
DeSIA: Attribute Inference Attacks Against Limited Fixed Aggregate
Statistics

Yifeng Mao∗ Bozhidar Stevanoski∗ Yves-Alexandre de Montjoye

Imperial College London

Abstract

Empirical inference attacks are a popular approach for
evaluating the privacy risk of data release mechanisms in
practice. While an active attack literature exists to eval-
uate machine learning models or synthetic data release,
we currently lack comparable methods for fixed aggre-
gate statistics, in particular when only a limited number
of statistics are released. We here propose an inference
attack framework against fixed aggregate statistics and
an attribute inference attack called DeSIA. We instanti-
ate DeSIA against the U.S. Census PPMF dataset and
show it to strongly outperform reconstruction-based at-
tacks. In particular, we show DeSIA to be highly ef-
fective at identifying vulnerable users, achieving a true
positive rate of 0.14 at a false positive rate of 10−3. We
then show DeSIA to perform well against users whose
attributes cannot be verified and when varying the num-
ber of aggregate statistics and level of noise addition.
We also perform an extensive ablation study of DeSIA
and show how DeSIA can be successfully adapted to the
membership inference task. Overall, our results show
that aggregation alone is not sufficient to protect pri-
vacy, even when a relatively small number of aggregates
are being released, and emphasize the need for formal
privacy mechanisms and testing before aggregate statis-
tics are released.

1 Introduction

Empirical inference attacks are a popular tool to eval-
uate the privacy risks of data release mechanisms such
as machine learning models and synthetic data. Mem-
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Figure 1: Performance on the PPMF dataset of our at-
tack and the baseline reconstruction-based attacks at
predicting the value of the sensitive attribute for all tar-
get users. The inset plot shares the same axes as the
main plot.

bership inference and attribute inference attacks have
been used extensively to evaluate the privacy of ma-
chine learning models and synthetic data in practice,
showing models to memorize training data [36] and de-
tecting privacy violations [5]. Data protection laws, such
as GDPR [1], furthermore define anonymous data as the
absence of empirical attacks.

We, however, currently lack a comparable inference
attack framework and methods against fixed aggregate
statistics, in particular when only a limited number of
statistics are released. The literature on attacks against
fixed aggregate statistics has instead focused on recon-
struction attacks. As of today, the state-of-the-art re-
construction attacks against fixed aggregate statistics
are CIP and RAP. CIP, proposed by the the U.S. Cen-
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sus Bureau [3], models the attack as a constraint inte-
ger programming problem. RAP, proposed by Dick et
al. [14], uses synthetic data to reconstruct tabular data
from aggregate statistics.

Contributions. We here propose a framework and a
method for attribute inference attacks against fixed ag-
gregate statistics from tabular data. Our method, De-
SIA, consists of two modules: a deterministic module,
which we instantiate as a modified constraint integer
programming problem, and a stochastic module, which
we use to infer the most likely attribute when the deter-
ministic module cannot verify its solution.

We instantiate our attack against the PPMF re-
lease from the U.S. Census Bureau and show DeSIA
to strongly outperform state-of-the-art reconstruction-
based attacks when instantiated on the attribute infer-
ence task. We also show DeSIA to successfully iden-
tify highly vulnerable users achieving a 0.14 true posi-
tive rate (TPR) at a false positive rate (FPR) of 10−3.
We then show DeSIA to perform well a) against users
whose attributes cannot be verified by the determinis-
tic module, b) when varying the number of aggregate
statistics, and c) when varying the level of per-query
noise addition. We also perform an extensive ablation
study of DeSIA, showing all the components to be nec-
essary for it to perform well. We finally show how
DeSIA can be successfully adapted to the membership
inference task (MIA) here again strongly outperform-
ing reconstruction-based baselines. Overall, our results
show practical information leakage to occur even when a
relatively small number of aggregates are being released,
and emphasize the need for formal privacy mechanisms
and testing before aggregate statistics are released.

2 Background

2.1 Fixed Aggregate Statistics

We consider a data curator handling a private tabular
dataset D from a distribution D. The dataset D con-
sists of records for a set of s users U , s = |U |, over n
attributes, A = {a1, . . . , an}. Each attribute ai ∈ A can
take values from a set Vi, i ∈ {1, . . . , n}. We denote the
record of user u ∈ U as ru = (r1u, . . . , r

n
u), where riu is a

value from the set Vi, r
i
u ∈ Vi, i ∈ {1, . . . , n}. We denote

the projection of the user record ru over a subset of at-

tributes A′ = {ai1 , . . . , aik} ⊆ A as rA
′

u = (ri1u , . . . , riku ).
The data curator aims to release aggregate statis-

tics from the dataset D, where each aggregate statistic
counts the number of records in particular subsets of D.
Formally, we define a counting aggregate statistic q as
q = (V q

1 , . . . , V
q
n ), given sets V q

i of values correspond-
ing to each attribute ai, V

q
i ⊆ Vi. We denote the sub-

set of U as Uq={u|r1u ∈ V q
1 ∧ · · · ∧ rnu ∈ V q

n ,∀u ∈ U}
and we call Uq the userset of the aggregate statistic
q. We denote the result of q evaluated on D by q(D),
q(D) = |Uq| =

∑
u∈U 1(r

1
u ∈ V q

1 ∧· · ·∧rnu ∈ V q
n ). Equiv-

alently, the aggregate statistic q can be expressed as a
counting query using SQL notation as:

SELECT count(*) FROM D

WHERE a1 IN V 1
1 AND . . . AND an−1 IN V 1

n−1

AND an IN V 1
n .

(1)

2.2 Threat Model: Attribute Inference
Attacks Against Fixed Aggregate
Statistics

We evaluate the privacy leakage of releasing fixed aggre-
gate statistics from a tabular dataset in the context of
attribute inference attacks (AIAs).

We assume the data curator releases a fixed set of
m aggregate statistics, Q = {q1, . . . , qm} and their val-
ues on the dataset D, Q(D) = {q1(D), . . . , qm(D)}. We
assume that fewer aggregates are released than the num-
ber of users in D, m < s, i.e., that on average there is
fewer than one aggregate per user, m

s < 1. We evaluate
various values of m

s in Section 5.3.
We assume that one of the attributes is a sensitive

attribute. Without loss of generality, we assume an is
sensitive and denote the set of non-sensitive attributes
as A′ = {a1, . . . , an−1}.
Attacker’s Goal. The attacker’s goal is to infer the

value of the sensitive attribute an of a target user u∗,
i.e., to infer rnu∗ .
Attacker’s knowledge. In line with the literature,

we assume the attacker to have auxiliary knowledge
about the dataset D and knowledge about the target
user u∗.
The auxiliary knowledge of the dataset D consists of

knowledge of its size s and access to an auxiliary dataset
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Game Parameters: Q, Vn
Attacker(rA

′
u∗ , Daux,V1, . . . ,Vn) Defender(u∗, D)

1○rnu ∼ Vn
∀ru ∈ D
2○b← rnu∗

3○ Q(D), |D|oo
4○b′ ← A(Q,Q(D),

|D|, Daux, r
A′
u∗ ,V1, . . . ,Vn)

Output: Attacker wins if and only if b′ = b

Figure 2: Privacy game for attribute inference attack
against fixed aggregate statistics.

