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Abstract—Face recognition technology presents serious privacy
risks due to its reliance on sensitive and immutable biometric
data. To address these concerns, such systems typically convert
raw facial images into embeddings, which are traditionally
viewed as privacy-preserving. However, model inversion at-
tacks challenge this assumption by reconstructing private facial
images from embeddings, highlighting a critical vulnerability
in face recognition systems. Most existing inversion methods
require training a separate generator for each target model,
making them computationally intensive. In this work, we
introduce DiffUMI, a diffusion-based universal model inversion
attack that requires no additional training. DiffUMI is the first
approach to successfully leverage unconditional face genera-
tion without relying on model-specific generators. It surpasses
state-of-the-art attacks by 15.5% and 9.82% in success rate
on standard and privacy-preserving face recognition systems,
respectively. Furthermore, we propose a novel use of out-of-
domain detection (OODD), demonstrating for the first time
that model inversion can differentiate between facial and non-
facial embeddings using only the embedding space.

1. Introduction

Face recognition technology presents significant privacy
risks, as it involves processing biometric data that is both
sensitive and immutable if compromised. Modern systems
address these concerns by leveraging feature embedding
techniques, which enhance scalability, generalization to un-
known identities, and retrieval efficiency [1]–[3]. These sys-
tems convert facial images into feature embeddings, which
are stored in a database and compared using distance-based
metrics such as cosine similarity or Euclidean distance
for recognition. This kind of approaches was traditionally
considered privacy-preserving, as it encodes raw biometric
data [4]–[7], as shown in Fig. 1. However, model inversion
attacks present a significant privacy threat by reconstructing
facial images solely from feature embeddings. These recon-
structions can facilitate further security breaches, including
presentation attacks such as spoofing via photo, video replay,
or 3D mask techniques [8]. As a result, model inversion
attacks are essential for assessing the privacy vulnerabilities
of face recognition systems [9].
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Figure 1. Our model inversion (DiffUMI) in privacy attacks [9] and
out-of-domain detection (OODD) [10]–[13]. DiffUMI reconstructs images
solely from embeddings in the database, traditionally considered privacy-
preserving, achieving a 94.72% reconstruction success rate for facial inputs,
with outputs closely resembling the target identity. In parallel, our OODD
framework detects 98.9% of non-face inputs while maintaining a low
3.9% false positive rate for face inputs, demonstrating strong capability
in distinguishing in-domain from out-of-domain data.

Nevertheless, existing model inversion attacks face sev-
eral critical challenges. As summarized in Tab. 1, most ap-
proaches are training-dependent, requiring the training
or fine-tuning of a target-specific generator for each
attack, which incurs significant computational costs [15]–
[27]. Additionally, embedding-based face recognition mod-
els are designed to generalize to unknown identities, making
feature extraction an open-set task that accommodates a
wide range of inputs, including those not seen during the
training of the face recognition model or the generator
used for inversion. This open-set nature necessitates that
model inversion attacks generalize to an infinite number of
identities, a requirement many existing methods fail to meet
[14], [16], [19]–[23], [25], [28], [29], [31].

Another major challenge is ensuring high visual
fidelity in reconstructed images. To effectively retrieve
identity-related privacy, model inversion requires high-
resolution reconstructions rich in visual attributes. A full
headshot-style reconstruction, a.k.a. selfie, represents the
optimal granularity for identity recovery [24], [26]–[28],
[30], [31]. However, due to prohibitive training costs, most
existing methods generate low-resolution reconstructions
(e.g., 64 × 64 or grayscale images) and often focus only
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TABLE 1. OVERVIEW OF RELATED WORKS ON MODEL INVERSION ATTACKS.

Method Attack Cost Task Visual Fidelity CodeGenerator Training-Free Input W/B Open-Set OODD Resolution Selfie

MIA [14] [2015] None Label Both GrayScale
NbNet [15] [2018] DeconvNet Embedding Black RGB160

Amplified-MIA [16] [2023] DeconvNet Label Black GrayScale64
DSCasConv [17] [2024]∗ DeconvNet Embedding White RGB112

DiBiGAN [18] [2020] C-GAN Embedding Both RGB
GMI [19] [2020] C-GAN Label White RGB64

α-GAN [20] [2022] C-GAN Label White GrayScale
PLG-MI [21] [2023] C-GAN Label White RGB64
LOKT [22] [2023] C-GAN Label Black RGB128

ABE-MI [23] [2025] C-GAN Label Black RGB128
ID3PM [24] [2023] C-Diffusion Embedding Black RGB64
CDM [25] [2024] C-Diffusion Label Black RGB64

Shahreza et al. [26] [2023] StyleGAN Embedding Both RGB1024
Shahreza et al. [27] [2024]∗ StyleGAN Embedding Both RGB1024

PPA [28] [2022] StyleGAN Label White RGB1024
IF-GMI [29] [2024] StyleGAN Label White RGB224

Dong et al. [30] [2023] StyleGAN Embedding Black RGB1024
MAP2V [9] [2024]∗ StyleGAN Embedding Both RGB192
PriDM [31] [2025] DDPM Image Black RGB256

DiffUMI (ours) DDPM Embedding Both RGB256
∗ denotes benchmark methods used for empirical comparison, representing the latest exemplars of each strategy. Comparisons with closed-set attacks

and PriDM [31] are excluded due to fundamental differences in assumptions: they depend on class labels or images, while our approach operates on
target embeddings.

on the facial region, which may lack sufficient perceptual
detail for accurate human identity recognition [14]–[25].

Finally, while diffusion models have gained promi-
nence in modern generative AI research [32], genera-
tive adversarial networks (GANs) [33]–[35] remain the
dominant paradigm for model inversion. This limited
technological diversity restricts the application of state-
of-the-art diffusion-driven generation techniques to model
inversion. The most straightforward approach to diffusion-
driven model inversion is to apply adversarial attacks (e.g.,
APGD [36]) directly in the latent space. However, this naive
strategy produces significant artifacts due to the sensitivity
of unconditional diffusion models, leading to overfitting and
failed privacy recovery (see Appendix A). Consequently, ex-
isting approaches rely on conditional diffusion (C-Diffusion)
for facial image generation [24], [25], which are either
unsuitable for open-set face recognition or require substan-
tial computational resources (taking 1.5 to 2 days to train
generators restricted to 64× 64 resolution).

To address the aforementioned challenges, we pro-
pose DiffUMI, the first training-free, Diffusion-driven
Universal Model Inversion attack against embedding-
based face recognition models. DiffUMI utilizes a fixed,
pretrained denoising diffusion model [37] to unconditionally
generate full headshot-style selfies, eliminating the need to
train target-specific generators. Its universality stems from a
consistent framework and generator capable of adapting to
arbitrary identities and open-set face recognition models.

In terms of algorithm design, we hypothesize that if a
reconstruction accurately matches the target identity with-
out exhibiting adversarial artifacts, it successfully recovers
private information. Thus, our objective is to maximize

the embedding similarity between the reconstruction and
the target while minimizing perceptual artifacts. Contrary
to intuition, we found that the choice of attack backbone
(e.g., APGD) is not the primary cause of artifacts. In-
stead, successful manipulation depends critically on three
factors: reliable initialization of latent codes, fine-grained
manipulation strategies, and mitigation of adversarial over-
fitting. To achieve these objectives, we first introduce an
automated method for selecting reliable latent codes from
randomly sampled Gaussian distributions. Second, we pro-
pose a ranked adversary strategy that performs fine-grained
adversarial attacks [36], [38], guided by mathematically
derived stopping criteria for optimizing the latent space
in both white-box and black-box settings. To the best of
our knowledge, our pipeline and algorithms are the first to
effectively manipulate unconditional face generation.

Nevertheless, perfect artifact-free generation is inher-
ently unattainable, and achieving it is not our goal. Instead,
our objective is to recover the target identity from the
embedding in a way that is visually recognizable to humans.
The danger of adversarial artifacts lies in their potential to
cause visually different images to be mapped to the same
representation by the target model, leading to misleading
matches. To eliminate the overfitting effect of these artifacts,
which typically exhibit poor transferability, we evaluate
privacy attacks using models different from the target. This
evaluation protocol, widely adopted in prior work, assumes
that if a reconstruction matches the target identity on models
other than the one it was optimized against, it successfully
recovers private information (a.k.a. transferability) [9], [17],
[26], [27], [30].

In practice, we assess DiffUMI on two widely used face



datasets [39], [40] and four face recognition models [4]–
[7], comparing its performance against three state-of-the-art
benchmarks [9], [17], [27]. In addition to automatic evalua-
tion using face recognition models, we conduct user studies
in which human participants are asked to judge whether the
reconstruction matches the target identity or whether the
target can be identified using the reconstruction alone. The
results demonstrate DiffUMI’s strong attack effectiveness,
showing that an unconditional diffusion model combined
with optimized adversarial search enables efficient, high-
fidelity facial reconstruction. For example, when targeting
the Labeled Faces in the Wild (LFW) dataset [40] and
the ArcFace model [5] in the white-box setting, DiffUMI
achieves Type I and Type II accuracies of 98.55% and
94.72%, outperforming benchmarks by 9.57% and 15.5%,
respectively. It also successfully breaches privacy-preserving
face recognition models [6], [7], designed to resist model
inversion, achieving Type II accuracies of 84.42% to 92.87%
across two datasets, exceeding benchmarks by 4.01% to
9.82%. These findings raise serious concerns about the
effectiveness of current privacy-preserving techniques.

