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Abstract—Data from domains such as social networks, health-
care, finance, and cybersecurity can be represented as graph-
structured information. Given the sensitive nature of this data
and their frequent distribution among collaborators, ensuring
secure and attributable sharing is essential. Graph watermarking
enables attribution by embedding user-specific signatures into
graph-structured data. While prior work has addressed random
perturbation attacks, the threat posed by adversaries leverag-
ing structural properties through community detection remains
unexplored. In this work, we introduce a cluster-aware threat
model in which adversaries apply community-guided modifica-
tions to evade detection. We propose two novel attack strategies
and evaluate them on real-world social network graphs. Our
results show that cluster-aware attacks can reduce attribution
accuracy by up to 80% more than random baselines under
equivalent perturbation budgets on sparse graphs. To mitigate
this threat, we propose a lightweight embedding enhancement
that distributes watermark nodes across graph communities.
This approach improves attribution accuracy by up to 60%
under attack on dense graphs, without increasing runtime or
structural distortion. Our findings underscore the importance of
cluster-topological awareness in both watermarking design and
adversarial modeling.

I. INTRODUCTION

Many datasets are structured as graphs, representing rela-
tionships in various domains, including social networks [1],
[2], biomedical research [3], and cryptographic applica-
tions [4], [5]. These graphs often contain sensitive information,
making their secure storage, sharing, and analysis a criti-
cal concern. Researchers and organizations frequently share
graph-structured data with trusted parties for collaborative
analysis and real-world applications. However, the sensitive
nature of this data raises significant security risks, including
unauthorized access and data leakage among distributed enti-
ties. To mitigate these threats, data owners must ensure their
datasets remain protected against adversarial modifications and
that any unauthorized redistribution can be detected.

Watermarking, the process of embedding a detectable sig-
nature within an object, has been a widely studied area,
including imaging [6], [7], audio [8]–[10], software [11], [12],
databases [13]–[15], and machine learning models [16]–[19].
Graph-structured data is no exception; in a graph watermark-
ing, a subgraph is embedded as a signature within the original
graph, allowing for verification by extracting the watermark
during detection [20]. While graph watermarking presents a
promising solution for protecting against unauthorized access
and redistribution, it remains a significantly understudied area,

notably in undirected graphs [20]–[22]. Moreover, existing wa-
termarking schemes primarily consider random edge flipping
attacks as the main adversarial threat model, failing to consider
a more sophisticated adversary who can leverage the inherent
community structure of graphs to maximize the effectiveness
of an attack.

Most real-world graphs exhibit community structures [23],
where nodes naturally form densely connected subgroups
(clusters). An adversary who recognizes and understands these
structures can develop targeted attack strategies that selectively
modify edges within or between clusters to compromise graph
watermark integrity more effectively than random edge modi-
fications. However, existing literature does not explicitly con-
sider adversaries that exploit community structures or employ
clustering-based strategies when attempting to compromise
graph watermarks. In Table I, we summarize the threat models
described in existing graph watermarking literature.

The primary goal of this work is to address the notable gap
in existing literature by introducing a clustering-aware threat
model for graph watermarking. Our empirical analysis demon-
strates that an adversary who considers community structure,
rather than relying on random edge modifications, can more
effectively evade detection, particularly when detection relies
on exact subgraph extraction. To address this, we propose
an alternative similarity-based detection strategy that remains
consistent with the principles of watermark integrity, but
tolerates more structural perturbations. To validate this claim,
we focus on the earliest and most structured watermarking
approach, introduced by Zhao et al. (2015) [20], which is
regarded as the first practical system for embedding subgraphs
in large graph-based networks. This watermarking scheme
features a well-defined embedding-extraction methodology,
making it a logical baseline for evaluating novel attack strate-
gies.

Our key contributions can be summarized as follows:
1) We introduce a novel cluster-aware threat model for

graph watermarking, where adversaries exploit commu-
nity structure to add or remove edges. These attacks
maintain distortion of random flipping but are signifi-
cantly more effective at evading detection.

2) We develop a structure-based similarity approach for
attribution, avoiding reliance on subgraph extraction.

3) We propose a robust watermark embedding strategy
that distributes nodes across clusters to mitigate cluster-
aware attacks without modifying the detection pipeline.
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Paper (Author) Random Edge Flipping Collusion Attacks Graph Anonymization Clustering-Aware Attacks
Zhao et al. (2015) [20] ✓ ✓ ✓ ✗
Eppstein et al. (2016) [21] ✓ ✗ ✓ ✗
Bourrée et al. (2025) [22] ✓ ✓ ✗ ✗

TABLE I: Overview of adversarial threat models addressed in existing graph watermarking literature.

4) We evaluate our approach on two real-world graphs,
showing that cluster-aware attacks can reduce detection
accuracy by up to 80% compared to random edge
flipping while our mitigation improves accuracy by 30-
60% under strong perturbations.

As graph-based data becomes increasingly critical to both
the academic community and industry, ensuring the ability to
trace and protect such data against evolving attack strategies
is paramount. Our findings highlight that relying solely on
random bit-flipping attack robustness is insufficient and that
detection schemes must adapt to account for structure-aware
adversarial behavior without relying purely on brittle exact-
matching techniques. To the best of our knowledge, this
work represents the first practical expansion of the graph
watermarking threat model, demonstrating key vulnerabilities
and introducing new detection metrics. By addressing these
gaps, we aim to establish a more robust benchmark for future
graph watermarking designs.

II. BACKGROUND AND RELATED WORK

In this section, we review prior related work on graph
watermarking and graph clustering methodologies.

A. Graph Watermarks

Graph watermarking is a subfield of digital watermarking
that focuses on embedding signatures within graph-structured
data. The goal of graph watermarking is to enable ownership
verification and unauthorized redistribution detection while
preserving the utility of the underlying graph. Formally, wa-
termarking techniques embed a signature into an object, in
this case, a graph G, producing a watermarked graph G′. The
embedded signature is designed to be robust to modifications
of G′ and verifiable through a detection process that extracts
and verifies its presence from a potentially modified graph Ĝ.

Embedding watermarks in graph-structured data poses
unique challenges. Graphs are inherently relational and exhibit
complex structural properties, such as sparsity, community
structure, and scale-free degree distributions. These charac-
teristics constrain how signatures can be embedded without
significantly distorting the graph’s statistical properties or
usability. As a result, graph watermarking schemes must
carefully balance robustness, imperceptibility, and computa-
tional efficiency. Despite the increasing importance of graph-
structured data, research on graph watermarking remains rela-
tively sparse. To the best of our knowledge, only three practical
watermarking schemes have been proposed in the literature:
Zhao et al. (2015) [20], Eppstein et al. (2016) [21], and
Bourrée et al. (2025) [22].

The earliest and most widely recognized graph watermark-
ing scheme was proposed by Zhao et al. [20]. Their work

introduced the first practical method for embedding unique,
user-specific watermarks into large graph datasets. The main
idea of their scheme is to embed a randomly generated
subgraph watermark W into the original graph G, resulting in
a watermarked graph G′. The embedding process is performed
in-band by selecting a subgraph S within G and modifying
its structure to match the watermark graph W . This design
preserves graph connectivity and limits structural distortion
by avoiding the attachment of external subgraphs. The ex-
traction process relies on regenerating W using a secret key
and searching for its existence within a potentially modified
graph Ĝ through guided subgraph matching. To evaluate the
robustness of the watermark, Zhao et al. consider both a
single-attacker model and a collusion attack model. The single-
attacker model assumes an adversary who randomly modifies
edges in the watermarked graph, while a collusion attack
model involves multiple watermarked copies being compared
to identify discrepancies and remove the watermark. However,
their scheme assumes that adversaries act randomly or use
naive collusion strategies. Notably, the threat model does not
account for attackers who exploit the community structure or
clustering patterns inherent in many real-world graphs. This
would leave the watermark vulnerable to more sophisticated
structural attacks.

