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Large Language Models (LLMs) are currently being integrated into industrial software applications to help users perform more complex
tasks in less time. However, these LLM-Integrated Applications (LIA) expand the attack surface and introduce new kinds of threats.
Threat modeling is commonly used to identify these threats and suggest mitigations. However, it is a time-consuming practice that
requires the involvement of a security practitioner. Our goals are to 1) provide a method for performing threat modeling for LIAs early
in their lifecycle, (2) develop a threat modeling tool that integrates existing threat models, and (3) ensure high-quality threat modeling.
To achieve the goals, we work in collaboration with our industry partner. Our proposed way of performing threat modeling will benefit
industry by requiring fewer security experts’ participation and reducing the time spent on this activity. Our proposed tool combines
LLMs and Retrieval Augmented Generation (RAG) and uses sources such as existing threat models and application architecture
repositories to continuously create and update threat models. We propose to evaluate the tool offline—i.e., using benchmarking—and
online with practitioners in the field. We conducted an early evaluation using ChatGPT on a simple LIA and obtained results that
encouraged us to proceed with our research efforts.
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1 INTRODUCTION

Large Language Models (LLM) are being integrated into traditional software to enhance their capabilities and perfor-
mance [9].

However, LLMs extend the threat landscape of an application as attackers can exploit new types of vulnerability [12],
such as prompt injections [7]. Prompt injections can force a model to generate malicious outputs, but carefully crafted
instructions—introduced during the post-training phase as guardrails—help mitigate this threat [4, 6, 27]. In the early
stages of LLM-Integrated Application (LIA) development, the process of threat modeling facilitates the systematic
identification of threats, their risk, as well as corresponding mitigations and their priorities [13, 17, 24]. Threat modeling
also facilitates communicating security risks between stakeholders (e.g., security experts, developers, architects) [31].
A threat model is the result of a threat modeling process; it lists the identified threats and corresponding mitigation
strategies for a given application [29].

However, current threat modeling tools (i.e., Microsoft Threat Modeling Tool, OWASP Threat Dragon, and Threat-
Modeler) are i) lacking maturity as they require manual efforts and security-related skills [31] and ii) not adapted to
LLM-specific threats. LIAs contain dynamic and nondeterministic LLM components, which necessitate a new or adapted
threat modeling method to identify and mitigate LLM-specific threats. While the industrial maturity and tool support
for threat modeling is low [31], the threat models proposed in academia are unsuitable for industrial purposes [8].
Practitioners in industries such as telecommunication are recognizing the potential of Artificial Intelligence (AI) and
plan to incorporate it in their systems [1] despite threat modeling methods for LIAs not being validated empirically in

industrial contexts.
In this paper, we present our vision of an approach assisting practitioners during the threat modeling of LIAs

based on LLM.
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Automating threat modeling with an LLM enables security practitioners to accelerate development while maintaining
an up-to-date threat model throughout the development lifecycle. Our approach, developed with an industry partner,
prioritizes the quality of threat modeling reports by implementing comprehensive data checks to ensure the accuracy
and reliability of the output. To the best of our knowledge, this paper is the first to report an LLM-supported threat
modeling approach for LIAs co-produced with industry.

The rest of this paper is structured as follows. In Section 2, we summarize the research efforts in the area of threat
modeling for LLM and describe the components contributing to our adopted threat modeling method for LIAs. In Section
3, we describe our vision to develop and validate our threat modeling approach in collaboration with our industry

partner, including foreseen challenges. Section 4 summarizes our preliminary results. Section 5 concludes the paper.

2 BACKGROUND

This section elaborates on the general concept of threat modeling.

2.1 Threat Modeling

The goal of every threat modeling is “(...) to create an abstraction of the system; profiles of potential attackers, including
their goals and methods; and a catalog of potential threats that may arise” [20]. Performing threat modeling in an early
stage of software development (i.e., architecture and design) provides security practitioners with possibilities to identify
and mitigate threats. Architects and developers then use these mitigations to improve the software design [20]. Several
threat modeling methods exist whose application is context-dependent. [20].