Moreover, we introduce a novel application of Out-
Of-Domain Detection (OODD), marking the first use of
model inversion to distinguish non-face from face inputs
based solely on embeddings [10]–[13]. As shown in Fig. 1,
the open-set nature of face recognition models enables non-
face inputs, such as those from ImageNet [41], to be pro-
cessed into embeddings, which we define as out-of-domain
inputs. These embeddings share the same dimensionality
and numerical range as genuine facial images, making dif-
ferentiation inherently challenging. Our OODD framework
utilizes model inversion techniques, where reconstructions
of out-of-domain inputs typically fail either by not resem-
bling the target identity or by lacking discernible human
facial features. These failure cases serve as key indicators
for identifying potential out-of-domain inputs. Our OODD
framework effectively detects 98.9% of non-face inputs [41]
after embedding by the ArcFace model [5], with only a 3.9%
error rate for genuine face inputs [39], [40].

The ability to distinguish real human face embeddings
from out-of-domain inputs (e.g., animals or synthetic faces)
can enhance face recognition systems by mitigating spoof-
ing, deepfake enrollment, and data poisoning risks [10]–
[13]. It may support secure identity verification, clean large-
scale face datasets, and ensure compliance with biometric
standards. It may also aid in monitoring model robust-
ness and controlling unintended use in applications like
AR or photo filters. However, none of these works focus
specifically on the face domain, embedding-level analysis,
and open-set recognition, or leverage model inversion tech-
niques.

Our key contributions are summarized as follows:
(i) We introduce DiffUMI, the first training-free, diffusion-
driven universal model inversion attack against embedding-
based face recognition models. (ii) We propose the first
algorithm that effectively manipulates unconditional face
generation by automatically selecting highly reliable latent
codes and introducing a novel ranked adversary strategy.

(iii) We empirically establish DiffUMI as a state-of-the-art
attack, revealing critical vulnerabilities in privacy-preserving
face recognition systems and raising concerns about their
ability to counter such threats. (iv) We introduce OODD,
the first model inversion-based framework for distinguishing
non-face inputs from face inputs based solely on feature
embeddings.

2. Universal Model Inversion via Diffusion

This section introduces DiffUMI, outlining its objectives
and framework in Sec. 2.1. We then formalize the threat
model and problem definition in Sec. 2.2 and Sec. 2.3,
respectively. Finally, we detail the algorithms for the three
sequential steps in the framework, as presented in Sec. 2.4
through Sec. 2.6. To make this paper self-contained, we
outline the preliminaries of DDPM [42], face recognition,
D’Agostino’s K2 test [43]–[45], and MTCNN [46] in Ap-
pendix B. The step-by-step algorithm of DiffUMI and a
comprehensive notation list are detailed in Appendix C.

2.1. Overview

DiffUMI is introduced as a framework to assess privacy
risks of embedding-based face recognition models. A model
is considered vulnerable if DiffUMI can reconstruct a facial
image resembling the target identity using only its feature
embedding. The primary goal of this privacy attack is to
recover the target identity, rather than precisely reconstruct
the original image from which the embedding was derived.

To facilitate a universally applicable attack, DiffUMI
employs a three-step attack mechanism, as depicted in
Fig. 2. The framework utilizes DDPM [37], a denoising dif-
fusion probabilistic model, as the generator. Unlike training-
dependent model inversion attacks that require a generator to
be trained for each target model, our generator is indepen-
dently pretrained for unconditional facial image synthesis
from random Gaussian noise, rendering DiffUMI entirely
training-free. As a result, DiffUMI facilitates effective at-
tacks across diverse target identities and models without
modifying any other components of the framework.

The core challenge addressed by DiffUMI is how to
effectively manipulate unconditional diffusion generation.
In the context of model inversion, this requires maximiz-
ing the embedding similarity between the target and the
reconstruction while minimizing artifacts introduced by ad-
versarial manipulation. While the similarity maximization is
handled via a similarity-guided objective function (Sec. 2.3),
the more difficult task of artifact minimization is tackled
through our proposed three-step attack mechanism:

Step (a) (Preparation) – Latent Code Generation:
This phase independently generates a set of highly reliable
latent codes, executed once and applicable for attacking
any target. The reliability is ensured by a selection strategy
combining D’Agostino’s K2 test [43]–[45] and MTCNN
face detection [46]. The K2 test ensures the latent codes
follow a normal distribution, improving statistical reliability,
while MTCNN ensures that the generated images contain
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Figure 2. Framework of DiffUMI, reconstructing a facial image with the same identity of a private face, solely from its embedding. The generator, a
denoising diffusion model (DDPM) [37], is pretrained independently, without prior knowledge of the private face or the target model. In Step (a), a set of
highly reliable latent codes is generated, executed only once, and applicable for attacks on any target. In Step (b), N latent codes are selected based on the
reconstruction embeddings most similar to the target embedding, serving as initialization for Step (c). In Step (c), these latent codes undergo adversarial
refinement to progressively align the reconstructions with the target embedding. The final output is the reconstruction with the highest embedding similarity
to the target. Notably, despite initial rankings, a higher-ranked latent code may yield suboptimal reconstruction after adversarial manipulation.

explicit facial features. Together, these criteria enhance the
latent codes’ robustness against subsequent adversarial ma-
nipulations, minimizing distortions and artifacts.

Step (b) – Top N Selection: From the latent codes
generated in Step (a), the top N are selected based on the
embedding similarity between their reconstructions and the
target embedding, as assessed by the target model. This
ensures that the initial latent codes are well-aligned with
the target identity, facilitating more effective adversarial
manipulation in the next step.

Step (c) – Latent Code Manipulation: The selected
latent codes from Step (b) undergo iterative refinement
through adversarial manipulation to progressively align their
reconstructions with the target identity. The final output is
the reconstruction exhibiting the highest embedding simi-
larity to the target. To enhance efficiency, we introduce a
ranked adversary strategy that leverages the rankings from
Step (b) to optimize the order of latent code manipulation.
Additionally, this strategy allows for early termination once
the attack objective is met, thereby reducing computational
overhead while maintaining effectiveness.

2.2. Threat Model

The proposed DiffUMI framework functions as an at-
tacker, evaluating the privacy vulnerabilities of a target face
recognition model. Specifically, it assesses whether a facial
image reconstructed solely from an embedding generated
by the model can accurately resemble the identity of the
original face associated with that embedding.

Attack Knowledge: The attacker’s knowledge is cate-
gorized based on access to the target model’s gradients, in
addition to utilizing the embedding for the privacy attack:

• White-box: The attacker has access to both the target
embedding and the model’s gradients.

• Black-box: The attacker only has access to the target
embedding and can interact with the model via
query-based feedback.

Attack Objective: The goal is to reconstruct a facial im-
age that enables recognition of the target identity. To make
this standard concrete and suitable for human evaluation, we
define two criteria:

• The reconstructed image appears to be the same
person as the target.



• The reconstructed image can help identify the target
from a pool of identities.

However, human assessments require real-world user
studies and are inherently subjective, varying across in-
dividuals. To provide a more objective measure, we also
evaluate attack success using face recognition models. Since
the attack relies solely on the target embedding and model,
there is a risk of overfitting to adversarial artifacts rather
than recovering genuine facial features. To mitigate this, we
assess performance across multiple face recognition models
beyond the target model. Formally, the attack objectives are:

• During attack: Maximize the similarity between the
reconstructed image’s embedding and the target em-
bedding in the target model (see Sec. 2.3).

• During evaluation: Ensure the reconstructed image
is classified as the target identity by multiple models,
even when compared against other images of the
same person (excluding the one used for the target
embedding) (see Sec. 4).

