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ABSTRACT

Distributed Denial of Service (DDoS) attacks represent a persistent and evolving threat to modern
networked systems, capable of causing large-scale service disruptions. The complexity of such
attacks, often hidden within high-dimensional and redundant network traffic data, necessitates robust
and intelligent feature selection techniques for effective detection. Traditional methods such as filter-
based, wrapper-based, and embedded approaches, each offer strengths but struggle with scalability
or adaptability in complex attack environments. In this study, we explore these existing techniques
through a detailed comparative analysis and highlight their limitations when applied to large-scale
DDoS detection tasks. Building upon these insights, we introduce a novel Generative Adversarial
Network-based Feature Selection (GANFS) method that leverages adversarial learning dynamics to
identify the most informative features. By training a GAN exclusively on attack traffic and employing
a perturbation-based sensitivity analysis on the Discriminator, GANFS effectively ranks feature
importance without relying on full supervision. Experimental evaluations using the CIC-DDoS2019
dataset demonstrate that GANFS not only improves the accuracy of downstream classifiers but also
enhances computational efficiency by significantly reducing feature dimensionality. These results
point to the potential of integrating generative learning models into cybersecurity pipelines to build
more adaptive and scalable detection systems.

Keywords DDoS · Feature Selection · GAN · Machine Learning · Artificial Intelligence · Cybersecurity · Network
Security

1 Introduction

In the digital age, the reliability and availability of networked services are foundational to both personal communication
and enterprise operations. However, these services remain highly vulnerable to Distributed Denial of Service (DDoS)
attacks, which are among the most disruptive forms of cyber threats. By overwhelming servers, routers, or application
services with massive volumes of malicious traffic, DDoS attacks render legitimate access impossible, causing significant
financial and reputational damage. With the increasing complexity of network infrastructures and the proliferation
of connected devices, including those in the Internet of Things (IoT), the scale and sophistication of DDoS attacks
continue to rise [1, 2].

The problem addressed in this study is the challenge of identifying and selecting the most relevant features from high-
dimensional network traffic data to detect DDoS attacks effectively. Network flow datasets, such as CIC-DDoS2019,
typically contain upwards of 80 features derived from raw packet streams. While rich in information, these datasets
include redundant, irrelevant, or noisy features that hinder machine learning (ML) model performance. Feeding
such high-dimensional data into classifiers can result in increased training times, higher memory consumption, and
reduced detection accuracy due to overfitting [4, 5]. Solving this problem is critical for enabling scalable, efficient, and
accurate DDoS detection systems. Effective feature selection (FS) can significantly reduce dimensionality, enhance
interpretability, and improve the real-time capabilities of intrusion detection systems (IDS). It is especially important in
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resource-constrained environments where quick decision-making and lightweight models are essential. For instance, in
edge-based or IoT security frameworks.

Several approaches have been explored to tackle this issue, and each belongs to one of three broad categories: filter-
based, wrapper-based, and embedded methods [1, 4, 6]. Filter-based methods, such as Mutual Information (MI),
Chi-Square, and Information Gain (IG), assess the statistical relationship between each feature and the target variable
independently of any ML model [4, 5]. These techniques are computationally efficient and scale well to large datasets,
but they often ignore interactions between features, leading to the selection of suboptimal subsets. Wrapper-based
methods, including Recursive Feature Elimination (RFE) and Genetic Algorithms (GA), evaluate different feature
subsets by training models and selecting those with the best performance. Although typically more accurate, these
methods are computationally expensive and impractical for real-time or large-scale applications [10]. Embedded
methods, such as Lasso (L1 regularization), Random Forests (RF), and XGBoost, integrate feature selection within
the model training process. These offer a balance between efficiency and accuracy, but often their outputs are highly
model-specific and lack generalizability across different classifiers [1, 6, 8].

Despite the progress in traditional FS techniques, a key limitation remains: most approaches fail to capture complex,
non-linear feature interactions or adapt well to dynamic and adversarial environments. They also typically require full
supervision, with balanced and labelled datasets, a condition that is often unrealistic in cybersecurity settings. Moreover,
many conventional methods do not leverage the potential of deep learning, especially generative modelling, which can
learn intricate data distributions without relying on strict labelling or pre-defined relationships.

To address these gaps, this study introduces a novel feature selection method called Generative Adversarial Network-
based Feature Selection (GANFS). GANFS is designed to exploit the generative-discriminative dynamics of GANs to
identify features that are most essential for characterizing DDoS attacks. The algorithm operates by first training a
GAN using only DDoS attack traffic (i.e., samples labelled as malicious). The Generator attempts to produce synthetic
attack samples that mimic real attack traffic, while the Discriminator learns to distinguish real from generated samples.
Once trained, the Generator is discarded, and the Discriminator is used to perform sensitivity analysis through feature
perturbation. The rationale is that features causing the largest changes in the Discriminator’s output confidence are the
most important for defining true attack behavior.

We selected the GANFS algorithm for three primary reasons:

• GANs are uniquely suited for modelling high-dimensional and non-linear data distributions, which aligns well
with the complex nature of network traffic.

• The adversarial learning setup naturally highlights features that are “difficult to fake,” thus indirectly revealing
those most critical for distinguishing attacks.

• GANFS eliminates the need for repeated model retraining as in wrapper methods, making it more scalable and
practical for large datasets.

Our choice was also informed by the limitations observed in prior FS techniques. Filter-based methods like MI and
Chi-Square quickly identified features with high statistical relevance but failed to generalize well in downstream
classifiers, likely due to ignoring inter-feature dependencies [4, 5]. Wrapper-based methods such as RFE yielded higher
classification accuracy but at significant computational cost, making them unsuitable for real-time or large-scale analysis
[10]. Embedded methods like Random Forest performed well in identifying some key features, such as packet counts
and byte rates but were prone to instability across different runs and sensitive to imbalanced class distributions [1, 6].

The key innovation of GANFS lies in its unsupervised, model-agnostic feature evaluation strategy. By treating the
Discriminator as a proxy for feature quality and measuring its sensitivity to perturbations in individual features, GANFS
provides a fine-grained, data-driven ranking without requiring external classifiers or performance metrics. This allows
for a lightweight, one-pass evaluation of feature importance after GAN training.

In brief, this research makes the following contributions:

• It presents a detailed empirical evaluation of existing feature selection techniques across multiple categories
using the CIC-DDoS2019 dataset.

• It proposes GANFS, a novel, GAN-driven feature selection framework optimized for detecting adversarial
traffic patterns.

• It introduces a robust sensitivity analysis method that quantifies feature importance based on Discriminator
confidence variation.

• It demonstrates through experiments that GANFS outperforms traditional methods in selecting compact yet
highly informative feature subsets, leading to improved classification accuracy and reduced computational
cost.
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By integrating generative modelling with sensitivity-based ranking, GANFS represents a significant step toward more
intelligent, adaptive, and scalable feature selection in cybersecurity applications. The findings of this work not only
enhance the state of the art in DDoS detection but also provide a foundation for applying adversarial learning to broader
security-related data mining challenges.

2 State of the art review

DDoS attacks exploit vulnerabilities across diverse environments, including cloud services, IoT devices, and traditional
networks. Attackers often leverage botnets—large networks of compromised devices—to generate massive volumes of
traffic targeting specific victims. The primary challenge lies in accurately differentiating attack traffic from legitimate
user activity within high-dimensional datasets characterized by numerous, potentially irrelevant features.

2.1 Need for feature selection in DDOS Detection

Raw network traffic data typically encompasses a wide array of features, such as packet rates, protocol flags, packet
sizes, and inter-arrival times. However, many of these features may be redundant or irrelevant for distinguishing between
normal and malicious traffic. This redundancy can lead to several problems:

• Increased Computational Costs: Processing high-dimensional data requires significant computational resources,
slowing down the detection process and making real-time analysis difficult.

• Model Overfitting: Machine learning models that are trained on irrelevant features may exhibit overfitting of
the training data, resulting in poor generalization and reduced accuracy on new, unseen data.

