e-04 9.71710e-05 2.06146e-04 -1.74863e-04]
65 [1.72501e-04 7.49430e-05 2.42232¢-04 -1.58701e-04]
66 [0.00010181 0.00021101 0.00016562 -0.00019213]
67 [1.41356e-04 5.52496e-05 2.74632e-04 -1.44149557¢-04]
68 [8.19125e-05 4.59841e-04 1.08182¢-03 5.64933e-04]
69 [0.00060425 0.00040423 0.0010303 0.00034295]
70 [0.00050432 0.00034494 0.00105841 0.0004627 ]
71 [0.00075692 0.0002196 0.00101032 0.00025642]
72 [5.461385e-05 3.43557¢-04 1.09533e-03 6.21999¢-04]
73 [0.00035637 0.00059902 0.00103831 0.00037914]
74 [4.72707e-04 9.57743e-05 1.08032¢-03 5.54913e-04]
75 [5.74563e-04 7.05504e-04 9.36370e-04 -5.47820e-05]
76 [0.00025254 0.00075649 0.00100612 0.00024358]
77 [0.00073719 0.00054561 0.00092492 -0.00010501]
78 [0.06150997 0.0029498 0.08841819 -0.10452701]
79 [6.02433e-02 -6.51130e-06 4.28351e-05 -4.23917e-02]
80 [5.78314e-02 4.18136e-06 8.05939¢-04 -4.40490e-02]
81 [5.66638e-02 2.08856e-06 -6.12412e-05 -4.42714e-02]
82 [5.64804e-02 1.22251e-06 9.13973e-05 -4.44684¢-02]
83 [5.64435e-02 -2.77430e-09 9.01191e-04 -4.44423e-02]

End of table.
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