2.3. Problem Definition and Objective Function

Given a target face xT and the embedding function of
a target model F (·), DiffUMI seeks to reconstruct x̂ ≈ xT

using only the feature embedding zT = F (xT ). However,
in the context of privacy attacks, the goal is not for x̂ to be
visually identical to xT , but rather to share the same identity.
Hence, the objective of DiffUMI is reformulated as:

F (x̂) ≈ F (xT ). (1)

We define the reconstructed image x̂, generated by ap-
plying a pretrained DDPM [37] as a generative function G(·)
to an initial Gaussian noise sample xG:

x̂ = G(xG). (2)

The generator operates on a latent code xG of size 3×256×
256, sampled from a Gaussian distribution. Thus, Eq. (1) is
reformulated as:

F (x̂) = F (G(xG)) ≈ F (xT ). (3)

Randomly sampled latent codes generally do not satisfy
Eq. (3). To address this, we introduce an adversarial attack
to manipulate the latent code:

x′
G = xG + δ, s.t. ||δ||p ≤ ϵ, (4)

where δ denotes the adversarial perturbation and ϵ is the
perturbation magnitude constrained by the Lp-norm. The
objective is then formulated as:

F (G(xG + δ)) ≈ F (xT ), (5)

where xG is drawn from a random Gaussian distribution.
Eq. (5) is satisfied when the similarity measure exceeds

a predefined threshold τF , indicating that the reconstructed
image is classified as the same identity as the target. τF is
a parameter of face recognition models, set at the minimum
equal error rate for standard face recognition tasks using

real facial images. While τF serves as a criterion for evalu-
ating attack success by verifying whether the reconstruction
matches the target, it is not involved in attack optimization
or required as attack knowledge. The objective function L
of DiffUMI is formulated as:

ẑ = F (x̂) = F (G(xG + δ)),

zT = F (xT ),

L = S(ẑ, zT ) =
ẑ · zT

∥ẑ∥∥zT ∥
,

(6)

where S(·, ·) denotes the function computing cosine similar-
ity. DiffUMI aims to maximize L by iteratively manipulating
the latent code until:

argmax
x̂

L. (7)

2.4. Step (a) - Prepare: Latent Code Generation

We propose a two-stage approach for generating reliable
latent codes as candidate initializations for DiffUMI (Fig. 15
of Appendix C). This strategy incorporates D’Agostino’s
K2 test [43]–[45] to ensure that the selected latent codes
conform to a normal distribution, referred to as Gaussian
normality, and utilizes MTCNN [46] for face detection to
guarantee that the generated latent codes produce discernible
facial features.

The sequence of operations is deliberately structured: the
K2 test is performed first, followed by face detection. This
ordering is chosen because generating a new random Gaus-
sian template incurs minimal computational cost, though a
significant portion may fail the K2 test. Conversely, face
detection is computationally more expensive, involving both
image generation and verification. However, latent codes
passing the K2 test are more likely to meet the face de-
tection criterion, thereby optimizing efficiency.

This phase independently generates a set of reliable
latent codes, which can be used for attacking any target.
Since it is executed only once, the K2 test and face detection
criteria can be applied rigorously to maximize the reliability
of the generated latent codes.

2.4.1. Normality Test via D’Agostino’s K-Square Statis-
tic. Reconstructing a facial image using DDPM requires a
latent code of size 3 × 256 × 256 that follows a normal
distribution (i.e., Gaussian normality) [37]. The adherence
of randomly generated latent codes to a normal distribution
varies (Fig. 3) and generally correlates with reconstruction
fidelity (higher is better). However, even initially high-
normality codes degrade after manipulation (Eq. (4)), as
demonstrated in Fig. 4. To mitigate this effect, we employ
D’Agostino’s K2 test [43]–[45] to select latent codes with
higher normality prior to manipulation, improving initial
reconstruction quality and better preserving fidelity despite
subsequent normality reduction.

Given a randomly generated latent code xG, the K2 test
function K(·) quantifies deviations from normality based on
skewness and kurtosis, producing a probability value:

pK = K(xG). (8)
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Figure 3. Reliability of randomly generated latent codes and the proposed
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shown in the left subfigure, the Gaussian normality of randomly generated
latent codes fluctuates, with higher normality generally leading to improved
face detection rates, as indicated by darker regions. Our strategy guarantees
100% Gaussian normality, with pK ≥ 0.999, and consistently achieves a
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Figure 4. Degradation of Gaussian normality due to adversarial manip-
ulation. The L2-norm constrained adversary more effectively mitigates
the decline in normality compared to the L∞-norm adversary, leading to
enhanced reconstruction fidelity..

Latent codes are selected via a normality threshold τK :

xG is selected if pK ≥ τK , (9)

where τK is chosen sufficiently large as generating a random
template remains computationally efficient. This selection
process prioritizes latent codes closely adhering to Gaussian
properties, enhancing robustness in subsequent steps.

2.4.2. Face Detection via MTCNN. We observe that ran-
domly generated latent codes may fail to produce recog-
nizable faces, as shown in Fig. 3 and Fig. 5. To ensure
face presence in generated images, we utilize MTCNN [46],
a deep learning-based face detection framework. Given a
latent code xG, we generate an image x̂ using DDPM G(·):

x̂ = G(xG). (10)

Next, we apply the detection function D(·) to assess face
presence, yielding a confidence score pD:

pD = D(x̂). (11)

Normality=0.70 Normality=0.27 Normality=0.16 Normality=0.13

Figure 5. Failed face generation using randomly generated latent codes,
where MTCNN fails to detect a face, resulting in a detection confidence
of pD = 0.

Target

Similarity ↑ 0.2887 0.2831 0.9284 0.9817
Rank Top-1 Top-2 Top-2 Top-1

Initial Final

Figure 6. An example where the initial latent code, resulting in the optimal
initial reconstruction, fails to yield the best outcome following adversarial
manipulation.

We define a threshold τD for high-confidence face detection:

(xG, x̂) is selected if pD ≥ τD, (12)

where τD is set sufficiently high since most latent codes
passing the K2 test also meet the face detection criterion.
This ensures that only images with strong facial feature
likelihoods are retained for further processing. The recon-
structed facial image x̂ and xG are stored together to
enhance efficiency in the subsequent top N latent code
selection step.

2.5. Step (b) - Top N Latent Code Selection

In Step (a), DiffUMI generates a set of V randomly
sampled yet reliable latent codes and their corresponding
reconstructions {(xGv , x̂v)}Vv=1. Instead of processing all
V candidates, it may select the one with the highest ini-
tial embedding similarity to the target, expecting lowest
computational costs and distortions. However, the latent
code yielding the best initial reconstruction may not always
produce the optimal result after adversarial manipulation
(Fig. 6). To address this, DiffUMI refines by choosing the
top N latent codes from V (Fig. 16 of Appendix C), where
increasing N improves model inversion performance but
incurs higher computational overhead.

In particular, the V reliable pairs are input into the target
model, which outputs V feature embeddings. Note that x̂v =
G(xGv

), previously computed and stored during Step (a) for
face detection (Sec. 2.4.2), is used. Similarities, as described
in Eq. (6), are calculated between these V embeddings and
the target embedding. The top N embeddings, exhibiting
the highest similarity, are retained for Step (c) as the initial
latent codes for adversarial manipulation.



In the black-box setting, as outlined in Sec. 2.2, each
of the (xGv

, x̂v) pairs requires access to the target model,
leading to a total of V queries in Step (b):

QTopN = V, (13)

where V is the size of candidates from Step (a).

2.6. Step (c) - Latent Code Manipulation

As outlined in Sec. 2.3, a randomly sampled latent code
rarely meets the attack objective of reconstructing a facial
image that matches the target identity, even with the top-1
selection from Step (b). Therefore, refining the initial latent
code is crucial to align the reconstructed face with the target.
Existing methods manipulate latent codes starting from ei-
ther the top-1 code (its limitation was discussed in Sec. 2.5)
or a fusion of the top N selections [9]. However, we observe
that fusion significantly reduces similarity compared to top-
1 or top-2 selections. Moreover, relying on a single fused
initialization may fail to ensure effective reconstruction,
similar to the limitations of the top-1 approach. To address
these issues, we propose the Ranked Adversary method,
which retains the top N selection strategy while prioritizing
latent codes with higher similarity for earlier adversarial
manipulation. This approach includes early termination once
the attack objective is met, optimizing computational effi-
ciency without sacrificing effectiveness.

2.6.1. Algorithm of Ranked Adversary. The Ranked Ad-
versary approach (Fig. 17 of Appendix C) begins the refine-
ment process with the top-1 latent code xG1

, applying an
adversarial attack strategy to iteratively adjust xG1

in pursuit
of the objective defined in Eq. (7), guided by the objective
function in Eq. (6). The process concludes when the similar-
ity measure L1 exceeds the predefined attack threshold τA,
indicating successful manipulation where the reconstructed
image sufficiently matches the target. In such cases, the
reconstructed image x̂1 = G(xG1

+ δ1) is produced as the
final model inversion result. If L1 remains below τA after
the maximum adversarial iterations tmax, the top-2 latent
code xG2

undergoes the same optimization process. If none
of the top N latent codes achieve Ln ≥ τA, n = 1, . . . , N ,
the x̂n with the highest Ln is selected as the final output.

As shown in Fig. 7, setting τA = τF may ensure success-
ful target matching, but only on the target model. Increasing
τA beyond τF enhances robustness, particularly on the test
model. However, excessively high τA or the absence of
early stopping may lead to the attack proceeds beyond the
point of achieving L > 0.98, yielding negligible gains in
optimization while exacerbating overfitting and diminish-
ing generalization to the test model, as achieving such a
threshold often forces adversarial manipulation to introduce
artifacts that overfit the target model and exhaust all attack
iterations. Therefore, we define τA for attacking the specific
model as the maximum embedding similarity achievable
by real facial images in this model, which represents the
best case where without any overfitting artifacts, the model
can achieve the best similarity within the same identity. To

Figure 7. Overfitting and inefficiency in objective function maximization
(Eq. (6)) without the proposed ranked adversary strategy. The target model
(in blue), PartialFace [7], uses a predefined similarity threshold τF =
0.28 (minimum equal error rate), where embedding similarity above τF
indicates identity matching. The blue curve depicts the attack process with
a maximum of 100 iterations and an attack threshold τA = 1, effectively
disabling the ranked adversary strategy due to the unattainable objective.
The tick at 0.98 marks the highest embedding similarity typically observed
between real facial images of the same identity (LFW [40]) under the
PartialFace model, which we designate as the optimal τA to terminate the
adversary, thereby preventing overfitting and reducing computational cost.
ArcFace [5] is used to evaluate overfitting. Here, test model validation is
solely for performance assessment. It cannot be incorporated into objective
optimization, as the attack operates solely on the target embedding, without
access to the original image or its embedding of the test model.

compute this, we feed the entire face dataset Xreal (all real
faces) into the target model, then compute the maximum
similarity between any two images. The similarity between
different identities is usually lower than that between the
same identity. Thus, we define τA as follows:

τA = max S(F (xi), F (xj)), xi, xj ∈ Xreal, (14)

where F (·) is the embedding function of the target model,
and S(·, ·) is the cosine similarity function.