• Reduced Detection Accuracy: The presence of irrelevant features can obscure the patterns associated with
DDoS attacks, making it harder for detection models to identify malicious traffic.

Feature selection addresses these challenges by recognizing the most informative features, decreasing the dimensionality
of the data, and improving the performance of DDoS detection models. Effective FS techniques can significantly
enhance detection accuracy, reduce computational overhead, and improve the ability to generalize across different attack
types and network environments.

2.2 Overview of Feature Selection Methods

Feature selection methods can be broadly categorized into four main approaches: filter-based methods, wrapper-based
methods, embedded methods, and hybrid methods. In the context of DDoS detection, each of these methods has unique
benefits and trade-offs regarding accuracy, generalizability, and computing efficiency.

2.2.1 Filter-Based Methods

Filter methods select features based on statistical measures evaluated independently of any specific machine learning
algorithm. These techniques are appropriate for big datasets since they are scalable and computationally efficient.

Mutual Information (MI) Mutual Information (MI) quantifies the statistical dependence between input features
and class labels. A higher MI score indicates a stronger relationship and suggests greater relevance for classification
tasks. This measure is particularly effective for identifying features that contain valuable predictive information without
relying on any model-specific assumptions. For instance, Abu Bakar et al. [7] introduced an intelligent agent-based
detection framework that integrated MI for automatic feature extraction and selection. Their system achieved a high
detection accuracy of 99.7% in an IoT-based DDoS detection scenario, showcasing the utility of MI in real-world
applications. However, despite its efficiency, MI does not account for interactions between features and may lead to the
selection of redundant or collinear features. This makes it less effective when dealing with complex datasets where
meaningful patterns emerge only from combinations of attributes.

Chi-Square Test The Chi-Square test evaluates the independence between categorical features and class labels,
making it particularly suitable for identifying features that are highly correlated with specific target classes. It is a widely
used statistical method in feature selection, especially when dealing with discrete or categorical data. Muhammad
Aamir et al. [10] employed the Chi-Square test to reduce the number of features in a DDoS detection model by
68%, with minimal loss in accuracy, demonstrating the test’s practical effectiveness. Gaur and Kumar [2, 8] also
utilized Chi-Square alongside other filter techniques like ANOVA and Extra Trees across multiple classifiers, which
further validated its reliability. While Chi-Square is straightforward and computationally efficient, it assumes feature
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independence and is sensitive to the distribution of data. This can result in misleading rankings in cases where feature
interdependencies are important or when the feature space contains continuous variables that are poorly discretized.

Information Gain (IG) Information Gain (IG) measures the reduction in entropy achieved by partitioning the dataset
based on a particular feature. Features that contribute to a significant decrease in uncertainty are considered more
informative and thus preferred for model training. This metric is commonly used in decision tree algorithms and
filter-based FS pipelines. Subasri et al. [6] applied Information Gain in combination with data reduction techniques
for feature selection in Named Data Networking (NDN), yielding efficient and accurate detection of DDoS attacks.
Despite its utility, IG tends to favour features with a large number of unique values, which can introduce bias and lead
to overfitting. Furthermore, similar to other univariate filter methods, IG fails to capture complex dependencies between
multiple features.

Correlation-Based Feature Selection Correlation-based feature selection involves identifying and removing features
that are highly correlated with each other to reduce redundancy and improve model interpretability. By focusing on
reducing multicollinearity, this approach simplifies the input space and can enhance generalization in machine learning
models. Azadeh Golduzian [12] utilized correlation analysis through visual heatmaps to pinpoint and exclude redundant
attributes, leading to a more streamlined feature set and improved detection performance. While this method is effective
in pruning excessive or duplicative data, it does not directly measure a feature’s relationship with the target variable and
may inadvertently remove useful features if the correlation threshold is set too strictly. Moreover, it assumes linear
relationships and may not detect non-linear dependencies that could be valuable in classification.

2.2.2 Wrapper-Based Methods

Wrapper methods are a subclass of machine learning algorithms that are designed to evaluate feature subsets. These
methods employ a specific machine learning model for training and evaluation, resulting in more accurate outcomes
when compared to filter methods. However, it should be noted that wrapper methods are also more computationally
expensive.

Recursive Feature Elimination (RFE) Recursive Feature Elimination (RFE) is an iterative method that progressively
removes the least important features according to model-based rankings. The process continues until an optimal subset
is identified that yields high predictive accuracy. Aamir and Zaidi [10] successfully implemented RFE in their study on
DDoS attack detection, achieving strong classification performance with a reduced feature set. By aligning feature
selection with the specific learning algorithm used for classification, RFE offers high precision in identifying relevant
subsets. However, the need to retrain the model multiple times makes RFE computationally expensive, especially when
applied to large, high-dimensional datasets. This limits its scalability and real-time applicability.

Genetic Algorithms (GA) Genetic Algorithms (GAs) take inspiration from evolutionary biology to explore the feature
space. They treat each feature subset as an individual and apply operations such as selection, crossover, and mutation to
evolve toward an optimal solution. This global search capability allows GAs to navigate complex, non-convex spaces
that might trap greedy methods. However, while powerful, GAs are also resource-intensive and sensitive to parameter
settings such as population size, mutation rate, and selection strategy. Without proper tuning and validation, they may
converge to suboptimal solutions or require substantial computational time.

Sequential Feature Selection (SFS) Sequential Feature Selection (SFS) methods add or remove features one at
a time based on their marginal impact on model performance. Forward selection starts with an empty set and adds
features, while backward elimination begins with all features and prunes them iteratively. Though simpler and more
interpretable than stochastic methods like GAs, SFS is prone to local minima and can be inefficient for large feature
spaces. Additionally, it assumes that feature contributions are independent and additive, which may not hold in complex
cybersecurity datasets like those used in DDoS detection.

2.2.3 Embedded Methods

Many classification models integrate feature selection as a part. Embedded methods use these models to perform feature
selection. These methods often provide a good balance between accuracy and computational efficiency.

Lasso (L1 Regularization) Lasso is a linear model that incorporates L1 regularization into the loss function,
effectively penalizing the absolute values of the feature coefficients. This penalty induces sparsity by driving the
coefficients of less informative features to zero, making Lasso a natural choice for embedded feature selection. It is
particularly useful when dealing with high-dimensional data where interpretability is important. Studies such as Maslan
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et al. [5] have demonstrated the effectiveness of Lasso in reducing overfitting in machine learning models applied to
DDoS detection. However, Lasso assumes linearity and may not capture non-linear interactions between features. It
can also struggle when features are highly correlated, often arbitrarily selecting one and ignoring the rest.

Random Forest Feature Importance Random Forest (RF) models provide intrinsic feature importance scores by
measuring how much each feature reduces impurity across all trees in the ensemble. The mean decrease in Gini
impurity or mean decrease in accuracy is typically used to rank features. In the context of cybersecurity, Kurniawan
et al. [1] applied RF to Software Defined Networks (SDN) and identified pktcount as a dominant feature for DDoS
attack detection. Similar findings have been echoed in comparative analyses such as Gaur and Kumar [2], where RF
was found to consistently outperform other classifiers in detecting malicious traffic when trained on optimized feature
subsets. While RF is robust and handles feature interactions well, the importance rankings may vary across different
runs due to its stochastic nature, and it may overemphasize features with many distinct values.

Extreme Gradient Boosting (XGBoost) XGBoost is an advanced gradient boosting algorithm that also provides
built-in feature importance metrics. It calculates importance based on the frequency and quality of feature usage in tree
splits across boosted iterations. In the work of Golduzian [12], XGBoost was employed with a reduced feature set for
DDoS detection and achieved notably high performance while maintaining low computational overhead. The algorithm
is known for its scalability and effectiveness in imbalanced datasets, making it suitable for real-world network traffic
analysis. However, like RF, its feature rankings are model-specific and can fluctuate depending on hyperparameter
choices and dataset characteristics. It is also sensitive to class imbalance and noise in the data, which may skew the
importance scores.

