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Abstract
In this paper, we investigate how concept-based
models (CMs) respond to out-of-distribution
(OOD) inputs. CMs are interpretable neural
architectures that first predict a set of high-level
concepts (e.g., stripes, black) and then
predict a task label from those concepts. In partic-
ular, we study the impact of concept interventions
(i.e., operations where a human expert corrects
a CM’s mispredicted concepts at test time) on
CMs’ task predictions when inputs are OOD. Our
analysis reveals a weakness in current state-of-
the-art CMs, which we term leakage poisoning,
that prevents them from properly improving their
accuracy when intervened on for OOD inputs.
To address this, we introduce MixCEM, a new
CM that learns to dynamically exploit leaked
information missing from its concepts only when
this information is in-distribution. Our results
across tasks with and without complete sets of
concept annotations demonstrate that MixCEMs
outperform strong baselines by significantly
improving their accuracy for both in-distribution
and OOD samples in the presence and absence
of concept interventions.

1. Introduction
Recent years have seen a surge of interpretable models
whose performance is comparable to that of power-
ful black-box models such as Deep Neural Networks
(DNNs) (Alvarez-Melis & Jaakkola, 2018; Chen et al.,
2019; Yuksekgonul et al., 2023). Amongst these, concept-
based models (CMs) (Chen et al., 2020; Espinosa Zarlenga
et al., 2022), and in particular Concept Bottleneck Models
(CBMs) (Koh et al., 2020), have paved the way for
designing expressive yet interpretable models. CBMs and
their variants predict downstream task labels by exploiting
high-level units of information known as “concepts” (e.g.,
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“stripes”, “white”, and “black” when predicting
“zebra”). They achieve this through a two-step process:
first, they predict concepts from the inputs, forming a
bottleneck, and then they use these concept predictions to de-
termine the task label. This design enables CBMs to provide
human-like explanations for their predictions by grounding
them in interpretable concept representations. More im-
portantly, these models enable concept interventions (Koh
et al., 2020; Chauhan et al., 2022; Sheth et al., 2022; Shin
et al., 2023), where an expert interacting with the model at
test time can correct mispredicted concepts, leading to sig-
nificant improvements in accuracy once the CBM updates
its prediction considering such feedback (Figure 1, left).

Recent works have significantly advanced the performance
and usability of CMs within challenging in-distribution (ID)
test sets by overcoming the incompleteness gap – the fact
that training concept annotations may be insufficient for ac-
curately predicting the downstream task. By exploiting by-
pass mechanisms, such as dynamic concept embeddings (Es-
pinosa Zarlenga et al., 2022; Kim et al., 2023; Xu et al.,
2024) or residual connections (Mahinpei et al., 2021; Havasi
et al., 2022; Yuksekgonul et al., 2023), state-of-the-art CMs
enable information to “leak” directly from the features to the
task predictions, bypassing the concept bottleneck and sig-
nificantly increasing the model’s task accuracy even when
the set of training concept annotations is incomplete.

In this work, we argue that, although useful, blindly incorpo-
rating these bypasses can severely affect how CMs behave
for out-of-distribution (OOD) samples. Specifically, we
suggest that such bypasses can themselves become out-of-
distribution for OOD samples, resulting in the “poisoning”
of the model’s predictions and in concept interventions fail-
ing to achieve the intended accuracy improvements (Fig-
ure 1, right). Given how interventions can aid a CM in
adjusting to real-world OOD shifts (e.g., an expert can help
a CM process a noisy yet still-interpretable X-ray scan by in-
tervening on some concepts), such leakage poisoning casts
serious doubts on the real usability of existing CMs.

To address these limitations, we propose the Mixture of
Concept Embeddings Model (MixCEM), a concept-based in-
terpretable model with high generalisation and receptiveness
to interventions across data distributions. MixCEMs achieve
this by learning, for each concept, an embedding formed by
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Figure 1. (Left) A concept intervention on a CBM triggering a prediction update. (Right) Accuracy as concepts are intervened on in a
concept-incomplete task. When intervening on ID samples (solid), bypass-enabling models (e.g., CEMs) overcome the “incompleteness
gap.” However, for OOD samples (dashed), the same models underperform due to “leakage poisoning.” MixCEM overcomes the
incompleteness gap and leakage poisoning, maintaining high accuracy in both setups.

mixing a global sample-agnostic embedding and a residual
contextual embedding. By introducing a confidence-based
gating mechanism to control the residual embedding’s con-
tribution, MixCEMs learn to decide when the residual in-
formation may be detrimental and, therefore, should be
dropped. This allows MixCEMs to exploit the residual com-
ponent when a bypass is needed (e.g., concept-incomplete
setups) while dropping it for OOD samples, leading to im-
pactful interventions across data distributions.

Summary of Contributions Our main contributions are:
(1) we provide the first study, to the best of our knowledge,
of how concept interventions fare when there are distribu-
tion shifts. Our experiments suggest that all bypass-based
approaches do not necessarily or significantly improve their
OOD task accuracy when intervened on; (2) we introduce
the notion of leakage poisoning, a previously unknown con-
sequence of information leakage (Mahinpei et al., 2021).
Then, we argue that this poisoning is an important design
consideration given the existence of a trade-off between
avoiding leakage poisoning and achieving high accuracies;
and (3) we propose MixCEM, a CM that avoids leakage
poisoning. We show that MixCEMs maintain high task
and concept accuracies while significantly improving their
performance when intervened on, both for OOD and ID
samples and even in concept-incomplete training sets.

2. Background, Notation, and Related Work
Concept-based Explainable AI (C-XAI) Concept-based
XAI methods explain a black-box model’s predictions via
high-level units of information, or concepts, that experts
would use to explain the same task (Bau et al., 2017). Such
concepts, which can be provided as training labels (Chen
et al., 2020; Kazhdan et al., 2020; Rigotti et al., 2021;
Crabbé & van der Schaar, 2022; Sheth & Ebrahimi Ka-
hou, 2024) or can be discovered (Alvarez-Melis & Jaakkola,
2018; Ghorbani et al., 2019; Yeh et al., 2020; Magister et al.,

2022; Espinosa Zarlenga et al., 2023b; Yang et al., 2023;
Oikarinen et al., 2023), enable these methods to circumvent
the unreliability (Kindermans et al., 2017; Adebayo et al.,
2018) and lack of semantic alignment (Kim et al., 2018)
of traditional XAI feature importance approaches (Ribeiro
et al., 2016; Erhan et al., 2009; Lundberg & Lee, 2017).

Within C-XAI, Concept Bottleneck Models (CBMs) (Koh
et al., 2020) provide a powerful framework for designing
concept-based interpretable DNNs. A CBM

(
g, f, {si}ki=1

)
is a composition of two functions (g, f) supported by
scoring functions {si}ki=1, all usually parameterised as
DNNs. The concept encoder g : Rn → Ck maps an
input x ∈ Rn to a “bottleneck” ĉ = g(x) of k concepts
in concept space C ⊆ Rm. Here, the i-th output of g,
ĉi = g(x)i, is designed such that the score p̂i := si(ĉi) is
maximised when the i-th concept is “active”, and minimised
otherwise. The label predictor f : Ck → RL maps the
bottleneck ĉ to a distribution over L task labels ŷ ∈ RL.
Together, these functions predict a label ŷ = f(g(x))
for a sample x that can be explained via the concept
scores s(ĉ) := [s1(ĉ1), · · · , sk(ĉk)]T . When m = 1 and
si(ĉi) = ĉi, we call this a Vanilla CBM (i.e., Koh et
al.’s formulation). Vanilla CBMs can be trained jointly
(optimising f and g together), sequentially (training g first
and then f using g’s outputs), or independently (training g
and f using ground-truth features and concepts as inputs).

CBM Extensions Recent works have addressed sev-
eral limitations of Vanilla CBMs: (1) Concept Embed-
ding Models (CEMs) (Espinosa Zarlenga et al., 2022) and
Intervention-aware CEMs (IntCEMs) (Espinosa Zarlenga
et al., 2023a) overcome the aforementioned incomplete-
ness gap (Yeh et al., 2020), (2) Probabilistic CBMs
(ProbCBMs) (Kim et al., 2023) and Energy-based CBMs
(ECBMs) (Xu et al., 2024) enable better uncertainty and
conditional probability estimations, (3) Post-hoc CBMs
(P-CBMs) (Yuksekgonul et al., 2023) allow for effec-
tive fine-tuning of models into CBMs, and (4) Label-free
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CBMs (Oikarinen et al., 2023; Yang et al., 2023) exploit
vision-language models to extract concept annotations.

Concept Interventions CBM-based models allow for con-
cept interventions, where a human-in-the-loop can correct
mispredicted concepts at test time, potentially triggering a
task prediction change. Formally, an intervention on concept
ci fixes the output of si(ĉi) to its maximum if the expert de-
termines ci is active or to its minimum otherwise. Previous
works have shown that CBM-based models can significantly
increase their task accuracy when the corrected concepts
are carefully selected via an intervention policy (Shin et al.,
2023; Chauhan et al., 2022), or even when they are ran-
domly selected (Koh et al., 2020; Espinosa Zarlenga et al.,
2022; Xu et al., 2024). Recent works have improved the
effect of interventions by incorporating intervention-aware
losses (Espinosa Zarlenga et al., 2023a), intervention mem-
ories (Steinmann et al., 2023), or cross-concept relation-
ships (Havasi et al., 2022; Vandenhirtz et al., 2024).

OOD Detection This paper studies concept interventions
when OOD shifts occur. Hence, our work is related to re-
search in OOD generalisation (Sagawa et al., 2019), open
set recognition (Scheirer et al., 2012), and anomaly (Zhou
& Paffenroth, 2017; Schlegl et al., 2017) and distribution
shift (Rabanser et al., 2019) detection. Within concept-
based XAI, concepts have been used to explain distribu-
tion shifts (Wijaya et al., 2021; Sevyeri et al., 2023; Choi
et al., 2023; Dreyer et al., 2024), while OOD detectors have
been used to detect unwanted leakage in concept representa-
tions (Marconato et al., 2022). Rather than explaining shifts
or detecting leakage, our work focuses on understanding
concept interventions when OOD shifts occur.

3. Conflicting Objectives in CBMs
CBMs have been traditionally designed with three core
objectives in mind: (1) task fidelity (the model should accu-
rately predict its task), (2) concept fidelity (the model’s
explanations should be accurate), and (3) intervenabil-
ity (Marcinkevičs et al., 2024) (task fidelity should improve
when a model is intervened on). These three properties cap-
ture the fact that model trustworthiness, under reasonable
definitions of the term (Shen, 2022), cannot rely solely on
concept and task fidelity without incorporating intervenabil-
ity. It is important, however, to place CBMs within the
context of real-world datasets, where labelling limitations
and distribution shifts are commonplace. Considering this,
we argue that CBMs ought to have two additional properties:

1. Completeness-Agnosticism (CA): Task fidelity
should be independent of the set of training con-
cepts. That is, if (i) (f (Ptr), g(Ptr), {s(Ptr)

i }ki=1) is a
CBM learnt from any training distribution Ptr, and
(ii) P∗(X,C∗, Y ) is a concept-complete distribution

(i.e., I(X;Y ) ≤ I(C∗;Y ), where I(·) is the mutual
information), then f (P∗)(g(P∗)(x)) ≈ f (Ptr)(g(Ptr)(x)).

2. Bounded Intervenability (BI): For any test distribution
Pte and any concept subset S ⊆ {1, · · · , k}, when con-
cepts in S are intervened on with values cS , a CBM’s task
accuracy should be at least as high as the accuracy of a
Bayes Classifier in the real data distribution Pd given cS :

E(x,c,y)∼Pte

[
I(x, S, cS)y

]
≥ E(x,c,y)∼Pd

[
P(y | cS)

]
where I(x, S, cS) is the CBM’s task prediction after in-
tervening on concepts S ⊆ {1, · · · , k} using values cS .

Completeness-agnosticism yields task-accurate CBMs even
when their training sets lack all task-relevant concepts, a
common scenario considering the difficulty of labelling con-
cepts in both supervised (Collins et al., 2023) and unsuper-
vised (Oikarinen et al., 2023) settings. In contrast, bounded
intervenability guarantees a CBM will properly intake inter-
ventions even for OOD inputs, providing a sensible lower
bound for the post-intervention accuracy.

Leakage Poisoning State-of-the-art CBMs have embed-
ded incentives within their loss functions and architectures
for each core objective. More recently, new architectures
have incorporated notions similar to that of CA in their
design (e.g., leakage bypasses). The notion of bounded
intervenability, however, remains overlooked in the design
and evaluation of CBMs. In this section, we argue that this
disregard for BI has led to a serious limitation of current
CA-supporting models to remain unnoticed.

In Figure 1 (right), we observe that completeness-agnostic
methods like CEMs indeed overcome the “completeness
gap”, attaining high task accuracies compared to non-
completeness-aware approaches (e.g., Vanilla CBMs) on
concept-incomplete tasks. However, we also observe that
these approaches struggle to properly incorporate interven-
tions for OOD inputs, even when the shift is subtle random
noise. Surprisingly, we see that when all concepts are inter-
vened on, CEM’s accuracy is significantly worse for OOD
samples than for ID samples, something not observed for
Vanilla CBMs. This suggests OOD shifts somehow affect a
CEM’s bottleneck even after intervening on all concepts.

To understand this, we emphasise that state-of-the-art CBMs
achieve CA by enabling information about y missing in the
concepts c to leak to the downstream task predictor f . In
practice, this is done using dynamic high-dimensional con-
cept embedding representations (e.g., CEMs, ProbCBMs,
and ECBMs) or residual side-channels that extend or update
the bottleneck after each concept’s representation has been
constructed (e.g., Hybrid CBMs (Mahinpei et al., 2021),
autoregressive CBMs (Havasi et al., 2022), and residual
P-CBMs). Although useful, the concept bottlenecks yielded
by such models form very distinct distributions for ID and
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Figure 2. CEM concept bottlenecks and predicted concept en-
tropies for ID and noisy (OOD) test CUB samples. (Left and
centre) T-SNE projections of CEM’s bottlenecks before and after
all concepts are intervened on. (Right) Distribution of predicted
concept entropies for all concepts.