According to the well-established practice from Microsoft and OWASP, threat modeling methods use Data-Flow
Diagrams (DFDs) to visually represent the system under review by “(...) offering a high-level yet detailed representation
of applications’ architecture(...) and its internal and external data flows” [19]. There are a variety of DFD styles, but
all of them share the same four base item groups—external entities, data flows, processes, and data stores [19]. At the
moment, DFDs are the only type of diagram we consider for visualizing the system under review.

STRIDE—i.e., Spoofing, Tampering, Repudiation, Information Disclosure, Denial of Service, Elevation of Privilege—is
a prominent threat modeling framework to identify and classify threats in a given software system [16]. It organizes

possible threats across five categories—spoofing, tampering, repudiation, information disclosure, and denial of service.

2.2 LLM Threat Modeling Frameworks

While LLMs are rapidly gaining popularity in industry, security researchers and practitioners are discovering new
LLM-specific threats [7]. Frameworks developed by security practitioners, such as OWASP Top 10 for LLM applications!
and MITRE ATLAS? are essential to create a threat modeling approach for LIAs.

In the same fashion as the classic OWASP Top 10, OWASP Top 10 for LLM shows a collection of the most popular
security threats encountered in LIAs, emphasizing their consequences, simplicity of exploitation, and common occur-
rence in real-world applications. The most frequent LLM threat is Prompt Injection, which represents all attacks where
an attacker crafts an input ingested by the target LLM to force the target LLM to misbehave or malfunction [7]. Based
on the high value of training data and its impact on the LLM behavior, Training Data Poisoning describes inserting
manipulated data points into the training data set of a target LLM [26]. Supply Chain Vulnerabilities cover all other
threats targeting an LLM through third-party components [30]. The output of an LLM enables threats, such as Insecure
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MITRE ATLAS OWASP Top 10 LLM Ranking High-Level Tactics

(direct and indirect) Prompt Injection LLMO01: Prompt Injection Initial Access, Persistence, Defense
Evasion, Privilege Escalation

LLM Prompt Self-Replication Persistence

LLM Jailbreak Defense Evasion, Privilege Escala-
tion

LLM Meta Prompt Extraction LLMO2: Insecure Output Handling ~ Discovery, Exfiltration

Discover LLM Hallucination Discovery

LLM Plugin Compromise LLMO7: Insecure Plugin Design Privilege Escalation, Execution

LLM Data Leakage LLMO06: Sensitive Information Disclo- Exfiltration

sure

Table 1. Mapping of MITRE Attacks and Tactics to OWASP Top 10 for LLM .

Output (handling), Sensitive Information Disclosure, and Overreliance. Threats referring more to the model operations
are called Model Denial of Service and Excessive Agency. Model Denial of Service denotes attacks forcing the LLM to
increase its latency and energy consumption [22]. Excessive Agency refers to the threat that an LLM abuses high access
privileges in the system it is embedded in [18]. The last threat on the OWASP Top 10 LLM list is called Model Theft.

MITRE developed and maintains the Adversarial Threat Landscape for Artificial-Intelligence Systems (ATLAS)? to
organize threats and mitigations related to generic Al systems. ATLAS includes 14 high-level tactics (from reconnaissance
to exfiltration) used to group 58 specific attack techniques targeting Al components, six of which are specific to LLMs.
Table 1 maps MITRE ATLAS attack techniques to the threats in OWASP’s Top 10 for LLM, including the respective
high-level tactics. High-level Tactics describe milestones and rationale for a successful attack®. For example, an attacker
performs a direct prompt injection to escalate their privileges in the system where the targeted LLM is deployed®. We
will utilize OWASP Top 10 for LLMs in our threat modeling approach tailored for LIAs and extend the list of threats
collected by MITRE ATLAS.