Building on the work of Zhao et al., Eppstein et al. [21]
proposed a framework and algorithmic foundations for graph
watermarking. Their works extends Zhao et al.’s system-level
approach by providing theoretical models and formal security
guarantees regarding the feasibility and robustness of graph
watermarking. Their scheme introduces an embedding process
that modifies selected edges within the original graph G to en-
code a watermark identifier, resulting in a watermarked graph
G′. Unlike Zhao et al., Eppstein et al. extend the embedding
process in two random graph models, the Erdös-Rényi model1

and a random power-law graph model2, allowing them to
theoretically analyze conditions under which watermarking is
feasible and computationally secure. Specifically, they utilize
structural properties of high- and medium-degree vertices,
flipping edges between them to encode watermark bits while
minimizing distortion. The extraction process labels vertices
based on degree information and adjacency patterns, enabling
the identification of the embedded watermark from a possibly
modified graph Ĝ.

The main improvement over Zhao et al.’s watermarking
scheme is that Eppstein et al. formalize the notion of adversar-

1The Erdös-Rényi model generates graphs by connecting node pairs with
a fixed probability, resulting in homogeneous degree distributions.

2Power-law graph models generate graphs with heterogeneous degree
distributions, where a few nodes have high degrees and many nodes have
low degrees, mimicking real-world networks.



ial advantage and provide provable security guarantees under
specific random graph assumptions. They additionally intro-
duce distance-based similarly measures to quantify adversarial
modifications and evaluate the robustness of their scheme
against arbitrary and random edge-flipping adversaries. How-
ever, similar to prior work, their threat model is limited to
generic edge-flipping attacks and does not consider adversaries
who can exploit higher-order structural information.

The most recent contribution to graph watermarking is
the FFG scheme proposed by Bourrée et al. [22]. Unlike
prior schemes which rely on specific subgraph matching or
isomorphism techniques, FFG adapts image watermarking
techniques to the graph domain. Specifically, the scheme treats
the adjacency matrix of graph G as an image and embeds a
watermark in the spectral domain using a Fourier transform-
based approach. The embedding process first generates a
watermark key sampled from a Gaussian distribution, which
is inserted into the low-frequency components of the Fourier
transform of G’s adjacency matrix. After modifying these
components, the inverse Fourier transform is applied, and
the resulting matrix is binarized and symmetrized to produce
the watermarked graph G′. The extraction is performed by
comparing the spectral difference between a suspected graph
Ĝ and the original graph, using a similarity threshold to
determine the presence of the watermark.

FFG surpasses prior work in terms of computational ef-
ficiency. While Zhao et al. and Epstein et al. rely on NP-
complete subgraph matching operations during extraction,
FFG leverages spectral analyses with a time complexity of
O(N2 logN), making it scalable to graphs with millions of
nodes. Additionally, Bourrée et al. empirically demonstrate
that FFG achieves comparable or improved robustness to ran-
dom edge-flipping attacks relative to prior schemes. However,
similar to the prior work, the threat model considered in FFG
is limited to random edge modifications and does not address
adversaries who exploit structural properties.

B. Clustering in Graphs

Clustering refers to the process of partitioning a set of
objects into groups based on a similarity metric. In the
context of graphs, clustering or community detection, aims
to identify densely connected subgroups of vertices (or nodes)
that are sparsely connected to the rest of the graph. Given
a graph G = (V,E) where V is the set of vertices and E
is the set of edges, clustering divides V into disjoint subsets
C = {C1, C2, . . . , Ck} such that vertices within each cluster
Ci are more densely connected to one another than to vertices
outside the cluster.

Community structures are an inherent property of many
real-world graphs [23], and identifying these communities
allows for graph analysis. A widely used metric for evaluating
the quality of a clustering is modularity [24], which measures
the density of edges within clusters compared to a random
graph with the same degree distribution. Modularity is defined

as:
Q =

1

2m

∑
i,j

(
Aij −

didj
2m

)
δ(Ci, Cj) (1)

where Aij is the adjacency matrix of G, di and dj are the
degrees of vertices i and j, m = |E| is the total number of
edges, and δ(Ci, Cj) is 1 if vertices i and j belong to the same
cluster, and 0 otherwise.

While clustering techniques provide insights into the struc-
tural properties of graphs, they can also inform adversarial
strategies and expose vulnerabilities in graph-based systems.
One prominent application of clustering in adversarial contexts
is in graph de-anonymization attacks. For example, in social
networks, data can be anonymized by removing names or
obfuscating user IDs. However, an adversary can analyze
community structures, such as friend groups or common in-
terests, and cross-reference them with auxiliary datasets to re-
identify users [25]. Additionally, clustering has been leveraged
in adversarial graph manipulation attacks where adversaries
have targeted graph neural networks (GNNs) by modifying
community structures to poison the graph and degrade GNN
performance [26]. These techniques involve designing targeted
perturbations that modify specific regions of the graph based
on communities. This enables the adversary to maximize
disruption while minimizing the distortion of the attack.

As adversaries may exploit clustering to guide attacks,
there are many algorithmic strategies available for discovering
community structure in graphs. Each algorithm differs in its
approach to clustering and reliance on user-specified param-
eters. These algorithms can be categorized based on whether
they require explicit hyperparameter tuning. Clustering meth-
ods, such as spectral clustering [27] or Louvain/Leiden algo-
rithms [28], [29], require the user to specify parameters such
as the number of clusters or a resolution parameter. The choice
of these parameters can significantly influence the clustering
output and requires optimization of an objective function,
such as modularity. The effectiveness therefore depends on
the appropriate parameter selection, which can be nontrivial
in an adversarial setting.

Other algorithms, such as greedy modularity maximiza-
tion [24] and label propagation [30], operate without the
need for hyperparameter tuning. In greedy modularity max-
imization, the algorithm directly optimizes the modularity
score to detect communities, while label propagation assigns
community labels based on iterative majority voting from
neighboring nodes. The absence of tunable parameters in these
algorithms makes them more attractive for adversarial use, as
an attacker does not require prior knowledge of the graph’s
structural properties to apply them effectively. In our threat
model, we leverage these parameter-free clustering algorithms
to demonstrate that an attacker can conduct a successful
attack without the need for fine-grained tuning or auxiliary
information.

III. BASELINE GRAPH WATERMARKING

To validate the effectiveness of our proposed threat model
and mitigation strategy, we focus on the earliest practical



graph watermarking scheme introduced by Zhao et al. [20].
This method embeds a user-specific watermark subgraph into
a larger graph while minimizing structural distortion. The
framework is composed of two key watermark components:
embedding and extraction. To our knowledge, it represents the
first practical implementation of watermarking techniques for
graph-structured data.

A. Watermark Embedding

The embedding process consists of four main steps: (I)
generating a random generator seed Ωi, (II) generating the
watermark graph Wi, (III) selecting the placement of Wi

within the original graph G, and (IV) embedding Wi into a
subgraph S of G.

(I) Generating a random generator seed Ωi. A random
seed Ωi is derived from user i’s RSA key pair ⟨Ki

pub,K
i
priv⟩

and a graph-specific key KG held by the data owner. The
framework begins by sending a timestamp T to the user,
who then signs it using their private key Ki

priv to produce the
signature Ki

priv(T ). This signature is then verified using the
user’s public key Ki

pub. Once verified, the data owner combines
Ki

priv(T ) with KG to generate Ωi. This setup ensures neither
the user or the data owner can independently compute Ωi.