OOD samples (Figure 2, left). More importantly, these
distributions remain distinct even after intervening on all
concepts (Figure 2, centre). This is because, when we en-
able information not in c to leak into the bottleneck ĉ using
high-dimensional embeddings or residual pathways, this
information persists even after an intervention is performed.
Hence, when an input goes OOD, the leakage path may go
OOD itself, becoming detrimental, or “poisonous”, for the
model’s ability to intake interventions in general.

The Intervenability-Incompleteness Trade-off The ob-
served existence of leakage poisoning suggests there is
a trade-off between satisfying completeness-agnosticism
(which requires one to bypass information directly from x
to y even after an intervention is performed) and satisfy-
ing bounded intervenability (which requires interventions
to lead to ID bottlenecks even for OOD samples). Yet, our
study shows two other critical observations which will be-
come the basis of our solution to leakage poisoning: first, the
intervention curves for Vanilla CBM converge to the same
points for both ID and OOD samples. This is because inter-
ventions on Vanilla CBMs result in global constant changes
to their bottlenecks (e.g., setting ĉi := 1 if ci is “active”).
Hence, the more one intervenes, the more the bottleneck
will become in-distribution. Second, concept predictions are
significantly more uncertain (i.e., have higher entropy) for
OOD samples (Figure 2, right). Thus, the uncertainty in p̂ is
a helpful indicator of a sample going OOD, a property also
exploited in OOD detection (Hendrycks & Gimpel, 2016).

4. Mixture of Concept Embeddings Model
In this section, we build upon our observations above to
propose the Mixture of Concept Embeddings Model (Mix-
CEM). MixCEM is a novel CM where interventions can
dynamically leak information when the sample is ID, hence
enabling completeness-agnosticism, while they are reduced
to global constant changes to the bottleneck when the input
is OOD, hence avoiding leakage poisoning (Figure 3).

Overview Given a training setD = {(x(j), c(j), y(j))}Nj=1

with k human-generated or label-free concept annotations,
MixCEM learns k pairs of m-dimensional global embed-
dings C̄ = {(c̄(+)

i , c̄
(−)
i )}ki=1 such that concept ci is rep-

resented by c̄
(+)
i when it is “active” and c̄

(−)
i otherwise.

These embeddings will be used for concept prediction and
for constructing an interveneable bottleneck ĉ from which
we predict task labels. However, to achieve completeness-
agnosticism, MixCEM will learn to adjust these embeddings
to allow task-relevant information missing in the concept
annotations c to leak when this information is beneficial.

Residual Embeddings Given x ∈ Rn, we introduce a
leakage mechanism in our concept embeddings by using a
latent code h ∈ Ra, generated from a backbone model ψ(x)
(e.g., a pre-trained ResNet (He et al., 2016)), to construct
a pair of residual concept embeddings

(
r
(+)
i (x), r

(−)
i (x)

)
for each concept ci. We learn these residuals using two
linear functions r(+/−)

i (x) := R
(+/−)
i · ψ(x) + b

(+/−)
i

with learnable weights R(+/−)
i and biases b(+/−)

i . These
residuals will be used to update our global embeddings.

Concept Likelihood From the global and residual embed-
dings, we estimate the likelihood p̂i = P(ci = 1 | x, C̄)
using a linear scoring function si(x) = σ

(
vs · [c̄(+)

i +

r
(+)
i (x), c̄

(−)
i +r

(−)
i (x)]T

)
with weights vs ∈ R2m shared

across concepts. This enables task and concept feedback to
influence how we learn our global and residual embeddings.

Contextual Concept Embeddings By mixing each con-
cept’s global and residual embeddings as we did for p̂i,
we can construct contextual embeddings c(+)

i , c
(−)
i ∈ Rm

that encode both a concept’s global and sample-specific
information. However, we want these contextual embed-
dings to avoid being poisoned when x is OOD. We achieve
this in two ways. First, before mixing these embeddings,
we adjust the magnitude of the residual component so that
it loses its influence when the sample is likely OOD. We
do this by scaling the residuals inversely proportionally to
their concept prediction’s uncertainty, or entropy H(p̂i):
c
(+/−)
i := c̄

(+/−)
i +

(
1 − H(p̂i)

)
r
(+/−)
i (x). As the en-

tropy H of a Bernoulli r.v. is in [0, 1], and it increases if
uncertainty is higher, the scaling factor

(
1−H(p̂i)

)
controls

leakage as a function of concept uncertainty. Second, after
the MixCEM is trained, we use Platt scaling (Platt et al.,
1999) to calibrate its concept predictions p̂ to capture better
the model’s true uncertainty (see App. A for details).

Intuitively, one can think of c̄(+)
i and c̄

(−)
i as priors repre-

senting what we know about the implications of concept
ci being “active” or “inactive”, respectively. Under this
interpretation, the residuals r(+)

i (x) and r
(−)
i (x) can be

thought of as evidence that will enable us to perform poste-
rior updates to these priors after we observe task-relevant

4



Avoiding Leakage Poisoning: Concept Interventions Under Distribution Shifts

Entropy-based Gating

Bottleneck

Label
Predictor

Backbone

MixingEmbedding Construction

Concept Likelihood
Global Embeddings

(learnable)

Legend
Learnable Model

Embedding Mixing

Figure 3. Given x, a MixCEM predicts concepts p̂ and task labels ŷ. It achieves this by (1) learning global concept embeddings
c̄(+), c̄(−) ⊆ Rk×m and residual embeddings r(+)(x), r(−)(x) ⊆ Rk×m for each training concept ci, (2) using these embeddings to
estimate p̂i = P(ci = 1 | x, C̄) and to construct contextual concept embeddings (c(+)

i , c
(−)
i ), (3) mixing contextual embeddings to

produce a single embedding ĉi, and (4) predicting ŷ from the bottleneck ĉ = [ĉ1, · · · , ĉk]T .

information missing from the concept annotations.

Task Likelihood Given contextual embeddings
(c

(+)
i , c

(−)
i ), we build a concept bottleneck ĉ from where

we estimate the task likelihood P(y | x) using a (linear)
label predictor model ŷ = f(ĉ). We construct this
bottleneck by first building a single concept representation
ĉi for each concept, which we then concatenate into a single
bottleneck vector ĉ := [ĉ1, · · · , ĉk]T . As in CEMs, we do
this by mixing contextual embeddings c(+)

i , c
(−)
i using the

predicted concept probability p̂i as a mixing coefficient:
ĉi := p̂ic

(+)
i + (1− p̂i)c(−)

i . That way, ĉi is closer to c
(+)
i

if ci is predicted to be active and closer to c
(−)
i otherwise.

Intervening At test time, we can intervene on ci by forc-
ing p̂i to its ground-truth value when computing ĉi (e.g., if
concept ci is active, then the expert sets p̂i := 1). This re-
sults in ĉi becoming c

(+)
i if ci is active and c

(−)
i otherwise.

Training Objective Given a task-specific loss Ltask(y, ŷ)
(e.g., cross-entropy), we train MixCEM by minimising:

E(x,c,y)∼D

[
Ltask

(
y, f(g(x))

)
+λcBCE(c, p̂)+λpLtask

(
y, f(c̄)

)]
As in jointly-trained Vanilla CBMs, the first term here is

the task accuracy, while the second term is the mean binary
cross-entropy between concept labels and predicted scores.
The hyperparameter λc ∈ R+

0 controls how much weight
we give to correctly predicting concept labels vs task labels.

The third term, which we call the prior error and scale it by
λp ∈ R+

0 , maximises the task accuracy when only the global
embeddings are used. Here, c̄ represents the bottleneck
formed by mixing the global concept embeddings using the
ground-truth concept labels as coefficients:

c̄ :=
[(
c1c̄

(+)
1 +(1−c1)c̄

(−)
1

)
, · · · ,

(
ckc̄

(+)
k +(1−ck)c̄

(−)
k

)]T

This loss term maximises the information about the down-
stream task y encoded in the global concept embeddings. In
App. B, we prove that MixCEM’s objective function natu-
rally arises as the MLE of a probabilistic graphical model.

Non-deterministic Fallbacks We incentivise MixCEMs
to be more receptive to interventions in two ways. First,
we randomly set (i.e., intervene on) p̂i to its ground truth
value ci with probability pint during training (we use pint =
0.25). We follow this procedure as it was shown to improve
intervenability in CEMs (Espinosa Zarlenga et al., 2022),
and discuss its importance in Section 6. Second, to enable
MixCEMs to handle dropping arbitrary residual concept
embeddings, we zero the residual r(+/−)

i with probability
pdrop ∈ [0, 1] during training. As in Dropout (Srivastava
et al., 2014), this can be seen as learning an ensemble of
models where each model includes only a subset of the
residuals. At inference, we adjust for this effect by sampling
M bottlenecks (we fix M = 50 in practice) and averaging
the prediction made from all M bottlenecks similarly to
how Monte Carlo Dropout operates (Gal & Ghahramani,
2016). This mechanism has the added benefit of aiding with
overfitting and further blocking poisonous leakage. For a
thorough ablation of MixCEM’s hyperparameters showing
its robustness across values, see App. J.

5. Experiments
Research Questions We explore the following questions:

(Q1) Do MixCEMs have a high concept and task fidelity?
(Q2) Do MixCEMs remain intervenable and correctly

bounded for ID and OOD samples?
(Q3) Are MixCEMs robust to OOD shifts?
(Q4) Do MixCEM’s bottlenecks go OOD for OOD inputs?
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Table 1. Task accuracy and mean concept ROC-AUC reported as mean ± stds (%) across three seeds. Each task’s best result, and those not
significantly different from it (paired t-test, p = 0.05), are underlined.

Method CUB CUB-Incomplete AwA2 AwA2-Incomplete CIFAR10 CelebA

DNN 71.18±0.67 / N/A 71.42±0.30 / N/A 89.20±0.26 / N/A 89.33±0.22 / N/A 80.79±0.22 / N/A 25.39±0.49 / N/A
Vanilla CBM 70.97±0.76 / 89.80±0.14 56.46±0.48 / 88.15±0.14 87.52±0.41 / 94.42±0.16 76.28±0.82 / 93.25±0.30 76.97±0.17 / 73.99±0.20 24.18±0.65 / 80.12±0.21

Hybrid CBM 73.65±0.23 / 94.53±0.04 72.13±0.57 / 88.97±0.20 88.18±0.65 / 94.42±0.19 89.39±0.18 / 95.81±0.01 79.12±0.27 / 73.78±0.08 35.43±0.23 / 87.66±0.18

ProbCBM 68.16±1.44 / 89.15±0.65 60.56±1.11 / 89.26±0.18 85.34±0.39 / 94.09±0.28 67.12±0.18 / 94.07±0.28 64.80±5.15 / 72.08±0.84 31.74±0.29 / 88.14±0.22

P-CBM 69.00±0.69 / 63.22±0.23 48.88±10.66 / 61.64±0.59 90.31±0.12 / 85.39±0.23 75.77±0.44 / 85.78±0.55 79.86±0.05 / 72.16±0.00 17.18±2.47 / 76.49±1.12

Residual P-CBM 71.84±0.57 / 63.35±0.17 70.69±0.21 / 61.70±0.64 90.60±0.14 / 85.39±0.23 89.56±0.17 / 85.77±0.56 79.90±0.10 / 72.16±0.00 15.43±1.91 / 76.49±1.12

CEM 76.67±0.11 / 89.60±0.11 74.42±0.46 / 89.35±0.19 91.07±0.24 / 94.84±0.43 90.12±0.07 / 96.04±0.07 80.05±0.35 / 73.67±0.40 34.89±0.46 / 87.79±0.21

IntCEM 73.33±0.70 / 84.34±0.53 72.61±0.21 / 88.02±0.43 89.52±0.92 / 84.28±1.01 88.65±0.38 / 95.10±0.09 78.48±0.68 / 66.79±0.30 36.93±1.07 / 88.08±0.16

MixCEM (ours) 76.54±0.14 / 88.00±0.44 74.54±0.19 / 87.24±0.43 89.94±0.12 / 93.35±0.04 88.68±0.05 / 95.19±0.02 78.64±0.41 / 72.52±0.69 35.58±0.72 / 87.51±0.12

Datasets We study these questions on the following tasks:
(1) CUB (Wah et al., 2011), a bird classification task with
200 classes and 112 concepts selected by Koh et al. (2020),
(2) AwA2 (Xian et al., 2018), an animal classification task
with 50 classes and 85 concepts, (3) CelebA (Liu et al.,
2018), a face recognition task with 256 classes and 6 con-
cepts selected by Espinosa Zarlenga et al. (2022), and (4)
CIFAR-10 (Krizhevsky et al., 2009), a classification task
with 10 classes and with 143 concepts obtained in an un-
supervised manner by Oikarinen et al. (2023). Finally, we
construct concept-incomplete versions of CUB and AwA2
by randomly selecting 25% and 10% of their concepts, re-
spectively. All datasets are described in App. C.

Baselines We compare MixCEMs against Vanilla
CBMs (Koh et al., 2020), Hybrid CBMs (Mahinpei et al.,
2021), CEMs (Espinosa Zarlenga et al., 2022), IntCEMs (Es-
pinosa Zarlenga et al., 2023a), ProbCBMs (Kim et al., 2023),
and P-CBMs (including their residual version) (Yuksek-
gonul et al., 2023). Moreover, we include a vanilla DNN
as a representative black-box baseline. When possible, all
baselines are given the same capacity and budget for fine-
tuning and training. We select hyperparameters based on
the area under the validation task-accuracy vs intervention
curve and describe all hyperparameters and architectures in
App. D. Finally, for Vanilla CBMs, here we focus on their
sigmoidal and jointly-trained versions. However, we discuss
results for different variants (e.g., sequential, independent,
and logit CBMs) in App. E.