2.6.2. Adversarial Attack. Successful manipulation of un-
conditional diffusion generation does not require a new
adversarial attack backbone, but instead relies on a fine-
grained algorithm [38]. Ranked Adversary employs APGD
[36] in the white-box setting and GreedyPixel [38] in the
black-box setting. While various adversarial attack algo-
rithms can be adapted for latent code manipulation within
our framework, our empirical observation shows that only
these fine-grained methods yield satisfactory reconstructions
without introducing significant distortions or artifacts. This
is due to the sensitivity of the diffusion model’s latent
space, where even small perturbations can notably degrade
reconstruction quality.

Additionally, we evaluated two alternative black-box
attacks: Square attack [47], which uses the same L2-norm
constrained perturbation magnitude ϵ as APGD, and BruSLe
attack [48], a pixel-wise attack like GreedyPixel that en-
forces sparsity constraints rather than directly constraining
ϵ. However, both methods performed inferiorly compared to
GreedyPixel, as detailed in Sec. 5.2.



2.6.3. Query Efficiency in the Black-Box Setting. In the
black-box setting, the query cost for latent code manipu-
lation arises from calculating the loss values in Eq. (6),
which requires querying the target model to obtain feature
embeddings of the reconstructed images. As a result, the
total query cost is proportional to the number of iterations
performed during adversarial manipulation. The query cost
for optimizing a single latent code is given by:

QAdv = tmax, (15)

where tmax represents the upper limit on the number of
adversarial attack iterations.

Since the Ranked Adversary framework processes up to
N selected latent codes, the total query cost for the latent
code manipulation phase is bounded by:

tmax ≤ QAdv ≤ N × tmax. (16)

Including the query cost incurred during the top N latent
code selection in Step (b) (Eq. (13)), the overall query
complexity of DiffUMI is:

Q = QTopN +QAdv. (17)

In practical black-box attack scenarios, a predefined
query budget Qmax is often imposed as a hard constraint.
Under this restriction, the maximum number of iterations
per adversarial attack process must satisfy:

tmax = ⌊Qmax − V

N
⌋, (18)

where ⌊·⌋ is the floor function, returning the largest integer
not exceeding the input, and V represents the size of latent
code set in Step (a) used to select the top N latent codes.

3. Out-Of-Domain Detection

Deep learning models map both in-domain and out-
of-domain inputs to the same feature space, making it
challenging to distinguish between them based solely on
embeddings. For example, in a face recognition system,
both a human face and a non-face object (e.g., a cat) pro-
duce embeddings with identical dimensions and numerical
ranges, despite their semantic differences. To address this,
we leverage the high-fidelity reconstruction capabilities of
our model inversion framework to develop an application of
OODD that identifies out-of-domain inputs based on their
embeddings. As illustrated in Fig. 8, two common failure
cases arise in model inversion, sometimes concurrently.
In-domain inputs, such as facial images, typically yield
accurate, recognizable reconstructions. In contrast, out-of-
domain inputs are more likely to exhibit at least one of these
failure cases. Hence, we classify an input as out-of-domain
if either failure is detected.

Case 1: Reconstruction fails to match the target input
across all test models except the target model.

We define Test Models as those distinct from the target
model. For instance, if the target model is FaceNet [4],
alternative models like ArcFace, DCTDP, and PartialFace

Case 2: Face Detection Failure

NO

All NO

Model Inversion

… Test 
Model 𝐹!

Test 
Model 𝐹"

Case 1: Matching Failure

Target
Model 𝐹

Model
Inversion
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Model 𝐹!
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Detected?

Embedding
−0.1,0.2, … , −0.5,0.4

Input

Output
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Figure 8. The proposed out-of-domain detection (OODD) framework de-
fines two failure scenarios in model inversion, both indicating out-of-
domain inputs: (i) Matching Failure, where the reconstructed image fails
to match the target input across all test models except the target model,
and (ii) Face Detection Failure, where the reconstructed image lacks
identifiable facial features.

can serve as test models [5]–[7]. This failure case is assessed
using test models because the reconstruction tends to overfit
the target model, resulting in a successful match when
evaluated on the target model alone.

Given an input image x and the embedding function F (·)
of the target model, we aim to identify whether x is an out-
of-domain input using its embedding z = F (x). First, we
apply DiffUMI to obtain the reconstruction x̂:

x̂ = argmax
x̂

S(F (x̂), F (x)). (19)

Next, using M test models F1, . . . , FM , we determine
whether x̂ matches x in these models:

OOD1 =

 True, if ∀m ∈ {1, . . . ,M},
S(Fm(x̂), Fm(x)) < τFm ,

False, otherwise.
(20)

where τFm is the predefined similarity threshold for the
minimum equal error rate in face recognition.

Note that matching failure is defined only when the
reconstruction fails to match the target across “all” test
models (“ALL NO” in Fig. 8). Defining failure based on
“any” mismatch, implying that an in-domain reconstruction
should match the target across all test models, would be
an overly idealized assumption, which consequently signif-
icantly increases the false detection of in-domain inputs as
out-of-domain. For instance, our “all” strategy yields a 3.4%
matching failure rate in detecting LFW [40] facial images on
the FaceNet model [4], whereas the “any” criterion increases
this error to 26.6%.

Case 2: The reconstruction lacks a detectable face,
even if it matches the target input.

In this case, a successful match is likely attributable
to adversarial artifacts rather than accurate identity recon-



TABLE 2. CONFIGURATION OF TARGET MODELS, WHITE-BOX DIFFUMI, AND OODD SETTINGS.

Face Recognition Model Latent Code Generation (ours) Latent Code Manipulation (ours) OODD (ours)
F (·) τF Volume V τK τD

1 Top N tmax τA Norm ϵ τD
1

FaceNet [4] 0.40

1,000 0.999 0.999 3 100

0.99

L2

25

0.9933ArcFace [5] 0.23 0.99 35
DCTDP [6] 0.26 0.98 35

PartialFace [7] 0.28 0.98 35
1 A higher detection confidence threshold is applied during latent code generation to ensure reliable initialization, as generating a random Gaussian

template is computationally efficient. All parameters refer to Tab. 14 in Appendix C for notation definitions.

struction. We utilize MTCNN D(·) [46] with a detection
threshold τD:

OOD2 =

{
True, if pD = D(x̂) < τD,
False, otherwise. (21)

Here, τD may differ from the latent code generation thresh-
old, as a higher τD in OODD increases false positives by
classifying in-domain inputs as out-of-domain.

The final OODD decision is determined by the logical
disjunction of both criteria: OOD = OOD1∨OOD2, where
∨ represents the logical disjunction (OR) operator.

4. Experimental Settings

Face Recognition Models. We assess model inversion
attacks on two widely used models, FaceNet [4] and Ar-
cFace [5], and two privacy-preserving models, DCTDP [6]
and PartialFace [7], which are designed to mitigate inversion
attacks. The decision thresholds for all models are set at the
minimum equal error rate, as outlined in Tab. 2.

Datasets. We evaluate model inversion attacks and
OODD using three datasets: LFW [40] and CelebA-HQ [39]
for privacy attacks, and ImageNet [41], a non-face dataset,
for OODD. Each dataset contains 1,000 samples. For LFW
and CelebA-HQ, we select 10 images from each of 100
distinct identities for computing Type II accuracy. Datasets
such as FFHQ [49], which lack identity annotations, are
thus unsuitable. As our approach is training-free, large-scale
datasets are unnecessary for evaluation.

LFW, which is independent of both face recognition
model and generator training, serves as our primary eval-
uation dataset. In contrast, CelebA-HQ shares the train-
ing distribution of the generator but is not used to train
any recognition models, enabling an assessment of whether
such prior knowledge improves attack performance. The
face recognition models themselves are trained on datasets
distinct from both evaluation sets: FaceNet [4] and DCTDP
[6] are trained on VGGFace2 [50], while ArcFace [5] and
PartialFace [7] are trained on MS1MV2 [51].