2.2.4 Hybrid Methods

Hybrid methods combine multiple feature selection techniques to leverage their complementary strengths.

Combining Filter and Wrapper Methods One such approach is seen in the Feature and Model Selection (FAMS)
framework introduced by Ma et al. [11], which integrates multiple FS techniques with model selection to optimize
detection performance. By combining filter, wrapper, and embedded strategies, the framework was able to generalize
effectively across different types of DDoS attacks, yielding improved robustness and reliability. Similarly, Abu Bakar et
al. [7] proposed an intelligent agent-based system that automated the feature extraction and selection process. Their
system utilized sequential feature selection along with domain-specific rules to refine the FS pipeline, resulting in
superior performance in IoT environments.

Ensemble Feature Selection Ensemble feature selection methods further extend this idea by applying multiple FS
algorithms and aggregating their results—often through voting, ranking fusion, or statistical consensus—to achieve
a more stable feature subset. This was illustrated in the work of Mishra et al. [9], who combined feature selection
with multi-classifier systems to improve robustness against different types of attacks. Although hybrid approaches
often outperform individual techniques in both accuracy and generalizability, they also introduce significant complexity.
Tuning and validating multiple algorithms simultaneously can be computationally intensive and increases the risk of
overfitting, especially when applied without rigorous cross-validation.

2.3 Existing Deep Learning Methods

In recent years, deep learning models have gained traction for cybersecurity tasks, including DDoS detection and network
anomaly identification. Architectures such as Convolutional Neural Networks (CNNs), Autoencoders, Recurrent Neural
Networks (RNNs), and Transformer-based models have been explored to process high-dimensional network traffic
data and detect malicious behaviour. While each model type offers unique advantages, the choice of a Generative
Adversarial Network (GAN) for feature selection in this study is motivated by both the problem’s nature and the specific
demands of feature relevance extraction.

2.3.1 Convolutional Neural Networks (CNNs)

CNNs are highly effective for pattern recognition tasks and have been applied to network traffic classification by treating
flow-based features as image-like inputs [3, 12]. They are particularly good at detecting spatial hierarchies and local
dependencies, which can be useful when features have positional structure. However, in feature selection tasks, CNNs
offer limited interpretability and do not inherently provide a mechanism to rank input features. Feature relevance in
CNNs typically requires additional post hoc explainability tools, which can be complex and indirect.

5



Feature Selection via GANs for DDoS Mitigation

2.3.2 Autoencoders

Autoencoders (AEs) and Variational Autoencoders (VAEs) are unsupervised models used for dimensionality reduction
and anomaly detection. In DDoS contexts, AEs can learn compressed representations of normal traffic and flag
deviations as anomalies [8]. While this makes AEs suitable for detecting outliers or reconstructing inputs, they are
not optimized for distinguishing subtle differences between real and synthetic attack samples. Moreover, feature
selection using AEs often depends on reconstruction error or learned latent space variance, which may not capture true
discriminative power among features.

2.3.3 Recurrent Neural Networks (RNNs)

RNNs and their variants, such as Long Short-Term Memory (LSTM) networks, are powerful in capturing temporal
patterns and sequence dependencies in traffic flows. These models are particularly suited for time-series DDoS detection,
where packet arrival times or flow durations evolve over time. However, in static feature selection tasks like identifying
key features from tabular summaries of network flows. RNNs are less appropriate due to their sequential nature and
higher computational cost. Additionally, RNNs provide limited feature-level interpretability without complex attention
mechanisms.

2.3.4 Transformer-Based Models

Transformers, known for their self-attention mechanism, have recently been explored for cybersecurity tasks, offering
state-of-the-art performance in various sequence modelling problems. They can model long-range dependencies and
automatically assign attention scores to inputs, which can be repurposed for feature importance estimation. However,
their high computational demands, large data requirements, and complexity make them difficult to train on tabular
datasets like CIC-DDoS2019 without significant architecture adjustments or pretraining. Furthermore, attention weights
do not always correlate with actual feature importance [13].

Recent advancements in AI-based cybersecurity solutions leverage automated and intelligent feature selection techniques
to enhance attack prediction capabilities. These AI-driven models, such as deep learning, ensemble methods, and
intelligent agent systems, optimize feature selection dynamically, ensuring that only the most relevant attributes are
used for real-time DDoS mitigation. Moreover, traditional filter, wrapper, embedded, and hybrid feature selection
techniques, while effective in static environments, often struggle with the evolving nature of cyber threats. To address
this, researchers have explored automated feature selection models, which integrate feature engineering, selection, and
classification into a unified system. These intelligent systems reduce manual intervention and improve adaptability
to new attack patterns. The following section explores how AI-based methods have been applied to DDoS detection,
emphasizing automated selection, scalability, and real-time attack mitigation.

2.4 Existing AI Based DDoS Detection Methods

2.4.1 Automated and Intelligent Systems

Recent research has increasingly focused on developing automated systems that integrate feature extraction, selection,
and classification into unified frameworks to enhance DDoS attack detection. These systems aim to reduce manual
intervention, improve accuracy, and adapt to evolving attack patterns. [7] proposes an intelligent agent system that
automates feature extraction and selection, achieving a 99.7% improvement in detection accuracy. [11] introduces a
framework (FAMS) that automates feature and model selection, aiming for high generalization capability and short
prediction times.

2.4.2 Performance Optimization and Scalability

With the increasing volume and complexity of network traffic data, optimizing DDoS detection systems for scalability
and efficiency has become critical. Researchers have explored methods to handle large datasets without compromising
detection accuracy. The study [10] demonstrates that feature reduction can significantly improve system efficiency with-
out substantial performance degradation. By strategically reducing features, detection systems achieve faster processing
speeds while retaining critical information. The strength of this approach lies in its simplicity and effectiveness, making
it applicable to a wide range of scenarios. However, the process of identifying and removing redundant features requires
domain expertise and careful analysis, which may not always be feasible in dynamic environments. Similarly, [12]
addresses scalability challenges using advanced models like CNN and XGBoost. This approach effectively handles the
CICDDoS2019 dataset, which contains over 50 million records, ensuring both accuracy and computational efficiency.
The strength of these models lies in their ability to process large volumes of data with high precision, making them
ideal for real-time detection. However, their reliance on extensive computational resources and training data may limit
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their applicability in environments with limited infrastructure. These efforts underscore the importance of balancing
feature richness with system performance in large-scale network environments, while also highlighting the trade-offs
between computational efficiency and resource requirements.

2.4.3 Comparative Studies and Benchmarking

Comparative studies provide valuable insights into the performance of different feature selection methods and classi-
fication algorithms, establishing benchmarks for future research. Filter-based, wrapper-based, and embedded-based
approaches are evaluated in the research [1], which also highlights the accuracy, efficiency, and interpretability trade-offs
associated with each. Filter-based techniques, such mutual information and correlation, are appropriate for initial
feature screening since they are simple to use and computationally efficient. They could, however, fail to notice intricate
relationships between characteristics, producing less-than-ideal outcomes. Wrapper-based methods, such as recursive
feature elimination, offer higher accuracy by evaluating feature subsets based on model performance. Their weakness
lies in their computational intensity, which can be prohibitive for large datasets. Embedded methods, such as Lasso
regularization achieves equilibrium by including feature selection into the model training procedure. Despite their
effectiveness and efficiency, the intricacy of the underlying algorithms may restrict their interpretability. In 2022,
different research [4] looks at the connection between prediction accuracy and feature count. It demonstrates that
while additional features can improve accuracy, they also introduce computational overhead, emphasizing the need
for a balanced approach. For instance, decision trees and random forests perform well with smaller feature sets but
struggle with high-dimensional data due to increased complexity. In contrast, neural networks and ensemble methods
like XGBoost excel with larger feature sets but require significant computational resources and training time. To
better understand the impact of different feature selection methods, a comparative analysis is conducted, evaluating
their strengths, weaknesses, and suitability for DDoS detection. A systematic comparison of several filter, wrapper,
embedding, and hybrid feature selection techniques is given in the following table, along with information on each
method’s benefits and drawbacks. This analysis helps in identifying the most efficient techniques for reducing feature
redundancy while maintaining high detection accuracy. The next section presents a detailed comparison of existing
feature selection methods, showcasing their impact on DDoS detection performance.