We note that we do not explicitly include Label-free
CBMs (Oikarinen et al., 2023) in our evaluation, although
we do use their labelling procedure to obtain concept labels
in CIFAR10, as in datasets where we have concept annota-
tions (e.g., CUB), it is difficult to fairly compare Label-free
CBMs and concept-supervised methods without ground-
truth labels for label-free concepts. Moreover, we do not
include GlanceNets (Marconato et al., 2022) in our evalua-
tion, even though these models use a leakage/OOD detector,
because once leakage is detected by GlanceNet’s OOD de-
tector, the model does not provide a solution that allows
operations like interventions to work in that instance.

5.1. Task and Concept Fidelity (Q1)

We first study MixCEM’s task and concept fidelity through
its task accuracy and mean concept ROC-AUC. As we are
interested in designing models that satisfy both CA and
BI, we emphasise that we do not expect MixCEM to be
the best-performing baseline in terms of its ID task and
concept fidelity. Nonetheless, we use this study to verify that
MixCEM’s task and concept performances are competitive
against existing methods. Our results, summarised in Table 1
and discussed below, suggest that this is indeed the case.

MixCEM is completeness-agnostic and attains competi-
tive task accuracies (Table 1, red). In three out of six
tasks, MixCEM is in the set of best-performing baselines
w.r.t. task accuracy. We note that, in tasks where it under-
performs, MixCEM’s drop against the best-performing CM
(i.e., CEM) is relatively small (at worst close to 2% differ-
ence). More importantly, noticing that MixCEM’s accuracy
outperforms or closely matches that of black-box DNNs on
concept-complete and incomplete tasks, our results indicate
that MixCEMs are completeness-agnostic. The same does
not hold for Vanilla CBMs, P-CBMs, and ProbCBMs.

MixCEM has a slight drop in concept AUC, yet it re-
mains competitive w.r.t. state-of-the-art CMs (Table 1,
blue). MixCEM’s mean concept ROC-AUC is slightly
below the best-performing model in four of our tasks. Nev-
ertheless, MixCEM’s drop in mean concept ROC-AUC is
relatively small for most tasks (< 2%) and always within
the performance of similar SotA baselines such as CEMs or
IntCEMs. The only task exception is in CUB, where Hybrid
CBMs attain significantly higher scores. However, as dis-
cussed next, Hybrid CBMs fail to properly achieve general
intervenability. Therefore, they are not good candidates for
human-in-the-loop scenarios, our main setup of interest.

5.2. Intervenability (Q2)

We evaluate MixCEM’s intervenability and show it is
bounded for OOD samples. For this, we look at a model’s
task accuracy as we perform concept interventions. As in
previous works, we select intervened concepts uniformly at
random, and we intervene on groups of related concepts at
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Figure 4. Task accuracy as we intervene on concepts, selected at random, for ID (top) and OOD (bottom) test samples. OOD samples
have a form of salt & pepper noise injected into at most 10% of their channels (similar results on other forms of distribution shifts can be
seen in App. H). For the sake of efficiency, in the OOD plots we approximate a Bayes classifier that takes as an input only the intervened
concepts using a masked MLP (see App. D.4 for further details). Notice that across all tasks, both in ID and OOD instances, the area
under the intervention curve for MixCEM is higher than that of competing approaches. See App. L for a tabulation of these results,
including the estimated area under each intervention curve.

once when groups are known (e.g., in CUB).

When intervened on for ID samples, MixCEM outper-
forms competing baselines (Figure 4, top). Our results
show that MixCEMs not only significantly improve their
task accuracy the more one intervenes (i.e., they are interven-
able), but they perform better or on par with IntCEMs (the
best-performing baseline here). More crucially, they achieve
this without expensive training-time sampling, leading to
faster training times than IntCEMs (see App. F). Finally, we
observe that MixCEM’s interventions significantly improve
their performance in concept-incomplete tasks, suggesting
their embeddings properly leak information even after in-
terventions. This is in contrast with non-leaky approaches
(e.g., Vanilla CBMs and P-CBMs) and global-embedding-
based approaches (e.g., ProbCBMs), which significantly
underperform in concept-incomplete tasks.

MixCEM achieves bounded intervenability and better
OOD intervention accuracy (Figure 4, bottom). Fig-
ure 4 shows the results of intervening on test samples cor-
rupted with a form of “Salt & Pepper” noise. We study
this form of noise as it common within real-world deploy-
ment (Hendrycks & Dietterich, 2019; Mousavi et al., 2017)
(see examples of corrupted images in App. G). However,
we emphasise that, as we show in App. H, MixCEM’s in-
tervention improvements discussed below are also seen for
other forms of real-world distribution shifts. This includes
distribution shifts caused by downsampling, blurring, ran-
dom affine transformations, and domain shifts (e.g., a model
trained with MNIST (Deng, 2012) digits is intervened on
samples containing real-world colour digits).

When looking at interventions on OOD samples, we see
that MixCEM is the only completeness-agnostic baseline

whose interventions are usually bounded: all of MixCEM’s
OOD intervention curves, except in CIFAR10 and a short
instance in CelebA, are always near or above the accuracy
of the Bayes Classifier (BC, black dashed line). We believe
MixCEM’s underperforming w.r.t. the BC in CIFAR10 and
CelebA results from concepts in both datasets being diffi-
cult to properly learn for all methods due to concept label
noise (their concept annotations come from CLIP-based
classification or subjective human annotations, both prone
to mistakes). Nevertheless, across all tasks, MixCEMs have
significantly higher OOD intervention accuracies than com-
peting completeness-agnostic baselines, especially CEMs
and IntCEMs (up to approx. 48% and 41% improvement
in AwA2-Incomplete over CEM and IntCEM, respec-
tively). Finally, the fact that MixCEM even surpasses the BC
when all concepts are intervened on in concept-incomplete
tasks (e.g., AwA2-Incomplete and CelebA) suggests
that MixCEMs can exploit useful leakage for OOD samples
while avoiding leakage poisoning.

5.3. Unintervened OOD Robustness (Q3)

Next, we study MixCEM’s performance across different dis-
tribution shifts. In particular, we evaluate MixCEMs as we
(1) vary the amount of test noise on CUB-Incomplete,
and (2) train it on the TravelingBirds dataset (Koh
et al., 2020), a variation of CUB where a training-time spuri-
ous correlation is introduced between the background and
the downstream task labels (see App. C for examples). Be-
low, we discuss how our results in Figure 5 suggest that
MixCEM exhibits better OOD robustness. For simplicity,
we focus on the best-performing baselines. However, we
show our observations extend to all baselines in App. I.

7



Avoiding Leakage Poisoning: Concept Interventions Under Distribution Shifts

0 50 100

Intervened (%)

0

20

40

60

80

100

T
as

k
A

cc
u

ra
cy

(%
)

Noise = 5%

0 50 100

Intervened (%)

0

20

40

60

80

100
Noise = 10%

0 50 100

Intervened (%)

0

20

40

60

80

100
Noise = 25%

CEM IntCEM ProbCBM MixCEM (ours)

0 50 100

Intervened (%)

40

60

80

100

T
as

k
A

cc
u

ra
cy

(%
)

TravelingBirds

0 50 100

Intervened (%)

20

40

60

80

100
TravelingBirds-Incomplete

CEM IntCEM ProbCBM MixCEM (ours)

Figure 5. (Left) CUB-Incomplete intervention curves. Test samples are perturbed by adding “Salt & Pepper” noise with increasing
levels (% pixels corrupted). (Centre) TravelingBirds intervention curves. We show results on a spuriously correlated validation set
(dashed) and a test set without the spurious correlation (solid). (Right) T-SNE projections of bottlenecks before (top) and after (bottom)
all concepts are intervened on for ID and OOD samples in CUB-Incomplete.

With and without interventions, MixCEM is more robust
to test-time noise (Figure 5, left). Our noise ablation
for CUB-Incomplete (Figure 5, left) shows that across
noise levels, MixCEM achieves better task accuracy as it is
intervened on than our baselines. More importantly, we see
that for low-to-medium noise regimes (e.g., 5% and 10%),
MixCEM achieves the best unintervened performance (left-
most points). For example, when noise=5%, MixCEM’s
unintervened task accuracy is 29.69% vs CEM’s 24.08%.
This trend is observed for incomplete and complete tasks
(see CUB results in App. I.1). These results suggest that
MixCEMs are robust models even without interventions.

MixCEM is more robust to spurious correlations in
concept-incomplete tasks (Figure 5, centre). In Figure 5
(centre), we look at how training-time spurious correlations
affect MixCEM’s performance in concept-complete and
incomplete versions of TravelingBirds. In the
incomplete task, we see that MixCEM’s unintervened and
intervened accuracies are better than our baselines’, both
for test sets with the spurious correlation (ID samples)
and without it (OOD samples). In particular, MixCEM’s
intervened performance is drastically better than that
of IntCEMs when the spurious correlations disappear
(adding more than 10% points in task accuracy when
all concepts are intervened on). Nevertheless, we also
notice that in concept-complete setups, although MixCEMs
outperform IntCEMs once more, they are outperformed
by ProbCBMs when no interventions are made on the test
set without the spurious correlation (OOD samples). In
Section 6, we provide some intuition as to why this may
be the case. Regardless, when compared against other
completeness-agnostic approaches (e.g., Residual P-CBMs,
CEMs, IntCEMs, Hybrid CBMs), our results suggest that
MixCEMs are more robust to different forms of OOD shifts.

5.4. Concept Bottleneck Analysis (Q4)

Finally, we qualitatively study how concept bottlenecks are
affected by concept interventions when samples go OOD.
For this, we look at the T-SNE (Van der Maaten & Hinton,
2008) projections of concept bottlenecks for different CMs.

Our experiments’ conclusions are described below.

MixCEM’s bottlenecks remain within distribution for
both ID and OOD samples (Figure 5, right). In Figure 5
(right), we see that in contrast to bottlenecks in CEMs and
Hybrid-CBMs, MixCEM’s unintervened bottlenecks (top
of figure) appear to remain within their ID bottleneck distri-
bution for OOD samples. More importantly, they appear to
closely match their original distribution when all concepts
are intervened. From our baselines, only IntCEM’s bottle-
necks seem to remain closer to their original distribution af-
ter all interventions. This may explain why IntCEM’s OOD
interventions outperform CEM’s. However, we see that Mix-
CEM’s bottlenecks capture much more of the variance of
their ID bottleneck distribution than IntCEM’s, potentially
explaining why OOD interventions are much more effective
in MixCEM. These results suggest MixCEM learns concept
representations that remain within distribution and avoid
leakage poisoning for both ID and OOD samples.

6. Discussion and Conclusion
Prior Optimisation and Intervention Awareness Our
experiments hint at an interesting relationship between
OOD intervention robustness and intervention awareness:
IntCEM, which has an explicit intervention-aware loss, and
MixCEM, which has a robustness-aware loss term minimis-
ing its prior’s error Ltask

(
f(c̄)

)
, achieve the best interven-

tion accuracies for ID samples across all baselines. These
results suggest that robustness awareness can have a positive
effect on ID intervenability. In the case of MixCEM, we
believe its prior error minimisation leads to both better ID
and OOD intervenability because this term has an implicit
incentive to maximise the model’s performance both when
all concepts are intervened on (as c̄ is constructed by mixing
embeddings based on the ground-truth concept labels) and
when no leakage is allowed. Hence, this term has the extra
effect of penalising MixCEMs for making a misprediction
when all concepts are intervened on. This has three sur-
prising results: (1) for ID samples, MixCEM can improve
its intervention performance to the level of IntCEMs with-
out needing a complex IntCEM-like sampling-based loss;
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(2) even when we set the concept weight loss to zero (i.e.,
λc = 0), MixCEMs remain highly intervenable as long as
λp > 0 (see App. J.1); and (3) improvements from training-
time interventions (i.e., when pint > 0) are much smaller
for MixCEM than what has been observed for CEMs (see
App. J.5). All of these suggest that prior error minimisation
serves as a robust intervention-aware regulariser.

Bias Mitigation Our TravelingBirds results suggest
that models incorporating constant global embeddings (e.g.,
MixCEMs and ProbCBMs) better deal with spurious corre-
lations. We believe this is because global embeddings, by
definition, block the flow of concept-independent informa-
tion during inference. Thus, the model must learn to operate
with the same shared representations for samples with and
without the spurious correlation. This leads to models learn-
ing representations that better capture under-represented
groups (e.g., samples without a spurious correlation) and
may explain why ProbCBM, built on top of global em-
beddings, achieves a high OOD unintervened accuracy in
TravelingBirds. Future work could then explore how
global embeddings can be exploited for generalisation.

Limitations MixCEMs require more parameters (i.e.,
O(km) weights for C̄) and hyperparameters (e.g., λp and
pdrop) than CEMs. Although MixCEM is generally robust
to its hyperparameters (see App. J), its memory and fine-
tuning footprint open the door for future work to alleviate
these constraints. Moreover, we foresee at least two poten-
tial failure modes in MixCEMs: First, when a concept goes
OOD and the shift renders the concept incomprehensible for
an expert, MixCEMs may fail to completely block leakage
poisoning as one cannot intervene on such a concept. Hence,
future work can explore mechanisms for blocking all un-
wanted leakage without knowing a concept’s label. Second,
in incomplete tasks, intervened MixCEMs do not always
recover the full ID performance in OOD inputs. Therefore,
future work can explore how information about unprovided
concepts can be better preserved after an intervention. Fi-
nally, future work could explore (1) extending MixCEM’s
embedding decomposition to other embedding-based meth-
ods, such as ECBMs, and (2) devising better ways to inject
priors in its global embeddings.