Benchmark. We benchmark DiffUMI against MAP2V
[9] in the white-box setting. As shown in Tab. 1, MAP2V
is the most recent and most relevant state-of-the-art base-
line, sharing our training-free setup and focus on open-set
face recognition. While DiffUMI also outperforms training-
dependent attacks [17], [27], as detailed in Appendix A,
they are not our primary baseline due to their limitation that

Real TargetConfusion Confusion

Figure 9. A challenging example of confusing choices in questionnaire
design for identifying target identities from reconstructions. We provided
two photos for each of three target options, with the order randomized.
Some participants remarked that the two male choices (the first and second
targets) looked too similar, making them appear to be the same person.

each target model requires a separately trained generator,
resulting in substantial computational overhead.

Experimental Setup. The configurations for the white-
box DiffUMI attack and OODD are provided in Tab. 2,
while the settings for the black-box DiffUMI attack are
outlined in Fig. 11. Specifically, τF is the cosine similarity
threshold in face recognition, optimized to minimize the
equal error rate. τK and τD in latent code generation are
set close to the upper bound (1.0) to ensure highly reliable
initialization. τA is defined in Eq. (14). For OODD, τD is
set to maintain a maximum false positive rate of 5% for in-
domain inputs. In the ablation studies, we vary one parame-
ter at a time while holding all others constant. Experiments
are conducted on an NVIDIA A100 40GB GPU.

Evaluation Protocols. Model inversion attacks and
OODD are executed directly on the target model, often
leading to outputs that overfit this model. Consequently,
exceptional performance on the target model may stem from
adversarial artifacts rather than the accurate reconstruction
of facial features, a scenario classified as a failure in Sec. 3.
To thoroughly evaluate the effectiveness of privacy attacks
and OODD, we adopt the following evaluation protocols.

User Study: Following the attack objectives defined in
Sec. 2.2, we asked ten participants to evaluate three groups
of images, specifically, to identify the target identities based
on reconstructions and to judge whether each reconstruction
depicts the same person as the target identity. Each evalua-
tion included 60 images in total, drawn from two datasets.
To make the questionnaire sufficiently challenging, we intro-
duced confusing choices by selecting identities whose facial
embeddings have a similarity of approximately 80%×τF to
the target identity (as shown in Fig. 9), where a similarity
of ≥ τF is considered a match.

Type II Accuracy: Mai et al. [15] introduced Type I and
Type II accuracy as metrics for evaluating the effectiveness



of privacy attacks. In this study, we focus on Type II accu-
racy, which measures the similarity between reconstructed
facial images and facial images from the target identity, but
excluding the target facial image. This metric provides a
more stringent evaluation by reducing the risk of overfitting
to the target image, whose embedding serves as the reference
during the attack process. Specifically, Type II accuracy is
the rate at which the reconstructed image x̂ matches facial
images xj ̸=T from the target identity but different from the
target face xT :

Type II =

∑I
i=1

∑J
j=1 I

(
S(F (x̂i), F (xj ̸=T

i )) ≥ τF

)
I

,

(22)
where xj

i ̸= xT
i but shares the same identity. I(·) and

S(·, ·) represent the indicator and cosine similarity functions,
respectively. J denotes the number of other facial images
associated with the identity of xT

i , I is the total number of
attack samples, and τF is the face recognition similarity
threshold. A higher Type II accuracy reflects a stronger
inversion attack from the attacker’s perspective and indicates
greater vulnerability from the privacy protection standpoint.

For further validation, we also report Type I accuracy
results in Appendix D, which reflect the strength of the in-
version attack and highlight potential privacy vulnerabilities.

OODD Rate: The OODD rate quantifies the failure rate
of model inversion, based on the two failure cases outlined
in Sec. 3. For in-domain inputs, a lower OODD rate is
preferable, indicating fewer inversion failures. Conversely,
for out-of-domain inputs, a higher OODD rate is desirable,
reflecting improved detection performance.

Joint Evaluation Using Target and Test Models: Test
models, as defined in Sec. 3, refer to those that differ from
the target model. Evaluating on these models helps mitigate
overfitting to the target model. In this study, four face recog-
nition models are utilized, with one designated as the target
model and the remaining three as test models for each attack.
However, testing exclusively on test models may introduce
bias, as the test models vary for each target model, leading to
an unfair comparison of model vulnerability to privacy risks.
To address this, we adopt a joint evaluation approach that
includes both the target and test models, ensuring consistent
evaluation across all models. This approach mitigates the
impact of overfitting to the target model alone.

Note that OODD is evaluated exclusively on test models,
as detailed in Sec. 3. This is because out-of-domain inputs
can only be matched with their reconstruction (similar to
Type I accuracy), and such matching is always successful
on the target model due to overfitting.

5. Performance

5.1. White-Box Model Inverison

We assess the vulnerability of face recognition models
to privacy threats using DiffUMI in the white-box setting.
As shown in Tab. 3, all four models, including privacy-
preserving variants, fail to prevent privacy leakage. DiffUMI

TABLE 3. TYPE II ACCURACY (%) OF DIFFUMI ACROSS FOUR FACE
RECOGNITION MODELS.

Dataset Target Test Model Avg.Model FaceNet ArcFace DCTDP PartialFace

CelebA

FaceNet 96.93 80.12 84.19 77.67 84.73
ArcFace 92.76 99.06 94.23 92.84 94.72
DCTDP 87.43 89.62 96.52 86.61 90.05

PartialFace 80.06 87.29 85.82 96.14 87.33

LFW

FaceNet 98.56 66.23 73.31 59.92 74.51
ArcFace 91.03 99.64 95.88 92.33 94.72
DCTDP 90.34 95.37 99.44 86.31 92.87

PartialFace 75.39 85.44 77.99 98.84 84.42

Gray cells indicate cases where the target and test models are identical.
Green and Red highlight the most and least secure models, respectively,
based on the lowest and highest Type II accuracy.
FaceNet [4] offers the strongest privacy protection, surpassing even the

privacy-preserving PartialFace [7] and DCTDP [6], while ArcFace [5]
provides the weakest.

TABLE 4. USER STUDY RESULTS. TARGET MODEL IS THE
PRIVACY-PRESERVING MODEL, PARTIALFACE [7].

Question Dataset Accuracy (%) ↑

Find target CelebA 80.0 (16.0 / 20.0)
Find target LFW 79.5 (15.9 / 20.0)

Same person? LFW 73.0 (14.6 / 20.0)

achieves Type II accuracy between 74.51% and 94.72%
across all models and datasets. Notably, the oldest stan-
dard model, FaceNet, demonstrates the highest resistance,
highlighting the limitations of existing privacy-preserving
techniques. Furthermore, the user study results in Tab. 4
reflect a high success rate of our privacy attack, as confirmed
through direct human evaluation.

Compared to the benchmark, as shown in Tab. 5, Dif-
fUMI consistently surpasses MAP2V in Type II accuracy
and achieves similarity values closer to the attack thresh-
old τA across all scenarios. The “random” rows represent
unguided diffusion model generations, which fail to match
targets, emphasizing the necessity of a structured inversion
approach. The visualization in Fig. 10 further highlights
DiffUMI’s superiority, demonstrating higher identity recov-
ery accuracy than MAP2V. Our approach produces full
headshot-style reconstructions, achieving optimal granular-
ity for identity recovery.

5.2. Black-Box Model Inversion

We evaluate DiffUMI in the black-box setting us-
ing various adversarial attack algorithms and compare its
performance to the white-box counterpart. As shown in
Fig. 11 (columns 3 vs. 10), black-box DiffUMI (GreedyP-
ixel) achieves Type II accuracy slightly lower than its white-
box version (APGD) but incurs substantially higher compu-
tational costs in queries. Moreover, Fig. 11 (columns 4–6)
demonstrates that only fine-grained attacks like GreedyPixel



TABLE 5. PERFORMANCE OF OUR DIFFUMI ACROSS FOUR FACE RECOGNITION MODELS, COMPARED TO THE BENCHMARK ATTACK MAP2V [9].

Dataset Attack
Target Model

FaceNet ArcFace DCTDP PartialFace
Type II3 (%) ↑ Similarity4 ↑ Type II (%) ↑ Similarity ↑ Type II (%) ↑ Similarity ↑ Type II (%) ↑ Similarity ↑

CelebA

Original1 97.00 τA = 0.99 99.09 τA = 0.99 96.62 τA = 0.98 95.65 τA = 0.98

Random2 4.50 0.0822 1.73 0.0304 4.74 0.0771 9.72 0.1404
MAP2V 69.19 0.9248 84.61 0.8175 81.12 0.8135 80.84 0.7758

Ours 84.73 0.9920 94.72 0.9898 90.05 0.9818 87.33 0.9818

LFW

Original1 98.60 τA = 0.99 99.62 τA = 0.99 99.47 τA = 0.98 98.89 τA = 0.98

Random2 0.91 0.0154 0.06 0.0046 0.09 0.0129 0.54 0.0568
MAP2V 73.14 0.9337 79.22 0.7723 83.05 0.7787 80.41 0.7636

Ours 74.51 0.9917 94.72 0.9834 92.87 0.9774 84.42 0.9794
1 Upper bound corresponding to true target faces.
2 Lower bound referring to randomly generated facial images without a specific strategy.
3 Average Type II accuracy across four test models [4]–[7], as per the joint evaluation using target and test models outlined in Sec. 4.
4 Cosine embedding similarity between target and reconstruction, computed in the target model, with values closer to τA indicating better performance.
Bold indicates the highest performance among attack methods, with our approach exceeding MAP2V attack by up to 15.54% in Type II accuracy.
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Figure 10. Illustrations of DiffUMI generation versus MAP2V [9] in the
white-box setting. DiffUMI achieves superior identity recovery accuracy,
producing full headshot-style reconstructions that maximize identity gran-
ularity. “Initial” denotes pre-manipulation generations. The target model in
this figure is the privacy-preserving PartialFace [7].

effectively manipulate diffusion model latent codes, whereas
coarser black-box attacks (e.g., Square [47] and BruSLe
[48]) fail. Comparing columns 6–10, increasing GreedyP-
ixel’s query budget and sparsity allowance enhances model
inversion accuracy by modifying more pixels.