(II) Generating the watermark graph Wi. The watermark
graph Wi is generated as an Erdös-Rényi random graph
G(k, p) using Ωi as the random seed. The graph consists of
k nodes and includes each potential edge independently with
probability p. To ensure uniqueness and compactness of the
watermark, Zhao et al. configure p = 1

2 and define the node
count as k ≥ (2 + δ) logq n, where n = |V | is the number of
nodes in the original graph G, q = 1

max(p,1−p) , and δ > 0 is a
small constant. This choice of parameters minimizes both the
number of nodes and the average edge count, thereby reducing
distortion and improving robustness.

(III) Selecting the watermark placement in G. A sub-
graph S of G is selected to host the watermark. Specifically,
k nodes are chosen from G based on their local structure rather
than metadata, to mitigate node ID anonymization. Each node
is assigned a Node Structure Description (NSD), defined as
a sorted list of its neighbors’ degrees. For example, a node
with neighbors of degrees 1, 7, 4, and 2 would have an NSD
of [1, 2, 4, 7]. These NSDs are hashed using a secure hash
function (e.g., SHA-1), and Ωi is used to generate k target
hash values. Nodes whose hashed NSDs match these values
are selected. To avoid collisions, nodes are deterministically
ordered (e.g., by original ID), and selection proceeds. This
results in an ordered node set X = {x1, x2, ..., xk}, and the
corresponding subgraph S = G[X].

(IV) Embedding the watermark graph Wi into S. The
final step embeds Wi into the selected subgraph S = G[X]
by mapping its nodes {v1, ..., vk} to the nodes {x1, ..., xk}
in S, establishing a one-to-one correspondence f : vi 7→ xi.
Each edge in Wi is then embedded into S using an XOR-
based edge-flipping operation. For each possible edge (vi, vj),
if an edge exists in Wi, the corresponding edge (xi, xj) in
S is flipped (i.e., added if absent or removed if present). If

no edge exists in Wi, the corresponding edge in S remains
unchanged. This operation encodes the structure of Wi into
S while minimizing distortion to the rest of the graph. To
ensure subgraph connectivity, edges are also explicitly added
between consecutive nodes in the ordered set X , forming a
path (x1, x2), (x2, x3), ..., (xk−1, xk). The resulting subgraph,
denoted SWi , replaces S in the original graph, producing the
final watermarked graph GWi . Before distribution, the graph
is anonymized by randomly reassigning node IDs to further
obfuscate the watermark.

B. Watermark Extraction

To determine whether a user-specific watermark subgraph
Wi is embedded in a target graph G′, the extraction process
includes three main steps: (I) regenerating the watermark,
(II) identifying candidate watermark nodes in G′, and (III)
detecting the embedded subgraph SWi within G′.

(I) Regenerating the watermark. Given the original graph
G, the graph key KG, and the user’s signed timestamp
Ki

priv(T ), the data owner reconstructs the random seed Ωi used
during the embedding. Using this seed, the owner regenerates
the watermark graph Wi, identifies the k ordered node set
X = {x1, x2, . . . , xk} used in the original embedding, com-
putes their corresponding NSD labels, and reconstructs the
subgraph SWi that was embedded in the watermarked graph
GWi .

(II) Identifying candidate nodes in G′. Using the NSD
labels of the k nodes in X , the data owner searches G′ for
all nodes whose NSD labels match those of xj ∈ X . This
results in a candidate set Cj for each node xj which contain
all possible matches in G′. The candidate set may be large due
to multiple nodes in G′ sharing the same NSD label. To reduce
the search space, the algorithm applies a structural pruning
step where for every pair of nodes xm and xn connected in
SWi , the corresponding candidate sets Cm and Cn are refined
by eliminating any node in Cm that is not adjacent to any
node in Cn, and vice versa. This pruning process is repeated
iteratively, resulting in a reduced and structure-consistent set
of candidates {C1, C2, . . . , Ck} on G′.

(III) Detecting the embedded subgraph. With the refined
candidate sets, the algorithm performs a recursive search to
determine whether the subgraph SWi exists in G′. A list
Y = {y1, y2, . . . , ym} tracks partial mappings, where each
yj corresponds to a tentative match for xj . The process
recursively explores combinations of candidates from the sets
Cj , checking whether a subgraph isomorphic to SWi can be
reconstructed. If such a match is found, the watermark is con-
sidered detected; otherwise, the graph is either unwatermarked
or has been altered beyond detection.

C. Evaluation Scope

To define the scope of our evaluation, we summarize aspects
of Zhao et al.’s threat model and experimental design. In
addition to addressing random perturbation and collusion-
based attacks, Zhao et al. propose a series of enhancements to
improve watermark robustness. These include modifications



to the extraction process to tolerate structural noise, such
as approximate NSD label matching using a threshold for
similarity and approximate subgraph matching that tolerates
a bounded edge difference between the extracted and original
watermark subgraphs.

While these improvements enhance robustness against ran-
dom modifications, they introduce ambiguity in the interpre-
tation of extraction outcomes by relaxing matching criteria.
Threshold-based matching of nodes and subgraphs can lead to
uncertain attribution outcomes in graphs with repeating local
structures. In contrast, our evaluation avoids redundancy and
heuristic thresholds to isolate how cluster-aware attacks impact
detection robustness.

While Zhao et al.’s method relies on guided subgraph
matching for watermark recovery, we find that even small
perturbations (as little as 1% of edge modifications) can
lead to extraction failure, consistent with their findings. As
a result, we adopt an alternative detection approach based
on dK-2 similarity, which compares the structural distribution
of degree pairs between the leaked graph and each of the
individually watermarked graphs. This enables robust user at-
tribution without relying on approximate subgraph matching or
threshold-based heuristics. Our evaluation focuses on assessing
how community-aware perturbations affect this dK-2-based
detection accuracy under realistic adversarial conditions. Our
goal is to highlight a precise vulnerability in existing graph
watermarking schemes that is not addressed by Zhao et al.’s
threat model or robustness extensions.

IV. CLUSTER-AWARE THREAT MODEL

Building on the baseline watermarking approach presented
in Section III, we now consider a more capable and structurally
aware adversary. Prior evaluations, including those in Zhao
et al. [20], primarily focus on random edge perturbation or
collusion-based attacks. These models assume adversaries act
with limited insight into the graph’s topology. In contrast, our
work introduces a novel threat model in which an attacker
leverages the graph’s inherent community structure to launch
more targeted and effective attacks.

Prior work has shown that watermarking schemes can be
relatively robust against random perturbation attacks, particu-
larly in a single-attacker scenario. While some works extend
this threat model to include more complex adversaries, such
as colluding users or those targeting structural properties (i.e.,
vertex density and degree distributions) [21], there is no
focus on attackers that explicitly exploit a graph’s community
structure to guide their modifications. To the best of our
knowledge, this is the first study to model a clustering-aware
adversary, who actively leverages structural communities to
selectively add or remove edges in a way that degrades
watermark integrity. This allows the attacker to strategically
perturb edges within or between communities to disrupt the
watermark while preserving overall graph utility.

A. Adversarial Assumptions

Here, we define the capabilities, knowledge, and objec-
tives of the adversary. The setting assumes a data owner
who maintains sensitive graph-structured data and embeds
a user-specific watermark before distributing individualized
watermarked graphs to a number of recipients. One of these
recipients acts maliciously by leaking their copy of the graph
to an external party. We refer to this user as the leaker, and
the remaining recipients as non-leakers. We assume a single-
attacker model and do not consider collusion between multiple
recipients. This choice reflects a more conservative adversary
with limited access, where they are unable to compare their
version of the graph with others to isolate or reverse-engineer
the watermark. While collusion attacks are a valid threat
model explored in prior work [20], our focus is on cluster-
aware single-copy strategies, which have been comparatively
unexplored.