2.3 Related Work

Researchers addressed LLM-specific threats using a framework consisting of STRIDE and DREAD (Damage, Repro-
ducibility, Exploitability, Affected Users, and Discoverability) following Shostack’s Four Question Framework [23].
Derczynski et al. [3] proposes a method for assessing the risk of deploying an LLM with risk cards. Researchers utilized
threat models as guidance for attacks on LIAs in specific contexts. For example, Li et al. [14] describes how a threat
model helped to conduct successful attacks on LLMs integrated into the Smart Grid. Security researchers successfully
attacked a LIA incorporating ChatGPT3.5 and ChatGPT-40 based on the results of an ad-hoc threat model [12]. As
shown in Jiang et al. [12], a threat model can be operationalized for red-team activities and subsequent mitigation
actions—such a use case is formalized in a taxonomy presented in [25]. Software engineering security practices applied
to LIAs are likely to overlook, mishandle, or ignore Machine Learning (ML) and LLM-specific threats. Jedrzejewski
[11] calls for a joint effort between academia and industry. The authors provide a threat modeling method focusing on

common issues security practitioners face in the context of ML systems development.
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Fig. 1. Threat modeling method overview.

3 OUR VISION: THE THREMOLIA APPROACH

Our vision is to use LLM to support the threat modeling process of LIAs. Figure 1 shows an overview of the LIA
threat modeling approach. We propose a threat modeling approach guided by Shostack [21]. As a first step, the LIA
is illustrated by a DFD to create an abstraction of its components and their communication. This process leverages
relevant and available software engineering artifacts, such as the LIA system design documents and requirements
specifications provided by the practitioners. Next, we apply threat frameworks such as MITRE ATLAS, the OWASP
Top 10 for LLMs, or STRIDE to identify and assess the most common LLM-specific threats. Thereafter, the approach
requires cataloging each LLM-specific threat impacting the LIA using the attack playbooks and tactics described in
MITRE ATLAS. Furthermore, we plan to include mitigation techniques suggested by MITRE ATLAS to address the

identified and assessed threats in the LIA under assessment.

3.1 LLM-based Threat Modeling

The overall goal of ThreMoLIA is to generate threat models with the assistance of LLMs, based on stakeholder prompts
and relevant data points in the threat modeling process. Given the non-deterministic character of LLM outputs, the
ThreMoLIA approach includes an assessment of the quality of each generated threat model. We designed ThreMoLIA
with composability in mind (see Figure 2). In this section, we describe its main components and the foreseen challenges

in developing and evaluating them.

Retrieval Augmented Generation (RAG). The RAG component provides the LLM with the necessary resources to
reason about a system and generate a threat model. The RAG workflow follows the design summarized by Gao et al.
[5], consisting of three stages, indexing, retrieval, and generation. The incoming query represents the part of the
stakeholder request (e.g., a prompt) that provides further context to the LLM. The RAG component vectorizes the
requested information and compares it against the vectorized documents in the database. Relevant documents are
identified based on the closest vectors in the vector space, which represents the vectorized documents from the database.
This component forwards the relevant documents to the LLM. The Data Aggregation component fills the database with

relevant data from different data sources.

RAG Challenges. One challenge will be vectorizing graphical document types, as this process is more complex than
vectorizing purely text-based documents. Another point will be to effectively compare documents to discern whether

they are relevant to the threat model of a given LIA without introducing redundancy or useless information.

Data Aggregation. This component collects and aggregates data from different sources, such as natural-language

descriptions (e.g., requirement specifications, design documents) and visual representations (e.g., architectural diagrams)
4
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Fig. 2. ThreMoLIA overview.

of the LIA currently under threat modeling. Another relevant source is the existing threat models collected from
previous threat modeling sessions of the same LIA or from similar projects. Moreover, once the LIA is in operation,
both pre- and post-release, sensor data collected from the monitoring of its components will enable continuous threat
modeling—e.g., when a new component is added to the architecture, the threat model is automatically regenerated and

reviewed in the next stakeholder’s threat modeling session.