5.3. Out-Of-Domain Detection

We evaluate the proposed OODD framework on both
face and non-face datasets across four models. As shown
in Fig. 12, the model inversion outputs for out-of-domain
inputs primarily fall into the two failure cases described in
Sec. 3, each of which serves as an out-of-domain indicator
within our framework. The results in Tab. 6 demonstrate a
low detection rate for face datasets (LFW and CelebA-HQ)

TABLE 6. OUT-OF-DOMAIN DETECTION RATE (%) ACROSS MODELS
AND DATASETS.

Data FaceNet ArcFace DCTDP PartialFace

CelebA ↓ 2.3 4.4 4.9 1.7
LFW ↓ 4.9 3.4 3.7 1.4

ImageNet ↑ 91.3 98.9 95.5 95.2

Our OODD framework achieves high detection rates for out-of-domain
inputs while maintaining low error for in-domain inputs.

and a high detection rate for non-face inputs (ImageNet),
validating the effectiveness of our detection.

5.4. Prior Knowledge on Generator Training

We assess whether incorporating prior knowledge into
the generator enhances reconstruction performance. To this
end, we train a DDPM on CelebA-HQ and attack target
identities also drawn from CelebA-HQ (with disjoint iden-
tities), ensuring that the generator and target images share
the same distribution. Results are compared against attacks
on the LFW dataset. As shown in Tab. 3, Tab. 4 and
Tab. 6, it is surprising that performance varies inconsistently
between CelebA-HQ and LFW across both privacy attacks
and OODD tasks. These findings indicate that, in training-
free, open-set model inversion, prior knowledge of the data
distribution has minimal impact on reconstruction accuracy.
Even with shared distributions, the generator cannot reliably
synthesize identity-consistent images without a well-defined
identity-guided mechanism.

6. Ablation Study

We conduct ablation studies on the proposed DiffUMI
and OODD using the LFW [40] and ImageNet [41] datasets,
with the privacy-preserving PartialFace [7] model as the
target. Type II accuracy is averaged across all four face
recognition models for joint evaluation, as outlined in Sec. 4.



Pre-Manipulation White-box Attack
1.Target 2.Top-1 Initial 3.APGD 4.Square 5.BruSLe 6.GreedyPixel 7.GreedyPixel 8.GreedyPixel 9.GreedyPixel 10.GreedyPixel

Magnitude ϵ
Sparsity

N/A L2-norm ϵ = 35
Unlimited

L2-norm ϵ = 35
Unlimited

Unlimited
30%

Unlimited
10%

Unlimited
10%

Unlimited
10%

Unlimited
10%

Unlimited
Unlimited

Max. Queries 1,000 1,100 20,000 20,000 20,000 50,000 100,000 200,000 200,000
Type II (%) ↑ 6.5 85.4 1.1 32.2 41.1 67.8 76.7 80.0 81.1

Black-Box Attack

Figure 11. Performance of DiffUMI in the Black-Box Setting. Black-box DiffUMI achieves slight lower reconstruction accuracy to its white-box counterpart
(columns 3 vs. 10) in terms of Type II accuracy. Among black-box attack methods (columns 4-6), the fine-grained GreedyPixel algorithm, which introduces
adversarial patterns akin to white-box attacks, is the only viable approach for manipulating diffusion model latent codes. Comparing columns 6–10,
increasing the attack budget (query or sparsity) enhances model inversion accuracy. The target model is the privacy-preserving PartialFace [7], and the
test model is ArcFace [5].
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Case 1: Matching Failure Case 2: Face Detection Failure

Figure 12. Examples of two failure cases in the DiffUMI attack, which
serve as indicators of OODD. The occurrence of either failure case signals
an out-of-domain input: (i) Matching Failure, where the reconstructed
image fails to align with the target input across all test models except the
target model, and (ii) Face Detection Failure, where the reconstructed
image lacks identifiable facial features. The target model in this figure is
the privacy-preserving PartialFace [7].

In each study, we vary a single parameter while holding all
others constant to isolate its impact on performance, with
parameter settings provided in Tab. 2.

6.1. Model Inversion (DiffUMI)

Reliability of Latent Codes. We propose a latent code
generation strategy in Sec. 2.4, combining D’Agostino’s K2

test with MTCNN to improve latent code reliability [43]–
[46]. As shown in Tab. 7, our approach achieves the highest
latent code reliability, leading to superior performance.

Top N Selection. As detailed in Sec. 2.5, DiffUMI does
not necessitate processing all latent codes. While optimal
initialization typically improves reconstruction accuracy, it
does not always yield the best results after manipulation.
Consequently, we adopt a top N selection strategy, where
increasing N enhances reconstruction accuracy at the ex-
pense of higher computational cost. Based on our evaluation,
we recommend N = 3 as an optimal trade-off, achieving
strong attack performance with manageable computational
overhead, as shown in Tab. 8.

TABLE 7. PERFORMANCE ACROSS DIFFERENT LATENT CODE
RELIABILITIES.

Strategy Time (s) ↓ Type II (%) ↑ OODD (%) ↓

Random Gaussian 290 82.78 3.1
K2 Test 293 82.47 2.4

K2 Test + MTCNN 256 84.42 1.4

Bold indicates the superiority of our strategy.

TABLE 8. PERFORMANCE (%) FOR VARYING VALUES OF N .

Top N Time (s) ↓ Type II (%) ↑ OODD (%) ↓

1 189 81.06 1.9
3 256 84.42 1.4
5 289 85.21 0.9

Bold indicates the highest performance, showing that increasing N en-
hances reconstruction accuracy but increases computational cost.

TABLE 9. PERFORMANCE (%) WITH AND WITHOUT THE RANKED
ADVERSARY STRATEGY. “NO” INDICATES THAT ALL SELECTED N

LATENT CODES ARE PROCESSED, AND THE RECONSTRUCTION WITH
THE HIGHEST SIMILARITY IS SELECTED AS THE FINAL OUTPUT.

Ranked Time (s) ↓ Type II (%) ↑ OODD (%) ↓

256 84.42 1.4
530 85.31 1.0

Bold indicates the highest performance, demonstrating that the proposed
ranked adversary marginally reduces attack accuracy while significantly
enhancing time efficiency.

Ranked Adversary. We propose the Ranked Adversary
strategy in Sec. 2.6 to efficiently identify a satisfactory,
rather than optimal, solution for model inversion. By priori-
tizing sequential initialization and allowing early termination
once a predefined condition is met, this strategy reduces
unnecessary computations. As shown in Tab. 9, it signifi-
cantly lowers computational cost with only a minor trade-
off in Type II accuracy and OODD performance, effectively
balancing efficiency and attack performance.

Attack Threshold. We define the attack threshold τA in
Sec. 2.6.1 as the criterion for successful manipulation, where
the reconstructed image achieves sufficient similarity to the



TABLE 10. PERFORMANCE (%) ACROSS VARYING ATTACK
THRESHOLD τA .

Threshold τA Time (s) ↓ Similarity ↑ Type II (%) ↑ OODD (%) ↓

0.97 213 0.9712 84.23 1.9
0.98 256 0.9794 84.42 1.4
0.99 442 0.9861 84.98 1.8

Bold indicates the highest performance, showing that increasing τA
enhances Type II accuracy but substantially raises computational cost and
the risk of OODD.

TABLE 11. PERFORMANCE (%) UNDER VARYING PERTURBATION
CONSTRAINTS.

Norm Magnitude ϵ Time(s)↓ Similarity↑ Type II(%)↑ OODD(%)↓

L2 30 455 0.9707 81.49 1.5
L2 35 256 0.9794 84.42 1.4
L2 40 191 0.9816 86.11 3.2
L∞ 0.15 260 0.9791 75.28 3.1

Bold denotes the highest performance, indicating that the L2-norm con-
straint yields the best results. Increasing ϵ accelerates the attack and
improves Type II accuracy, but also introduces more noise, increasing the
risk of OODD.

target. This threshold also serves as the early termination
criterion in the ranked adversary strategy. τA must satisfy
τA ≫ τF for robustness. However, excessively high values
of τA (e.g., τA = 1) lead to unnecessary computational cost
and the risk of overfitting.