Capabilities. The adversary has full access to the water-
marked graph G′ distributed to them. They do not possess the
original graph G, the watermark generation key KG, or the
user-specific key used to generate the signature. The attacker
cannot regenerate the embedded watermark or directly identify
the subgraph in which it was placed. However, they are free
to perform structural analysis and modifications on G′ prior
to leaking it. We assume the attacker is capable of running
unsupervised community detection algorithms on G′ and that
the watermarking process does not fully distort the underlying
community structure.

Knowledge. The attacker does not know for certain whether
the graph has been watermarked, nor do they know which part
of the graph contains a watermark. Since we do not consider
colluding attackers, the adversary cannot compare their copy
with others to confirm differences. This work focuses on
the single-copy threat model, but our framework could be
extended in future work to address colluding adversaries by
simulating shared graph comparisons. Instead, the attacker
must assume the graph might be watermarked and act pre-
emptively. Their strategy is based on the structural properties
of the graph, such as community modularity and local density,
which are derived directly from G′ itself. They operate under
the assumption that meaningful community structure remains
intact after watermark embedding.

Goals. The adversary’s primary goal is to distort or remove
the embedded watermark Wi to prevent successful extrac-
tion and identification by the data owner. A secondary but
important objective is to preserve the graph’s overall utility.
The attacker aims to introduce minimal distortion, avoiding
significant changes to the graph’s structure or visual layout
that might degrade usability.

Having defined the assumptions and capabilities of our
clustering-aware adversary, we now describe the specific at-
tack strategies such an adversary can employ to compromise
watermark integrity.



V. PROPOSED CLUSTER-AWARE ATTACK STRATEGY

We describe the proposed attack strategy of an adversary
who exploits the inherent community structure present in
real-world graph data. The attacker begins by applying an
unsupervised, parameter-free community detection algorithm
to the watermarked graph G′. We assume that the watermark
embedding process preserves the underlying community struc-
ture of the graph, which is necessary both for maintaining
utility and for enabling adversarial analysis. Given that the
attacker operates without access to the detection mechanism or
feedback from the watermarking system, we restrict the attack
to use parameter-free clustering algorithms. This reflects a
realistic adversarial model, where reliance on hyperparameter
tuning or privileged information is infeasible.

Once communities are identified, the attacker selectively
adds or removes edges in the graph. Edge addition involves
selecting two nodes and adding an edge between them if
one does not already exist, while edge deletion removes an
existing edge between a selected pair of nodes. The decision
to add or remove an edge is based on whether it lies within
a community (intra-cluster) or between communities (inter-
cluster). Intra-cluster modifications affect structural cohesion
by making communities overly dense (via addition) or sparse
(via deletion), while inter-cluster perturbations blur boundaries
between communities, reducing modularity and making struc-
tural patterns less distinct. We define two combined attack
strategies that exploit both of these dimensions:

1) Strategy I: Intra-cluster addition and inter-cluster re-
moval, densifying communities while breaking clear
boundaries between them.

2) Strategy II: Intra-cluster removal and inter-cluster ad-
dition, weakening internal community structure while
injecting noise between communities.

A. Strategy I: Intra-Add/Inter-Remove

The intra-add/inter-remove attack strategy focuses on densi-
fying communities while weakening the structural separation
between them. The goal of this attack is to increase the
density within clusters such that it might introduce structural
ambiguity and remove edges between clusters to blur inter-
community boundaries which may interfere with watermarking
schemes that rely on modular structure for detection.

The attack is conducted by first partitioning the graph
into communities using a chosen clustering algorithm. In this
work, we use parameter-free clustering algorithms to avoid
the need to fine-tune hyperparameters that are apparent in
non-parameter-free clustering algorithms. Given a number of
flips, for each edge, the attacker randomly decides whether to
perform an intra-cluster addition or an inter-cluster removal.
For an intra-cluster addition, a cluster is selected at random.
Within that chosen cluster, two distinct nodes that are not
yet connected are selected and an edge is added between
them. For inter-cluster removal, an existing edge connecting
two nodes from different clusters is selected at random. The
corresponding edge is then removed from the graph. The

Algorithm 1 Intra-Add/Inter-Remove Attack

1: Input: Graph G = (V,E), clustering map C, number of
flips n

2: G′ ← copy of G
3: F ← 0
4: while F < n do
5: Sample α ∼ U(0, 1)
6: if α < 0.5 then
7: Select random cluster c
8: Choose u, v ∈ C−1(c) such that (u, v) /∈ E(G′)
9: if such u, v exist then

10: Add edge (u, v) to G′

11: F ← F + 1
12: end if
13: else
14: Pick (u, v) ∈ E(G′) such that C(u) ̸= C(v)
15: if such (u, v) exists then
16: Remove edge (u, v) from G′

17: F ← F + 1
18: end if
19: end if
20: end while
21: return G′

attacker continues flipping edges until the predefined budget
(e.g., total number of flips) is exhausted. We describe the attack
in Algorithm 1.

By increasing intra-cluster density, the attacker creates more
locally similar neighborhoods, which can reduce the unique-
ness of the watermark nodes. Additionally, by removing inter-
cluster edges, the attacker flattens the modularity of the graph.
Flattening the modularity results in community boundaries
becoming less distinguishable and thus potentially obscuring
the watermark.

B. Strategy II: Intra-Remove/Inter-Add

This strategy takes an opposite approach where the intra-
remove/inter-add attack strategy weakens internal cluster co-
hesion while injecting structural noise across communities.
The goal of an attacker is to disrupt the natural topology
of clusters while reducing the graph’s community structure.
Both approaches are likely to undermine the assumptions
of structure-based watermarking schemes which depend on
community coherence.

Similar to its counterpart, this attack first clusters the
graph using a chosen clustering algorithm. We again only use
parameter-free clustering approaches to mitigate the need for
fine-tuning hyperparameters. Given a certain number of flips,
for each flip, the attack randomly decides between intra- or
inter-cluster perturbation. For intra-cluster removal, an existing
edge between two nodes in the same cluster is randomly
selected and removed. For inter-cluster addition, two nodes
from different clusters are selected such that they are not
currently connected and an edge is then added between them.



This process continues until the attack exhausts their edge
modification budget. We describe this attack in Algorithm 2.

Algorithm 2 Intra-Remove/Inter-Add Attack

1: Input: Graph G = (V,E), clustering map C, number of
flips n

2: G′ ← copy of G
3: F ← 0
4: while F < n do
5: Sample α ∼ U(0, 1)
6: if α < 0.5 then
7: Pick (u, v) ∈ E(G′) such that C(u) = C(v)
8: if such (u, v) exists then
9: Remove edge (u, v) from G′

10: F ← F + 1
11: end if
12: else
13: Pick clusters c ̸= c′

14: Choose u ∈ C−1(c), v ∈ C−1(c′) such that (u, v) /∈
E(G′)

15: if such u, v exist then
16: Add edge (u, v) to G′

17: F ← F + 1
18: end if
19: end if
20: end while
21: return G′

This attack strategy disrupts the internal structure of com-
munities by deleting intra-cluster edges, which can directly
affect the nodes within the watermark subgraph. At the same
time, inter-cluster additions create artificial cross-cluster con-
nections, effectively reducing modularity and increasing the
likelihood that the watermark becomes structurally indistinct.

C. Adversarial Objective

The objective of the adversary is to disrupt the watermarking
scheme by modifying the watermarked graph G′ such that
the watermark cannot be reliably attributed to the leaker.
Unlike prior work, which evaluates attack success based on
failure of watermark extraction, we measure the adversary’s
success based on a reduction in detection accuracy using
our similarity-based attribution scheme. A successful attack
results in the leaked graph having higher similarity to another
(non-leaking) recipient’s watermarked graph than to the actual
leaker’s version, thereby misleading the data owner’s attribu-
tion process.

To remain stealthy, the adversary is constrained by a pertur-
bation budget, expressed as a percentage of total edges flipped.
We evaluate attacks under varying budget levels to understand
the relationship between attack strength and attribution accu-
racy. The attack is designed to exploit structural properties
of the graph in a way that degrades attribution accuracy while
preserving the graph’s overall usability and statistical integrity.