Data Aggregation Challenges. The selection of data of suitable quality is an issue. Stakeholders conducting threat
modeling have varying levels of maturity[31], resulting in heterogeneous data. Moreover, stakeholders apply company-
specific terminology, and there exists a variety of DFD styles [19] which can lead to complications when providing
context about the LIA. Besides data quality, data needs to be prioritized to meet the context constraints of the LLM
powering the ThreMoLIA approach. If too much data is retrieved, important details may be diluted or lost, and, in the
worst case, if the content exceeds the model’s token limit, some parts may be cut off, affecting response accuracy. Part
of the prioritization is to weigh the data sources, as, for example, LLMs are subject to a source bias, preferring content
generated by other LLMs[2].

Prompting. This component constructs a prompt for the LLM powering ThreMoLIA. The basic building block is a
predefined system prompt engineered to perform the task of threat modeling. Furthermore, the stakeholders provide a
user prompt and a reasoning strategy (e.g., Chain of Thought [32]). Indications of the context supporting the current
system under threat modeling, such as the one provided by the existing DFD and its requirements specification, are

also fed to the LLM. In practice, this context input will trigger the retrieval step in the RAG component.

Prompting Challenges. We foresee the key challenge in implementing this component to be the development of a
prompt template that allows practitioners with varying degrees of security knowledge to interact with ThreMoLIA
reliably—i.e., prompts need to be adapted to different stakeholders’ profiles and reflected in the prompting strategy. To

5
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that end, we will explore conversation disentanglement techniques [15] to handle multiple stakeholder interactions

over (possibly) multiple threat modeling sessions.

Quality Assurance. This component performs several quality assurance steps on the resulting threat model. The first
step is to check the syntactical correctness of the output that the stakeholder requested in their prompt (e.g., Open
Threat Model®).

Further, the output is parsed to extract relevant aspects to validate metamorphic relationships [28], which represent
the oracles used to execute a test suite. In particular, such a test suite is optimized using different test case selection
strategies (e.g., coverage of architectural components). The quality of the generated threat model is summarized in a
health score, further communicated to the stakeholders who can decide to further refine their prompt to improve the

quality of the threat model.

Quality Assurance Challenges. Currently, established metrics to systematically quantify and evaluate the quality of a
threat model are lacking [31]. Those metrics are necessary to derive metamorphic relationships specific to the task of
threat modeling as well as to define sensible test case selection strategies. As a starting point, we consider extending
the Machine Learning Security Maturity Model[10], which proposes a maturity score based on the suggested mitigation
techniques applied in a given ML application.

3.2 Evaluation Plan

We aim to evaluate ThreMoLIA and assess the efficiency and effectiveness of the stakeholders using it. There is no
agreed-upon benchmark to evaluate a threat model [31]. Our first step is to create such a benchmark by extracting
proposed and applied metrics through a systematic study of the relevant literature. We validate these metrics in focus
groups with two security specialists and test their applicability in an industrial case study.

Based on the obtained metrics, we will conduct experiments in industrial settings to compare ThreMoLIA performance
with a traditional approach—i.e., with the tools currently used by our industrial partner. We plan to conduct a multiple
case study as a final assessment of ThreMoLIA once deployed in an industrial environment. The goal is to observe and
analyze patterns in multiple products within our industry partner to gain a deeper understanding of how ThreMoLIA

fits the workflows of security practitioners.

4 CURRENT STATE AND EARLY RESULTS

This section summarizes the preliminary results we collected. The initial prototype reflects our first approach to
determine whether applying LLMs during threat modeling is promising. Furthermore, we report a preliminary set of

evaluation metrics.