For the target model, PartialFace [7], used in this abla-
tion study, the maximum embedding similarity achievable by
real facial images is 0.98. As shown in Tab. 10, τA < 0.98
results in faster model inversion, whereas τA > 0.98 im-
proves Type II accuracy at the cost of increased computa-
tional overhead. Additionally, higher τA values raise the risk
of being detected as out-of-domain due to greater distortion
in the reconstructed images. These results demonstrate that
our proposed strategy (Sec. 2.6.1), which defines τA as the
maximum embedding similarity achievable by real facial
images in the target model, is optimal.

Perturbation Constraint. As discussed in Fig. 4, the
L2-norm constrained adversary better preserves normality
compared to the L∞-norm adversary, leading to improved
reconstruction fidelity. This is further validated by Tab. 11,
where L2-norm (ϵ = 35) and L∞-norm (ϵ = 0.15)
achieve similar similarity values, yet the L2-norm attack
demonstrates significantly superior performance. Addition-
ally, Tab. 11 and Fig. 13 show that while increasing the
attack magnitude ϵ enhances Type II accuracy and acceler-
ates the attack, it also introduces more artifacts, raising the
likelihood of detection as out-of-domain inputs.

6.2. Out-of-Domain Detection (OODD)

We propose OODD framework in Sec. 3, integrating two
failure cases: matching failure and face detection failure.
Both criteria must be considered together, as relying on a
single strategy alone is insufficient for effective OODD. As
shown in Tab. 12 (see red values), using only one strategy

Target L2 ! = 30 L2 ! = 35 L2 ! = 40

Figure 13. Larger perturbation magnitudes lead to increased distortion due
to more pronounced noise and diminished naturalness in the generation.

TABLE 12. OODD RATE (%) WHEN JOINTLY CONSIDERING BOTH
FAILURE CASES (OURS) VERSUS INDIVIDUAL STRATEGIES.

Target Dataset Matching Detection OursModel Failure Failure

FaceNet
CelebA 0.6 1.7 2.3
LFW 3.4 1.7 4.9

ImageNet 49.6 57.9 91.3

ArcFace
CelebA 0.0 4.4 4.4
LFW 0.2 3.2 3.4

ImageNet 1.6 98.4 98.9

DCTDP
CelebA 0.0 4.9 4.9
LFW 0.2 3.6 3.7

ImageNet 20.9 81.6 95.5

PartialFace
CelebA 0.1 1.6 1.7
LFW 0.8 0.6 1.4

ImageNet 55.3 57.0 95.2

Red indicates instances of failed detection (insufficient detection rates),
highlighting the superiority of our joint strategy over individual strategies.

results in an OODD rate of approximately 50% for out-of-
domain inputs (i.e., ImageNet), highlighting its limitations.

7. Conclusion

In this paper, we introduce DiffUMI, the first approach
to leverage diffusion models for unconditional facial image
generation, achieving a training-free model inversion attack
for open-set face recognition models. This eliminates the
need for training separate generators for different models,
addressing a key limitation of previous methods. Addition-
ally, we propose OODD, a novel out-of-domain input detec-
tion framework that operates solely on feature embeddings.
Our results demonstrate that DiffUMI achieves state-of-
the-art performance in model inversion attacks, making it
a powerful tool for evaluating the privacy vulnerabilities
of face recognition models. Moreover, we are the first to
systematically analyze the impact of latent code reliability
on generation fidelity and propose an automated method for
selecting highly reliable latent codes. We also provide new
insights into the most effective adversarial attack strategies
for manipulating latent space, rather than focusing on spe-
cific attack algorithms.



For future work, we aim to extend DiffUMI to broader
domains, including classification models for datasets such as
CIFAR-10, ImageNet, and medical imaging. Additionally,
we intend to evaluate the potential defenses against our
model inversion attack. We also plan to develop objective
evaluation metrics to replace human assessment, as sub-
jective judgments, such as “Do these two images belong
to the same person?”, are inherently inconsistent. In ex-
tending OODD, we would like to investigate its potential
applications in data poisoning detection and defense against
malicious inputs. Additionally, we consider developing a
novel OODD framework independent of model inversion to
enhance its applicability and robustness.
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Appendix A.
Training-Dependent Attacks and Naive APGD

As shown in Tab. 1, MAP2V [9] is the most recent and
relevant training-free baseline for open-set face recognition.
We also compare with training-dependent attacks [17], [27]
in Tab. 13 and Fig. 14, though they are not primary base-
lines due to a key limitation: each target model requires a
separately trained generator, leading to high computational
cost. We exclude closed-set face recognition attacks, as they
rely on class labels rather than target embeddings and thus
follow different assumptions.

As shown in Tab. 13, we evaluate two training-dependent
attacks [17], [27], each using a generator trained specifically
for the target model ArcFace [5]. The training (FFHQ
[49]) and testing (LFW [40]) datasets are disjoint, ensur-
ing an open-set setting. In contrast, both MAP2V [9] and
our DiffUMI are training-free. Despite the advantage of
training-dependent methods, DiffUMI performs comparably
to DSCasConv [17] and significantly outperforms the others.

Despite DSCasConv’s good reconstruction accuracy, it
faces substantial limitations. Specifically, it took 1.5 days
of training on dual A100 80GB GPUs and is constrained to



TABLE 13. COMPARISON OF DIFFUMI WITH BENCHMARK ATTACK METHODS.

Attack Generator Training-
Free Dataset Target

Model

Test Model

FaceNet ArcFace DCTDP PartialFace Avg.

Type I Type II Type I Type II Type I Type II Type I Type II Type I Type II

DSCasConv [17] DeconvNet

LFW ArcFace

97.10 90.42 100.00 99.03 99.90 97.16 99.50 93.21 99.13 94.96
Shahreza et al. [27] StyleGAN 61.00 49.33 98.10 77.79 84.10 59.41 74.00 52.24 79.30 59.69

MAP2V [9] StyleGAN 67.60 60.40 100.00 99.42 97.10 83.78 91.20 73.27 88.98 79.22
APGD (Random)∗ DDPM 69.10 61.33 100.00 99.56 92.30 75.40 84.50 66.51 86.48 75.70

APGD (Top 1/1000)∗ DDPM 78.00 71.70 100.00 99.63 96.00 83.91 90.70 76.59 91.18 82.96
Ours DDPM 96.00 91.03 100.00 99.64 99.60 95.88 98.60 92.33 98.55 94.72

∗denotes direct application of APGD to the DDPM latent space without additional strategies. “Top 1/1000” refers to initialization from the best latent
code among 1,000 random samples, while “Random” indicates no pre-selection (i.e., Top 1/1). Gray cells indicate settings where the target and test
models are the same. Our training-free attack matches the performance of the training-dependent DSCasConv, while outperforming other baselines.

generating 112× 112 resolution images for a specific target
model. Moreover, DSCasConv produces the lowest visual
fidelity (see Fig. 14), with blurred features and limited facial
detail. These limitations highlight the value of training-free
approaches and underscore the advantages of leveraging
generative models such as GANs or diffusion models.

We also compare our method with a baseline that di-
rectly applies APGD to the latent space of diffusion models.
As shown in Tab. 13 and Fig. 14, this naive strategy achieves
near-perfect accuracy (nearly 100%) on the target model
but suffers from severe adversarial artifacts and overfitting,
resulting in 11.97%–29.7% lower Type II accuracy than our
method on test models. These results underscore the novelty
of our approach, which manipulates unconditional diffusion
generation in a principled and transferable manner, rather
than merely adapting existing adversarial methods.

Appendix B.
Preliminary

B.1. Image Generation via DDPM

Denoising Diffusion Probabilistic Models (DDPM) [42]
are generative models that refine images by reversing a
diffusion process. Pretrained DDPMs have been applied to
unconditional image generation of faces [37], CIFAR-10
[52], [53], and ImageNet [41], [54] from Gaussian distri-
butions. In the forward diffusion process, Gaussian noise is
progressively added to a data sample x0 over T time steps,
generating a sequence {xt}Tt=1.

q(xt | xt−1) = N (xt;
√
αtxt−1, (1− αt)I), (23)

where αt = 1 − βt and βt is a predefined noise variance
schedule. The marginal distribution of xt is given by:

q(xt | x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I), (24)

where ᾱt =
∏t

s=1 αs. The reverse process aims to denoise
xT ∼ N (0, I) back to a realistic image x0 using a learned
model pθ:

pθ(xt−1 | xt) = N (xt−1;µθ(xt, t),Σθxt, t)). (25)

For image generation, the pretrained DDPM learns a
denoising function ϵθ, parameterized by a neural network:

ϵθ(xt, t) ≈ ϵ ∼ N (0, I), (26)

optimized through the objective:

LDDPM = Ex0,ϵ,t

[
∥ϵ− ϵθ(xt, t)∥2

]
. (27)

This noise-aware iterative refinement process enables high-
fidelity image generation.

We define the final denoised image x0 as the recon-
structed image x̂, applying a pretrained DDPM as a gener-
ator G(·) to an initial Gaussian noise sample xG:

x̂ = G(xG). (28)

Here, xG is a latent code sampled from a Gaussian distri-
bution, which G(·) refines into a high-fidelity image x̂.