Daux from a distribution Daux, similar to D. We also
assume the attacker to know the possible values for every
attribute ai ∈ A, i ∈ {1, . . . , n}.

Knowledge about the target user u∗ consists of the
values of the non-sensitive attributes A′ of the target
user u∗, rA

′

u∗ = (r1u∗ , . . . , rn−1
u∗ ) and the knowledge that

the target user is unique in the dataset D with those
values for the non-sensitive attributes, ∀u′ ∈ U, u′ ̸=
u∗, rA

′

u′ ̸= rA
′

u∗ .

2.3 Framework for Attribute Inference
Attack as a Privacy Game

We propose a formal framework for attribute inference
attacks against fixed aggregates as a privacy game. The
privacy game (Fig. 2) is played between two players,
an attacker and a defender, over a total of four steps.
The defender plays the first three steps and the attacker
plays the fourth one.

First, in line with the literature on attacks against
query-based systems [13, 44], the defender samples the
values of the sensitive attribute uniformly at random
from Vn for all users U in the protected dataset D. This
provides a random baseline and circumvents the impu-
tation issue (see Section 8), allowing us to measure the
privacy risk posed solely by the release of the aggregate
statistics.

Second, the defender saves the value that was sampled
for the sensitive attribute of target user u∗, which we
denote as b. Note that the value b is unambiguous as
we assume, for simplicity and in line with the literature,
that the target user u∗ is unique in D for rA

′

u∗ .
Third, the defender evaluates the aggregate statistics

Q on the protected dataset D with randomized values of

the sensitive attribute and releases them to the attacker.
Fourth, the attacker aims to predict the sensitive

value of the target user b by using the released aggre-
gate statistics. The attacker runs an attack A to obtain
a value b′.

The attacker wins the game if and only if the pre-
dicted value b′ is equal to the value b of the target user’s
sensitive attribute in D, b′ = b.

2.4 State-of-the-art: Reconstruction-
Based Attacks against Fixed Aggre-
gate Statistics

Existing literature on empirical attacks against fixed ag-
gregate statistics has primarily focused on reconstruc-
tion attacks. Reconstruction attacks aim to reconstruct
the private dataset D by using the released statistics
Q and their values on D, Q(D). They search for a
dataset D′ such that the values of the released aggre-
gate statistics Q from D′, Q(D′), exactly or closely
match the released values from the protected dataset D,
Q(D′) ≈ Q(D), with the ideal goal being perfect equal-
ity Q(D′) = Q(D). The dataset D′ is called a tentative
reconstructed dataset.

The state-of-the-art attacks are an attack that uses
constraint integer programming [3] (CIP) and an attack
using synthetic data generation techniques [14] to search
for a tentative reconstructed dataset (RAP).

2.4.1 CIP: Constraint Integer Programming
Attack

Abowd et al. [3] proposed an attack, which we refer
to as CIP, that aims to find a tentative reconstructed
dataset D′ by formulating a constraint integer program-
ming task. The main idea of CIP is to represent a
dataset D′ by using the multiplicity of all potential
records (v1, . . . , vn), ∀vi ∈ Vi in D′ as integer variables
x(v1,...,vn). For example, a record that is not a member
of D′ has a multiplicity of 0. Note that while Abowd
et al. [3] have modified this problem formulation to an
equivalent binary variable formulation for a more effi-
cient execution time, for simplicity, we here present and
use the representation with integer variables.

Formally, the constraint integer programming task is
composed of three main components: a set of unknown

3



variables X, sets of possible values for each unknown
variable (also called domain sets) S, and constraints C
that specify allowable combinations of unknown vari-
ables.

Each unknown variable, x(v1,...,vn) ∈ X, represents
the multiplicity of a record (v1, . . . , vn), vi ∈ Vi in D′.
Note that although there are

∏n
i=1 |Vi| unknown vari-

ables, many of them may have values of 0 since they can
represent records that are not members of the dataset
D′.

Each domain, s(v1,...,vn) ∈ S, contains all possible
values for the unknown variable x(v1,...,vn). Here, a do-
main contains all possible integers between 0 and the
size of the protected dataset D, inclusively, x(v1,...,vn) ∈
{0, 1, . . . , s}

Each constraint cq ∈ C, represents an allowable
combination of variables given a released aggregate
statistic q = (V q

1 , . . . , V
q
n ), q ∈ Q. The constraint cq

limits the possible values for the multiplicity of records
by taking the aggregate value q(D):

cq :
∑

∀r∈Vq
1×···×Vq

n

xr = q(D).

The solution to the constraint integer programming
task is an assignment function that assigns values to all
unknown variables. We denote the assignment function
as σ : X → Z. Abowd et al. use a third-party solver [22]
to obtain a tentative reconstructed dataset D′, which we
also use.

We consider two variants of this attack, depending on
the initialization of the third-party solver. The attack
originally proposed by Abowd et al. [3], which we refer
to as CIP-rand, where the third-party solver initializes
all unknown variables to zeros by default. For a fair com-
parison, we also use an adaptation of the attack, which
we refer to as CIP-init, that uses the access of the aux-
iliary dataset Daux to initialize the unknown variables
x(v1,...,vn) in the third-party solver with the multiplicity
of the records in the auxiliary dataset Daux.

2.4.2 RAP: Synthetic Data Attack

Dick et al. [14] proposed an attack, which we refer to as
RAP, that produces a tentative reconstructed dataset
D′ by using a synthetic data generator model.

The attack trains a synthetic data generator model
M that takes as input aggregate statistics Q and their
values Q(D) on the protected dataset D and outputs
a tentative reconstructed dataset D′, The model M is
trained to minimize the L2-distance between the aggre-
gate values on the synthetic dataset D′ and the pro-
tected dataset D, min∥Q(D′)−Q(D)∥2.
We use the two variants of this attack proposed by

Dick et al., depending on the initialization of model M :
RAP-rand where M is initialized with a uniformly at
random sample from V1×· · ·×Vn, and RAP-init where
M is initialized with the auxiliary dataset Daux.