Table 1: Strengths and Limitations of Feature Selection Methods in DDoS Detection

Research Paper FS Method Strengths Weaknesses

Comparison of Feature
Selection Methods for
DDoS Attacks on Soft-
ware Defined Networks
using Filter- Based,
Wrapper- Based and
Embedded- Based[1]

Filter- based, Wrapper-
based, Embedded-
based

Identifying key features
like ’pktcount’ can lead to
lightweight and early DDoS
detection in SDNs.

The effectiveness depends on
the quality and representative-
ness of the training data. In-
sufficient or biased data can
lead to poor detection perfor-
mance.

Analysis of Machine
Learning Classifiers
for Early Detection of
DDoS Attacks on IoT
Devices[2]

Chi- Square, Ex-
tra Trees Classifier,
ANOVA

Effective for categorical data,
Captures complex interac-
tions between features, iden-
tifies features that impact the
target variable

Assumes independence be-
tween features, Prone to over-
fitting, sensitive to outliers

Feature- Selection-
Based DDoS Attack
Detection Using AI
Algorithms [3]

NGBoost, CNN More Accuracy, less computa-
tional complexity

Potential overfitting, risk of
omitting important features

Curse of Feature Selec-
tion: a Comparison Ex-
periment of DDoS De-
tection Using Classifica-
tion Techniques [4]

Mutual Information Simple and Efficient Ignores feature interactions,
sensitive to data distribution
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Research Paper FS Method Strengths Weaknesses

Feature Selection for
DDoS Detection Us-
ing Classification Ma-
chine Learning Tech-
niques [5]

Linear Regression with
the Forward Method

Easy to implement. Less risk
of overfitting

Does not find optimal set of
features, can include irrele-
vant features due to overfitting

An Intelligent Agent-
Based Detection Sys-
tem for DDoS Attacks
Using Automatic Fea-
ture Extraction and Se-
lection [7]

Intelligent Agent Sys-
tem, Sequential Feature
Selection

Dynamic Adaptation,
Enhanced Detection Perfor-
mance (99.7% improvement)

Computational complexity,
dependence on data quality

FSMDAD: Feature
Selection Method for
DDoS Attack Detection
[8]

Chi- Square, Ex-
tra Trees Classifier,
ANOVA, Mutual Infor-
mation

Comprehensive evaluation,
improved detection perfor-
mance

Computational complexity,
potential redundancy

Defensive Mechanism
Against DDoS Attack
Based on Feature
Selection and Multi-
Classifier Algorithms
[9]

Combined feature selec-
tion with multi- classi-
fier systems (e.g., en-
semble methods)

Enhanced robustness through
classifier diversity.

Increased system complexity
and computational costs.

DDoS Attack Detection
with Feature Engineer-
ing and Machine Learn-
ing: The Framework
and Performance Eval-
uation [10]

Improved Binary
Grey Wolf Optimiza-
tion (wrapper- based
method)

Achieves optimal feature sub-
set selection, improving de-
tection accuracy and reducing
computational overhead.

Computationally intensive
due to iterative search for
optimal features, which
may not scale well for large
datasets.

A DDoS Attack De-
tection Method Based
on Natural Selection
of Characteristics and
Model Selection [11]

Hybrid approach com-
bining filter, wrapper,
and embedded methods

Balances computational effi-
ciency (filter methods) with
model- specific optimization
(wrapper/embedded methods)

Increased complexity in inte-
grating multiple feature selec-
tion techniques

Predict and Prevent
DDoS Attacks Using
Machine Learning and
Statistical Algorithms
[12]

Synthetic Minor-
ity Oversampling
Technique (SMOTE)
combined with statisti-
cal filtering methods.

Effectively addresses data im-
balance and selects relevant
features for improved model
performance.

Dependence on SMOTE may
lead to overfitting if not care-
fully tuned, especially in
highly imbalanced datasets.

3 Methodology

This section details the novel Generative Adversarial Network-based Feature Selection (GANFS) method developed for
enhancing DDoS attack detection, the dataset utilized for evaluation, and the approach for setting key hyperparameters.

3.1 Why GANs Were the Right Choice

The decision to use Generative Adversarial Networks (GANs) for feature selection was guided by both theoretical and
practical considerations. Unlike other deep learning models that focus on classification, reconstruction, or sequence
modelling, GANs are trained through an adversarial process in which the Generator learns to produce synthetic data
that mimics the real data distribution, while the Discriminator learns to differentiate between real and fake samples [13].
In this context, the Discriminator acts as a natural evaluator of feature relevance, its ability to detect fake attack samples
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hinges on the most critical features used to identify real ones [5]. By performing a perturbation-based sensitivity
analysis on the Discriminator’s confidence scores, GANFS offers a principled, unsupervised method for ranking feature
importance. Moreover, GANs are uniquely capable of modelling complex, non-linear relationships in high-dimensional
data, making them ideal for capturing subtle patterns that might escape simpler models. Unlike CNNs or RNNs, GANFS
does not require time-series or spatial feature encoding, and unlike Autoencoders, it focuses on discriminative power
rather than reconstruction. Compared to Transformers, GANs offer a better balance of performance and computational
efficiency for this problem setup [4]. In summary, although alternative deep learning architectures offer valuable
capabilities for network security, GANs provide a direct, interpretable, and efficient mechanism for feature selection by
leveraging the adversarial interplay between generative and discriminative learning. This makes GANFS particularly
well-suited for high-dimensional DDoS detection scenarios where labeled data is limited and feature redundancy is
high.

3.2 GAN-Based Feature Selection (GANFS) Algorithm

The core challenge in DDoS detection using machine learning lies in the high dimensionality and redundancy often
present in network traffic data. Traditional feature selection methods may struggle with complex feature interactions or
require labelled data encompassing all traffic types. To address this, we propose a novel feature selection technique,
GANFS, which leverages the discriminative power learned by a Generative Adversarial Network (GAN) trained
specifically on attack patterns [9].

3.2.1 Rationale and Core Concept

The fundamental idea behind GANFS is to utilize the adversarial training dynamic of a GAN to identify features most
critical for characterizing DDoS attacks. We train a GAN exclusively on samples representing various DDoS attacks
(Label = 1). The GAN consists of two components:

• Generator (G): Takes random noise (z) as input and attempts to generate synthetic data samples that mimic
the statistical properties of the real DDoS attack data.

• Discriminator (D): Takes either a real DDoS attack sample (x) or a synthetic sample generated by G (G(z))
as input and tries to classify it as real or fake.

The two networks are trained adversarial. The Discriminator aims to maximize its accuracy in distinguishing real from
fake samples, while the Generator aims to produce samples that are realistic enough to fool the Discriminator. This
process is typically optimized using a value function like the one proposed by Goodfellow et al. [13]:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (1)

In the GANFS approach, we hypothesize that the features the trained Discriminator relies on most heavily to differentiate
real attack samples from sophisticated fakes (generated by a well-trained Generator) are the features most salient and
informative for describing the essential characteristics of the DDoS attacks themselves [3].

3.2.2 GAN Architecture

The specific GAN architecture employed in this study consists of Multi-Layer Perceptrons (MLPs) for both the
Generator and the Discriminator:

• Generator: Accepts a random noise vector (latent space) with dimensionality equal to the number of input
features. It processes this noise through two dense hidden layers (64 and 128 neurons, respectively) using the
Rectified Linear Unit (ReLU) activation function. The output layer consists of neurons equal to the number of
features (81 in this case), using a Sigmoid activation function to ensure the generated feature values are scaled
between 0 and 1, matching the normalized real data.