VI. EXPERIMENTAL EVALUATION

In this section, we describe the experimental setup used to
evaluate our cluster-aware attack strategies. We first introduce
the graph datasets used in our study and outline the parameters
for watermark embedding. We then detail our dK-2 similarity-
based detection mechanism, describe the configuration of each
attack strategy, and define the metrics used to assess attack
effectiveness. The results of these evaluations are presented in
the following section (Section VII).

A. Datasets

We evaluate our attacks on two real-world graph datasets
from the SNAP network dataset collection [31], both repre-
senting large-scale social networks with differing structural
characteristics. These datasets were selected to capture vari-
ation in graph size, density, and clustering behavior, which
are important factors that influence both the feasibility of
watermark embedding and the effectiveness of structure-aware
adversarial attacks.

The two graphs used are as follows: Facebook (Social
Circles) [32] is a social graph derived from ego networks
collected via a Facebook app. Nodes represent users, and edges
represent friendship ties. The graph is relatively dense and
exhibits strong clustering behavior, making it a realistic setting
for structure-aware attacks. LastFM Asia Social Network [33]
is a sparse social graph of LastFM users in Asian countries,
constructed from mutual follower relationships. This dataset
presents a complementary structure with lower average degree
and clustering, enabling evaluation under more challenging
conditions for watermarking. For clarity, we refer to the Face-
book (Social Circles) dataset as Facebook and the LastFM Asia
Social Network dataset as LastFM throughout the remainder of
the paper. Table II summarizes the key structural properties of
each dataset, including node and edge counts, average degree,
clustering coefficient, graph density, and number of connected
components.

To ensure each graph is a valid host for watermark em-
bedding, we follow the feasibility criteria introduced by Zhao
et al. [20]. In their framework, a watermark is modeled as
a random Erdös-Rényi subgraph SWi with edge probability
p = 0.5 and size k = (2 + δ) log2 n, where n is the number
of nodes in the original graph. This results in an expected
watermark node degree of (k+1)/2 and an average subgraph

density of (k2)+k−1

2 . For a graph G to be considered suitable
for watermark embedding, two structural conditions must be
met:

• Node Degree Criterion: The expected watermark node
degree, (k + 1)/2, must lie within the range of node
degrees observed in the host graph. That is, Nmin(G) ≤
(k + 1)/2 ≤ Nmax(G).

• Subgraph Density Criterion: The expected watermark
subgraph density must fall within the density range of
k-node subgraphs in the host graph that have at least

(k + 1)/2. That is, Dmin(k) ≤
(k2)+k−1

2 ≤ Dmax(k)
2.



Graph # of Nodes # of Edges Avg. Deg. Clustering Coef. Density Connected Components
Facebook 4039 88234 43.69 0.6056 0.0108 1
LastFM 7624 27806 7.29 0.2194 0.0010 1

TABLE II: Structural properties of the Facebook and LastFM graphs, including node and edge counts, average degree, clustering
coefficient, graph density, and the number of connected components.

Graph k
Node Degree Criterion Subgraph Density Criterion Suitability

(k + 1)/2 [Nmin(G), Nmax(G)] Watermark [Dmin(k), Dmax(k)]
Facebook 28 15 [1, 1045] 202.5 [32, 378] Yes
LastFM 30 16 [1, 216] 232.0 [33, 352] Yes

TABLE III: Evaluation of dataset suitability for watermark embedding based on Zhao et al.’s [20] criteria, including node
degree and subgraph density thresholds for each selected graph.

We apply these criteria to both datasets and summarize the
results in Table III. Our analysis confirms that each graph
satisfies the node degree and subgraph density conditions, and
is therefore appropriate for watermark embedding under Zhao
et al.’s framework.

B. Watermarking Parameters

For the watermark embedding process, we embed a single
watermark per graph, rather than multiple redundant water-
marks, in order to isolate the effectiveness of our cluster-aware
attack strategies compared to random perturbation. We adopt
the same watermark parameters used by Zhao et al., setting
δ = 0.3 and p = 0.5. This results in watermark sizes of
k = 28 for Facebook and k = 30 for LastFM, satisfying
the watermark feasibility condition outlined in the previous
section. Following the embedding process, all graphs were
anonymized by randomly relabeling node identifiers. While
our embedding procedure follows Zhao et al.’s in full, we
differentiate from their extraction method by using a dK-2
similarity-based detection mechanism.

C. Detection via dK-2 Similarity

Previous works [20], [21] have used the dK-2 deviation
as a structural distortion metric to evaluate how much an
adversarial attack perturbs the watermarked graph. We adopt
this same formulation not only for measuring distortion, but
also as a detection and attribution mechanism. Specifically,
we propose a similarity-based detection strategy based on the
dK-2 series that compares a leaked, perturbed graph against a
known set of watermarked versions.

The dK-2 series [34] characterizes the structural signature of
a graph by capturing its joint degree distribution. For a given
graph G, the dK-2 series is defined as the normalized count of
degree pairs across all edges. That is, for every edge (u, v) ∈
E, where du = deg(u) and dv = deg(v), we increment a
count associated with the tuple (min(du, dv),max(du, dv)).
This process yields a histogram of degree pair frequencies,
which is then normalized by the total number of edges to
obtain a probability distribution:

dK-2G(i, j) =
1

|E|
· |{(u, v) ∈ E : (min(deg(u),deg(v)),

max(deg(u),deg(v))) = (i, j)}| (2)

We use the unordered joint degree distribution (JDD),
where each undirected edge contributes once to the bin
(min(du, dv),max(du, dv)), ensuring the resulting distribu-
tion sums to 1. This differs from the ordered JDD convention,
in which off-diagonal bins receive contributions from both
(du, dv) and (dv, du), resulting in values that are exactly twice
those in our representation.

To compare two graphs G1 and G2, we compute the
Euclidean distance between their dK-2 series and apply an
exponential decay to produce a similarity score:

D(i, j) = (dK-2G1(i, j)− dK-2G2(i, j))
2 (3)

sim(G1, G2) = exp

−√√√√ 1

|K|
∑

(i,j)∈K

D(i, j)

 (4)

where K is the union of all (i, j) degree-pair bins that appear
in either G1 or G2. This score lies in the interval (0, 1], with
higher values indicating stronger structural similarity.

In our setting, we simulate a watermarking scenario with 10
distinct parties, each receiving a unique watermarked version
of the graph. One party is designated as the leaker, and their
copy is perturbed using a clustering-aware or random attack.
To identify the leaker, we compute the dK-2 similarity between
the leaked graph and each of the 10 original watermarked
graphs. The graph with the highest similarity score is identified
as the most likely source. We follow the 10-party setting
used in prior watermarking work [20], [21], which balances
attribution granularity and computational cost. While increas-
ing the number of parties could reduce similarity resolution,
and increase detection complexity, this configuration remains
practical and consistent with established protocols.

We choose dK-2 similarity over strict watermark extraction
for two reasons. First, even minor perturbations (as low as
1% edge modifications) are known to break exact subgraph
extraction [20], making it unreliable under realistic adversarial
settings. Second, dK-2 similarity is both efficient to com-
pute and sensitive to structural changes that arise from our
clustering-based attacks. Since these attacks are designed to
preserve global utility while subtly degrading local community
structure, a statistical distributional approach like dK-2 is well-
suited to capture these subtle deviations without relying on
subgraph isomorphism.
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Fig. 1: Attribution accuracy of the dK-2 detection scheme under increasing perturbation. Cluster-aware attacks consistently
outperform the random baseline, with greater impact seen in sparser graphs (LastFM).
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Fig. 2: dK-2 distortion introduced by each attack strategy. Distortion increases with edge flips, but cluster-aware attacks evade
detection more effectively while maintaining equal or lower structural distortion than random attacks.