We would like to note first that while a perfect re-
construction attack would fully reconstruct the private
dataset D and thus be a perfect attribute inference at-
tack, this is rarely the case in practice, including when
a large number of aggregate statistics are released, e.g.,
by the U.S. Census Bureau. Second, we assume, in line
with the broader literature on inference attack, an at-
tacker weaker than the strong Differential Privacy (DP)
attacker but with access to an auxiliary dataset. For fair
comparison, we adapt the CIP attack to take advantage
of the auxiliary dataset. The RAP attack already pro-
poses a variant leveraging an auxiliary dataset which we
use here. Third, we assume an attacker with access to
at least some information about the target record, but
note that, while this is necessary for any attribute or
membership inference attack, some threat models using
reconstruction attacks do not need this assumption, e.g.
identifying that an individual with a certain character-
istic lives in a block. We do not consider this threat
here.

2.5 Instantiating Reconstruction At-
tacks for Attribute Inference

In most cases, in particular when limited number of ag-
gregate statistics are released, there are more than one
tentative reconstructed datasets D′ [3]. We adapt exist-
ing reconstruction attack to the attribute inference task
by (a) generating K tentative reconstructed datasets
D′

1, . . . , D
′
K and (b) taking a majority vote after com-

bining the values of the target user’s sensitive attribute
from all K datasets. Figure 3 illustrates both steps.

Obtaining tentative reconstruction datasets.
For RAP, we follow the approach by Dick et al. [14]

4
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Figure 3: Adaptation of reconstruction attacks for attribute inference.

and train K synthetic data generator models, each with
a different random seed, and generate a tentative recon-
structed dataset using each of the K models. For CIP,
we follow a similar approach by applying the solver K
times, each time with a different seed and order of con-
straints.

Majority vote in smallest existing neighbor-
hood. We define L−neighborhood as the records from
all K tentative reconstructed datasets that differ at L
values from the values of the non-sensitive attributes of
the target user, rA

′

u∗ :

L−neighborhood(rA
′

u∗ , D′
1, . . . , D

′
K) =

= {r|
n−1∑
i=1

1(ri ̸= riu∗) = L, r ∈
⋃

j∈{1,...,K}

D′
j}.

For example, the 0-neighborhood is the set of records
from all K tentative reconstructed datasets that have

the same values for the non-sensitive attributes A′ as
the target user, 0 − neighborhood = {r|rA′

= rA
′

u∗r ∈⋃
j∈{1,...,K} D

′
j}.

For both RAP and CIP, we start from the 0-
neighborhood of the target user. The attacker infers
the sensitive attribute of the target user, rnu∗ , by pre-
dicting the most frequent value for attribute an of all
records in the 0-neighborhood.

rnu∗ = argmax count(rn).

s.t. r ∈ 0− neighborhood(ru∗).

If the 0 − neighborhood is empty, we extend to the
1 − neighborhood. Following the same principle, if the
(L − 1) − neighborhood is empty, we extend to L −
neighborhood, until L = n−1, when we take all records
in all tentative reconstructed datasets

⋃
i∈{1,...,K} D

′
i.

If there is a tie for the most frequent value between
two (or more) values in a given L − neighborhood, we
select one uniformly at random from them.

5



3 Methodology

Our method, DeSIA (Deterministic-Stochastic Inference
Attack) is composed of two modules: a deterministic
module MD and a stochastic module MS . The deter-
ministic moduleMD, which we instantiate as a modified
constraint integer programming problem, aims to iden-
tify if one and only one value for the sensitive attribute
of the target user is deterministically feasible, given the
released statistics, and to output that value. If there
is more than one feasible value, the stochastic module
MS is then used to estimate the likelihood of the feasi-
ble values and to output the most likely one.

DeSIA =

{
MD, MD(·) ̸= ∅
MS , otherwise

3.1 Deterministic Attribute Inference

The deterministic moduleMD first finds a feasible value
v∗n ∈ Vn for the sensitive attribute of the target user, rnu∗ ,
and second, deterministically verifies that the value v∗n
is the only feasible value. We instantiate both tasks as
constraint integer programming tasks (see Algorithm 1).

Finding a feasible value. We use constraint integer
programming to obtain a possible value v∗n ∈ Vn for the
target user u∗. In particular, we define the unknown
variables xr for record r = (v1, . . . , vn), vi ∈ Vi, i ∈
{1, . . . , n} following the CIP attack. We update the do-
main of each unknown variable to optimize the execution
time and we extend the set of constraints.

While we use the simplified integer representation, we
optimize the execution time of the method by updating
the domain of each unknown variable to lower the range
of possible values, using information from the released
aggregate statistics. We set the maximal integer smax

r

in the domain set of the unknown variable xr to be the
minimal value of all relevant aggregate statistics:

smax
r = min(s, min

q∈Q
vi∈V q

i ,∀i∈{1,...,n}

q(D)).

We crucially also extend the set of constraints by
adding a constraint specific to the target user u∗, which
we call a uniqueness constraint. The constraint reflects
the attacker’s knowledge of (a) the values of the non-
sensitive attributes of the target user, rA

′

u∗ , and (b) the

Algorithm 1: Deterministic attribute in-
ference

Input: Aggregate statistics Q = {q1, . . . , qm}
Aggregate values

Q(D) = {q1(D), . . . , qm(D)}
Dataset size s
Attribute domains {V1, . . . ,Vn}
Non-sensitive attributes (r1u∗ , . . . , rn−1

u∗ )
Output: Prediction on rnu∗ if deterministically

possible, otherwise NaN.
1 Unknown Variable Set X ← ∅, Domain Set S ← ∅,

Constraint Set C ← ∅ // Initialize

2 for r ∈ V1 × V2 × · · · × Vn do
3 Define xr // Define the new variable

4 smax
r ← min(s, min

∀qi∈Q

r∈Vqi
1 ×···×Vqi

n

qi(D)) // Get

minimal upper bound for the new variable

5 X ← X ∪ {xr}, S ← S ∪ {0, . . . , smax
r } // Update

the variable and domain set

6 end
7 for qi ∈ Q and qi(D) do
8 ci :

∑
r∈Vqi

1 ×···×Vqi
n

xr = qi(D) // Define

constraint of qi
9 C ← C ∪ {ci} // Update the constraint set

10 end
11 ct :

∑
vn∈Vn

x
(r1

u∗ ,...,rn−1
u∗ ,vn)