• Discriminator: Accepts an input vector representing a data sample (either real or fake) with 81 features. It
passes this input through two dense hidden layers (128 and 64 neurons, respectively) with ReLU activation.
The final output layer consists of a single neuron with a Sigmoid activation function, producing a probability
score between 0 (interpreted as fake) and 1 (interpreted as real) [9].

3.2.3 GAN Training

The GAN was trained using only the pre-processed DDoS attack samples from the CIC-DDoS2019 dataset (details in
Section 3.2). The training process involved:
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• Data: Using only attack samples (Label=1), normalized to the [0, 1] range.
• Adversarial Loop:

– Discriminator Training: The Discriminator was trained on batches containing a mix of real attack samples
(labelled close to 1, e.g., 0.9 for label smoothing) and fake samples generated by the Generator (labelled
close to 0, e.g., 0.1).

– Generator Training: The Generator was trained based on the Discriminator’s feedback. Noise was fed to
the Generator, the output was passed to the Discriminator, and the Generator’s weights were updated to
minimize the difference between the Discriminator’s output and the target label 1 (i.e., aiming to fool the
Discriminator).

• Optimization: Both models were compiled using the Adam optimizer and Binary Cross entropy loss function.
• Training Parameters: Training was conducted for 500 epochs with a batch size of 4096.

3.2.4 Feature Importance via Sensitivity Analysis (Perturbation Strategy)

Once the GAN is trained, the Generator is discarded, and the trained Discriminator is used for feature importance
ranking. The importance of each feature is assessed via a sensitivity analysis based on systematic perturbation [10]:

• Baseline Confidence (D(x)): The baseline prediction confidence of the Discriminator is computed for the
real attack samples.

• Base Delta Calculation (∆base): For each feature i, a characteristic step size ∆basei is calculated. This
represents a meaningful minimum change for that feature, derived from the data distribution (e.g., calculated as
the mean of non-zero differences between consecutive sorted values of that feature across the attack samples).

• Perturbation Levels: A set of perturbation factors F = {0.5, 1.0, 2.0, 5.0, 10.0}.
• Bidirectional Perturbation: For each feature i, each sample x, and each factor f in F :

– Calculate perturbation magnitude: ∆f = f ·∆basei .
– Create two perturbed samples with each value of ∆f :

* Positive Perturbation: x+
i = xi +∆f .

* Negative Perturbation: x−
i = xi −∆f .

– Apply clipping to ensure perturbed feature values remain within the valid normalized range [0, 1].
• Measure Confidence Change: Calculate the absolute change in the Discriminator’s output confidence for

each perturbation:
– ∆+

conf = |D(x)−D(x+)|.
– ∆−

conf = |D(x)−D(x−)|.
• Aggregate Sensitivity: For each feature i, the final sensitivity score is calculated by averaging the confidence

changes over all samples, both perturbation directions (+/-), and all perturbation factors f in F :

Sensitivityi =
1

N ·K · 2
∑

samples

∑
f∈F

(∆+
conf +∆−

conf) (2)

where N is the number of samples and K is the number of perturbation factors.

A higher sensitivity score indicates that perturbations in that feature cause larger fluctuations in the Discriminator’s
confidence, implying the feature is more critical for distinguishing real attacks from generated fakes and, thus, more
important for characterizing the attack.

3.2.5 Output

The GANFS method outputs a ranked list of all input features, ordered from most important (highest sensitivity score)
to least important. This ranked list can then be used to select the top-k features for training downstream DDoS detection
classifiers.

3.3 Dataset Description

The dataset used for training the GANFS model and benchmarking the feature selection methods is the CIC-DDoS2019
dataset [14]. This dataset is widely recognized for evaluating DDoS detection mechanisms and contains a diverse range
of modern reflection-based DDoS attack traffic alongside benign traffic.
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3.3.1 Composition and Size

• Source Files: We utilized specific attack files from the dataset, including DrDoS_LDAP.csv, Dr-
DoS_MSSQL.csv, DrDoS_NetBIOS.csv, DrDoS_NTP.csv, DrDoS_SNMP.csv, DrDoS_SSDP.csv, Dr-
DoS_UDP.csv, and DrDoS_DNS.csv. These were merged with benign traffic samples present within them.

• Initial Size: The combined raw dataset comprised approximately 28 million records.

• Label Distribution: The dataset is highly imbalanced, containing roughly 1 million BENIGN samples and 27
million DDoS attack samples across the various types.

• Sampling (for manageability): To manage computational resources during initial loading and processing, a
subset of the attack data was potentially sampled (as indicated in one version of the loading code, e.g., 500,000
samples per attack file type were retained along with all benign samples, leading to approx. 4 million records
used in the final ddos_df). The final dataset used for splitting into train/test contained approximately 4,027,519
records.

3.3.2 Features

• Initial Features: The raw dataset contains over 80 features extracted from network flows using the CI-
CFlowMeter tool.

• Preprocessing and Feature Count: After preprocessing (detailed below), 81 relevant features remained for
analysis. These features encompass various aspects of network flows, including: Basic flow identifiers, Packet
counts and lengths, Flow timing characteristics, TCP Flags counts, Payload-related features, Window size
information, Flow rate features, Subflow averages, Active/Idle time statistics.

3.3.3 Preprocessing Steps

Several preprocessing steps were applied to prepare the data:

• Merging: Data from the selected CSV files were concatenated into a single Pandas DataFrame.

• Irrelevant Feature Removal: Columns deemed non-informative or problematic for modeling were dropped.
These included Timestamp, Source IP, Destination IP, Flow ID, SimillarHTTP, and any unnamed index columns
(Unnamed: 0). Column names were stripped of leading/trailing whitespace.

• Handling Invalid Values: Infinite values (Infinity, np.inf, -Infinity) and Not-a-Number (NaN) values, particu-
larly arising from division by zero in rate calculations (e.g., Flow Packets/s, Flow Bytes/s), were replaced with
0.

• Label Encoding: The categorical ’Label’ column was converted into a binary numerical format: BENIGN
was mapped to 0, and all specific DrDoS attack types were mapped to 1.

• Data Filtering (for GANFS): Crucially, for training the GANFS model itself, the dataset was filtered to retain
only attack samples (where Label = 1). The benchmarking classifiers were trained and tested on the full dataset
containing both benign and attack samples.

• Normalization: All 81 numerical feature columns were scaled to the range [0, 1] using
sklearn.preprocessing.MinMaxScaler. This ensures all features contribute uniformly during GAN training and
prevents features with larger ranges from dominating the learning process.

3.4 Hyperparameter Setting Methodology

Setting appropriate hyperparameters is crucial for the performance and stability of the GANFS model and the benchmark
classifiers [11]. The following methodology was employed:

3.4.1 GANFS Model Hyperparameters

The hyperparameters for the GAN (Generator and Discriminator) were selected based on a combination of common
practices in GAN literature for tabular data, preliminary experiments to ensure training stability, and resource constraints.

• Network Architecture: The number of layers (2 hidden layers) and neurons (64/128 for G, 128/64 for D)
were chosen as a standard MLP configuration. ReLU activation was used for hidden layers, while Sigmoid
was used for output layers.

• Optimizer: The Adam optimizer was selected.
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• Learning Rate: A learning rate of 0.001 was used. No extensive learning rate search was performed.

• Loss Function: Binary Cross entropy was used.

• Epochs: The model was trained for 500 epochs, determined by monitoring loss curves.

• Batch Size: A batch size of 4096 was used for gradient stability and resource management.

3.4.2 Sensitivity Analysis Parameters

• Perturbation Factors: The factors {0.5, 1.0, 2.0, 5.0, 10.0} were chosen empirically to cover a range of
magnitudes relative to feature granularity.

• Base Delta Calculation: Using the mean of non-zero differences between sorted consecutive values provides
a data-driven estimate of a meaningful small change.