Conclusion In this paper, we show that previous state-
of-the-art concept-based models are ill-equipped to concur-
rently handle both concept-incompleteness and test-time
interventions when inputs are OOD. To address this, we
introduce MixCEM, a new concept-based architecture that
uses an entropy-based gating mechanism to control when
and how concept-independent feature information is leaked.
Through an extensive evaluation across concept-complete
and concept-incomplete tasks, we show that MixCEMs out-
perform strong baselines by significantly improving accu-
racy for both ID and OOD samples in the presence and

absence of concept interventions.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.
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A. MixCEM Concept Probability Calibration
Platt scaling (Platt et al., 1999) is a post-hoc calibration method used to transform the outputs of a probabilistic classifier
into well-calibrated probabilities (i.e., probabilities that better represent the model’s true uncertainty). In this work, we apply
a common adaption of Platt Scaling by Guo et al. (2017) to calibrate a MixCEM’s concept probabilities so that they better
represent their uncertainty and, therefore, may serve as better indicators for when a concept might have gone OOD.

In practice, Platt scaling involves fitting a logistic regression model to the logits (pre-sigmoid activations) of MixCEM’s
concept scores p̂ on a validation dataset. Specifically, for each concept ci in our training set, given the logit zi := σ−1(p̂i)
of concept prediction p̂i, we calibrate its output by learning a linear transformation of zi:

P(ci = 1 | zi) = σ
(
aizi + bi

)
,

where ai, bi ∈ R are parameters specific to each concept. These parameters are learnt using maximum likelihood estimation
for Ecal epochs on the validation data after the MixCEM has been trained.

When we learn parameters a and b, we freeze all other parameters in MixCEM and minimise the Binary Cross Entropy loss
between scaled concept predictions and their ground-truth labels in the validation set. This means that the model’s concept
validation accuracy remains the same throughout this process, although the task accuracy can change slightly (as the task
predictions are a function of the concept predictions). By the end of this optimisation, MixCEM’s concept predictions are
better fit to represent the true model uncertainty and can therefore be better at identifying when a sample’s concepts have
gone OOD. The results of including Platt Scaling as a post-processing step of MixCEMs are further discussed in App. J.4.

B. Maximum likelihood of MixCEM
A generative process commonly considered to underlie a CBM treats a complete set of ground-truth concepts C to be the
generating factors of variation of the samples X and the downstream tasks Y (i.e., X ← C → Y ). At test time, however,
CBMs observe X and need to infer only a subset of concept activations P̂ and a label Y . Without loss of generality, we can
express the complete concept set C as a function of two independent factors R and C̄. Here, C̄ is a prior for the concepts in
P̂ representing the network global beliefs about known concept which do not depend on a specific input observation. In
contrast, R provides residual information from X in the form of appropriate context and a higher level of detail about the
input observation.

Assuming we observe X , the above conditional independences lead to the following probabilistic graphical model and
factorisation

X

C̄

P̂

R

C Y

P(Y, P̂ | C̄,X) =
∑
R

∑
C

P(Y | C)P(C | P̂ , C̄, R)P(P̂ | X, C̄)P(R | X)

where

• P(Y | C) is a categorical distribution over task labels parametrised by the task classifier f : C → Y .

• P(P̂ | X, C̄) is a Bernoulli distribution parametrised by the concept classifier g(·; C̄) : X → P̂ (where we interpret C̄
as learnable parameters of the classifier).

• P(C | P̂ , C̄, R) is the concept mixture parametrised by a neural function γ : Z → C (where Z represents the input
domain).

• P(R | X) is the residual encoder parametrised by a neural function ψ : X → R.
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Under the assumption that our concept prior C̄ encodes information (approximately) independent on X (C̄ |= X =⇒
C̄ |= R), and that the contribution of C̄ and R in predicting C is additive, we can rewrite P(Y | C) as follows

P(Y | C) ≈ P(Y | γ(P̂ , C̄))P(Y | γ(P̂ , ψ(X)))

where

• P(Y | γ(P̂ , C̄)) represents the task distribution given the prior concepts alone.

• P(Y | γ(P̂ , ψ(X))) represents the task distribution when observing the input data and concept predictions alone.

Given a concept-based dataset of i.i.d. triples D = (x, c, y) (input, concepts, task), the model’s parameters can be learnt via
gradient descent by maximising the empirical log-likelihood of the training data. For this, we consider the prior variables
c̄ as parameters for the optimisation, similar to the weights θg and θf representing the weights of the concept and task
classifiers, respectively. This yields the following objective function:

θ∗g , θ
∗
g , c̄

∗ = arg max
θg,θf ,c̄

L(θg, θf , c̄ | x, c, y)

= arg max
θg,θf ,c̄

∑
D

P(Y, P̂ | X; θg, θf , C̄)

≈ arg max
θg,θf ,c̄

∑
D

P(Y | γ(P̂ , ψ(X)); θf )P(P̂ | X; θg, C̄)P(Y | γ(P̂ , C̄); θf )

= arg max
θg,θf ,c̄

∑
D

(
logP(Y = y | f(g(x))) + logP(P̂ = c | g(x)) + logP(Y = y | f(c̄))

)

= arg max
θg,θf ,c̄

∑
D

(
Ltask

(
y, f(g(x))

)
+ BCE

(
c, p̂

)
+ Ltask

(
y, f(c̄)

))

This is precisely the objective function we optimise when training MixCEM.

Information theoretic discussion In IID cases, if the concept prior C̄ is not informative enough to make predictions,
the model could exploit the contextual information in X to refine concept beliefs and generate more accurate concept
predictions. In this setting, X is useful to attain high task fidelity (ensuring completeness-agnosticism). However, in non-IID
settings, X encodes features from an unknown distribution, which may produce concept posteriors worse than the prior. For
this reason, we may need to exclude X from the computation of Y in such cases. If we exclude X from the computation, we
need C̄ to incorporate as much information as possible about Y ; otherwise, our predictions will not be better than random
chance, and interventions will be ineffective.

From an information theoretic perspective, MixCEM creates an interpretable information bottleneck where most the
information about Y is encoded in C̄ and only minimal residual information flows from X (i.e., I(Y ; C̄)≫ I(Y ;X)) as
the loss term Ltask

(
y, f(c̄)

)
encourages the model to make predictions from global concepts alone.

C. Datasets
Below, we discuss the tasks and datasets used for our experiments in Section 5. A summary of the main characteristics of
each task can be found in Table 2.

CUB The CUB bird classification image task is constructed from the Caltech-UCSD Birds-200-2011 dataset (Wah et al.,
2011). Each sample in this task corresponds to a (3× 299× 299) RGB image of a bird (normalised in [0, 1]), annotated with
one of 200 bird species. Here, each image has 312 binary attribute annotations (e.g., “black nape”, “yellow wing
colour”, etc.). We construct a set of 112 binary concepts following the selection of attributes used by Koh et al. (2020).
Moreover, we follow the same majority-voting standardisation of concepts across classes as in (Koh et al., 2020). This leads
to all samples from the same class having the same concept profiles. We do this so that this task’s concept annotations
are truly complete w.r.t. the downstream task (i.e., they can fully describe each downstream label) and to maintain this
dataset aligned with how it is usually used in the concept-based XAI literature. Finally, all 112 concepts can be grouped into
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Table 2. High-level properties of all tasks used in our experiments.
Dataset Training Samples (N ) Validation Samples Testing Samples Input Shape (n) # Labels (L) # Concepts (k) # Concept Groups

CUB 4,796 1,198 5,794 (3, 299, 299) 200 112 28
CUB-Incomplete 4,796 1,198 5,794 (3, 299, 299) 200 22 7

AwA2 22,393 7,464 7,465 (3, 224, 224) 50 85 28
AwA2-Incomplete 22,393 7,464 7,465 (3, 224, 224) 50 9 6

CelebA 11,818 1,689 3,376 (3, 64, 64) 256 6 N/A
CIFAR10 40,000 10,000 10,000 (3, 32, 32) 10 143 N/A

TravelingBirds 4,796 1,198 5,794 (3, 299, 299) 200 112 28
TravelingBirds-Incomplete 4,796 1,198 5,794 (3, 299, 299) 200 22 7

28 groups that encapsulate semantically related concepts (e.g., “black wing colour” and “red wing colour”).
When performing interventions, all concepts within the same group are intervened at once, meaning we do interventions on
a group-level basis. As it is traditionally done for this dataset Koh et al. (2020); Espinosa Zarlenga et al. (2022); Kim et al.
(2023), we normalise all images, and during training, we randomly flip and crop images. For this task, and its incomplete
version, we use the same train-validation-test splits as in (Koh et al., 2020).

CUB-Incomplete The CUB-Incomplete task is generated from our CUB task by randomly selecting 25% of CUB’s
concept groups before training and using the labels of concepts within those groups as each sample’s concept labels. We do
the concept subsampling only once and use the same subselection across all seeds/rounds of experiments. This resulted in us
randomly selecting the following 7 groups of concepts {“bill shape”, “head pattern”, “breast colour”, “bill length”, “wing
shape”, “tail pattern”, “bill color”}. Together, all of these concept groups yield a total of 22 binary concept annotations. We
use this dataset as an example of a concept-incomplete task. We use the same splits and training augmentations as in CUB.

AwA2 The AwA2 task is constructed from the Animals with Attributes 2 (Xian et al., 2018) dataset. Each sample in
this task consists of a normalised (3, 224, 224) RBG image of an animal annotated with one out of 50 species classes
(e.g., “zebra”, “polar bear”, etc.). In addition to a species label, each sample is annotated with 85 binary attributes (e.g.,
“black”, “white”, “stripes”, “water”, etc.). We use these binary attributes as concept labels and split them across 28 groups of
semantically related concepts. Specifically, we group concepts across the following categories: { “colour”, “fur pattern”,
“size”, “limb shape”, “tail”, “teeth type”, “horns”, “claws”, “tusks”, “smelly”, “transport mechanism”, “speed”, “strength”,
“muscle”, “movement move”, “active”, “nocturnal”, “hibernate”, “agility”, “diet”, “feeding type”, “general location”,
“biome”, “fierceness”, “smart”, “social mode”, “nest spot”, “domestic”}. Similar to CUB, all samples with the same class in
this dataset share the same concept profiles. The train-validation-test data splits are produced by randomly splitting this
dataset 60%-20%-20%, and samples are randomly cropped and flipped during training as done in CUB.

AwA2-Incomplete The AwA2-Incomplete is constructed from the AwA2 task by selecting, at random,
10% of AwA2’s concepts to use as training annotations. This resulted in us selecting the following 9 concepts
{“black”,“gray”,“stripes”,“hairless”,“flippers”,“paws”,“plains”,“fierce”,“solitary”}. This dataset provides another example
of a more realistic concept-annotated dataset where the task labels are not complete descriptions of the downstream task.

CIFAR10 To explore our method in tasks without concept labels, we incorporate the CIFAR10 (Krizhevsky et al., 2009)
dataset as part of our evaluation. In this image detection task, each sample is a (3, 32, 32) normalised RGB image that can
be one out of 10 object types (e.g., “aeroplanes”, “cars”, “birds”, “cats”, etc.). As done by Marcinkevičs et al. (2024) and
Vandenhirtz et al. (2024), we annotate all samples in this dataset with 143 textual concepts whose semantics were obtained
in an unsupervised manner by Oikarinen et al. (2023). This allows us to construct numerical, unnormalised concept scores
using the CLIP (Radford et al., 2021) similarity score between each image and each concept’s textual description.

In contrast to how Marcinkevičs et al. (2024) and Vandenhirtz et al. (2024) binarise these concept scores, however, we
do not use a zero-shot CLIP classifier selecting between a concept description and its textual negation. This is because
generating binary concept labels in this manner leads to significantly imbalanced labels. Hence, such labels are extremely
difficult for models to accurately learn as measured by their mean concept AUCs (although one can easily train models that
achieve high concept accuracies, similar to those reported in (Marcinkevičs et al., 2024), given the high label imbalance).
Therefore, here, we instead binarise concepts by thresholding their scores based on their 50-th percentiles, as estimated
from the entire dataset. This leads to concepts that are both balanced and still informative (e.g., we can see that our Bayes
Classifier achieves high accuracies when provided with all concept labels in Figure 4 (bottom)). Nevertheless, it is worth
pointing out that, by depending on an external unsupervised model such as CLIP to annotate these labels, this results in a
dataset that will undoubtedly have noisy concept labels that are not always accurately representing their intended semantics.
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CelebA Our CelebA task is the same as used by Espinosa Zarlenga et al. (2022) based on the Large-scale CelebFaces
Attributes dataset (Liu et al., 2018). Here, every sample is a normalised RGB facial image annotated that has been
downsampled to have shape (3, 64, 64). As in (Espinosa Zarlenga et al., 2022), we select the top-8 most balanced attributes
from all of CelebA’s 40 attributes to construct a downstream label y as the decimal representation of the vector containing
all 8 attributes. We point out that although this process can yield up to 256 distinct task labels, in practice we could only
find 230 of them within the training samples and we noticed that these labels were highly imbalanced (which results in
a very difficult task to solve). To make this task concept-incomplete, we provide as concept annotations only the top-6
most balanced attributes, leaving two of the concepts needed to predict y out of our training annotations. Finally, as in
(Espinosa Zarlenga et al., 2022) and for consistency with previous works, our training set here is formed by randomly
subsampling the original CelebA’s training set to a 12th of its size.

TravelingBirds and TravelingBirds-Incomplete The TravelingBirds task, and its incomplete version,
are a variation of their respective CUB tasks. These tasks, based on the TravelingBirds dataset proposed by Koh et al. (2020),
introduce a new background to all bird images in CUB sampled from a category (e.g., “seashores”, “forests”, “coffee shops”,
etc.) that is correlated to the sample’s task label (see Figure 6). As in the original TravelingBirds dataset, these tasks’ test
sets have a distribution shift where the background of each bird is shifted to a different category, making these tasks good
test beds for generalisation and OOD evaluation.

Tr
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Figure 6. Randomly selected training and test samples of TravelingBirds for the class “Yellow-headed Blackbird”. Notice that
training samples all have “aircraft-carrier” backgrounds while the testing samples have “sauna” backgrounds.