= 1 // Define uniqueness

constraint

12 C ← C ∪ {ct}
13 σ ← RunSolver(X,S,C)
14 if ∃ σ // If there is at least one feasible

solution

15 then
16 for vn ∈ Vn do
17 if σ(x

(r1
u∗ ,...,rn−1

u∗ ,v̂n)
) = 1 then

18 ct′ : x(r1
u∗ ,...,rn−1

u∗ ,v̂n)
= 0 // Define the

null constraint

19 C′ ← C ∪ {ct′} // Update the constraint

set

20 end

21 end
22 σ′ ← RunSolver(X,S,C′) // If there is no

feasible solution

23 if ∄ σ′ then
24 return v̂n // Return the only possible

value of sensitive attribute

25 end

26 end
27 return ∅

6
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Figure 4: Our proposed attack. It uses two modules: (1) MD deterministically checking if there is only one possible
value for the target user’s sensitive attribute, and (2) MS stochastically predicting the most likely value.

uniqueness of the in D given rA
′

u∗ :

ct : 1 =
∑

vn∈Vn

x(r1
u∗ ,...,r

n−1
u∗ ,vn)

.

We then use a third-party solver [22] to solve the con-
straint integer problem. The solver returns the assign-
ment of values σ as a solution, which maps from an
unknown variable xr to its assigned value σ(xr).

We select the variables {x(r1
u∗ ,...,r

n−1
u∗ ,vn)

| ∀vn ∈ Vn},
which correspond to records that share the same values
on non-sensitive attributes as the target user. Because
of the uniqueness constraint, σ only assigns one of the
selected variables to be larger than zero. We denote the
value of the sensitive attribute of that variable as v̂n.

Verifying the feasible value. The feasible value
v̂n found for the sensitive attribute of the target user
rnu∗ might not be unique. We here formulate another
constraint integer task to verify whether the obtained
value v̂n is the only feasible value for rnu∗ , explicitly dis-
allowing v̂n as a possible value for rnu∗ through a null
constraint:

ct′ : 0 = x(r1
u∗ ,...,r

n−1
u∗ ,v̂n)

.

If we do not obtain any feasible assignment function
σ′, MD verifies that the value v̂n is the only determin-
istically possible value for rnu∗ . If this is the case, we
consider the target user u∗ to be deterministically vul-
nerable and assign it a certainty of 1. If it is not, we use
the stochastic module MS to infer an attribute value.

3.2 Stochastic Attribute Inference

The stochastic module MS estimates the likelihood
of the feasible values for rnu∗ and outputs the most
likely one (see Algorithm 2). In particular, it uses a
machine learning model trained on aggregate statistics
from datasets similar to the protected dataset D. The
stochastic module is composed of three steps.

First, we create N datasets, D1
shadow, . . . , D

N
shadow,

which we call shadow datasets. Each shadow dataset
Di

shadow, i ∈ {1, . . . , n} consists of s − 1 users sampled
without replacement from the auxiliary dataset Daux

and the target user u∗. We project their records on
non-sensitive attributes A′ = {a1, . . . , an−1} to obtain
{rA′

i,1, . . . , r
A′

i,s−1}. Then, we sample s− 1 values from Vn

uniformly at random, denoted as {zi,1, . . . , zi,s−1}. We
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append zi,j to rA
′

i,j , such that zi,j is the value for the

sensitive attribute of the record (rA
′

i,j , zi,j). We obtain a
shadow record of the target user by appending a value
zi,∗ sampled at uniform random from Vn to the values

of non-sensitive attributes rA
′

u∗ . The resulting shadow
dataset Di

shadow is as follow:

{(rA
′

i,1, zi,1), . . . , (r
A′

i,s−1, zi,s−1), (r
A′

u∗ , zi,∗)}.

Algorithm 2: Stochastic attribute infer-
ence

Input: Aggregate statistics Q = {q1, . . . , qm}
Aggregate values

Q(D) = {q1(D), . . . , qm(D)}
Dataset size s
Attribute domains {V1, . . . ,Vn}
Non-sensitive attributes (r1u∗ , . . . , rn−1

u∗ )
Auxiliary dataset Daux

Number of shadow datasets N
Output: Prediction on rnu∗ , based on the probability

of each possible value in Vn
1 for i = 1, . . . , N do
2 Di

shadow ← ∅, Ri = ∅ // Initialize shadow

dataset and the set of selected records

3 for j = 1, . . . , s− 1 do
4 ri,j ∼ (Daux \Ri) // Sample one record

without replacement from auxiliary dataset

5 zi,j ∼ Vn // Sample the sensitive value at

uniform random

6 Ri ← Ri ∪ {ri,j} // Add the sampled record

to selected record set

7 Di
shadow ← Di

shadow ∪ {(rA
′

i,j , zi,j)}} // Update

shadow dataset

8 end
9 zi,∗ ∼ Vn

10 Di
shadow ← Di

shadow ∪ {(rA
′

u∗ , zi,∗)} // Add shadow

record of target user to shadow dataset

11 Q(Di
shadow)← {q1(Di

shadow), . . . , qm(Di
shadow)}}

// Evaluate the aggregate statistics on shadow

dataset

12 end

13 M ← {(Q(D1
shadow, z1,∗), . . . , (Q(DN

shadow, zN,∗)}
// Train meta-classifier

14 rnu∗ ←M(Q(D)) // Predict the sensitive value of

target user using trained meta-classifier

15 return rnu∗

Second, we obtain the fixed aggregate
statistics from the N shadow datasets
Q(D1

shadow), Q(D2
shadow), . . . , Q(DN

shadow) by evaluating
the released aggregate statistics Q on each shadow
dataset. Third, we train a machine learning model M
which takes Q(D1

shadow), Q(D2
shadow), . . . , Q(DN

shadow)
as input and the values z1,∗, . . . , zN,∗ as labels. The
model M aims to predict the sensitive attribute of the
target user’s record. We finally input the aggregates
Q(D) of the protected dataset D to the trained machine
learning model and use it to infer a predicted value of
the sensitive attribute for the target user in D, rnu∗ .

4 Experimental setup

4.1 Dataset and Aggregates

Privacy-Protected Microdata File (PPMF). In
line with the literature [14], we evaluate our method
on the 2020-05-27 vintage Privacy-Protected Microdata
File (PPMF) [47]. The PPMF dataset contains record-
level data from the U.S. Census Bureau for users across
the U.S., partitioned by census block. We use the same
subset of the released block-level aggregates in the U.S.
Decennial Census as [14]. In particular, as the U.S.
Census Bureau releases the aggregate statistics as con-
tingency tables, we also use the same block-level con-
tingency tables as the literature. We list and briefly
describe them in Table 1.