4.1 Initial Prototype

We conducted a first investigation of how ChatGPT-3.5 Turbo performs in a zero-shot threat modeling task, using the
architectural description of a simple LIA. ChatGPT referred to the content of OWASP Top 10 LLM and MITRE ATLAS
matrix. In our test, the first prompt contained the request to conduct threat modeling on a system whose architecture
we further describe for each component in the same prompt (i.e., without the need to build context from the RAG

database). Since we proposed vague threat modeling instructions, ChatGPT gave us the possibility to either create a

Shttps://github.com/iriusrisk/OpenThreatModel
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threat model for the entire system or for a single component without clarifying which threat modeling method, such as
STRIDE, would be applied. Furthermore, ChatGPT asked to choose between frameworks, such as OWASP Top 10 LLM
and MITRE ATLAS, to follow during the threat modeling task.”

4.2 Evaluation Metrics

To evaluate the ThreMoLIA approach, we investigated the literature to extract applied metrics from other studies
evaluating threat modeling approaches. A focus group consisting of three security researchers evaluated the extracted
metrics for their applicability and relevance. Table 2 shows a preliminary selection of the metrics, we plan to use to
evaluate LIA threat models.

In the next step, two security experts will provide feedback based on the selected metrics and potentially add additional

ones not covered by the literature. The metrics will help to evaluate the threat models generated by ThreMoLIA.

5 CONCLUSION

LLMs can augment the capabilities of software systems and services, but they also introduce a new set of threats that
we need to detect and mitigate systematically and reliably. Researchers and practitioners developed and applied threat
modeling methods explicitly tailored to deterministic traditional (i.e., non-Al) software. LIAs pose a new challenge for
existing threat modeling methods, requiring researchers and practitioners to evaluate their effectiveness and either
develop new approaches or adjust existing ones.

In this vision paper, we argue that an approach to support practitioners in threat modeling of LIAs is necessary.
To that end, we proposed ThreMoLIA, an LLM-based approach focusing on critical aspects such as context input
representation and quality assurance for a complex task such as threat modeling. Moreover, we report the current
state of ThreMoLIA development, including an evaluation plan that will be executed in collaboration with an industry

partner.
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ThreMoLIA: Threat Modeling of Large Language Model-Integrated Applications

Metric Name

Description

Adversary Capability

Attack Success Probability (ASP)
Exposure Level (EL)

Impact Severity (IS)

Likelihood and feasibility of attacks

Residual Risk (RR)

Identifies phases/elements/patterns in Attacks (composite threats)

Accuracy

Threat Coverage (TC)
Asset Coverage

Coverage of MITRE ATT&CK (tactics and techniques)

Threat Library
Scalability

Mitigation Effectiveness
Threat Model Reusability
Security Testing

SDLC Integration

Model Complexity (MC)

Visualization of Risk Models

Engineer Friendly

Specifies the resources (such as expertise, finan-
cial resources, technical resources), methods,
and attack vectors.

Quantifies the likelihood of a successful attack.
Assesses exposed system vulnerabilities for po-
tential attackers.

Measures the potential damage or impact of an
attack.

Calculates the likelihood of attacks besides
the feasibility of attacks (non-software-related
case).

Calculates risk after security mitigations have
been applied.

Identifies phases, elements, and patterns in at-
tacks, including composite threats.
Represents the number of true positives and
true negatives (i.e., correctly identified or omit-
ted threats) produced by the threat modeling
tool, divided by the total number of threat clas-
sification outcomes.

Indicates the proportion of identified threats
addressed by the unified threat model.
Percentage of compromised assets in an attack
(simulation).

Represents a new threat modeling approach
(coreLang) mapped against the ATT&CK ma-
trix as a form of validation, covering 46%-64%
of ATT&CK techniques.

Describes the knowledge sources used for
threat identification.

Evaluates the ability to scale the model effec-
tively.

Effectiveness of security controls in reducing
identified risks.

Allows reuse of existing threat models when
creating new models.

Generates test cases based on the threat model
for pentesting.

Represents the feasibility of applying the threat
modeling tool in the software development life-
cycle (SDLC) together with other tools.
Assesses the complexity of the unified threat
model in terms of the number of nodes and
relationships.

Provides a visual representation of risk for bet-
ter comprehension.

Represents user satisfaction with the threat
modeling tool.

Table 2. Preliminary Evaluation Metrics.
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