D. Training, Model Selection, and Hyperparameters
D.1. Training

During training, we use the standard categorical cross-entropy loss as Ltask. For baselines that optimise a binary cross
entropy loss between a predicted set of concepts and their corresponding ground truth labels, we use a weighted binary
cross entropy loss that weights the loss of each concept’s label proportionally to its representation in the training distribution
(except in CelebA due to instabilities where we use an unweighted version). That way, we encourage models to learn
useful concept predictors in tasks with high concept imbalance (e.g., CUB).

Unless specified otherwise, all baselines are trained using Stochastic Gradient Descent (SGD) with momentum 0.9. When
computing batch-level gradients, we use a batch size of 64 for all CUB-based tasks (given their large sample and concept
dimensions). Otherwise, we use a batch size of 512 for all other tasks. Similarly, when possible, we fix the initial learning
rate lr to values used by previous works and decay it during training by a factor of 10 if the training loss reaches a
plateau after 10 epochs. Specifically, we use lr = 0.01 for all tasks except for CelebA where we use lr = 0.05 as in
(Espinosa Zarlenga et al., 2022). Finally, based on the configuration by Koh et al. (2020), we use a weight decay 0.000004
for the CUB-based and AwA2-based tasks.

All models were trained for a total of E epochs, where E = 150 for all datasets except for CIFAR10, where it is E = 50.
We use early stopping by tracking the validation loss and stopping training if an improvement in validation loss has not been
seen after (patience)× (val freq) epochs, where patience = 5 and val freq, the frequency at which we evaluate our model
on the validation set, is val freq = 5.
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D.2. Base Architecture

Across all models, we use a ResNet-18 (He et al., 2016) pretrained on ImageNet as the backbone architecture ψ for all tasks
except for CelebA where we use a larger model (a ResNet34) as the dataset is smaller. Specifically, we use the output of
the second-to-last layer in ResNet (the layer before the original logits) as a backbone for all models. We do not freeze the
initial pretrained weights. If the backbone is required to have a specific output dimension (e.g., as in Vanilla CBMs), then
we achieve this by adding a leaky ReLU (Maas et al., 2013) nonlinearity and a linear layer with the correct output shape to
the ResNet model mentioned above.

For the label predictor f(ĉ), we use a single linear layer for all baselines. The only exception for this is ProbCBMs, where,
as proposed by the original authors, we perform inference via a distance-based layer that learns class embeddings in RDy

and compares their distance to a learnt linear projection of the bottleneck ĉ onto that space.

D.3. Model Selection

Across all tasks and baselines, we performed a hyperparameter search with the aim of representing each baseline fairly.
For this, we made significant efforts to provide each baseline with the similar fine-tuning budgets. Moreover, we aimed
to provide all baselines with the opportunity to have the same capacity as each other by including hyperparameterisations
that lead to similar parameter sizes. When possible and available, we attempted to use the same hyperparameters and
hyperparameter recommendations provided by the original works proposing each baseline. Yet, it is worth pointing out that
in some instances, our model selection chose hyperparameters that led to models with fewer parameters as they yielded
better validation metrics.

After considering a model-specific selection of hyperparameters for each baseline (summarised in each Table 3), we report
the results of only the baseline with the area under its validation task accuracy vs intervention curve (the only exception
being DNN, as it is unintervenable and therefore we perform model selection based on its validation task). We use this
area as a proxy for a metric that captures task fidelity, concept fidelity, and intervenability. Below, we provide details of all
baselines, together with the hyperparameters that our model selection yielded for each of them across our tasks.

Table 3. Sets of hyperparameters considered when performing our model selection. For each hyperparameter, we indicate which baseline(s)
that hyperparameter is relevant to. For clarity, we separate MixCEM’s specific hyperparameters at the bottom part of this table.

Hyperparameter Semantics Searched Values Baselines Fine-tuning These Hyperparameters

λc Concept loss weight {1, 5, 10} CBM, Hybrid CBM, CEM, IntCEM
k′ Extra unsupervised bottleneck dimensions {0, 50, 100, 200} Hybrid CBM, DNN
m Concept embedding space dimension {16, 32} CEM, ProbCBM
Dy Class embedding space dimension {64, 128} ProbCBM
γ Training intervention loss penalty {1.1, 1.5} IntCEM
λroll Intervention policy regulariser {0.1, 1, 5} IntCEM

λcomplex Complexity regulariser {0.000001, 0.001, 0.1} P-CBM, Residual P-CBM
λp Prior loss weight {0.1, 1} MixCEM
pdrop Residual dropout probability {0.1, 0.5, 0.9} MixCEM
Ecal Number of Platt scaling epochs {0, 30} MixCEM

D.4. Baseline Details and Selected Hyperparameters

Vanilla CBM All Vanilla CBM results in the main body of this work are produced from a jointly trained CBM (with
concept weight loss λc) whose bottleneck is sigmoidal (i.e., ĉ is in [0, 1]k). Our model selection here yielded λc = 1 for
all concept-incomplete tasks CUB-Incomplete, AwA2-Incomplete, and CelebA. In contrast, for all other (concept
complete) tasks, our model selection chose λc = 10.

Hybrid CBM Hybrid CBMs (Mahinpei et al., 2021) are variations of jointly trained sigmoidal CBMs where the concept
bottleneck ĉ = [ĉaligned, ĉunaligned]

T ∈ R(k+k′) is formed by the concatenation of a binary component ĉaligned ∈ [0, 1]k,
whose i-th entry is trained to be aligned with the i-th ground-truth concept, and a real-valued unconstrained component
ĉextra ∈ Rk′

, whose k′ entries are not aligned to any known concept. Our model selection for Hybrid CBMs yielded
k′ = 50 for all tasks except for CelebA, which yielded k′ = 200. Similarly, we selected λc = 10 for CelebA, AwA2, and
AwA2-Incomplete, λc = 1 for CUB-Incomplete and CIFAR10, and λc = 5 for CUB.

17



Avoiding Leakage Poisoning: Concept Interventions Under Distribution Shifts

CEM When training CEMs, we intervene on a concept with probability pint = 0.25 (as suggested by the authors (Es-
pinosa Zarlenga et al., 2022)). In this setup, our model selection selected m = 16 for CEM’s embedding size for all tasks
except for CelebA, where we obtainedm = 32. Finally, we used the following concept loss weights: λc = 10 for CelebA,
λc = 5 for AwA-Incomplete, and λc = 1 for all other tasks.

IntCEM Given the number of hyperparameters in IntCEMs, we focused on fine-tuning only the concept loss weight λc,
the training-time task intervention penalty γ, and the intervention policy regulariser λroll. Therefore, we fixed the embedding
size m to that used by the equivalent CEM in the respective task, the number of training time interventions T to 6, the
initial probability of intervention as pint = 0.25, and the annealing rate for Tmax to 1.005. We chose these values based on
the suggestions by the original authors of this work. This resulted in the following hyperparameters being selected: (a)
λc = 1 for all tasks, (b) γ = 1.5 for CUB, CelebA, AwA2, and AwA-Incomplete and γ = 1.1 for all other tasks, and
(c) λroll = 0.1 for AwA2-Incomplete, λroll = 5 for CIFAR10, and λroll = 1 for all other tasks. Finally, for stability, we
use global gradient clipping (clipping value of 100) for CelebA.

ProbCBM We attempt to closely follow the same hyperparameters for ProbCBMs used in the original work by Kim et al.
(2023). As such, we (1) always use an Adam (Kingma & Ba, 2014) optimiser, (2) use a starting learning rate of 0.001
(except for CIFAR10 where we increase it to 0.01 as otherwise the model severely underperformed), (3) fix the number of
training and inference samples to 50, (4) intervene on concepts during training with probability pint = 0.5, (5) warm-up the
model for 5 epochs, and (6) scale the KL divergence regulariser λKL = 1× 10−5, as these were the hyperparameters used
on the authors’ original experiments. Similarly, we use weight decay 1 × 10−6, a learning rate 10-times smaller for the
non-pretrained weights, and clip gradient norms to 2 as the authors do in their official code base1.

As suggested by the authors, we trained ProbCBMs in a sequential manner. For this, we use early stopping for a maximum
of E epochs but, for fairness, we spend at most E/2 of those epochs training the concept encoder and the reaming epochs
training the task predictor. This left us with fine-tuning the dimensionality of both the concept embeddings (m) and the class
embeddings (Dy), two hyperparameters which we noticed had a critical role in ProbCBM’s performance. Here we use (a)
m = 32 for CUB and CelebA, and m = 16 otherwise, and (b) Dy = 128 for CUB and AwA2, and Dy = 64 otherwise.

As in (Kim et al., 2023), we perform interventions in ProbCBMs by replacing sampled concept embeddings with the learnt
means of their corresponding ground-truth labels.

Posthoc CBM We train both the standard and residual versions of P-CBMs. Here, we first train a DNN on the downstream
task y for E epochs by attaching two linear layers, with a leaky ReLU between them, to the output of the backbone ψ. The
first linear layer will have as many neurons as concepts in the dataset and the second layer will have as many neurons as
output labels in the specific task. This is done so that we provide this model with a similar capacity to the CBMs we train.
We train the black-box model with the same optimiser’s hyperparameters used for other baselines.

Once the black box task predictor has been trained, we extract a training set of embeddings by projecting the entire training
set to the space of the second-to-last layer of this model (i.e., the space of the first linear layer with k neurons that we added).
Then, we learn the Concept Activation Vector (CAVs) (Kim et al., 2018) for concept ci using the vector perpendicular to
the decision boundary of a linear SVM, with ℓ2 penalty C = 1, trained to predict concept ci from the activations of the
second-to-last layer of the black box DNN.

When fine-tuning P-CBMs’s sparse linear classifier, we fine-tune the complexity regulariser λcomplex and fixed the elastic
net’s ℓ1 ratio to be 0.1. Our model selection chose λcomplex = 1× 10−6 for CUB, AwA2, and CIFAR10, λcomplex = 0.001
for CUB-Incomplete and AwA2-Incomplete, and λcomplex = 1 for all other tasks.

When training the residual version of P-CBM, we provided the residual layer with k hidden neurons to enable this model to
have a closer capacity than that of competing baselines. Our fine-tuning for this model selected λcomplex = 1× 10−6 for
CUB, λcomplex = 0.001 for CIFAR10, and λcomplex = 0.1 for all other tasks.

Finally, given a lack of a direct mechanism for performing concept interventions on P-CBMs, when we intervene on their
concept predictions, we follow the same intervention process as in Vanilla CBMs whose bottlenecks are unnormalised (e.g.,
logits). That is, as suggested by Koh et al. (2020), we indicate a concept ci is active by setting the neuron aligned to its score
to the 95th percentile value of that neuron in the empirical training distribution. Similarly, we indicate a concept is inactive
by setting that same neuron’s output to the 5th percentile of its empirical training distribution.

1See https://github.com/ejkim47/prob-cbm/blob/main/configs/config exp.yaml#L30.
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DNN As a representative of black-box models, in our evaluation we included vanilla Deep Neural Networks (DNNs). To
ensure fairness in terms of capacity w.r.t. other baselines, we implemented DNNs using the same architecture as Hybrid
CBMs in each task but setting the concept weight to 0. This ensures this model only learns its downstream task using
the same architecture provided to equivalent Hybrid CBMs. Therefore, as in Hybrid CBMs, we fine-tuned the number of
extra dimensions k′ in the bottleneck that follows the backbone, selecting a value in k′ ∈ {0, 50, 100, 200}, and set the
activation function of the entire bottleneck to a vanilla leaky ReLU function. Our model selection chose k′ = 200 for CUB,
CUB-Incomplete, AwA2, and CelebA while it chose k′ = 100 for AwA2-Incomplete and CIFAR10.

MixCEM For MixCEMs we fine-tune the weight of the prior loss λp, the dropout probability of a concept embedding’s
residual during training pdrop, and the number of epochs Ecal used for Platt calibration (Platt et al., 1999) on the validation
set. All other hyperparameters that are inherited from CEMs, such as the probability of training intervention pint, the concept
loss weight λc, and the embedding size m, are always set to the same values selected for CEMs on the respective task. As
for our other hyperparameters, our model selection yielded: (a) λp = 1 for all tasks except for CIFAR10, where we selected
λp = 0.1, (b) pdrop = 0.1 for CUB-Incomplete and the TravelingBirds-based tasks, pdrop = 0.5 for CUB, AwA2,
and CIFAR10, and pdrop = 0.9 for CelebA, and (c) Ecal = 30 for all tasks except for CelebA, where model selection
chose not to perform Platt Scaling (i.e., Ecal = 0). Finally, we always fix the number M of residual dropout samples we
generate at inference to M = 50.

In App. J, we show an ablation study for our model’s hyperparameters that suggests its ability to achieve both CA and BI is
preserved across several hyperparameterisations. Nevertheless, noticing that (λp, pdrop, Ecal) = (1, 0.5, 30) were by far the
most often selected hyperparameters, we recommend using these as the default values of MixCEM’s hyperparameters if
there are no resources for fine-tuning its hyperparameters.

D.5. Bayes Classifier

To determine whether or not all baselines achieve bounded intervenability, we wish to approximate the accuracy of a Bayes
Classifier that takes as input any set of ground-truth concept labels cS and predicts argmaxl∈{1,··· ,L} P(y = l | cS). As
learning a model for each possible concept subset S ⊆ {1, · · · , k} is intractable, we approach this problem by approximating
the Bayes Classifier via a Multilayer Perceptron (MLP) η(c) : [0, 1]k → [0, 1]L and training it to minimise Ltask(η(c), y).
For this model to support any arbitrary concept subset as an input during inference, however, we randomly mask its input
concept vectors c during training by setting any input concept to 0.5 with probability p = 0.25. That way, given the labels
cS of any subset of concepts S, we can estimate P(y | cS) by predicting η(c′(S)), where we let c′(S) ∈ [0, 1]k be a vector
such that c′(S)i = ci if i ∈ S and c′(S) = 0.5, otherwise. In practice, across all tasks, we train this masked model for
EBayes = 75 epochs using an MLP with hidden layers [28, 64, 32] and leaky ReLU nonlinearity in between them.