Table 2 presents the attributes, their types, and pos-
sible values in the PPMF dataset. We consider the at-
tribute “Hispanic” to be the sensitive attribute and the
other attributes of the target user to be known by the
attacker. Note that we randomize the values of the sen-
sitive attribute so as to avoid the imputation problem
and ensure no correlation exists between the sensitive
attribute and the other attributes. This allows us to
establish a random guess baseline as a random coin flip
since the sensitive attribute “Hispanic” is binary.

We focus on the scenario where the number of released
aggregates, m, is smaller than the number of users s in
the protected dataset D, m < s and randomly sample m
aggregate statistics without replacement from Table 1.

The majority of the blocks are small, with 99% of
them containing less than 454 records. We assume that
the protected dataset D is in the top 1 percent largest
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Table
Description

name

P1. total population
P6. race (total races tallied)
P7. Hispanic/Latino by race (total races tallied)
P9. Hispanic/Latino by race
P11. Hispanic/Latino by race for the population aged 18+
P12. sex by age

P12A. sex by age for only race White
P12B. sex by age for only race Black or African American
P12C. sex by age for only race American Indian

and Alaska native
P12D. sex by age for only race Asian
P12E. sex by age for only race native Hawaiian

and other Pacific Islander
P12F. sex by age for only other races
P12G. sex by age for only two or more races
P12H. sex by age for only Hispanic/Latino
P12I. sex by age for only race White and not Hispanic/Latino

Table 1: Block-level contingency tables that we use. The
same contingency tables were also used by RAP [14].

Attribute name Type Domain

Block ID Integer A constant number for each block
Gender Boolean {Male, Female}
Age Integer {0, 1, . . . , 115}
Race Integer {0, 1, . . . , 63} 1

Hispanic Boolean {Hispanic, Not-Hispanic}
1 Each number represents one race category defined by the U.S.
Office of Management and Budget Standards. [34]

Table 2: Description of attributes in 2010 Census De-
cennial Microdata.

datasets. In order to create Daux and D easily, we select
the 10 smallest blocks larger than 4540 users. We par-
tition them randomly into two parts of sizes 10% and
90%, representing the private dataset D and the auxil-
iary dataset Daux, respectively.

American Community Survey We conduct sec-
ondary experiments on the American Community Sur-
vey (ACS) dataset [46]1. The ACS dataset is parti-
tioned by Public Use Microdata Areas (PUMAs), with
a PUMA being the smallest region to contain record-
level data. We choose similar non-sensitive attributes
of the ACS dataset as the ones of the PPMF dataset,

1In line with Dick et al. [14], we use the folktable Python pack-
age [15] to access the 1-year ACS dataset.

in particular PUMA-id, age, sex, and race. We take
the attribute describing whether the income level of a
person is over $50000 as the sensitive attribute. Anal-
ogously to PPMF, we take the three smallest PUMAs
with more than 4540 users, we split each dataset 90−10
and randomize the values of the sensitive attribute.

In line with prior work [14], we consider k − way
marginals as aggregate statistics on the ACS dataset.
In particular, we consider all one-way and two-way
marginals, such that we bucketize the age attribute into
5-year intervals.

4.2 Evaluation Metrics

Area Under Receiver Operating Curve (AUC).
We use the area under the receiver operating curve, de-
noted as AUC, to measure the strength of the attacks
across all target users.

True positive rate (TPR) at low false posi-
tive rate (FPR). As privacy is not an average-case
metric[8], we measure–in line with the literature–the at-
tacks’ success to reliably infer the sensitive value of the
most vulnerable users using True Positive Rate (TPR)
at k False Positive Rate (FPR), where k is small. We
denote this metric as TPR@kFPR.

4.3 Attack Parameters

Parameters specific to state-of-the-art methods.
For both CIP and RAP, we obtain K = 100 tentative
reconstructed datasets, D′

1, . . . , D
′
K , each of size s, as

recommended by the authors of RAP [14]. For RAP,
we generate each of the tentative reconstructed datasets
with their proposed synthetic data generator model with
an internal dimension of 1000 and we allow each gener-
ator model to train over 1000 iterations.

Parameters specific to DeSIA. We instantiate the
number of shadow datasets in the stochastic module
MS to be N = 20000, 2

3 of them are used as training
shadow datasets, and 1

3 as validation shadow datasets.
We build the meta-classifier with logistic regression un-
der L2 penalty. To reduce overfitting, we apply cross-
validation combined with grid search to choose the best
L2 penalty coefficient for the logistic regression. We
allow the meta-classifier to train for maximally 1000 it-
erations.

9



General parameters. If not otherwise specified, we
sample m aggregate statistics such that m

s = 0.25.

5 Results

5.1 Attack Performance

Figure 1 (main) shows DeSIA to outperform all
reconstruction-based methods at the attribute inference
task, reaching an AUC of 0.75. RAP-init is the second-
best method with an AUC of 0.64. Interestingly, while
initialization using the auxiliary dataset Daux helps the
RAP method, lifting the AUC from 0.59 to 0.64, it has
no noticeable impact on CIP; both CIP-rand and CIP-
init have an AUC of 0.63.

In line with the literature [8], we also compare the
performances of the methods focusing on the most vul-
nerable users. Figure 1 (inset) shows DeSIA to strongly
outperform all reconstruction-based methods here too,
achieving a TPR@10−3FPR of 0.14 while all other meth-
ods struggle to reliably predict the sensitive attribute of
the most vulnerable users.
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Figure 5: Performance on the PPMF dataset of our at-
tack and the baseline reconstruction-based attacks at
predicting the value of the sensitive attribute for only
the target users who were not found to be deterministi-
cally vulnerable. The inset plot shares the same axes as
the main plot.
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Figure 6: Impact of the number of released queries on
the performance on the PPMF dataset of our attack and
the baseline reconstruction-based attacks. The vertical
dotted line indicates the default value taken for the other
experiments.

5.2 Attack Performance on Non-
Deterministically Vulnerable Users

In DeSIA, the deterministic module MD identifies
deterministically-vulnerable users, whose value of sen-
sitive attribute MD deterministically verifies to be the
only possible value given the released aggregate statis-
tics. These users are likely one of the easiest users to at-
tack for all methods. We now compare the performance
of all methods when excluding these target users.

Figure 5 (main) shows DeSIA to again outperform the
reconstruction-based methods, reaching an AUC of 0.67
and maintaining a strong TPR@kFPR even for those
more difficult target users (TPR@10−3FPR of 0.06). In-
terestingly, RAP suffers more than CIP from this exclu-
sion with initialization having a marginal impact on the
overall performance of both CIP and RAP.