3.4.3 Benchmark Classifier Hyperparameters

For the benchmark classifiers (Logistic Regression, Random Forest) used to evaluate the selected feature subsets:

• Logistic Regression: The max_iter parameter was set to 1000 to ensure convergence. Other hyperparameters
were kept at their default values.

• Random Forest: Default scikit-learn hyperparameters were used.

It is important to note that extensive hyperparameter optimisation (e.g., via grid search or randomised search) for the
benchmark classifiers was not performed in this phase of the research. The focus was on comparing the effectiveness
of different feature sets derived from various selection methods using reasonably configured standard classifiers.
Fine-tuning classifier hyperparameters is considered future work.

4 Experimental setup

The experiments were conducted on a high-performance computing node equipped with the following specifications:

• CPU: Intel(R) Xeon(R) Gold 6326 CPU @ 2.90GHz

• GPU: NVIDIA H100 with 10 GB of dedicated VRAM

• System RAM: 100 GB

5 Results

5.1 Features obtained from GANFS

Top 20 features obtained from our new GAN Feature Selection technique are URG Flag Count, Protocol, Inbound,
Bwd Packet Length Max, Down/Up Ratio, Idle Std, RST Flag Count, Fwd PSH Flags, Bwd IAT Min, Active
Mean, SYN Flag Count, Total Backward Packets, CWE Flag Count, act_data_pkt_fwd, Bwd Packet Length Min,
Init_Win_bytes_backward, Init_Win_bytes_forward, ACK Flag Count, Bwd Packet Length Mean, Active Std.
Note: Full ranking of all 81 features along with their sensitivity score is included in the appendix.

5.2 Interpretation from the results

• URG Flag Count was identified as the most sensitive feature, suggesting it contributes the most to the model’s
decision-making.

• Features like Protocol, Inbound, and Bwd Packet Length Max also shows strong influence.

• Several features had zero sensitivity, indicating they can potentially be excluded to optimize performance.

5.3 Evaluation Metrics

In this study, multiple performance metrics were evaluated to assess the effectiveness of the Generative Adversarial
Network-based Feature Selection (GANFS) method for detecting DDoS attacks. The key metrics considered include:

12



Feature Selection via GANs for DDoS Mitigation

• Accuracy: Measures the overall performance by computing the ratio of correct predictions to the total number
of predictions. It shows how well the model generalizes across the entire dataset.

Accuracy =
TP + TN

TP + TN + FP + FN

• Precision: Focuses on the correctly predicted DDoS attacks relative to all predicted DDoS attacks. Crucial for
reducing false positives.

Precision =
TP

TP + FP

• Recall (Sensitivity): Measures the model’s ability to correctly identify actual DDoS attacks. Important for
minimizing false negatives.

Recall =
TP

TP + FN

• F1-Score: The harmonic mean of precision and recall, providing a balance, especially in imbalanced classes.

F1 = 2× Precision × Recall
Precision + Recall

• AUC-ROC Curve: Illustrates the model’s ability to distinguish between classes at various thresholds by
plotting True Positive Rate vs. False Positive Rate. The Area Under the Curve (AUC) quantifies this ability.

• Computational Efficiency: Measured by training time and resource consumption, essential for real-time
detection.

5.4 Testing Methodology

The testing methodology adopted for this study involved the following:

• Training and Testing Split: The dataset was split into training and testing subsets to evaluate generalization
to unseen data.

• Sensitivity Analysis: GANFS was evaluated based on the sensitivity analysis of selected features by perturbing
each feature to quantify its influence. This identified significant features and improved interpretability.

• Baseline Comparisons: GANFS was compared to traditional filter, wrapper, and embedded methods to
demonstrate its advantages.

The testing methodology is appropriate as it assesses classification accuracy, computational efficiency, and feature
importance through sensitivity analysis, making it suitable for evaluating real-time DDoS detection capabilities.

5.5 Baseline Methods

To evaluate the performance of the proposed GANFS method, it was compared against several baseline and competitor
methods commonly used in DDoS detection. These methods include:

• Filter-based Methods:
– Mutual Information (MI): Measures feature-target dependency. Computationally efficient but ignores

feature interactions.
– Chi-Square Test: Assesses categorical feature-target relationship. Useful but also ignores interactions.

• Wrapper-based Methods:
– Recursive Feature Elimination (RFE): Iteratively removes features based on model performance. Accurate

but computationally expensive due to repeated model training.
• Embedded Methods:

– Random Forest Feature Importance: Calculates importance based on feature influence in decision trees.
Efficient and handles high dimensions.

• Competitor Classifiers:
– Logistic Regression: Simple, interpretable baseline classifier.
– Random Forest Classifier: More complex, robust ensemble classifier.
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5.5.1 Rationale for Selection

These baseline methods were selected to represent a variety of feature selection techniques and classification models,
from simple to complex. The goal was to compare GANFS against well-established methods to highlight its strengths,
particularly in computational efficiency and feature importance identification. This comparison helps gauge the
improvement GANFS offers over traditional approaches.

5.6 Description of Results

The results demonstrated the effectiveness of GANFS in detecting DDoS attacks, evaluated using accuracy, precision,
recall, F1-score, and computational efficiency.

5.6.1 Accuracy

Figure 1: Accuracy achieved by different Feature Selection techniques for two models – Logistic Regression and
Random Forest.

GANFS performed comparably to baseline methods, achieving peak accuracies of 99.9995% with Random Forest and
99.954% with Logistic Regression. These were higher compared to Chi-Square (99.9995%), ANOVA (99.9996%), and
Mutual Information (99.9998%). Performance indicates GANFS’s robustness.

5.6.2 Precision

Figure 2: Precision score achieved by different Feature Selection techniques for two models – Logistic Regression and
Random Forest.

GANFS showed similar precision, achieving 99.9999% with Random Forest and 99.9952% with Logistic Regression.
This surpassed other methods like Chi-Square (99.9999%), ANOVA (99.9999%), and Mutual Information (99.9999%).
Higher precision reduces false positives.
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5.6.3 Recall

Figure 3: Recall of different Feature Selection techniques for two models – Logistic Regression and Random Forest.

GANFS showed similar recall, with peak rates of 99.9996% (Random Forest) and 99.9664% (Logistic Regression).
Comparable to Chi-Square (99.9997%), ANOVA (99.9997%), and Mutual Information (99.9999%). High recall means
effective detection of actual attacks.

5.6.4 F1 Score

Figure 4: F1 Score achieved by different Feature Selection techniques for two models – Logistic Regression and
Random Forest.

GANFS achieved higher F1 scores (99.9997% with Random Forest, 99.9769% with Logistic Regression) compared
to Chi-Square (99.9998%), ANOVA (99.9998%), and Mutual Information (99.9999%). This shows a better balance
between precision and recall, making GANFS more reliable.

5.6.5 AUC-ROC Curve

Figure 5: AUC-ROC Curve of different Feature Selection techniques for two models – Logistic Regression and Random
Forest.

GANFS achieved significantly higher AUC-ROC scores (up to 0.99999999 with Random Forest, 0.99976 with Logistic
Regression), surpassing baselines like Chi-Square (0.99976), ANOVA (0.99976), and Mutual Information (0.99999).
This highlights superior discriminative ability.
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5.6.6 Computational Efficiency

Figure 6: Computational Efficiency of different Feature Selection techniques for two models – Logistic Regression and
Random Forest.

GANFS proved most efficient in training time compared to traditional methods. Results highlight GANFS scalability
for large applications, crucial for real-time detection. Importance of balancing efficiency and accuracy is underscored.

5.7 Performance comparison for Logistic Regression

Figure 7: Performance Metrics by different Feature Selection techniques for Logistic Regression.
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Accuracy: GANFS shows quick initial improvement, outperforming others early. ANOVA improves rapidly but doesn’t
surpass GANFS. Chi-Square and MI follow similar paths, slightly lower than GANFS. Conclusion: GANFS achieves
optimal performance rapidly.