B.2. Open-Set Face Recognition

Open-set face recognition systems [4]–[7] map facial
images to embeddings and classify image pairs as the same
identity if their similarity exceeds a threshold, typically
chosen to balance false positives or minimize the equal error
rate.

Let F (·) be the embedding function of a face recogni-
tion model that maps a facial image x to a d-dimensional
feature embedding z, encoding identity-specific attributes
while ensuring robustness to variations in lighting, pose, and
expression. Formally:

z = F (x), z ∈ Rd, (29)

where d is determined by the model’s architecture and
training process.

Feature embeddings facilitate identity verification or
recognition by measuring similarity using metrics such as
cosine similarity or Euclidean distance. Given two embed-
dings, z1 = F (x1) and z2 = F (x2), their similarity score
is computed as:

S(z1, z2) =
z1 · z2

∥z1∥∥z2∥
, (30)
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Figure 15. The algorithm of the proposed two-stage latent code genera-
tion process. Initially, D’Agostino’s K2 test K(·) [43]–[45] evaluates a
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image x̂, with face detection confidence pD surpassing the threshold τD .
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Figure 16. Algorithm for selecting the top N latent codes based on the
highest embedding similarity between their reconstructions and the target.

for cosine similarity. If S(z1, z2) ≥ τF , the images are
classified as belonging to the same identity. In this work,
τF denotes the predefined similarity threshold set at the
minimum equal error rate.

B.3. D’Agostino’s K-Square Test

Given a random latent code xG, the K2 test function
K(·) [43]–[45] quantifies deviations from normality based
on skewness and kurtosis, producing a probability value:

pK = K(xG) = 1−Ψ2(Y
2
1 + Y 2

2 ), (31)

where Y1 and Y2 are the standardized skewness and kurtosis
statistics:

Y1 =
b1 − µ1

σ1
, Y2 =

b2 − µ2

σ2
. (32)

Here, b1 and b2 represent the sample skewness and excess
kurtosis, while µ1, σ1, µ2, and σ2 denote their respective
means and standard deviations under normality. The func-
tion Ψ2(·) is the cumulative distribution function of the chi-
squared distribution with two degrees of freedom.

B.4. Face Detection via MTCNN

Multi-Task Cascaded Convolutional Neural Networks
(MTCNN) [46] uses a three-stage cascaded architecture:
(i) The Proposal Network (P-Net) scans the image across
multiple scales to generate candidate face regions. (ii) The

Refinement Network (R-Net) filters false positives and re-
fines bounding boxes. (iii) The Output Network (O-Net)
further refines detections and predicts five facial landmarks.
The final detection confidence is obtained through:

pD = D(x̂) = fO-Net(fR-Net(fP-Net(x̂))). (33)

Appendix C.
Algorithms of DiffUMI

The step-by-step algorithm of the proposed model in-
version attack, DiffUMI, is detailed in Figs. 15 to 17.
The key notations and their corresponding definitions are
summarized in Tab. 14.

Appendix D.
More Results in Terms of Type I Accuracy

In Sec. 4, we introduce Type I and Type II accuracy
as metrics for assessing the effectiveness of privacy at-
tacks. This study primarily focuses on Type II accuracy,
which quantifies the similarity between reconstructed facial
images and images from the target identity, excluding the
target image itself. Type II accuracy offers a more rigorous
evaluation by mitigating the risk of overfitting to the target
image, whose embedding is used as a reference during the
attack. For further validation, we also report Type I accuracy
results, which reflect the strength of the inversion attack and
highlight potential privacy vulnerabilities. Specifically, Type
I accuracy is the rate at which the reconstructed image x̂
matches the target face xT in the feature space of the face
recognition model F (·):

Type I =
∑I

i=1 I
(
S(F (x̂i), F (xT

i )) ≥ τF
)

I
, (34)

where I(·) and S(·, ·) represent the indicator and cosine
similarity functions, respectively. I is the total number of
attack samples, and τF is the similarity threshold for face
recognition.

The results in Tabs. 15 and 16 reinforce our main
paper’s conclusion that all tested face recognition models are
vulnerable to our privacy attack. Among them, FaceNet, the
oldest standard model, exhibits the highest resistance, under-
scoring the limitations of existing privacy-preserving tech-
niques. Our approach consistently outperforms the bench-
mark MAP2V attack [9], achieving higher Type I accuracy
across all scenarios. Notably, Type I accuracy exceeds Type
II accuracy by 3.83% to 15.79%, demonstrating that our pri-
mary evaluation metric is more rigorous and comprehensive.



TABLE 14. KEY NOTATIONS AND THEIR CORRESPONDING DEFINITIONS.

Notation Definition Remark Reference

F (·) Embedding function (Face recognition)

Sec. 2.3

xT Target facial image Unknown to Attackers
zT Target embedding, transformed from the target face Known to Attackers
x̂ Reconstructed image Attack Output
ẑ Feature embedding of the reconstructed image

G(·) Generative function (DDPM) Pretrained
xG Latent code, drawn from a random Gaussian distribution Attack Input
x′
G Manipulated latent code
δ Adversarial perturbations on the latent code

|| · ||p Lp-norm
ϵ Perturbation magnitude Attack Setting

S(·, ·) Similarity function (cosine)
L Objective function
τF Similarity decision threshold

K(·) Gaussian normality test function (K2 test)
Sec. 2.4.1pK Gaussian normality (the probability of following a normal distribution)

τK Threshold of Gaussian normality Attack Setting

D(·) Face detection function (MTCNN)
Sec. 2.4.2pD Face detection confidence score

τD Threshold of detection confidence Attack Setting

V Volume of reliable latent codes (Step (a)) Attack Setting
Sec. 2.5N Top N selection (Step (b)) Attack Setting

Q Query Efficiency

tmax Maximum iterations per adversarial attack Attack Setting

Sec. 2.6Qmax Maximum number of queries (only for black-box attacks) Attack Setting
τA Attack threshold (sufficient similarity) Attack Setting
⌊·⌋ Floor function

I(·) Indicator function

Sec. 4I Total number of attack samples
xj ̸=T Facial images distinct from the target, associated with the same identity
J Total number of xj ̸=T for each identity

YES

…

…

YES

NO

NO

Adversary
𝑥!!
" = 𝑥!! + 𝛿#

Top-1 Laten Code from Step (b)
𝑥!!

Top-2 𝑥!"

Top-N 𝑥!#

Face Generation
𝑥%# = 𝐺(𝑥!!

" )

Target Embedding
𝑧$

ℒ# ≥ 𝜏%?

…

ℒ& ≥ 𝜏%?

Output
𝑥% = 𝑥%#

Output
𝑥% = 𝑥%&

Output
𝑥% = arg	max

'($
𝑆(𝑧̂), 𝑧$) , 𝑛 = 1,… ,𝑁

Face Recognition
𝑧̂# = 𝐹(𝑥%#) Similarities

ℒ# = 𝑆(𝑧̂#, 𝑧$)

Figure 17. Algorithm for the proposed Ranked Adversary in latent code manipulation. This process sequentially optimizes the top N initial latent codes,
ranked in Step (b), through adversarial manipulation to achieve the objective defined in Eq. (7) using the objective function in Eq. (6). The process
concludes once Ln ≥ τA, n = 1, . . . , N for any manipulated latent code. If no code meets this criterion, the reconstruction with the highest Ln is
selected as the final output.



TABLE 15. TYPE I ACCURACY (%) OF DIFFUMI ACROSS FOUR FACE
RECOGNITION MODELS.

Dataset Target Test Model Avg.Model FaceNet ArcFace DCTDP PartialFace

CelebA

FaceNet 100.0 96.7 97.9 94.9 97.38
ArcFace 99.9 100.0 100.0 99.9 99.95
DCTDP 99.3 99.5 100.0 99.9 99.68

PartialFace 97.7 99.2 99.6 100.0 99.13

LFW

FaceNet 100.0 87.0 93.4 80.8 90.30
ArcFace 96.0 100.0 99.6 98.6 98.55
DCTDP 96.7 99.7 100.0 97.8 98.55

PartialFace 90.9 98.7 96.2 100.0 96.45

Gray cells indicate cases where the target and test models are identical.
Green and Red highlight the most and least secure models, respectively,
based on the lowest and highest Type I accuracy.

TABLE 16. TYPE I ACCURACY (%) OF OUR DIFFUMI ACROSS FOUR
FACE RECOGNITION MODELS, COMPARED TO THE BENCHMARK ATTACK

MAP2V [9].

Dataset Attack Target Model
FaceNet ArcFace DCTDP PartialFace

CelebA

Original1 100.00 100.00 100.00 100.00

Random2 4.40 1.30 4.20 10.10
MAP2V 89.75 95.03 96.75 97.98

Ours 97.38 99.95 99.68 99.13

LFW

Original1 100.00 100.00 100.00 100.00

Random2 0.70 0.00 0.20 0.50
MAP2V 90.05 88.98 92.50 90.54

Ours 90.30 98.55 98.55 96.45
1 Upper bound corresponding to true target faces.
2 Lower bound referring to randomly generated facial images without a

specific strategy.
Bold indicates the highest performance among attack methods, with our

approach exceeding MAP2V attack by up to 9.57% in Type I accuracy.
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