5.3 Impact of the Number of Released
Aggregates

We have so far evaluated the methods assuming that
there are four times more users than the aggregate
statistics in the protected dataset (ms = 0.25). We here
test the performance of DeSIA and reconstruction-based
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Method AUC TPR@kFPR

Approach to find Uniqueness Verification Stochastic
a feasible value constraint of feasible value module k=10% k=1%
solver yes yes yes 0.75 0.38 0.15
solver yes yes no 0.63 0.09 0.09
solver yes no no 0.59 0.0 0.0
synthetic data yes no no 0.56 0.0 0.0
synthetic data no no no 0.47 0.0 0.0

Table 3: Ablation study of the impact of different elements of our attack. The evaluation is performed on the PPMF
dataset.

methods when different numbers of aggregate statistics
are released. We sample different numbers of aggre-
gate statistics at uniformly random from the same set
of block-level contingency tables (see Table 1) with dif-
ferent ratios of m

s . We evaluate the aggregate statistics
on the same protected dataset D.
Figure 6 shows DeSIA to outperform all

reconstruction-based methods across all numbers
of aggregate statistics. As expected, increasing the
number of released aggregates increases the risk on
average and lifts the performance of all methods. The
state-of-the-art methods perform similarly among all
sizes of aggregate statistics, with RAP being slightly
better than CIP in general.

5.4 Ablation

To better understand the contribution of each element of
DeSIA, we perform an ablation study by systematically
removing individual elements one by one and evaluating
the impact on the method’s performance. DeSIA has
four main elements, three in the deterministic module
MD and one in the stochastic module MS . The three
main elements of the deterministic module are: (1) find-
ing a feasible value using either a solver or synthetic
data generated by RAP, (2) adding the uniqueness con-
straint ct specific to the target user, and (3) verifying the
uniqueness of the found feasible value. The inclusion of
the stochastic module MS is the fourth element.
Table 3 shows that all four elements influence De-

SIA’s performance and are necessary for the method to
perform well. In particular, the removal of the stochas-
tic module, replacing it with a random guess, and the

removal of the verification of the feasible value substan-
tially hurt the performance on AUC and TPR@kFPR.
Our results emphasize the reliance of DeSIA on both the
deterministic and the stochastic modules.

5.5 Attack Performance on the ACS
Dataset

We have so far empirically evaluated DeSIA and state-
of-the-art methods on the PPMF dataset. Here, we
show their performance on another dataset released by
the U.S. Census Bureau, the ACS dataset. In line with
prior work [14], we evaluate attacks on k-way marginal
statistics. These are known to be a harder problem as
the queries are less informative on average than the ag-
gregate statistics from contingency tables carefully cho-
sen by the U.S. Census Bureau (Table 1) on the PPMF
dataset.

Figure 7 shows DeSIA to outperform all other meth-
ods both on overall AUC (main) and on TPR at low
FPR (inset). Because of the less informative aggregate
statistics compared to those on the PPMF dataset, the
performance of all methods on ACS is lower than the
performance on PPMF.

5.6 Robustness to Laplace Noise Addi-
tion

In line with the literature [14, 3], we have assumed
that exact values of the aggregate statistics are re-
leased. Here, we perturb the released aggregate statis-
tics by adding different levels of Laplace noise using
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Figure 7: Performance on the ACS dataset of our at-
tack and the baseline reconstruction-based attacks at
predicting the values of sensitive attributes for all tar-
get users. The inset plot shares the same axes as the
main plot.

a simple per-aggregate privacy budget. Given a per-
aggregate budget of ε, we perturb the aggregates by
adding Laplace noise ni ∼ Laplace( 1ε ) to each aggre-
gate statistic qi. For simplicity and in line with U.S.
Census Bureau’s approach[47], we round the answer to
the nearest integer round(qi(D) + ni),∀i ∈ {1, . . . ,m}.
Figure 8 shows DeSIA to outperform all other meth-

ods and shows both DeSIA and RAP to be robust to
even a significant level of noise addition; albeit at the
cost of an expected drop in the performance of both
methods. While CIP can handle some level of noise,
it struggles to perform better than the random guess
baseline when faced with larger levels of noise.

6 Extension to Membership In-
ference Attack

We have so far instantiated DeSIA on attribute inference
attacks (AIAs), as we believe they to be a particular con-
cern for aggregate data release. Membership inference
attacks (MIAs) have, however, been extensively used
to measure information leakage in the machine learn-
ing and synthetic data context and, in some cases, can
be a concern in practice [7].

We here extend DeSIA to membership inference at-
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Figure 8: Robustness of the attacks to noise added to
released aggregates. We report the mean AUC across
3 independent noisy aggregate statistic releases. The
evaluation is performed on the PPMF dataset.

tacks (MIAs). We describe how we modify the privacy
game to MIA, then extend DeSIA to MIAs, and compare
it to reconstruct-based methods.

6.1 Framework for Membership Infer-
ence Attack as a Privacy Game

We here modify the attribute inference attack privacy
game to the membership inference case, randomizing the
membership of the target users in the protected dataset
instead of the sensitive attribute values. The game is as
follows (Figure 9).

First, the defender samples a secret bit b uniformly at
random from {0, 1} to determine the membership of the
target user u∗.

Second, the defender removes the target user from the
private dataset D, if b = 0, or removes another target
user u′ from D, if b = 1.

Third, the defender obtains the fixed aggregate statis-
tics Q(D) by evaluating the aggregate statistics Q on
the protected dataset D. The defender sends the values
Q(D) and the size of the protected dataset |D| to the
attacker.

Fourth, the attacker aims to infer the membership of
the target user. The attacker runs an attack A and
obtains a membership prediction b′.
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Game Parameters: Q, Vn
Attacker(ru∗ , Daux,Vi) Defender(u∗, D)

1○ b ∼ {0, 1}
2○ D ← D \ {ru∗}
if b = 0 or
D ← D \ {ru′}ru′ ∈ D

s.t. rA
′

u′ ̸= rA
′

u ∀ru ∈ D
if b = 1

3○Q(D), |D|oo
4○ b′ ← A(Q,Q(D), |D|,
Daux, ru∗ ,V1, . . . ,Vn)
Output: Attacker wins if and only if b′ = b

Figure 9: Privacy game for membership inference at-
tacks against fixed aggregate statistics.

The attacker wins the game if and only if the predicted
membership bit b′ is equal to the secret bit b held by the
defender, b′ = b.