Precision: GANFS rapidly achieves peak performance. ANOVA catches up quickly. Chi-Square and MI improve
steadily but don’t match GANFS. Conclusion: GANFS outperforms, ANOVA trails closely.

Recall: Shows fluctuating, unstable pattern. GANFS and ANOVA peak sharply then fluctuate. MI starts lower, peaks
mid-way, then stabilizes. Chi-Square decreases then stabilizes lower. Conclusion: Challenging data/scenario, GANFS
strong initially but unstable in recall.

F1 Score: GANFS quickly reaches and maintains peak performance. ANOVA shows sharp improvement but slightly
below GANFS. MI and Chi-Square track closely, MI slightly better. Conclusion: GANFS shows consistent superiority.

AUC-ROC: GANFS achieves max performance quickly, surpassing others. ANOVA rises sharply, slightly below
GANFS. Chi-Square follows ANOVA closely. MI matches Chi-Square, lagging GANFS/ANOVA. Conclusion: GANFS
maintains highest, quickest-achieved performance.

Figure 8: Computational Efficiency of different Feature Selection techniques for Logistic Regression.

Computational Efficiency (Figure 8): Training time increases with features for all methods. ANOVA or Chi-Square
preferable for rapid training. GANFS or MI beneficial for feature quality (higher cost), GANFS faster than MI at larger
feature counts. Choice depends on balancing resources and objectives.
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5.8 Performance Metrics for Random Forest

Figure 9: Accuracy achieved by different Feature Selection techniques for Random Forest. (Placeholder)

Accuracy: GANFS achieves highest performance immediately and maintains stability. MI closely follows, slightly
lower. ANOVA improves rapidly but remains below GANFS/MI. Chi-Square improves gradually, similar to ANOVA
but slower. Conclusion: GANFS superior rapid performance and MI is also strong.

Precision: GANFS achieves maximum performance immediately. ANOVA improves sharply, almost reaching GANFS
later. Chi-Square improves gradually. MI consistently strong, tracking GANFS. Conclusion: GANFS and MI lead,
GANFS slightly superior.

Recall: Slightly different trend. ANOVA starts high and maintains top performance, slightly outperforming GANFS.
GANFS stabilizes high but slightly below ANOVA. MI and Chi-Square reach high performance quickly, tracking
GANFS. Conclusion: ANOVA superior here, indicating dataset-dependent advantages.

F1 Score: GANFS clearly dominates, reaching peak immediately. MI closely follows. ANOVA improves sharply,
matching GANFS eventually. Chi-Square improves slower. Conclusion: GANFS and MI highly effective, followed by
ANOVA.

AUC-ROC: GANFS exhibits immediate and consistent peak performance. ANOVA catches up rapidly. Chi-Square lags
slightly. MI likely follows similar high performance. Conclusion: GANFS dominant, ANOVA quickly follows.
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Figure 10: Computational Efficiency of different Feature Selection techniques for Random Forest. (Placeholder)

Computational Efficiency (Figure 10): Training time increases with features for all. Chi-Square/ANOVA favourable for
low feature counts. GANFS starts moderate, cost increases with dimensionality. MI consistently shows highest training
times.

5.9 Critical Discussion of Results

Our experiments showed GANFS achieved high accuracy, precision, and recall, especially with Random Forest
classifiers. GANFS + RF consistently delivered F1 > 0.9999. Logistic Regression also performed exceptionally well.
Results reflect the discriminator’s ability to capture nuanced dependencies tied to malicious patterns. Compared to
traditional methods, GANFS selected features providing more stable, higher performance across classifiers. This is
attributed to model-driven feedback: the discriminator learns which variations influence confidence, leading to more
task-relevant subsets. GANFS’s data-driven adaptability, trained on diverse attack samples, likely contributed to good
generalization.

Challenges encountered: GAN training is computationally demanding and time-intensive. Minor variations in im-
portance rankings occurred across runs due to stochastic elements, though top features remained stable, suggesting
robustness. Insightful finding: Some features highly ranked by traditional methods were down-ranked by GANFS,
indicating statistical significance doesn’t always equate to classification utility.

5.10 Relevance of Results

Study aimed to improve DDoS detection by reducing features while maintaining performance. Results support this:
classifiers using GANFS-selected features retained performance nearly identical to full sets. GANFS often outperformed
traditional methods. Key insight: GANFS ranks based on actual contribution to model decisions (functional relevance),
making selected features more robust and less noisy/redundant. Crucial for operational systems needing speed/efficiency.
Approach proved effective across attack types/distributions, highlighting generalizability essential for evolving cyber
threats.

Challenge identified: Potential use in dynamic/real-time environments. Applying GANFS live is problematic: selecting
new features requires retraining the downstream model from scratch, as the classifier is coupled with the feature set.
Retraining isn’t always feasible in high-availability systems. Frequent updates increase overhead, downtime, and reduce
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responsiveness. The GAN itself isn’t designed for incremental adaptation. Future work could explore hybrid approaches
or continual learning.

6 Conclusion

We proposed GANFS, a novel method using GAN discriminator sensitivity analysis to identify informative network
features for DDoS detection. Evaluated on CIC-DDoS2019, GANFS outperformed traditional methods (Chi-Square,
MI, ANOVA, RFE). With Logistic Regression, peak F1 was 0.9997 with Random Forest, performance was near-
perfect (F1 > 0.9999, AUC-ROC 0.9999). GANFS proved computationally efficient, achieving top results with reduced
features, lowering training/inference times. While Chi-Square/ANOVA were faster at low dimensions, GANFS balanced
performance/cost better, especially at higher feature counts.

Key challenge: GANFS suits static/offline environments. Dynamic use requires retraining classifiers when features
update, limiting real-time applicability without adaptation (e.g., incremental learning).

Overall, GANFS is a powerful, data-driven feature selection approach for DDoS detection, offering: (1) high accuracy
with fewer features, (2) model-agnostic, unsupervised relevance estimation, and (3) improved scalability. Promising for
next-gen IDS. Future work includes real-time integration and generalization to multiclass/multi-stage attacks.

7 Future Work

While GANFS shows promise, several opportunities exist for expansion and enhancement.

7.1 Expansion to Multiclass and Multi-Stage Attack Detection

This study focused on binary classification (DDoS vs. benign). CIC-DDoS2019 has multiple attack types. Future work:
extend GANFS to multiclass to identify attack-specific features. Investigate temporal extensions (RNNs/GANs) for
multi-stage attacks (reconnaissance then attack) to find time-dependent features [1, 2].

7.2 Evaluation Across Diverse Datasets

Validate GANFS generalizability beyond CIC-DDoS2019 using datasets like NSL-KDD, UNSW-NB15, or real
enterprise logs. Apply to IoT datasets to test utility in resource-constrained environments. Assess consistency of
selected features [5, 8].

7.3 Integration with Online and Real-Time Detection

Current GANFS is offline/batch. Real-time systems need rapid inference/adaptation. Develop online/streaming GANFS
updating importance over time. Incorporate continual learning for low-latency environments (edge/SDNs) [6, 7].

7.4 Comparative Study with Advanced Generative Models

Compare standard GAN with alternatives (VAEs, WGANs, Diffusion Models) for stability/representation. Study which
generative mechanisms best facilitate feature discrimination. Explore transformer-based models with attention for
embedded selection [13, 4].

7.5 Ensemble Feature Ranking Strategies

Combine GANFS with traditional methods (MI, Chi-Square, RF) for ensemble ranking. Aggregate rankings (voting,
fusion) for a robust, consensus-driven strategy. May mitigate individual weaknesses and improve stability [9, 12].

7.6 GANFS-Driven Hyperparameter Optimization

Explore interaction between GANFS-selected features and classifier hyperparameters. See if selected features yield
better performance under optimized configurations (grid search, Bayesian optimization). Determine if FS amplifies or
dampens tuning sensitivity [3, 10].
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7.7 Interpretability and Explainability Enhancements

Enhance interpretability beyond sensitivity scores. Integrate SHAP/LIME for localized insights on feature influence.
Use visualization to show perturbation effects on Discriminator confidence, improving transparency/trust [11, 13].