E. Results on Variations of Vanilla CBMs
As discussed in Section 2, Vanilla CBMs can be trained jointly, sequentially, and independently. Moreover, the jointly
trained version of Vanilla CBMs can use a bounded sigmoidal activation for its bottleneck, or it can use unbounded logit
scores. In the latter case, where the bottleneck contains the logits of the concept they predict, these scores can be intervened
on using the 5th and 95th percentiles values of their respective training distributions as suggested by Koh et al. (2020). Here,
we explore how different training regimes for Vanilla CBMs affect their ID and OOD intervention performances.

In Figure 7, we show the results of intervening on several variations of Vanilla CBMs across all tasks and compare these to
our MixCEM’s results. These results, which follow the same setup introduced for Figure 4 in Section 5, show that MixCEM
outperforms all CBM variations when intervened on for ID and OOD samples. In particular, we observe that MixCEMs
significantly outperform all variants of Vanilla CBMs in our concept-incomplete tasks as, in contrast to Vanilla CBMs,
MixCEMs are completeness-agnostic. The closest variant to MixCEM in terms of its unintervened performance is the
jointly trained logit CBMs, as their logits are leakage-enabling activations in the bottleneck. Yet, as seen in particular in
the concept-incomplete tasks such as CUB-Incomplete and AwA2-Incomplete, these models are unable to properly
react to interventions in these setups, instead decreasing their accuracy the more they are intervened on.
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Figure 7. Task accuracy of several Vanilla CBM variants as we intervene on concepts, selected at random, for ID (top) and OOD (bottom)
test samples. We use the same setup as the experiments described in Figure 4.

F. Scalability Study: Training Times
F.1. Training Times

In Table 4, we show the efficiency of each method expressed as the number of wall-clock seconds taken per training epoch
across all tasks. We emphasise that these results are likely biased as they depend on implementation. Moreover, they are
prone to high variance due to our hardware infrastructure (we train models on shared machines whose latency may be
affected by concurrent processes). Nevertheless, our results suggest that MixCEM’s training times are significantly faster
than those seen in IntCEMs and ProbCBMs. This is due to IntCEMs incorporating an expensive sampling-based training
objective, which MixCEMs avoid completely. As expected, MixCEM’s times are slower than CEMs given their introduction
of new mechanisms on top of CEM. Nevertheless, we believe this performance hit is not significant and can be consider
to be amortised at inference time if one considers that MixCEMs are much better at receiving concept interventions than
CEMs both for ID and OOD samples. Finally, we see that as the number of concepts grows, the performance of ProbCBM
increases significantly even for a similar number of samples (e.g., AwA2 and CIFAR10). This is highly suggestive that these
models may not properly scale to large concept bases and suggest that MixCEMs, whose performance remains relatively
stable even when the number of concepts is high, can properly scale across concept set sizes.

Table 4. Efficiency study showing the training time per epoch (in seconds) for all embedding-based baselines.

Method CUB CUB-Incomplete AwA2 AwA2-Incomplete Cifar10 CelebA

ProbCBM 67.90±6.54 26.08±2.67 182.38±6.09 121.07±25.12 428.52±156.10 11.14±0.12

CEM 30.34±2.87 26.21±1.49 82.44±9.38 108.82±12.63 32.37±0.52 8.15±0.19

IntCEM 53.75±8.81 35.57±4.27 149.96±8.94 144.18±35.97 93.85±1.58 11.57±0.41

MixCEM 50.03±3.31 26.00±0.90 110.94±1.27 97.96±6.81 59.92±2.76 7.73±0.02

F.2. Inference Times

To complement our discussion on MixCEM’s training times with respect to competing baselines, in this section we explore
the effect of MixCEM’s components in its inference time. Table 5 shows the inference wall-clock times of all baselines in
CUB. Although we observe a slight increase in inference times of MixCEMs with respect to CEMs (∼4.2% slower), we
argue this difference is not problematic considering MixCEM is designed to be deployed together with an expert that can
intervene on it. In this setup, we believe that less than a millisecond of extra latency should not bear too heavy a toll, as
post-intervention accuracy is more important.
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Table 5. Efficiency study showing the inference time per sample (in milliseconds) for all baselines in CUB.

Vanilla CBM Hybrid CBM ProbCBM P-CBM Residual P-CBM CEM IntCEM MixCEM

Time per Sample (ms) 1.386 1.394 5.687 1.426 1.433 1.437 1.431 1.497

G. Image Noising Details
Across all of our experiments where noise is used to generate OOD test samples (e.g., Figure 4 and Figure 5, left), we use
a form of “Salt & Pepper” noise. Given a noise strength factor λl ∈ [0, 1], this noise sets a randomly selected fraction of
λl/2 pixel channels, selected with replacement for efficiency, to 255, their maximum value. Then, it sets λl/2 randomly
selected pixels channels, selected with replacement for efficiency, to 0, their minimum value. This leads to the resulting
image having at most λl of its channels corrupted and to them becoming darker as the noise level increases. If the noise
level is not specified, then we use λl = 0.1% as the default level. We note that we use this version of Salt & Pepper noise as
it allows us to efficiently test its effects on models across large datasets using noise that is similar to that found in real-world
scenarios (Azzeh et al., 2018). A visualisation of CUB images with different levels can be seen in Figure 8.

Original λl = 5% λl = 10% λl = 25% λl = 50% λl = 75% λl = 90%

Figure 8. Examples of random images in CUB with our form of “Salt & Pepper” noise as we vary the noise’s strength level.

H. Interventions on Different Forms of Distribution Shifts
In this section we explore different forms of distribution shifts beyond those studied in Section 5. Our results below strongly
suggest that the improvements in intervenability described in Section 5 for MixCEMs can be seen across multiple forms of
distribution shifts.

H.1. Exploring Different Forms of Visual Distribution Shifts

First, we explore visual distribution shifts caused by different forms of transformations besides the Salt & Pepper noise we
studied in Section 5.2. Specifically, in this section we evaluate interventions on samples that were downsampled, Gaussian
blurred, and applied a random affine transformation (rescalings and rotations). We chose these distribution shifts as they
represent widespread forms of OOD shifts found in real-world deployment.

Our results on CUB-Incomplete and our AwA2 tasks, shown in Figure 9, suggest that MixCEMs have better OOD
intervention task accuracies than our baselines across different distribution shifts. For instance, MixCEMs can have up
to ∼20% percentage points more in OOD task accuracy than CEMs and IntCEMs when all concepts are intervened on
in inputs downsampled to 25% of their size. These results suggest that MixCEMs are better at receiving interventions in
practical scenarios and real-world forms of distribution shifts.

H.2. Exploring Domain Shifts

Next, we explore distribution shifts in the form of domain shifts. For this, we train our models on an addition task where
11 MNIST digits (Deng, 2012) form each training sample, and the task is to predict whether all digits add to more than
25% of the maximum sum. We provide the identity of five digits as training concepts (i.e., it is an incomplete task), and
at test time, we swap MNIST digits for real-world sampled digits coming from the Street View House Numbers (SVHN)
dataset (Netzer et al., 2011). Our results, shown in Figure 10, suggest that MixCEMs achieve better ID and OOD intervention
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Figure 9. Task accuracy as we intervene on concepts, selected at random, for OOD test samples on CUB-Incomplete and our AwA2
variants. Out-of-distribution samples are generated by applying different forms of visual transformations to the test set (shift type shown
on the y-axis).

task AUC-ROC than our baselines, particularly for high intervention rates. For example, when all concepts are intervened,
MixCEM attained ∼31, ∼7, and ∼3 more percentage points in OOD task AUC-ROC over CEM, IntCEM, and ProbCBM,
respectively. In contrast, we found it very difficult to get CEMs to perform well in this incomplete task.

I. Extended Robustness Experiments
We complement our results in Section 5.3 by showing extended versions of those experiments. We first discuss our extended
noise level ablation results on CUB-Incomplete and CUB and then our baselines’ results on TravelingBirds.

I.1. Extended Noise Ablation Results

Figure 11 shows all intervention curves in CUB and CUB-Incomplete as we vary the amount of “Salt & Pepper” noise
on the test samples. As in our analysis of Figure 5 (left) in Section 5.3 suggest, we see that across noise levels, MixCEM
outperforms all baselines in terms of its task accuracy as interventions are made. MixCEM’s placement within the other
baselines seems to be independent of the dataset’s concept-completeness, although we see a much bigger improvement in
CUB-Incomplete than in CUB. Moreover, we also observe that, as discussed in Section 5.3, MixCEM’s unintervened
performance (left-most part of the plot) is above that of other methods for noise levels of up to 10% corruption. After
those levels, MixCEM’s unintervened accuracy seems to be on par with that of all other baselines, but it better receives
interventions than other approaches (leading to higher accuracies when intervened on across all noise levels).
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Figure 11. OOD task accuracy vs intervention curves for all baselines in the CUB (top) and CUB-Incomplete tasks. Test samples are
perturbed by adding “Salt & Pepper” noise with increasing levels (% pixels corrupted).

I.2. Complete Spurious Study on TravelingBirds

In Figure 12, we summarise the intervention curves for all baselines in TravelingBirds and its incomplete version
TravelingBirds-Incomplete. Here, as we observed in Section 5.3, we see that MixCEM’s performance for
spuriously correlated ID samples is on par with that of IntCEMs and CEMs, the two best-performing baselines for ID
samples in both tasks. In contrast, for OOD samples, we see that ProbCBMs, Vanilla CBMs, and Hybrid CBMs have
better OOD unintervened performance than MixCEM only in TravelingBirds. This aligns with the results we reported
in Section 5.3 and constitutes evidence for the hypothesis we discuss in Section 6 that argues that using constant/global
concepts in a bottleneck, such as those used for Vanilla CBMs and ProbCBMs, enables them to avoid exploiting spurious
correlations in the same way less constrained methods such as CEMs or IntCEMs may. These results also follow similar
conclusions previously discussed in this dataset by Koh et al. (2020). Nevertheless, we observe that (1) MixCEM’s accuracy
is higher than that of all baselines when the dataset is incomplete, our main setup of interest, and (2) MixCEMs intervention
accuracy is properly bounded (always above that of the Bayes Classifier), something that cannot be said of any other method
in these two tasks except for IntCEMs.
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Figure 12. TravelingBirds (left) and TravelingBirds-Incomplete (right) intervention curves. We show results on a spuri-
ously correlated ID validation set (top) and on an OOD test set without the spurious correlation (bottom).

J. Hyperparameter Recommendations and Ablation Studies
In this section, we extensively explore the effect of MixCEM’s hyperparameters on its performance. For this, we focus
on the CUB-Incomplete dataset, given that it is a good representative for a concept-incomplete task, the main setup of
interest for this paper. Moreover, to enable a tractable exploration of a vast number of configurations for the ablations below,
we train MixCEM only with 25% of the training data. The only exceptions for this are in our studies of the effect of (1)
random train-time interventions (App. J.5), and (2) concept calibration (App. J.4), where we ran experiments across all tasks
as these studies could be efficiently performed. Finally, when studying a specific hyperparameter, we vary its value over a
set of pre-defined acceptable values at different scales while fixing all other hyperparameters to the values selected by our
model selection procedure for CUB-Incomplete (described in detail in App. D).

Our results in this section strongly suggest that MixCEMs are robust to different hyperparmeterisations, attaining both
high intervenability and fidelities for both ID and OOD samples across all hyperparameterisations we attempted. As such,
MixCEMs do not require significant efforts to fine-tune, making them practical in real-world setups where proper fine-tuning
may be intractable. To facilitate MixCEM’s future use, we include a set of hyperparameter recommendations in App. J.6.

J.1. Effect of Concept Weight Loss (λc)

First, we evaluate the effect of the concept loss weight λc on MixCEM’s performance. Although, in practice, we do not
fine-tune this hyperparameter for MixCEM (instead always using the concept loss weight selected for an equivalent CEM),
this hyperparameter has been previously shown to significantly affect how CBM-based models perform (Koh et al., 2020;
Espinosa Zarlenga et al., 2022). As such, understanding how it affects our model is an important practical consideration.

In Figure 13, we show the ID and OOD intervention curves for MixCEM in CUB-Incomplete across several values of
λc ∈ {0, 0.01, 0.1, 1, 2.5, 5}. We see that, throughout all values of λc, MixCEM significantly increases its accuracy when
one intervenes on its concepts both in ID and OOD test sets. Although these results appear to be somewhat stable, we see, as
one would expect, that the unintervened task loss suffers a drop when λc is high and the mean concept AUC drops when λc
is too low. This suggests that, in practice, using a midrange value for λc in between [1, 2.5] yields an interveanable model
with high concept and task fidelities.

A surprising result from this ablation is that MixCEM is still highly intervenable when λc = 0 (meaning no concept
loss is applied during training). We believe that this is a consequence of MixCEM’s prior predictive error Ltask

(
y, f(c̄)

)
maximising the task predictor accuracies assuming all concepts are intervened on. Hence, these results provide further
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evidence that Ltask
(
y, f(c̄)

)
has an implicit intervention-aware effect.

0 20 40 60 80 100

Intervened Concepts (%)

75

80

85

90

95

T
as

k
A

cc
u

ra
cy

(%
)

ID

0 20 40 60 80 100

Intervened Concepts (%)

20

40

60

80

OOD

0.0 0.1 1.0 2.5 5.0

λc

50

60

70

80

90

100

T
as

k
A

cc
u

ra
cy

(%
)

ID

0.0 0.1 1.0 2.5 5.0

λc

60

70

80

90

100

M
ea

n
C

on
ce

p
t

A
U

C
(%

) ID

0.0 0.1 1.0 2.5 5.0

λc

60

70

80

90

100

A
ll

In
te

rv
en

ed
A

cc
(%

)

ID

0.0 0.1 1.0 2.5 5.0

λc

60

70

80

90

100

A
ll

In
te

rv
en

ed
A

cc
(%

)

OOD

MixCEM (λc = 0.0) MixCEM (λc = 0.1) MixCEM (λc = 1.0) MixCEM (λc = 2.5) MixCEM (λc = 5.0)

Figure 13. Ablation study for λc in a smaller version of CUB-Incomplete. On top of each subplot, we indicate whether we show
results for an ID test set or an OOD test set (generated using 10% salt & pepper noise). The right-most two plots show the task accuracy
when all concepts are intervened. We highlight the model corresponding to the hyperparameter selected for our evaluation in Section 5.