6.2 Extension of DeSIA to MIA

We adapt DeSIA to MIA with small modifications on
both the deterministic MD and stochastic MS mod-
ules. Note that, for the deterministic module MD, the
uniqueness constraint ct is not applicable anymore, since
the goal of MD is to decide the deterministic member-
ship. Furthermore, we verify the membership of the
target user by finding a feasible multiplicity of target
record (x(r1

u∗ ,...,r
n
u∗ ) and modifying the null constraint c′t

to verify it:

ct′ : x(r1
u∗ ,...,r

n
u∗ ) = 1− σ(x(r1

u∗ ,...,r
n
u∗ )).

For the stochastic module MS , we slightly change
the generation of the shadow datasets to resemble the
first two steps of the privacy game. Before creating
each shadow dataset Di

shadow, we now sample a vari-
able bi uniformly at random from {0, 1}. If bi = 1,
we consider the target user to be a member of Di

shadow

and sample s − 1 users from the auxiliary dataset
Daux. If bi = 0, we consider the target record to
not be a member of Di

shadow and sample s users from
Daux. We train the machine learning model M on
the aggregate statistics from these shadow datasets
{(Q(D1

shadow, b
1), . . . , (Q(DN

shadow, b
N )} to predict the

membership of target user b̂i given the input Q(D).
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Figure 10: Membership inference attack performance
on the PPMF dataset. The inset plot shares the same
axes as the main plot. Interestingly, RAP-rand performs
worse at TPR at low FPR on MIA than the random
guess baseline. This is due to RAP incorrectly infers
with high-confidence membership of users when their
values for the non-sensitive attributes are relatively com-
mon on their own.

6.3 Adapting reconstruction-based at-
tack to the MIA task

Both reconstruction methods provide us with a num-
ber of tentative reconstructed datasets D′

1, . . . , D
′
K . We

adapt the AIA procedure (Section 2.5) to now per-
form a majority vote only from the 0-neighborhood of
the target record ru∗ across all tentative reconstructed
datasets. If the target user appears in more than K

2

tentative reconstructed datasets, we consider b̂ = 1 and
b̂ = 0 otherwise.

6.4 Results

Figure 10 shows DeSIA can be adapted to the MIA task,
performing well both overall (AUC=0.85) and on the
most vulnerable target record TPR@10−3FPR of 0.10.
While the RAP method can also be used for MIA it per-
forms substantially worse than DeSIA while a straight-
forward adaptation of CIP does not allow it to perform
better than a random guess.
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Figure 11: Performance on the PPMF dataset of our
attack where the stochastic module MS uses different
machine learning models. The inset plot shares the same
axes as the main plot.

7 Discussion

7.1 Using a Different Machine Learning
Model

To optimize for speed, the stochastic module MS uses
a logistic regression (LR) as a machine learning (ML)
model to infer the sensitive attribute of the target user
using aggregate statistics and its values. We here ex-
plore alternative options.

We evaluate three alternative choices of ML models:

• Multi-Layered Perceptron (MLP): an MLP
with two hidden layers of sizes 50 and 20.

• Random Forest (RF): a random forest model
with 100 trees. We set Gini impurity to be the cri-
terion measuring the quality of the split. We select
a random subset of features at each split, where the
subset contains the square root of the total number
of features.

• Support Vector Machine (SVM): an SVM with
radial-basis function kernels under hinge loss.

Figure 11 shows that the choice of the ML model for
DeSIA’s stochastic module does not have a substantial
impact on the attack performance with all four ML mod-
els achieving an AUC of around 0.75.

7.2 Comparison to Likelihood Attack

We have thus far only considered using an ML model
in the stochastic module MS . We here explore whether
using an ML model is necessary or if it can be easily
replaced with a simple likelihood attack.

We consider a simple likelihood attack to infer the
value of the sensitive attribute for the target user by
(a) inferring the most likely value of the sensitive at-
tribute given each aggregate statistic independently and
(b) performing a majority vote across aggregates to ob-
tain the final inference.

To estimate the likelihood, we use the shadow
datasets D1

shadow, . . . , D
N
shadow sampled from the aux-

iliary dataset Daux. We group the datasets into |Vn|
groups, where each group Gb contains shadow datasets
with the same sensitive attribute value b of the target
user, Gb = {Di

shadow|zi,j = b}. For an aggregate statis-
tic q, we calculate the mean µq,b and standard deviation
σq,b of the values on the shadow datasets in each group
Gb, {q(Di

shadow)zi,j = b}. Given a the value q(D) on the
private dataset D, we estimate the likelihood of the sen-
sitive value of the target user by assuming a Gaussian
distribution of query answers and calculating:

Pr[rnu∗ = b] = Φ(
q(D)− µGb

σGb

),

where Φ is the probability density function of the Stan-
dard Normal Distribution.

For an aggregate statistic q, we infer rnu∗ as the value
b from the group with the maximum likelihood. We
obtain independent votes from all aggregates q ∈ Q on
which the membership of the target user u∗ in their
userset Uq, u

∗ ∈ Uq, is dependent only on the value of
the target user’s sensitive attribute rnu , i.e., aggregates
that have a condition on the sensitive attribute and do
not exclude the target user’s values in the conditions of
the non-sensitive attributes, Qu∗ = {q |riu∗ ∈ V q

i , ∀i ∈
{1, . . . , n − 1} and V q

n ̸= Vn}. We perform a majority
vote over the predictions of all aggregates in Qu∗ to get
the final prediction of rnu∗ .

Figure 12 shows that using an ML model is neces-
sary and leads to a significantly better performing at-
tack than the likelihood attack on both overall (AUC
- main) and on highly vulnerable users (TPR@kFPR -
inset).
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Figure 12: Performance on the PPMF dataset of our
attack where the stochastic module MS uses our stan-
dard machine learning model (Logistic Regression) and
a likelihood attack. The inset plot shares the same axes
as the main plot.

8 Related Work

Empirical attacks have been proposed against a range
of non-interactive data release mechanisms: fixed aggre-
gate statistics, machine learning models, and synthetic
data, as well as interactive release mechanisms, such as
query-based systems.

8.1 Attacks Against Fixed Aggregates

8.1.1 Inference Attacks

The literature on inference attacks against aggregate
statistics predates shadow model-based methods and of-
ten uses strong and theoretical assumptions.

Homer et al. [23] introduced the first membership in-
ference attack (MIA) against a large number of fixed
aggregate statistics from genomic data. The attack
has been later improved [25] and extended to mi-
croRNA data [6]. Wang et al. [48] extended the at-
tack to an attribute inference attack (AIA). Finally,
Kasiviswanathan et al. [27, 28] introduced an attack
against aggregate statistics from tabular data that relies
on the so-called row-naming problem. It assumes that
the users in the protected tabular dataset have unique
identifiers that are both (a) known to the attacker and
(b) used in the released aggregate statistics, which is not

often the case in practice.