D. Attack Configuration

To evaluate the effectiveness of our cluster-aware attack
strategy, we compare it against a random edge flipping base-
line. We vary the total number of edge flips from 1% to either
8% or 10%, depending on the dataset and how quickly attacks
reduce detection accuracy to near zero. This threshold-based
cap ensures that we avoid unnecessary evaluation once attacks
are clearly effective. Each attack trial is independently initial-
ized. For each flip percentage, we generate a fresh perturbed
graph starting from the original, rather than incrementally
applying modifications. This introduces greater randomness
and avoids bias from cumulative distortion. Consistent with
prior studies [20], [21], our setup simulates watermarking
across 10 distinct parties. However, we increase the number
of trials per flip percentage from 10 (as used in prior work)
to 30, in order to obtain more statistically stable results across
randomized trials.

A key design choice in our cluster-aware threat model is
the use of a clustering algorithm to guide intra- and inter-
cluster edge modifications. We exclusively use parameter-free
clustering methods to reflect a black-box attacker who lacks
access to optimal hyperparameters. Specifically, we evaluate
two algorithms: Label Propagation, a fast, unsupervised tech-
nique that assigns node labels through iterative majority voting
among neighbors, and Greedy Modularity, which constructs
communities by greedily optimizing modularity (as defined
in Equation 1). These algorithms are commonly used in
unsupervised settings and impose no manual tuning burden on
the attacker. While an attacker could, in theory, evaluate dK-
2 similarity against their own perturbed graph, we assume no
collusion or access to other users’ watermarked versions. As a
result, the attacker operates under a single-copy, structure-only

threat model without feedback from the detection process.

E. Evaluation Metrics

We evaluate the effectiveness of our cluster-aware attack
strategies in comparison to the random edge flipping baseline
using three metrics: detection accuracy, structural distortion,
and runtime performance.

Detection Accuracy. We measure the accuracy of our dK-2
similarity-based detection method, as defined in Equations 3
and 4. For each trial, the leaked graph is compared to the
10 individually watermarked graphs, and the graph with the
highest similarity score is selected as the presumed source.
Detection is considered successful if this prediction matches
the true leaker. We report average detection accuracy across 30
randomized trials per flip percentage to quantify how quickly
different attack strategies degrade attribution performance.

Structural Distortion. To evaluate how much the attacks
perturb the original graph structure, we compute the dK-
2 deviation between the perturbed graph and the original
watermarked version. This metric, used in prior work [20],
[21], calculates the Euclidean distance between the dK-2
series of the two graphs. Unlike the detection metric, this
distortion score is reported as a raw distance without applying
an exponential decay.

Runtime. We measure the average runtime of each attack
strategy to assess their computational cost. This includes both
the random edge flipping and the two cluster-aware strategies
across all datasets. Runtime is averaged over the same 30 trials
used in the evaluation of detection and distortion.

VII. RESULTS

We now highlight the results of our evaluation, comparing
the performance of cluster-aware and random attack strategies.



Graph Random Label Propagation Greedy Modularity
IA/IR IR/IA IA/IR IR/IA

1% 3% 5% 1% 3% 5% 1% 3% 5% 1% 3% 5% 1% 3% 5%
Facebook 0.77 1.59 2.45 6.26 19.00 73.61 5.22 15.00 24.92 5.21 15.65 26.42 5.36 15.31 25.36
LastFM 0.42 0.93 1.43 0.72 1.83 2.97 0.57 1.37 2.16 0.56 1.46 2.39 0.55 1.36 2.13

TABLE IV: Average runtime (seconds) for each attack strategy. Runtime increases with graph size and flip percentage, with
cluster-aware attacks being more computationally intensive than random edge flipping.

A. Attribution Accuracy

To evaluate how each attack strategy affects leaker attri-
bution under our dK-2 similarity-based scheme, we identify
the party whose watermarked graph has the highest dK-2
similarity to the leaked graph. We report attribution accuracy
as the proportion of trials (out of 30) in which the true leaker
is correctly identified based on dK-2 similarity.

On the LastFM dataset, the cluster-aware attacks outper-
form the random baseline in degrading detection accuracy.
The intra-add/inter-remove strategy is more effective, caus-
ing sharper declines under both clustering algorithms, with
Greedy Modularity yielding the most rapid drop. The intra-
remove/inter-add attack also reduces attribution accuracy, per-
forming comparably to intra-add/inter-remove under Label
Propagation, but is less effective under Greedy Modularity,
though it still outperforms random flipping in most cases.

Results on the Facebook dataset are more tightly grouped.
While all attacks lead to a rapid drop in accuracy, cluster-aware
strategies degrade performance slightly faster than random
flipping during early perturbation stages. However, attribution
accuracy for all methods converges to near zero as the number
of perturbed edges increases.

These trends can be partially explained by the differences in
the structural characteristics of the two graphs, summarized in
Table II. Facebook’s higher density and clustering coefficient
make its watermark structure more robust at baseline but
also cause all attacks to converge quickly in their impact.
In contrast, LastFM’s sparse structure and lower clustering
coefficient result in greater sensitivity to targeted perturbations.
Cluster-aware attacks are effective here, as they disrupt weakly
cohesive clusters, which leads to early breakdowns in detec-
tion. These findings suggest that graph topology plays a crit-
ical role in determining watermark resilience. Sparse graphs
with weak community cohesion are particularly vulnerable to
cluster-aware attacks, even under low perturbation budgets.
Figure 1 illustrates these trends, showing the attribution ac-
curacy across both datasets and clustering methods as edge
flip percentages increase.

B. dK-2 Distortion

We evaluate the impact of each attack strategy by computing
the dK-2 deviation between the original watermarked graph
and its perturbed version. This metric quantifies how edge
modifications affect the global structure of the graph. As
expected, all attack strategies introduce increasing distortion as
the percentage of flipped edges increases. Across both datasets,
cluster-aware attacks achieve greater reductions in attribution

accuracy without incurring significantly more dK-2 deviation
than the random baseline.

On LastFM, which is sparser and exhibits weaker clustering,
all strategies produce similar distortion levels, but the cluster-
aware variants are more effective at evading detection. On
Facebook, which has a higher edge count and stronger commu-
nity structure, distortion scales with the number of flips across
all strategies. The intra-add/inter-remove strategy occasionally
results in slightly higher distortion at larger flip percentages,
though this occurs after detection has already collapsed.

These results reinforce the efficiency of cluster-aware at-
tacks by degrading detection performance more quickly while
introducing comparable, overall structural disruption. This
efficiency is due to the attacks’ ability to selectively perturb
meaningful regions of the graph, such as community bound-
aries or internally fragile clusters. Figure 2 provides a detailed
comparison of dK-2 distortion across attack strategies.

C. Attack Runtime

To assess the computational cost across different graphs,
clustering methods, and perturbation levels, we evaluate the
average runtime for each attack strategy, described in Table IV.
As expected, runtime increases with both graph size and the
percentage of flipped edges.

Cluster-aware attacks generally take longer than random
edge flipping due to the additional overhead of targeted
edge selection. Between the two clustering algorithms, Label
Propagation is typically faster than Greedy Modularity due
to its iterative level-passing approach. However, an exception
occurs on Facebook under the intra-add/inter-remove strategy,
where Label Propagation incurs higher runtime. We attribute
this to the increased search space and collision handling re-
quired when adding edges within densely packed communities.
These tightly connected clusters create more candidate pairs,
increasing the cost of maintaining graph consistency during
modification.

Despite this, all cluster-aware attacks remain computation-
ally practical. Even the highest observed runtime (approxi-
mately 73.6 seconds on Facebook at 5% edge flips) falls well
within the bounds of a realistic offline attack. This further
supports the feasibility of community-guided perturbations in
practical adversarial settings.