J.2. Effect of Prior Error Weight (λp)

Next, we look at how prior error weight λp affects MixCEM’s performance. In Figure 14, we see that small values of λp
lead to both worst ID and OOD intervenability. This is expected, as the larger λp is, the better the model’s accuracy will be
when it has to make a prediction based only on the global embeddings. Nevertheless, we see that for larger values of λp
(e.g., λp ≥ 1), all metrics become relatively stable. As such, it is important that λp is set to a value near 1. By doing so,
during training we are assigning equal weight to correctly predicting task labels using only the global embeddings (i.e.,
minimising Ltask

(
y, f(c̄)

)
) and to correctly predicting task labels with the contextual embeddings (i.e., Ltask

(
y, f(g(x))

)
).
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Figure 14. Ablation study for λp in a smaller version of CUB-Incomplete. On top of each subplot, we indicate whether we show
results for an ID test set or an OOD test set (generated using 10% salt & pepper noise). The right-most two plots show the task accuracy
when all concepts are intervened. We highlight the model corresponding to the hyperparameter selected for our evaluation in Section 5.

J.3. Effect of Training Fallback Probability (pdrop)

When looking at the effect of the dropout probability pdrop, Figure 15 suggest that, at least in CUB-Incomplete, this
hyperparameter does not have much of an effect. This is true except for pdrop = 1, where we see a drop in unintervened
task accuracy. This is because when pdrop = 1, the model essentially blocks any leaked information from x into the label
predictor f . However, for all other values, MixCEM’s performance remains relatively static with pdrop = 0.5, yielding the
best overall intervenability results, albeit not for too much of a difference.

Surprisingly, however, even when pdrop = 0, meaning we do not use any residual dropout during training or testing, MixCEM
archives very high task accuracies when it is intervened on for ID and OOD samples. This may suggest that this dropout
mechanism is not always needed. Nevertheless, as our results in Figure 16 comparing a MixCEM with dropout and a
MixCEM without dropout in CelebA show, there are clear benefits of adding this dropout mechanism, particularly for
difficult tasks such as CelebA.

J.4. Effect of Calibration (Ecal)

In Figure 17, we can see the intervention curves of MixCEMs across all tasks with and without Platt scaling. We notice that
Platt scaling brings some key benefits for OOD samples, particularly for complex datasets such as CUB-Incomplete and
AwA2-Incomplete. This is because the more calibrated a MixCEM’s concept probabilities are, the more likely it is to

25



Avoiding Leakage Poisoning: Concept Interventions Under Distribution Shifts

0 20 40 60 80 100

Intervened Concepts (%)

70

80

90

T
as

k
A

cc
u

ra
cy

(%
)

ID

0 20 40 60 80 100

Intervened Concepts (%)

20

40

60

80

OOD

0.0 0.1 0.5 0.9 1.0

pdrop

50

60

70

80

90

100

T
as

k
A

cc
u

ra
cy

(%
)

ID

0.0 0.1 0.5 0.9 1.0

pdrop

60

70

80

90

100

M
ea

n
C

on
ce

p
t

A
U

C
(%

) ID

0.0 0.1 0.5 0.9 1.0

pdrop

60

70

80

90

100

A
ll

In
te

rv
en

ed
A

cc
(%

)

ID

0.0 0.1 0.5 0.9 1.0

pdrop

60

70

80

90

100

A
ll

In
te

rv
en

ed
A

cc
(%

)

OOD

MixCEM (pdrop = 0.0) MixCEM (pdrop = 0.1) MixCEM (pdrop = 0.5) MixCEM (pdrop = 0.9) MixCEM (pdrop = 1.0)

Figure 15. Ablation study for pdrop in a smaller version of CUB-Incomplete. On top of each subplot, we indicate whether we show
results for an ID test set or an OOD test set (generated using 10% salt & pepper noise). The right-most two plots show the task accuracy
when all concepts are intervened. We highlight the model corresponding to the hyperparameter selected for our evaluation in Section 5.
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Figure 16. Ablation study for MixCEM’s residual dropout probability pdrop hyperparameter in CelebA. Notice that in this task, there is
a significant improvement OOD intervenability when pdrop is greater than 0. We mark in red and bold the model corresponding to the
hyperparameter that was selected for our evaluation in Section 5.

drop its residual embedding when that concept becomes OOD. The only instance where we saw a drop of performance
when using Platt Scaling was in CelebA. We believe this is due to the concepts in this task being too complex/subjective to
be properly predicted in the first place, leading to a model whose concept predictions were not overconfident even before
Platt scaling was done. Nevertheless, we notice that with and without Platt Scaling, MixCEMs can recover very high
accuracies when intervened for OOD setups. Hence, Platt scaling is helpful but not entirely necessary for MixCEM’s ability
to receive interventions for OOD samples properly. Because of this, when selecting hyperparameters for MixCEMs, we
include Ecal = 0 (i.e., no calibration at all) as hyperparameter option.
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Figure 17. Task accuracy of MixCEMs with and without Platt scaling as we intervene on concepts, selected at random, for ID (top) and
OOD (bottom) test samples. We use the same setup as the experiments described in Figure 4.

J.5. Effect of Training Intervention Probability (pint)

Finally, we study the effect of training-time interventions on MixCEM’s performance across ID and OOD tasks (so-called
RandInt (Espinosa Zarlenga et al., 2022)). Our results, shown in Figure 18 suggest that randomly intervening on concepts
during training with pint = 0.25 is generally beneficial for ID interventions. Nevertheless, we observe that the improvements
from including these train-time interventions on MixCEMs are significantly less impactful than what the original CEM
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authors observed for CEMs (Figure 6 of (Espinosa Zarlenga et al., 2022)). This is once more evidence, as discussed in
Section 6, that MixCEM’s prior error minimisation has an implicit intervention-aware bias in it that leads to models that are
more receptive to test-time interventions.
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Figure 18. Task accuracy of MixCEMs with and without randomly intervening at training time with probability pint (i.e., using RandInt).
We use the same setup as the experiments described in Figure 4.

J.6. General Recommendations

Our ablation results suggest that MixCEMs can perform well both for ID and OOD instances across a wide range of
hyperparameters. Thus, if fine-tuning is not an option, we would recommend setting λc = 1, pdrop = 0.5, λp = 1, m = 16,
pint = 0.25, and T = 50 for obtaining already high ID and OOD intervention receptiveness. If one of these hyperparameters
is to be fine-tuned, our ablations suggest setting λp = 1 and focusing on fine-tuning λc, as changes in this hyperparameter
affect MixCEM’s interpretability the most.

We note that in our experiments, we focus almost entirely on selecting λp and pdrop. All other hyperparameters (e.g., m, pint,
T ) were either fixed to a constant value or were selected based on those used for an equivalent CEM.

K. Resources Used
Software For our experiments and evaluation, we adapted the original CEM codebase2 built by Espinosa Zarlenga
et al. (2022). This codebase provided the basis for our implementation of MixCEM and gave us the foundations for our
implementations of CEMs, IntCEMs, Vanilla CBMs and Hybrid CBMs. Moreover, we used the data loaders for CUB and
CelebA provided these, of which the former is based upon the original data loader by (Koh et al., 2020). For Posthoc
CBMs (P-CBMs), we based our implementation on that used by the authors and published with the paper3. Similarly, for
Probabilistic CBMs, we based our implementation on a very close adaptation of the implementation made public by the
authors in the codebase accompanying their paper4. Finally, for our CIFAR10 and AwA2 loaders, we got inspiration from
the public implementation of these loaders by Vandenhirtz et al. (2024) and Marcinkevičs et al. (2024), respectively.

Our experiments were run on PyTorch 1.11.0 (Paszke et al., 2019) and facilitated by Pytorch Lightning 1.9.5 (Falcon, 2019).
For our plots, we used matplotlib 3.5.1 (Hunter, 2007) and the open-sourced distribution of draw.io.

All the software and datasets used to build our own codebase and to run our experiments were made available to the public
via open-source licenses (e.g., MIT, BSD). To facilitate and encourage the reproduction of our results, we include all of our
code, including configuration files to reproduce each of our experiments, in our supplementary submission for this work. All
of our code, including configs and scripts to recreate results shown in this paper, can be found in CEM’s official public
repository found at https://github.com/mateoespinosa/cem.

Resources We executed all experiments on a shared GPU cluster with four Nvidia Titan Xp GPUs and 40 Intel(R) Xeon(R)
E5-2630 v4 CPUs (at 2.20GHz) with 125GB of RAM. All of our experiments, including early development experiments,
expensive ablation studies, and fine-tuning for all baselines, took approximately 500 compute hours.

2https://github.com/mateoespinosa/cem.
3https://github.com/mertyg/post-hoc-cbm.
4https://github.com/ejkim47/prob-cbm.
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L. Tabulation of Intervention Results and Computation of Area Under the Intervention Curves
In Table 6, we should a tabulation of Figure 4 using a representative subset of the points shown in that figure. We also include
an estimation of the area under each intervention curve (computed using a Riemann sum), which shows how MixCEM’s
intervenability is significantly better than that of competing methods, particularly for OOD setups.

Table 6. Task accuracy (%) for ID (blue) and OOD (red) samples as we intervene on a larger fraction of randomly selected concept groups.
These results show the same data as Figure 4 but in a more accessible form. Each task’s best result, and those not significantly different
from it (paired t-test, p = 0.05), are in bold. We note that MixCEM’s unintervened accuracies (i.e., 0%) may differ very slightly from
those in Table 1 as its inference is non-deterministic (see Section 4). We show the estimated area under each intervention curve in the
“AUC” column.

Method 0% 20% 40% 60% 80% 100% AUC

C
U
B

Vanilla CBM 70.97±0.76 / 14.43±1.16 80.43±1.07 / 38.26±2.93 90.36±1.56 / 77.55±2.29 95.36±1.63 / 91.85±1.92 97.27±1.49 / 96.56±1.65 97.98±1.39 / 97.98±1.39 89.75±1.31 / 72.25±1.44

Hybrid CBM 73.65±0.23 / 8.96±2.63 80.68±0.33 / 18.75±4.96 88.03±0.25 / 43.20±6.50 93.40±0.25 / 69.12±4.59 96.86±0.37 / 87.64±1.33 98.07±0.20 / 93.29±0.21 89.08±0.22 / 54.06±3.74

ProbCBM 68.16±1.44 / 6.44±0.97 79.38±0.94 / 21.65±3.62 91.63±0.33 / 64.35±5.06 97.11±0.21 / 90.11±1.86 99.50±0.03 / 98.59±0.44 100.00±0.00 / 100.00±0.00 90.53±0.39 / 65.52±2.32

P-CBM 69.00±0.69 / 3.76±0.72 77.00±1.19 / 15.45±1.60 82.35±1.82 / 38.51±2.43 84.41±3.22 / 56.92±4.36 84.82±4.81 / 74.47±5.72 83.51±7.01 / 83.81±6.94 81.15±2.90 / 45.83±3.00

Residual P-CBM 71.84±0.57 / 4.26±0.86 76.32±0.63 / 9.75±2.06 80.59±0.70 / 18.73±4.34 83.44±0.96 / 28.55±6.60 86.31±1.07 / 40.56±8.58 88.13±1.26 / 50.30±9.66 81.40±0.75 / 25.01±5.16

Bayes Classifier 0.52±0.00 / 0.52±0.00 9.31±0.87 / 9.31±0.87 49.51±2.20 / 49.51±2.20 86.40±0.62 / 86.40±0.62 98.68±0.11 / 98.68±0.11 100.00±0.00 / 100.00±0.00 58.62±0.74 / 58.62±0.74

CEM 76.67±0.11 / 9.68±1.20 85.95±0.18 / 32.58±3.12 92.69±0.15 / 68.27±2.68 96.03±0.21 / 85.07±2.30 97.93±0.17 / 93.31±1.43 98.78±0.10 / 96.14±0.90 92.25±0.09 / 66.53±1.96

IntCEM 73.33±0.70 / 11.00±4.01 90.23±0.38 / 57.05±5.26 97.22±0.14 / 90.27±1.16 98.79±0.07 / 96.54±0.31 99.61±0.02 / 98.92±0.10 99.90±0.01 / 99.67±0.12 94.96±0.08 / 80.19±1.97

MixCEM (ours) 76.64±0.22 / 17.25±0.39 89.19±0.17 / 62.24±3.43 96.52±0.13 / 90.84±1.32 98.48±0.07 / 96.78±0.58 99.51±0.02 / 99.13±0.11 99.82±0.02 / 99.89±0.10 94.69±0.04 / 82.23±1.17

C
U
B
-
I
n
c
o
m
p
l
e
t
e

Vanilla CBM 56.46±0.48 / 5.42±0.60 61.85±0.57 / 14.58±1.14 65.42±0.51 / 23.43±1.40 72.59±0.68 / 49.52±1.36 76.35±0.85 / 64.41±0.89 79.58±1.31 / 79.58±1.31 69.17±0.68 / 39.42±1.03

Hybrid CBM 72.13±0.57 / 4.81±0.39 76.31±0.79 / 7.34±0.30 78.53±0.64 / 8.99±0.47 83.26±0.52 / 14.81±0.46 85.43±0.45 / 18.93±0.55 87.54±0.37 / 24.33±0.42 80.91±0.55 / 13.11±0.43

ProbCBM 60.56±1.11 / 4.26±0.96 67.50±0.59 / 13.06±1.47 71.80±0.61 / 23.37±1.64 80.55±0.54 / 55.05±1.10 84.45±0.33 / 72.47±0.45 87.80±0.09 / 87.80±0.09 76.01±0.40 / 42.46±1.05