7.8 Broader Perspective and Recommendations

GANFS integrates deep generative modeling with intelligent FS for cybersecurity. Unsupervised, data-driven ranking
suits real-world limits (labeled data scarcity). Sensitivity analysis framework is intuitive/generalizable beyond DDoS
(fraud, medical, industrial anomaly). Recommended strategic directions:

• Adapt for multiclass/multi-domain settings [5, 7].
• Optimize for real-time/online learning pipelines [6, 4].
• Integrate ensemble/interpretability methods for robustness/transparency [9, 13].

Pursuing these directions can evolve GANFS into a deployable component in modern security infrastructures.

Acknowledgments

The author gratefully acknowledges the University of Ottawa for providing the computing hardware and facilities
essential for this research. I would also like to express my sincere thanks to Dr. Paula Branco, Assistant Professor
in the School of Electrical Engineering and Computer Science, for her invaluable guidance, insightful feedback, and
continued support throughout this work.

References

[1] M. Kurniawan, S. Yazid, and Y. G. Sucahyo. Comparison of feature selection methods for ddos attacks on
software defined networks using filter-based, wrapper-based and embedded-based. JOIV International Journal on
Informatics Visualization, 6(4):809, 2022.

[2] V. Gaur and R. Kumar. Analysis of machine learning classifiers for early detection of ddos attacks on iot devices.
Arabian Journal for Science and Engineering, 47(2):1353–1374, 2021.

[3] M. S. Raza, M. N. A. Sheikh, I.-S. Hwang, and M. S. Ab-Rahman. Feature-selection-based ddos attack detection
using ai algorithms. Telecom, 5(2):333–346, 2024.

[4] W. Wang, S. M. Sadjadi, and N. Rishe. Curse of feature selection: a comparison experiment of ddos detection
using classification techniques. In 2022 IEEE Intl Conf on Parallel & Distributed Processing with Applications,
Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking
(ISPA/BDCloud/SocialCom/SustainCom), pages 262–269, 2022.

[5] A. Maslan, K. M. B. Mohamad, and F. B. M. Foozy. Feature selection for ddos detection using classification
machine learning techniques. IAES International Journal of Artificial Intelligence, 9(1):137, 2020.

[6] S. I, E. S. G. S. R., and R. M. P. Machine learning based feature selection for ddos detection in named data
networking. In 2022 4th International Conference on Advances in Computing, Communication Control and
Networking (ICAC3N), pages 305–310, 2022.

[7] R. A. Bakar, X. Huang, M. S. Javed, S. Hussain, and M. F. Majeed. An intelligent agent-based detection system
for ddos attacks using automatic feature extraction and selection. Sensors, 23(6):3333, 2023.

[8] V. Gaur and R. Kumar. Fsmdad: Feature selection method for ddos attack detection. In 2022 International
Conference on Electronics and Renewable Systems (ICEARS), pages 939–944, 2022.

[9] A. Mishra, N. Gupta, and B. B. Gupta. Defensive mechanism against ddos attack based on feature selection and
multi-classifier algorithms. Telecommunication Systems, 82(2):229–244, 2022.

[10] M. Aamir and S. M. A. Zaidi. Ddos attack detection with feature engineering and machine learning: The
framework and performance evaluation. International Journal of Information Security, 18(6):761–785, 2019.

[11] R. Ma, X. Chen, and R. Zhai. A ddos attack detection method based on natural selection of features and models.
Electronics, 12(4):1059, 2023.

[12] A. Golduzian. Predict and prevent ddos attacks using machine learning and statistical algorithms. arXiv preprint
arXiv:2308.15674, 2023.

21

http://arxiv.org/abs/2308.15674


Feature Selection via GANs for DDoS Mitigation

[13] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio.
Generative adversarial networks. Communications of the ACM, 63(11):139–144, 2020.

[14] University of New Brunswick. Ddos 2019 dataset. https://www.unb.ca/cic/datasets/ddos-2019.html.
Accessed.

Appendix

Table 2: Features ranked according to the sensitivity by GAN Feature Selection Algorithm

S.No. Feature Sensitivity_Score

1 URG Flag Count 0.022578694
2 Protocol 0.016681384
3 Inbound 0.0154445
4 Bwd Packet Length Max 0.010720941
5 Down/Up Ratio 0.005439217
6 Idle Std 0.005243474
7 RST Flag Count 0.00336254
8 Fwd PSH Flags 0.003148519
9 Bwd IAT Min 0.002834816

10 Active Mean 0.002347851
11 SYN Flag Count 0.002086169
12 Total Backward Packets 0.00166628
13 CWE Flag Count 0.001646711
14 act_data_pkt_fwd 0.001428789
15 Bwd Packet Length Min 0.001359528
16 Init_Win_bytes_backward 0.001347067
17 Init_Win_bytes_forward 0.001196553
18 ACK Flag Count 0.0011681
19 Bwd Packet Length Mean 0.001132366
20 Active Std 0.001072747
21 Active Max 0.001057202
22 Subflow Bwd Bytes 0.000883447
23 Avg Bwd Segment Size 0.000768293
24 Active Min 0.000595908
25 Subflow Bwd Packets 0.00056427
26 Total Length of Bwd Packets 0.000498126
27 Bwd Packet Length Std 0.000300974
28 Fwd Packet Length Min 0.000252315
29 Bwd Header Length 0.000226241
30 Average Packet Size 0.000194247
31 Max Packet Length 0.000183333
32 Fwd IAT Min 0.000146531
33 Fwd Packet Length Std 0.000139206
34 Fwd Packet Length Mean 0.000133515
35 Bwd IAT Total 0.000127808
36 min_seg_size_forward 0.000111856
37 Bwd IAT Std 0.000110161
38 Total Length of Fwd Packets 9.98E-05
39 Bwd IAT Max 9.94E-05
40 Subflow Fwd Bytes 8.30E-05
41 Fwd Packet Length Max 8.06E-05
42 Idle Max 7.02E-05
43 Subflow Fwd Packets 6.64E-05
44 Packet Length Variance 6.03E-05
45 Idle Mean 5.62E-05
46 Avg Fwd Segment Size 5.06E-05
47 Total Fwd Packets 4.99E-05
48 Bwd Packets/s 4.98E-05
49 Idle Min 4.57E-05
50 Min Packet Length 4.49E-05
51 Flow IAT Min 4.38E-05
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Table 3: Features ranked according to the sensitivity by GAN Feature Selection Algorithm

S.No. Feature Sensitivity_Score

52 Bwd IAT Mean 4.14E-05
53 Packet Length Std 3.85E-05
54 Packet Length Mean 3.78E-05
55 Fwd Header Length.1 1.65E-05
56 Fwd Header Length 1.32E-05
57 Flow IAT Max 9.16E-06
58 Destination Port 6.09E-06
59 Fwd IAT Max 5.94E-06
60 Source Port 5.38E-06
61 Flow Duration 3.52E-06
62 Fwd IAT Total 3.11E-06
63 Fwd IAT Mean 1.66E-06
63 Fwd IAT Mean 1.66E-06
64 Flow Bytes/s 1.46E-06
65 Flow IAT Mean 1.16E-06
66 Fwd Packets/s 9.81E-07
67 Flow Packets/s 9.35E-07
68 Fwd IAT Std 7.57E-07
69 Flow IAT Std 4.86E-07
70 Bwd PSH Flags 0
71 PSH Flag Count 0
72 Fwd URG Flags 0
73 FIN Flag Count 0
74 Fwd Avg Bytes/Bulk 0
75 ECE Flag Count 0
76 Bwd URG Flags 0
77 Bwd Avg Bulk Rate 0
78 Fwd Avg Packets/Bulk 0
79 Fwd Avg Bulk Rate 0
80 Bwd Avg Bytes/Bulk 0
81 Bwd Avg Packets/Bulk 0
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