VIII. MITIGATION STRATEGIES

Zhao et al. [20] proposed several robustness enhancements
to their graph watermarking scheme. While effective against
random perturbations, these defenses introduce ambiguity in
attribution, for example, detecting only 3 out of 5 embedded



watermark subgraphs may lead to uncertain source identifica-
tion.

In contrast, we propose a lightweight modification to
the embedding process that enhances robustness against
clustering-aware attacks without requiring changes to the ex-
traction logic or increasing system complexity. Our approach
distributes the watermark across structural communities in the
graph, improving resilience to targeted perturbations, particu-
larly in larger, more densely connected graphs. This strategy
remains fully compatible with existing detection methods and
requires no changes to the extraction procedure.

A. Robust Embedding

As outlined in Section III, Zhao et al.’s embedding process
consists of four main steps. Our modification targets Step
(III): Selecting the watermark placement in G. In the
original scheme, nodes are chosen based on local structural
features via hashed NSDs. While this approach is resilient
to node anonymization, it does not guarantee distribution
of watermark nodes (i.e., the k existing nodes selected for
subgraph modification) across structurally diverse regions of
the graph.

In our revised approach, the data owner first applies a
clustering algorithm G and selects watermark nodes from
across the resulting communities. Using the seed Ωi, the
node set is deterministically shuffled, one node is selected per
cluster until k nodes are chosen. If the number of clusters is
fewer than k, the remaining nodes are randomly drawn from
the rest of the graph. Because the process is seeded with Ωi,
it is fully deterministic and supports reproducible embedding
and extraction. Full pseudocode is provided in Appendix B.

The key insight of this strategy is that it creates an inten-
tional mismatch between how watermark nodes are placed
and how an attacker identifies structural regions for pertur-
bation. We assume a black-box adversary with no access to
the detection mechanism or other watermarked graphs, and
thus no opportunity to tune clustering parameters or validate
attack effectiveness. In contrast, the data owner can employ a
parameterized clustering method (e.g., Leiden with a custom
resolution) during embedding. This asymmetry introduces
uncertainty for the attacker, where even if they guess the
clustering algorithm, they are unlikely to match the embedding
parameters exactly. This misalignment makes it harder to iso-
late or degrade the watermark through structural manipulation.

B. Mitigation Evaluation

We evaluate the effectiveness of our mitigation strategy
using the same experimental setup described in Section VI.
We measure attribution accuracy to assess leaker identification
performance under our cluster-aware threat model, dK-2 devia-
tion to quantify structural distortion caused by the attacks, and
runtime to evaluate computational efficiency. All evaluation
parameters remain consistent with prior experiments: we use
the same graphs, watermarking parameters (δ = 0.3, p = 0.5),
and evaluation protocol (30 trials over 10 watermarked graphs

with one randomly selected leaker). Edge flip percentages are
also matched to the earlier settings for each graph dataset.

To embed the watermark under our modified node selection
strategy, the data owner selects a clustering algorithm to
partition the graph prior to node selection. For this evaluation,
we use the Leiden algorithm with a resolution parameter of
1.2. This choice reflects a realistic security assumption where,
unlike the attacker, the data owner can choose a parameterized
clustering method. This asymmetry introduces an additional
layer of defense, as the attacker would need to infer not
only the clustering algorithm used during embedding, but
also its internal parameterization. For consistency with earlier
evaluations, the attacker continues to use the same parameter-
free clustering algorithms to guide intra- and inter-cluster
perturbations.

Additionally, we compare the runtime and distortion of
our embedding and extraction mechanisms to those of Zhao
et al. to validate that our strategy introduces no unintended
overhead. We measure average runtime over 100 trails for both
schemes, evaluate the dK-2 deviation between the original and
watermarked graphs, and assess extrication reliability across
100 watermarked and 100 non-watermarked graphs. In all
cases, our approach maintains comparable runtime and struc-
tural integrity, and achieves 100% accuracy in distinguishing
between watermarked and non-watermarked graphs.

Attribution Accuracy. Our mitigation strategy demon-
strates improved attribution robustness across both datasets
when compared to the baseline embedding scheme in Figure 3.
In LastFM, we observe that our method may exhibit an
earlier decline in detection accuracy under certain attack types,
particularly intra-add/inter-remove. However, this decline is
more gradual, and attribution performance stabilizes at higher
perturbation levels, where Zhao et al.’s method continues to
degrade. This trend suggests that distributing watermark nodes
across clusters improves long-term resilience, as it becomes
harder for the attacker to fully suppress the watermark with
inducing broader structural distortion.

That said, we note limitations in specific LastFM scenarios.
Under the intra-remove/inter-add attack using Greedy Mod-
ularity, our method underperforms relative to the baseline.
Additionally, in a few cases, accuracy under our method
occasionally falls below that of random perturbation at higher
flip budgets. We attribute both effects to the sparse and
fragmented nature of the LastFM graph, which may cause our
embedding to unintentionally align with community structures
targeted by the attacker. These results suggest that while our
method improves robustness overall, its effectiveness can be
sensitive to the underlying graph topology and the specific
clustering strategy used for embedding.

In contrast, on the Facebook dataset, our approach con-
sistently maintains higher detection accuracy under all attack
strategies and clustering algorithms. The graph’s higher edge
density and stronger community structure allow our cluster-
aware embedding to benefit more from structural dispersion,
making it more difficult for an adversary to suppress the water-
mark without significant impact on overall graph connectivity.
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Fig. 3: Attribution accuracy under Zhao et al.’s embedding and our mitigation strategy. Our method improves robustness across
datasets and clustering algorithms, maintaining higher detection accuracy under stronger attacks.
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Fig. 4: dK-2 distortion under Zhao et al.’s embedding and our mitigation strategy. Both methods follow similar distortion
trends, with our approach achieving better evasion without added structural disruption.

Together, these results indicate that spreading the watermark
across communities improves resilience to clustering-aware
attacks by forcing the adversary to introduce broader structural
changes. Our method maintains higher robustness at larger
attack budgets, demonstrating its effectiveness in preserving
attribution integrity under increasingly severe adversarial con-
ditions.

dK-2 Distortion. We evaluate structural impact by mea-
suring dK-2 deviation between the original and perturbed
watermarked graphs. As expected, all attack strategies exhibit
increasing distortion with larger perturbation budgets, and
our embedding strategy follows the same overall distortion
trajectory as Zhao et al.’s baseline across both datasets. Our
results are described in Figure 4.

The only notable difference occurs in the LastFM dataset,
where our method introduces slightly higher distortion at lower
perturbation levels (1–2% edge flips). This early increase
aligns with the sharper initial drop in attribution accuracy
observed under specific attack strategies. Since our embed-
ding spreads watermark nodes across structural communities,
even a small number of edge modifications may affect the
integrity of the dispersed subgraph more significantly in sparse
graphs. Beyond this early stage, distortion remains comparable
between the two methods, and both converge toward similar
distortion trajectories as the perturbation budget increases.

Runtime. The runtime required to perform attacks remains
unchanged from the evaluation in Section VI, as our miti-
gation strategy does not modify the attack configuration or
detection process. Full attack runtime results are included in
Appendix C.

We also evaluate computational efficiency by comparing
watermark embedding and extraction runtimes between our
method and Zhao et al.’s approach. As shown in Table V, our

approach reduces both embedding and extraction time across
datasets. This improvement is due to the streamlined node
selection process that eliminates the overhead associated with
NSD hashing and collision handling in the original scheme.

Method Zhao et al. Ours
Facebook LastFM Facebook LastFM

Embedding 0.547 0.273 0.446 0.206
Extraction 0.211 0.099 0.111 0.054

TABLE V: Runtime comparison (seconds) between Zhao et
al. and our method for watermark embedding and extraction.