P-CBM 48.88±10.66 / 2.76±0.35 37.68±8.40 / 5.65±0.37 34.49±8.29 / 8.18±1.12 30.03±8.61 / 15.63±3.98 29.39±9.46 / 21.26±6.66 29.29±11.29 / 29.15±10.90 33.58±8.98 / 13.55±3.52

Residual P-CBM 70.69±0.21 / 4.82±2.01 72.26±0.75 / 7.09±0.93 73.28±1.20 / 8.71±0.12 75.07±2.32 / 12.28±2.63 76.01±2.94 / 15.21±5.03 77.18±3.73 / 18.37±7.83 74.25±1.83 / 11.10±2.05

Bayes Classifier 0.52±0.00 / 0.52±0.00 7.82±0.44 / 7.82±0.44 18.65±1.61 / 18.65±1.61 55.53±1.95 / 55.53±1.95 73.92±1.18 / 73.92±1.18 87.56±0.33 / 87.56±0.33 40.21±1.01 / 40.21±1.01

CEM 74.42±0.46 / 6.84±1.69 79.96±0.68 / 12.92±2.62 82.89±0.83 / 17.52±2.96 87.92±0.75 / 29.71±3.52 89.99±0.51 / 36.81±3.78 92.08±0.47 / 44.61±4.44 85.09±0.65 / 24.87±3.18

IntCEM 72.61±0.21 / 7.98±0.32 81.35±0.18 / 20.12±1.15 85.02±0.28 / 29.82±1.65 91.58±0.30 / 54.21±3.51 94.02±0.28 / 66.47±3.35 96.08±0.34 / 78.03±3.15 87.69±0.25 / 43.34±2.23

MixCEM (ours) 74.56±0.12 / 11.61±1.37 83.51±0.30 / 27.73±2.36 87.02±0.15 / 40.74±2.76 92.80±0.17 / 68.61±2.71 94.91±0.14 / 80.51±1.99 96.64±0.19 / 90.42±1.20 89.16±0.16 / 54.48±2.13

A
w
A
2

Vanilla CBM 87.52±0.41 / 15.99±0.86 92.17±0.47 / 33.86±2.63 96.59±0.26 / 71.70±2.86 98.71±0.16 / 93.62±1.33 99.36±0.09 / 99.30±0.23 99.49±0.13 / 99.49±0.13 96.18±0.21 / 71.31±1.50

Hybrid CBM 88.18±0.65 / 17.30±0.66 91.26±0.39 / 25.89±2.05 94.38±0.29 / 45.18±4.41 96.70±0.21 / 69.67±5.25 98.83±0.03 / 92.65±2.61 99.53±0.06 / 99.26±0.11 95.08±0.23 / 58.52±2.88

ProbCBM 85.34±0.39 / 6.41±1.76 90.44±0.38 / 29.07±7.21 96.34±0.21 / 72.61±7.46 99.01±0.04 / 93.80±2.22 99.95±0.01 / 99.78±0.10 100.00±0.00 / 100.00±0.00 95.78±0.15 / 69.81±3.67

P-CBM 90.31±0.12 / 19.78±1.67 95.07±0.22 / 47.41±1.09 97.67±0.08 / 77.87±0.34 98.62±0.13 / 91.69±0.23 99.08±0.37 / 97.76±0.21 99.37±0.89 / 99.37±0.89 97.17±0.13 / 75.35±0.42

Residual P-CBM 90.60±0.14 / 19.49±1.84 94.73±0.23 / 42.24±2.06 97.43±0.07 / 71.72±1.12 98.55±0.09 / 88.35±0.83 99.21±0.29 / 96.69±0.64 99.73±0.22 / 99.39±0.21 97.14±0.06 / 72.06±1.09

Bayes Classifier 1.18±1.01 / 1.18±1.01 12.98±0.80 / 12.98±0.80 55.74±1.19 / 55.74±1.19 89.23±0.63 / 89.23±0.63 99.60±0.15 / 99.60±0.15 100.00±0.00 / 100.00±0.00 61.50±0.40 / 61.50±0.40

CEM 91.07±0.24 / 20.22±2.03 93.17±0.23 / 24.04±1.95 95.10±0.33 / 28.76±1.98 96.46±0.27 / 33.44±2.17 98.00±0.13 / 39.40±2.30 98.86±0.08 / 44.81±2.05 95.60±0.19 / 31.64±2.07

IntCEM 89.52±0.92 / 16.06±1.41 94.36±0.56 / 25.05±2.24 97.31±0.28 / 36.43±3.14 98.54±0.22 / 46.16±3.66 99.39±0.07 / 57.34±3.45 99.64±0.07 / 64.68±3.24 96.97±0.29 / 41.26±2.99

MixCEM (ours) 89.97±0.13 / 17.75±0.18 95.45±0.11 / 45.51±0.59 98.83±0.02 / 82.73±0.69 99.62±0.04 / 96.95±0.50 99.99±0.00 / 99.91±0.05 100.00±0.00 / 100.00±0.00 97.92±0.02 / 77.17±0.37

A
w
A
2
-
I
n
c
o
m
p
l
e
t
e Vanilla CBM 76.28±0.82 / 15.43±0.38 73.92±1.11 / 27.22±0.17 72.90±1.24 / 35.29±0.07 71.90±1.16 / 46.30±0.58 70.66±1.37 / 58.13±0.42 69.63±1.61 / 69.63±1.61 72.39±1.20 / 42.87±0.25

Hybrid CBM 89.39±0.18 / 18.11±1.19 90.26±0.23 / 20.60±1.28 90.78±0.17 / 22.06±1.26 91.34±0.18 / 24.02±1.43 91.88±0.15 / 26.19±1.66 92.41±0.07 / 28.64±1.52 91.09±0.17 / 23.48±1.37

ProbCBM 67.12±0.18 / 7.61±1.80 69.59±0.32 / 18.82±1.13 70.82±0.27 / 29.39±1.40 72.48±0.40 / 43.85±0.74 73.83±0.13 / 60.62±0.57 75.58±0.47 / 75.58±0.47 71.82±0.13 / 39.99±0.87

P-CBM 75.77±0.44 / 14.20±0.46 70.27±0.34 / 26.85±1.04 70.48±0.35 / 36.16±0.82 71.22±0.35 / 48.10±0.47 72.32±0.16 / 61.28±0.91 73.76±0.77 / 73.76±0.77 71.69±0.20 / 44.27±0.64

Residual P-CBM 89.56±0.17 / 18.37±0.98 92.69±0.15 / 33.31±1.87 93.99±0.18 / 42.48±2.36 95.09±0.06 / 52.96±3.00 96.06±0.14 / 64.50±2.53 96.95±0.27 / 76.00±1.94 94.32±0.13 / 49.07±2.13

Bayes Classifier 1.19±0.61 / 1.19±0.61 14.17±0.83 / 14.17±0.83 30.08±0.83 / 30.08±0.83 47.82±1.05 / 47.82±1.05 63.64±0.42 / 63.64±0.42 76.35±0.35 / 76.35±0.35 39.56±0.50 / 39.56±0.50

CEM 90.12±0.07 / 17.42±0.82 92.47±0.06 / 22.09±0.83 93.57±0.13 / 24.92±0.90 94.61±0.18 / 28.07±1.11 95.64±0.23 / 31.59±1.44 96.67±0.26 / 35.45±1.72 94.04±0.14 / 26.97±1.07

IntCEM 88.65±0.38 / 19.98±0.58 92.04±0.38 / 26.32±0.93 93.45±0.31 / 29.79±1.11 94.79±0.26 / 33.38±1.49 95.86±0.20 / 37.64±2.09 96.80±0.13 / 42.13±2.51 93.90±0.27 / 32.03±1.41

MixCEM (ours) 88.65±0.10 / 16.71±0.82 93.01±0.20 / 33.74±0.50 94.84±0.15 / 45.38±0.47 96.30±0.13 / 58.95±0.71 97.51±0.04 / 72.44±0.84 98.50±0.04 / 83.74±1.10 95.20±0.10 / 53.07±0.41

C
I
F
A
R
1
0

Vanilla CBM 76.97±0.17 / 35.35±2.07 81.58±0.40 / 51.25±0.72 86.55±0.23 / 71.98±0.50 88.88±0.12 / 81.61±0.18 89.86±0.10 / 87.86±0.18 89.31±0.12 / 89.31±0.12 86.11±0.11 / 71.31±0.36

Hybrid CBM 79.12±0.27 / 31.59±1.47 80.07±0.27 / 35.00±1.54 80.89±0.31 / 39.17±1.81 81.58±0.24 / 43.09±1.75 82.71±0.25 / 50.18±1.53 83.61±0.24 / 55.24±1.30 81.36±0.28 / 42.30±1.58

ProbCBM 64.80±5.15 / 27.40±2.71 70.70±4.77 / 37.02±1.26 78.38±3.81 / 54.75±2.96 83.85±2.59 / 69.50±3.47 89.91±0.45 / 86.58±0.57 90.87±0.11 / 90.87±0.11 80.27±2.81 / 61.68±1.01

P-CBM 79.86±0.05 / 33.21±0.27 83.49±0.13 / 49.73±0.51 84.68±0.13 / 66.57±0.53 83.21±0.40 / 71.77±0.60 78.22±0.69 / 74.24±0.63 74.40±0.78 / 74.40±0.78 81.46±0.32 / 63.64±0.47

Residual P-CBM 79.90±0.10 / 33.91±0.08 83.48±0.09 / 49.47±0.73 84.33±0.27 / 65.41±1.13 83.09±0.74 / 70.97±0.65 78.91±0.48 / 74.02±0.47 75.03±0.48 / 74.38±0.41 81.58±0.36 / 63.16±0.65

Bayes Classifier 10.00±0.00 / 10.00±0.00 63.88±0.54 / 63.88±0.54 81.93±0.27 / 81.93±0.27 86.33±0.29 / 86.33±0.29 89.98±0.23 / 89.98±0.23 91.32±0.15 / 91.32±0.15 76.54±0.27 / 76.54±0.27

CEM 80.05±0.35 / 32.93±0.14 83.36±0.34 / 42.21±0.20 86.46±0.23 / 54.57±0.48 88.17±0.33 / 62.69±0.59 89.99±0.13 / 71.52±0.57 90.58±0.16 / 75.26±0.30 86.73±0.23 / 57.30±0.36

IntCEM 78.48±0.68 / 32.41±3.83 85.09±0.05 / 48.52±3.64 89.09±0.19 / 65.40±2.65 90.57±0.24 / 73.12±2.40 92.02±0.05 / 80.21±1.78 92.50±0.14 / 82.91±1.39 88.69±0.04 / 65.43±2.35

MixCEM (ours) 79.36±0.69 / 32.79±1.04 83.49±0.60 / 48.75±1.43 87.37±0.58 / 67.55±1.22 89.34±0.44 / 77.48±0.83 91.37±0.41 / 85.78±0.40 92.51±0.39 / 88.85±0.31 87.66±0.52 / 68.46±0.88

C
e
l
e
b
A

Vanilla CBM 24.18±0.65 / 10.71±0.67 28.39±2.12 / 14.37±2.09 30.66±2.32 / 18.46±2.65 33.20±3.10 / 24.83±3.00 36.28±2.99 / 31.73±2.79 40.18±2.79 / 40.18±2.79 32.45±2.44 / 23.59±2.43

Hybrid CBM 35.43±0.23 / 10.73±1.00 35.79±0.21 / 10.79±1.02 35.89±0.23 / 10.79±1.02 36.02±0.21 / 10.80±1.02 36.20±0.25 / 10.85±1.04 36.35±0.26 / 10.91±1.04 35.97±0.22 / 10.82±1.03

ProbCBM 31.74±0.29 / 12.92±1.00 39.79±0.47 / 19.48±1.77 44.37±0.06 / 23.81±2.17 49.78±0.27 / 31.11±2.32 55.61±0.08 / 42.27±2.29 62.96±0.12 / 62.96±0.12 48.00±0.10 / 32.60±1.62

P-CBM 17.18±2.47 / 6.76±1.56 14.03±1.55 / 7.36±1.16 16.07±2.16 / 9.60±2.15 18.56±2.26 / 13.46±3.62 23.02±2.86 / 19.19±3.13 34.18±3.85 / 34.18±3.85 19.99±2.22 / 14.92±2.29

Residual P-CBM 15.43±1.91 / 3.37±0.82 16.17±1.76 / 5.71±1.53 18.21±1.71 / 7.17±2.13 20.23±1.71 / 9.15±2.44 23.25±1.69 / 11.71±2.28 27.86±1.83 / 14.04±2.20 20.18±1.70 / 8.65±1.84

Bayes Classifier 0.42±0.30 / 0.42±0.30 13.04±1.21 / 13.04±1.21 24.84±1.42 / 24.84±1.42 39.43±0.44 / 39.43±0.44 47.79±1.29 / 47.79±1.29 54.79±2.14 / 54.79±2.14 30.38±0.72 / 30.38±0.72

CEM 34.89±0.46 / 6.52±2.94 40.58±0.48 / 7.60±3.18 43.66±0.50 / 8.35±3.39 47.34±0.32 / 9.12±3.53 51.02±0.73 / 10.22±3.56 54.82±0.57 / 11.78±3.81 45.85±0.36 / 9.02±3.43

IntCEM 36.93±1.07 / 9.51±1.34 45.33±0.84 / 14.33±1.74 50.08±0.88 / 17.07±2.30 56.10±1.04 / 20.81±3.17 62.17±1.60 / 25.89±4.13 68.84±1.73 / 33.16±5.54 53.87±1.17 / 20.52±2.98

MixCEM (ours) 35.53±0.76 / 11.76±0.74 44.17±0.50 / 18.11±1.13 49.17±0.35 / 22.90±1.80 55.48±0.39 / 30.95±2.17 61.83±0.39 / 42.93±1.76 69.15±0.68 / 62.53±0.57 53.24±0.43 / 31.99±1.21
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