8.1.2 Linear Reconstruction Attacks

Dinur et al. [16] proposed the first linear reconstruction
attack which aims to reconstruct the protected dataset
by solving a linear system of equations. Dwork et al. [17]
extended their attack by relaxing the assumption that
the noise added to the aggregates is bounded and intro-
duced linear programming with error correction codes to
reconstruction attacks. Following works improved the
linear reconstruction attack by decreasing the require-
ment on the number of released aggregates [18] and im-
proved the reconstruction of categorical attributes [11].

8.1.3 State-of-the-art Reconstruction Attacks

The U.S. Census Bureau introduced a constraint
programming-based reconstruction attack [3] and in-
stantiated it on the 2010 Decennial Census release. Dick
et al. proposed a synthetic data-based reconstruction
attack [14] by solving a non-convex optimization prob-
lem [29]. We compare our attack to these two state-of-
the-art attacks.

8.2 Attacks Against Machine Learning
Models

An active field of research exists on empirical inference
attacks against machine learning models. Attacks typi-
cally rely on the loss of the target model [50] and shadow
models [42, 41, 10].

The first inference attacks against machine learning
models were attribute inference attacks (also referred
to in the literature as model inversion attacks [41]).
Fredrikson et al. [20] proposed the first methodology and
AIA against an ML model, inferring a patient’s genetic
marker from a model trained to predict the dosage of a
drug. The attack was later extended from a black-box
to a white-box attack by Mehnaz et al. [32]. The corre-
lation between the genetic marker and the dosage of the
drug has, however, raised concerns about the validity of
some of the results and the extent to which it proved
that an information leakage was happening [30]. Ja-
yaraman et al. [26] formalized the issue and showed that
popular black-box attacks often do not perform better
than a baseline that uses these correlations to impute
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the values of the sensitive attribute. We refer to this
as the imputation issue. Recent work on AIA against
ML models, often image models, addressed this issue by
evaluating the attack performance inferring the sensi-
tive attributes with the model and without the model
[52]. In line with AIA against tabular datasets protected
by query-based system (below) we address this issue by
uniformly randomizing the sensitive attributes.

Soon after the first attribute inference attack was pro-
posed, Shokri et al. proposed the first membership in-
ference attack against machine learning models [42] and
coined the term shadow models. This has become an
active field of research with attacks such as RMIA [51]
and LiRA [8] and a focus on evaluating the performance
of inference attacks on the most vulnerable users by re-
porting TPR at low FPR [8] which we follow.

Empirical attacks are often used to argue that mod-
els are not privacy-preserving by default, emphasizing
the need for privacy-preserving measures, and to esti-
mate the privacy risk in practice by models trained with
DP privacy guarantees, typically using DP-SGD [2].
DP-SGD theoretical guarantees are indeed typically
not tight, often overestimating the strength of the at-
tacker [36, 33, 45]. The common approach when re-
leasing machine learning models is thus to combine DP
guarantees [36] with empirical attacks.

8.3 Attacks Against Synthetic Tabular
Data

Contrary to machine learning models, synthetic data
generators lack a notion of a loss for a given user. A
separate line of research on attacks against released syn-
thetic data, and up to a certain point against synthetic
data generators including recently diffusion models, has
thus developed. Attacks against synthetic data typi-
cally rely on the same shadow modeling technique and
use the distance aggregate statistics as a signal, e.g., for
membership. Stadler et al. [43] proposed the first MIA
against synthetic data. Houssiau et al. [24] and then
Meeus et al. [31] successively extended the attack by ex-
panding the set of aggregate statistics used. In parallel,
Annamalai et al. [4] introduced an AIA against synthetic
data by using a linear reconstruction attack. Most re-
cently attacks targeting directly diffusion synthetic data
generation models were proposed [49].

8.4 Attacks Against Interactive Systems

Query-based systems (QBSes) are interactive interfaces
that allow analysts to send queries and retrieve aggre-
gate answers about a protected dataset. Two broad
types of QBSes have been implemented in practice: in-
terfaces, such as TableBuilder [35], a special-purpose
QBS for national census data by the Australian Bureau
of Statistics, and general-purpose QBSes, such as Dif-
fix [19].

8.4.1 Reconstruction Attacks

Cohen et al. [12] and Joseph et al. [37] both proposed
reconstruction attacks against Diffix [19]. Both attacks
were based on the earlier work of Dinur et al. [16].

8.4.2 Membership Inference Attacks

Pyrgelis et al. [38] proposed an MIA against a query-
based system protecting spatio-temporal data, based on
their earlier work [39].

8.4.3 Attribute Inference Attacks

Chipperfield et al. [9] and Rinott et al. [40] pro-
posed AIAs against TableBuilder, exploiting the seeded
bounded noise. Gadotti et al. [21] proposed an AIA
exploiting Diffix’s noise structure. Cretu et al. [13]
proposed an automated approach to discovering AIAs
against query-based systems showing it to outperform
the best known manual attacks. Stevanoski et al. [44]
then further improved the speed of the attack and the
space of sets of queries that can be searched.

9 Conclusion

We propose to a framework for inference attacks against
fixed aggregate statistics. We introduce DeSIA, a de-
terministic stochastic attribute inference attack against
fixed aggregate statistics. We instantiate the attack on
fixed aggregates released by the U.S. Census Bureau.

We first show DeSIA to be highly effective at the
attribute inference task and to strongly outperform
reconstruction-based approaches. This is true both
when predicting the values of the sensitive attribute
overall (AUC), but also when predicting the values of
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the sensitive attribute for the most vulnerable users
(TPR@kFPR).

Second, we show DeSIA to perform well when we vary
(a) the numbers of released aggregates, (b) the dataset
and aggregates, and (c) the levels of noise addition.

Third, we perform an ablation study of the different
components of our method, and show all components to
be important to the overall performance. In particular,
we show the stochastic module to be important for both
the overall AUC and TPR at low FPR, and the verifi-
cation by the deterministic module to be important for
identifying highly-vulnerable users with only one possi-
ble value for their sensitive attribute.

Fourth, we extend DeSIA to membership inference
attack and show it to also significantly outperform all
other methods at the MIA task both on overall AUC as
well as on identifying highly-vulnerable users with high
TPR at low FPR.

Our results show how even a limited number of ag-
gregate statistics can be at risk from privacy attacks.
Taken together, they strongly emphasize the need to im-
plement formal privacy mechanisms and to empirically
test the privacy of the data release in practice.
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