Initial Distortion. To evaluate the structural impact of wa-
termark embedding, we measure the dK-2 deviation between
the original graph and the watermarked graph under both
our method and Zhao et al.’s scheme. Since both approaches
embed a single watermark of size k, the resulting structural
deviation remains comparable across methods. As shown in
Table VI, these results confirm that our embedding strategy
preserves the statistical properties of the host graph while
offering enhanced resilience against clustering-aware attacks.

Graph Zhao et al. Ours
Facebook 0.000006 0.000006
LastFM 0.000027 0.000025

TABLE VI: dK-2 distortion introduced by watermark embed-
ding under Zhao et al. and our methods.

IX. CONCLUSION

Graph data is widely used across domains where maintain-
ing attribution is critical. Graph watermarking enables this by
embedding identifiable signatures into shared graph structures,



but it remains an understudied area, particularly under cluster-
aware threat models, which have not been previously explored.
In this work, we demonstrate that adversaries who exploit the
inherent community structure of real-world graphs can degrade
detection performance more effectively than through random
perturbations. To address this, we propose a lightweight and
easily integrable modification to existing watermark embed-
ding schemes that improves robustness without increasing
system complexity. Our findings emphasize the need to ac-
count for topological awareness in both watermark design and
adversarial modeling. As watermarking schemes evolve, so too
will attacker strategies. Future work should explore a broader
range of graph types, adversarial capabilities, and embedding
techniques, particularly under mismatched clustering assump-
tions between data owners and attackers. We discuss these
directions further in Appendix A.
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APPENDIX

A. Discussion

Graph Types. Our evaluation demonstrates that the ef-
fectiveness of our cluster-aware threat model varies across
graphs with differing structural properties, such as sparsity
versus density. While we anticipate similar trends in detection
accuracy across larger graphs with comparable properties,
empirical validation is needed to fully assess the scalability of
our threat model (e.g., graphs with tens of millions of nodes
and edges). We expect our detection strategy to maintain its
effectiveness in larger graphs. However, the average distortion
per flip percentage will likely increase, as the absolute number
of edge modifications grows proportionally with graph size.
For our mitigation strategy, we similarly expect detection
performance to remain robust, but the extraction process may
incur higher computational overhead due to the expanded
search space.

Adversarial Capabilities. Our evaluation is based on the
single-watermark setting to isolate the effectiveness of cluster-
aware attacks. However, extending the analysis to include
colluding adversaries would strengthen the evaluation. In
scenarios where multiple recipients leak anonymized water-
marked graphs, colluding attackers can attempt to compare
their graphs to identify watermark regions. As shown in
Zhao et al., successful collusion requires deanonymization
before meaningful comparison can occur. Their results indicate
that while extracting a single watermark is feasible for a
colluding attacker, the success rate diminishes significantly
when multiple watermark subgraphs are embedded (e.g., 2 to
5 subgraphs). In contrast, our similarity-based detection avoids
explicit extraction and is less vulnerable to such comparisons,
unless the attacker has access to both the detection pipeline and
multiple watermarked graphs. In that case, localized attacks
would still be possible. Understanding how our mitigation
strategy holds under collusion remains an important direction
for future work, particularly when watermark nodes are dis-
tributed across communities.

With respect to our mitigation strategy, we introduce an
asymmetry between the data owner’s and attacker’s clustering
assumptions. Specifically, the data owner selects a clustering
method (e.g., Leiden) that incorporates tunable parameters.
This contrasts with the attacker, who relies on parameter-free
methods such as Greedy Modularity or Label Propagation.
The inclusion of clustering parameters creates additional un-
certainty for the attacker. For example, if the attacker chooses
among three possible algorithms, the probability of match-
ing the data owner’s method drops to one-third. Moreover,
methods like Leiden introduce resolution parameters, adding
another layer of complexity. Even if the attacker selects the
correct algorithm, they must also guess the right parameter
setting. In future work, we aim to explore this further by
evaluating detection accuracy under varying attacker–defender
clustering alignments, to better understand how clustering
mismatch affects both attack success and defense robustness.

Embedding Strategies. Our embedding method, described
in Appendix B, empirically provides effective mitigation
against cluster-aware attacks. As summarized in Table I, two
other notable schemes have been proposed in prior literature.
We aim to incorporate these approaches into a comprehensive
evaluation framework to assess whether they exhibit similar
vulnerabilities under our threat model. In particular, additional
embedding strategies could explore hierarchical group-based
watermarking or adaptive node placement that reacts to graph
topology metrics such as betweenness or centrality. Since prior
schemes do not explicitly consider cluster-aware adversaries,
we hypothesize that their robustness would degrade similarly
compared to random edge flipping, and that our mitigation
strategy would generalize to improve resilience across these
methods.

B. Robust Node Selection for Watermark Embedding

As described in Section VIII, our mitigation strategy modi-
fies Step (III) of the original watermark embedding process
by Zhao et al. [20], replacing NSD-based node selection
with a community-aware approach. The following pseudocode
outlines our deterministic method for selecting k watermark
nodes across clusters. This process ensures that nodes are
sampled from different communities identified via a clustering
algorithm (e.g., Leiden), increasing the structural dispersion of
the watermark and improving its robustness under clustering-
aware attacks.

Algorithm 3 Select Nodes Across Clusters

1: Input: Graph G = (V,E), randomness seed Ωi, number
of nodes k, clustering map C

2: Set random seed using Ωi

3: Initialize mapping: cluster → list of nodes
4: for each node v in G do
5: Let c← C(v)
6: Add v to cluster to nodes[c]
7: end for
8: Initialize empty list: selected_nodes
9: Let K ← list of all cluster IDs in random order

10: for each cluster c in K do
11: if length of selected_nodes ≥ k then
12: break
13: end if
14: Let candidates ← sorted nodes in cluster c
15: Let i← Ωi mod |candidates|
16: Add candidates[i] to selected_nodes
17: end for
18: if length of selected_nodes < k then
19: Let remaining ← nodes in G not in

selected_nodes
20: Shuffle remaining
21: Add first k − |selected_nodes| nodes from

remaining to selected_nodes
22: end if
23: return selected_nodes



C. Attack Runtime Mitigation Evaluation

Although our mitigation strategy modifies the watermark
embedding step, it does not alter the attack process or de-
tection method. All clustering-aware attacks were executed
under the same settings as described in Section VI, using
identical edge flip percentages, clustering algorithms, and dK-
2 similarity detection. For completeness, we report the runtime
measurements of each attack configuration across datasets.

Graph Random
1% 3% 5%

Facebook 0.74 1.55 2.38
LastFM 0.40 0.87 1.34

TABLE VII: Average runtime (seconds) of the random edge-
flipping attack on both datasets across different flip percent-
ages for our mitigation technique.

Graph IA/IR (Label Prop) IR/IA (Label Prop)
1% 3% 5% 1% 3% 5%

Facebook 4.77 14.90 54.83 3.96 11.55 18.80
LastFM 0.68 1.75 2.86 0.56 1.37 2.17

TABLE VIII: Average runtime (seconds) of cluster-aware
attacks using Label Propagation, across both attack strategies
(IA/IR and IR/IA) and flip percentages for our mitigation
technique.

Graph IA/IR (Greedy Mod) IR/IA (Greedy Mod)
1% 3% 5% 1% 3% 5%

Facebook 3.97 11.70 19.69 3.99 11.70 18.86
LastFM 0.56 1.45 2.46 0.55 1.36 2.17

TABLE IX: Average runtime (seconds) of cluster-aware at-
tacks using Greedy Modularity, across both attack strategies
(IA/IR and IR/IA) and flip percentages for our mitigation
technique.

As expected, the runtime remains consistent with prior
evaluations, confirming that our embedding changes do not
introduce any additional attack-time overhead.
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